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ABSTRACT: Cross-electrophile coupling has emerged as an at-
tractive and efficient method for the synthesis of C(sp2)-C(sp3)
bonds. These reactions are most often catalyzed by nickel com-
plexes of nitrogenous ligands, especially 2,2’-bipyridines. Pre-
cise prediction, selection, and design of optimal ligands re-
mains challenging, despite significant increases in reaction
scope and mechanistic understanding. Molecular parameteri-
zation and statistical modeling provide a path to the develop-
ment of improved bipyridine ligands that will enhance the se-
lectivity of existing reactions and broaden the scope of electro-
philes that can be coupled. Herein, we describe the generation
of a computational ligand library, correlation of observed reac-
tion outcomes with features of the ligands, and in silico design
of improved bipyridine ligands for Ni-catalyzed cross-electro-
phile coupling. The new nitrogen-substituted ligands display a
fivefold increase in selectivity for product formation versus ho-
modimerization when compared to the current state of the art.
This increase in selectivity and yield was general for several
cross-electrophile couplings, including the challenging cou-
pling of an aryl chloride with an N-alkylpyridinium salt.

Introduction

Heterocycle-based, L2 dinitrogen ligands are critical ena-
bling components of many transition metal-catalyzed C-C, C-
N, and C-0 bond forming reactions. These ligands—typified by
2,2’-bipyridine (bpy)—enable reactivity distinct from phos-
phine ligands by promoting a diverse set of 1- and 2-electron-
processes.1-4 In particular, bpy ligands have become a fixture of
nickel-catalyzed cross-electrophile,5 metallophotoredox,é and
electrochemical’-9 couplings, and are often the standard by
which the reactivity of other ligands are gauged. The increased
demand for more diverse bipyridine ligands can be observed in
the surge of interest in substituted bipyridines (Figure 1A, Fig-
ure S1.1). Despite this diversification and their impact on nu-
merous fields, few studies have systematically examined what
molecular features are critical to success in this class of ligands.

As a prominent example, Ni-catalyzed C(sp2)-C(sp3) cross-
electrophile coupling (XEC)10-12 is dependent on the selection
of an appropriate ligand, most often a bpy derivative. While

extensive optimization and expansion of this reaction manifold
has enabled the use of new substrate classes, dimerization of
the C(sp2) component remains problematic. Slow radical cap-
ture can allow competitive aryl exchange of the intermediate
arylnickel(II) species to compete (Figure 1B).1314 Approaches
to mitigate this issue often focus on either increasing the rate
of radical generation—in an effort to accelerate the productive
pathway—or decreasing the rate of disproportionation of the
arylnickel intermediate.

Methods from Weix,15-17 Sevov,18 and others12.19-21 have
demonstrated the use of multimetallic catalyst systems where
one catalyst is exclusively responsible for generation of an alkyl
radical, and another engages the C(sp?) coupling partner and
facilitates formation of the desired C-C bond (Figure 1C, part
i).22.23 An alternative approach is the addition of stoichiometric
additives—such as phthalimide or pyridine derivatives—that
passivate open sites of the arylnickel intermediate, slowing the
rate of deleterious disproportionation (Figure 1C, part ii).12.24-
26 While these and other modifications have proven effective in
many cases, they also introduce complications—such as tuning
catalyst ratios, decreased atom economy, and new side reac-
tions. A more attractive approach would be the systematic de-
velopment of a more selective single catalyst. Further, im-
proved catalysts could be used in combination with the above
methods to improve rate or engage otherwise inaccessible sub-
strate pools.

The underlying issue to this approach is that the discovery
of nitrogen-based ligands is less well developed than phos-
phines. This is reflected in the disparity in commercial availa-
bility and the prevalence of novel ligands in the literature. Thus
far, approaches to overcome this developmental gap have fo-
cused on general surveys of reactivity,22? hypothesis-driven
skeletal modifications,28 or high-throughput experimentation
(HTE) campaigns to identify new classes of ligands,2 often
with the goal of expanding reaction scope to access more chal-
lenging substrates. More frequently, HTE is employed to iden-
tify an optimal catalyst from a pre-existing suite of ligands with
validated reactivity.3031 While these methods have provided a
basis of understanding for the reactivity of specific catalysts,
they have yet to deliver a sufficiently detailed model of reactiv-
ity to enable the design of improved ligands.



A. Substituted Bipyridines are Increasingly Common
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Figure 1. Bipyridines Are Critical to Cross-Electrophile Coupling, But Further Improvements Are Needed. (A) Occurrences
and prevalence of 2,2’-bipyridine ligands were gathered from a Reaxys structure search performed on 6/28/23 for 2,2’-bipyridine
with attached GH groups in each available position. The results were filtered to exclude higher order polypyridines and compounds
most utilized in organic light emitting diodes (MW > 500 g/mol). For additional information concerning the identity and total oc-
curences of various bipyridines since 1973, see section 1.3 of the Supporting Information (B) Slow radical capture can enable unde-
sired side pathways in nickel-catalyzed cross electrophile coupling (XEC). (C) Common strategies to improve selectivity in XEC in-
clude the use of additional catalysts that accelerate radical generation and the addition of stoichiometric additives that de crease the

rate of decomposition of the (L)Ni/(Ar)X intermediate.

In this context, statistical methods that correlate computa-
tionally-derived molecular features to reaction outcomes have
accelerated the design, selection, and commercialization of op-
timal phosphine-ligated catalysts.32-34 Thus far, the translation
of these methods to L2 dinitrogen ligands remains limited.
Most often, the resulting statistical models are utilized to ra-
tionalize enantio- or site-selectivity. For example, the Sigman
group has reported the use of multivariate linear regression to
rationalize and design improved 2-(2-pyridyl)oxazoline lig-
ands in enantioselective Heck arylations.3536 Additionally,
Doyle and coworkers have utilized a similar workflow to ex-
plain the improved enantioselectivity provided by 2,2’-biimid-
azoline ligands compared to related bioxazolines—specifically
exploring correlations with descriptors from (L)Ni(F)z and
(L)Ni(Ar)Cl complexes—where they noted improved correla-
tions when parameters were sourced directly from the cata-
lytic intermediate involved in the stereodetermining step.3”
Based on the general success of these approaches, we hypoth-
esized that a similar data science workflow could be applied to
more general obstacles of selectivity in nickel-catalyzed cross-
electrophile couplings.

Herein, we describe the application of modern computa-
tional and statistical methods to construct correlations of reac-
tion performance in cross-electrophile couplings as a function
of the bipyridine ligand. The resulting models communicate
two key features of a successful catalyst: a square planar
(L)Ni"(Ar)Br intermediate and a strongly donating ligand. This
model is robust and predictive, allowing for the interpolative
and extrapolative prediction of performance for untested bi-
pyridine ligands. Additionally, we designed a suite of improved
4,4’-bis(dialkylamino)-2,2’-bipyridine ligands in silico, which
were predicted to provide significant improvements in selec-
tivity for the desired product. In action, these new ligands facil-
itate the high yielding coupling of a variety of alkyl and aryl
electrophiles. We expect that the expanded application of the
improved ligands identified in this study will enable the accel-
erated development of new cross-coupling reactions.

Results and Discussion

We initially selected the cross-electrophile coupling of pri-
mary alkyl bromides with aryl bromides as a model reaction for
studying the impact of ligand structure on reaction perfor-
mance (Figure 1A). This validated coupling has been used as a
model system in several ligand identification studies and for
the translation of XEC methods to other reductive systems.29.38
The yield is generally limited by the formation of byproducts—
primarily the aryl homodimer (4)—and selectivity is deter-
mined by the relative concentrations of 3 to 4 at 24 h. The ratio
of product to aryl homodimer can be expressed as a difference
in activation energy, AAG# via the Curtin-Hammett equation,
AAG* = -RTIn([3]/[4]). As such, negative values of AAG* are ob-
tained for reactions that selectively form product 3 over dimer
4,

We gathered an initial dataset by screening a suite of sub-
stituted bipyridines and related ligands in 96-well plates on 20
umol scale. This ligand suite resulted in a wide dynamic range
of results (2-82% yield of 3 over a range of 3.51 kcal/mol in A
AGH%, Figure S4.1) and confirmed that the yield of the desired
product is primarily determined by the selectivity for the cross-
product (3) over the aryl homodimer (4) (Figure S4.2).

Given the diversity in substitution patterns in the bpy lig-
ands tested (4,4’-, 5,5’-, 6-, or 6,6'-(di)substituted), it was read-
ily apparent that tabulated molecular descriptors (i.e., Ham-
mett or Charton values) would be insufficient for modelling se-
lectivity (Figure S5.15). To gain insight into the intrinsic char-
acteristics of each catalyst and adequately describe this diver-
sity, we generated a library of DFT-optimized (L)Ni!'(Ph)Br
(Figure 1A) complexes from which we would derive molecular
parameters.39-47

We hypothesized that parameters derived directly from the
oxidative addition complex—the intermediate that is responsi-
ble for defining selectivity—would provide unique insight into
the structure of selective catalysts.37 Further, the resulting da-
taset should be translatable to other nickel-catalyzed cross-
couplings of haloarenes. We obtained a variety of electronic
(e.g., Natural Population Analysis (NPA) charges of atoms in the
primary coordination sphere, nickel d-orbital energies and
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Figure 1. Model Reaction and Initial Insights into the Source of Selectivity. (A) The selectivity of a model XEC reaction is deter-
mined by the bipyridine ligand employed. For the results of all ligands evaluated, see Figures S2.1 and S4.1. (B) Classification of
reaction yields reveals that ligands that adopt a tetrahedral geometry in the ground state provide low yield and selectivity. AE =
E(tetrahedral) - E(square planar), where negative values indicate ground state tetrahedral complexes. For additional information
on threshold analysis, see Section 5.3 of the Supporting Information. (C) Representative geometries promoted by ligands with (top)
and without (bottom) substitution in the 6 position. (D) Strong univariate correlations indicate that electron-rich ligands (bottom
right) provide improved selectivity over electron-poor ligands (top left). Chemical potential () provides a strong and robust model
for the selectivity promoted by symmetrically substituted bipyridine catalysts. Selectivity is represented by AAG*, where negative
values of AAG* represent reactions that are more selective for 3 over 4.

occupancies, etc.) and steric parameters for each catalyst in
both the square planar and tetrahedral geometry.48 This com-
putational dataset offers detailed insight into the electronic and
steric structure of each catalyst and is provided in full as a sup-
plementary file.

Initial linear correlations between the experimental results
and computational descriptors yielded poor results that did not
adequately incorporate a grouping of observations that gave <1
turnover to form 3 (10% yield). We hypothesized that two sep-
arate features may lead to low selectivity via distinct mecha-
nisms. Indeed, classification of yield of 3 using a single node de-
cision tree with a threshold value of 10% yield revealed a reac-
tivity cliff based on the difference in energy between the tetra-
hedral and square planar geometries of the (L)Ni!'(Ph)Br com-
plex (Figure 1B).49 Sterically hindered 6- and 6,6’-(di)substi-
tuted ligands promote a tetrahedral geometry in the ground
state and rapidly dimerize the aryl bromide, leading to low se-
lectivity. Contrastingly, ligands with 4,4’- or 5,5’-subsitition
yield (L)Ni''(Ph)Br complexes with a square planar ground
state and tended to result in yields >10% of 3 across a range of
selectivities.

Bipyridine ligands with 6,6’-disubstitution and related phe-
nanthrolines are known to display reactivity distinct from their
unhindered analogues (Figure 1C).5051 We do not believe that
this is a result of disfavoring polyligated nickel complexes (e.g.,
(L)Nill(X)2, (L)2NillX)2, and [(L)sNil]Xz2), as bipyridines with
large 5,5’-substituents—which display reliable monoligation—
provide similar reactivity to unhindered bpys.28 Instead, it ap-
pears that these ligands’ promotion of a triplet, tetrahedral
ground state geometry plays a decisive role in acceleration of
the formation of the aryl homodimer 4.

Non-symmetric Ligands Decrease Collinearity in Descriptor Set
R' = R?
Descriptors are highly collinear when the initial
dataset contains only symmetric bipyridines,

hampering insightful catalyst design
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Figure 2. Excessive Collinearity in the Descriptor Set of
Symmetric Ligands Can Be Resolved With Non-Symmetric
Ligands. Amongst the 19 strong correlations (R2> 0.7, p-value
< 0.01) identified using only symmetric ligands, there was a
high degree of collinearity (indicated by bright yellow and dark
indigo in the collinearity matrix on the right). The introduction
of 3 non-symmetric ligands decreased the number of strong
correlations (10 examples where R2 > 0.7 and only 3 where R2
> 0.9) and lowered collinearity (seen in the matrix on the left
using the same 19 parameters). The identity and statistical
measures of each correlation is provided in Section 5 of the
Supporting Information.
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Figure 3. A Tailored Dataset Enables a More Robust Model. (A) A selection of symmetrically and non-symmetrically 4,4’-disub-
stituted ligands were evaluated on a larger scale to confirm and expand on previous results. For the results of all ligands evaluated,
see Figures S2.1 and S4.3. (B) Non-symmetrically substituted ligands provide selectivity based on the least electron-dense pyridine
donor. The observed selectivity for each ligand is provided. (C) The phenyl ligand is consistently trans to the least donating pyridine
ring in the low energy square planar isomer. This arrangement allows the Natural Population Analysis charge of the ipso carbon
(NPAcipso) to correlate strongly with selectivity. (D) A robust and predictive model for selectivity was found based on NPAcipso. MAE
for the training and validation sets are 0.15 and 0.20, respectively. For more information on the optimal and alternative models, see

Figure S5.11.

A training set limited to 4,4’- and 5,5’-disubstituted bipyri-
dines yielded several significant (R2 > 0.7 and p-value < 0.01)
univariate correlations between molecular descriptors and se-
lectivity (Figure 1D and Figure S5.7). The best correlations di-
rectly utilized the frontier molecular orbital energies, or arith-
metic combinations thereof. Amongst these correlations we
found a robust (R, LOO, and ks-fold all > 0.9., Figure S5.9) uni-
variate model for selectivity based on p. As the average of the
HOMO and LUMO energies, u increases with increased dona-
tion of the ligand. This is reflected in the qualitative trend that
ligands bearing electron-donating ligands in the 4,4’-positions
yielded the highest selectivity.

Despite this initial success, the specificity and translatabil-
ity of the p model remained unclear. We found that the best uni-
variate correlations (19 examples where R2 > 0.70 and p-value
< 0.01) existed between directionally oriented, highly collinear
descriptors (Figure 3, Figure S5.8). The collinearity in the pa-
rameters caused by the symmetric bipyridine structures led to
convolution of the computational dataset. As such, we hypoth-
esized that the introduction of non-symmetrically substituted
bipyridines would serve to decrease the number of collinear di-
rectional descriptors and differentiate directional or atom-spe-
cific descriptors (e.g., NPA charge of a single nitrogen donor)
from additive parameters (e.g, W). To test this hypothesis, we
constructed a suite of non-symmetric and select symmetrically
substituted bpys, which were subsequently evaluated on a
larger scale (0.125 mmol, Figure 3A).

Univariate correlations utilizing this new dataset revealed
that many of the strong correlations that we had previously ob-
served were not maintained with the introduction of non-sym-
metric ligands (10 examples where R2 > 0.7, Figure S5.10). In

fact, the previous best correlation involving p was significantly
weakened (R? of the univariate correlation decreased from 0.97
to 0.75, Figure S5.12). This is due to selectivity being solely de-
termined by the least donating pyridine unit; for example, 4-
methoxy-4'-(trifluoromethyl)-2,2'-bipyridine (L8) yields selec-
tivity similar to 4,4’-bis(trifluoromethyl)2,2’-bipyridine (L9),
rather than 4,4’-dimethoxy-2,2’-bipyridine (L2) (AAG* = 0.66,
0.49, and -1.19 respectively, Figure 4B, Figure S4.3).

Using these results, we identified a more robust univariate
correlation based upon the NPA charge of the phenyl Cipso
(Figure 3D). This model was then used to predict the perfor-
mance of several ligands with the goal of both validating the
model and finding better catalysts (vide infra). We observed
that this model was enabled by the consistent alignment of the
least electron-rich pyridine ring—which determines selectiv-
ity—trans to the phenyl ligand in the lowest-energy isomer
(Figure 4C).5253 As the nitrogen trans to Cipso becomes more do-
nating, the NPA charge of Cipso decreases, and selectivity rises.

This model is robust—L0OO = 0.88, ks-fold = 0.87—and pre-
dictive (preaR2 = 0.98) of both an interpolated and extrapolated
observations. The use of computational parameters derived di-
rectly from a catalytic intermediate offers a distinct advantage
over the use of tabulated descriptors—such as Hammett pa-
rameters. First, the model effectively predicts the selectivity of
5,5’-disubstituted bpy derivatives, as DFT gauges n-donation
across the bpy backbone. Second, the model accurately pre-
dicted the selectivity of non-symmetrically substituted ligands
without direct intervention; this is mainly attributable to the
consistent orientation of the donor atoms in the low energy iso-
mer. Further, the specificity of DFT-derived parameters can
provide more impactful mechanistic insight.



Table 1. Ligands Designed In Silico Outperform State-
of-the-art Bipyridines®

Improved Bipyridines Designed In Silico

L3,R=N O
R _/
L1, R=1Bu L4, R=N
N\ N
L2, R = OMe N N L5, R = N(Me),

state-of-the-art improved ligands
Comparison of Bipyridine Performance in the Model Reaction

NiCly(dme) (10 mol%)

L (11 mol%,
5 Ak N (2??nol)%) Alk
toer TFA (10 mol%)
EtOC 700 (4.0 equiv) EtOC
(0.125 mmol) (1.2 equiv) DMA (0.1 M), 32 °C
1a 2a 3
entry L  yield selectiv-  NPAcipso AAG*
3 (%) ity (3:4) (e) (kcal/mol)?
1 L1 49 2:1 -0.1519 -0.5
2 L2 61 7:1 -0.1530 -1.19
3 L3 82 23:1 -0.1543 -191
4 L4 88 25:1 -0.1552 -1.95
5 L5 79 39:1 -0.1550 -2.22

aAlk = 3-Phenylpropyl. Reactions were assembled in a nitrogen
filled glovebox in 1.25 mL of DMA. Yields determined by GC.
bListed AAG* are those observed experimentally and are con-
sistent with the predicted values, as seen in Figure 3D.

Despite this model’s accuracy in predicting the selectivity pro-
vided by various ligands, it is still unclear by what pathway 4
forms. Direct disproportionation of (L)Ni'(Ar)Br,54 zinc-medi-
ated transfer between two (L)Nil'(Ar)Br complexes,5556 and re-
duction followed by a second oxidative addition57-59 are all
precedented for biaryl formation from arylnickel(II) species.
Our data is inconsistent with both direct disproportionation60
and sequential oxidative additioné!, but consistent with zinc-
mediated aryl transfer (Figure S4.9).62 Further experiments are
needed to firmly establish the exact mechanism of biaryl for-
mation, but are beyond the scope of this publication.

Via extrapolation from the model, we predicted the selec-
tivity promoted by a series of improved 4,4’-bis(dialkylamino)-
2,2’-bipyridines in silico (Table 1). After synthesizing these lig-
ands, we found that the model had correctly predicted the over
fivefold increase in selectivity that they enabled (from 7:1 to
39:1 3:4 for L2 and L5 respectively). To investigate the gener-
ality of these improved bipyridine ligands, we benchmarked
them in the cross-electrophile coupling of a variety of aryl and
alkyl halide pairings. We found that both the overall and rela-
tive selectivity significantly improved when coupling less reac-
tive and more abundant chloroarenes (Table 2, entry 1). We
noted an increase in selectivity was also observed when cou-
pling more reactive iodoarenes (Table 2, entry 3). This im-
provement is due to the production of stoichiometric iodide as
a byproduct of the reaction (Table 2, entry 2, Figure S4.6). L5
provided improvements in selectivity compared to L2 in the
coupling of bromoarenes regardless of the electron-density of
the substrate (Table 2, entries 4 and 5, Figure S4.8). Given the
similar mechanisms proposed for a variety of XEC reactions, L5
may be useful for improving and extending the scope of many
reactions of this type.

Table 2. Benchmarking of Bipyridine L5 in the XEC of
Aryl Halides with Alkyl Bromides®

NiCly(dme) (10 mol%)

L(11 1%
‘/\/ X+ Ak Nal (2??110?%) @A'k
RJQ Br TFA (10 mol%) RJ —
0 :
©.125mmol) (1.2 equiv) f)',:,, ,ﬁg fﬁ,'u)'!vgz oo
1 2a 3
MeO OMe Me,N NMe,
7\ - L5 outperforms L2 in the coupling /7 \ -
o \ of all evaluated aryl halides o \
N N N N
L2 L5
current state-of-the-art new best bpy ligand
entry X R result with L5 result with L2
(vield 3(%), (yield 3(%),
3:4) 3:4)
Cl  CO:zEt 93,311:1 85,17:1
2 Br CO:Et 79,39:1 61,7:1
(92, 187:1)b
3 I COzEt 87,96:1 76,29:1
4 Br H 68, 6:1 58,5:1
5 Br OMe 57,4:1 35,1:1

aAlk = 3-phenylpropyl. Reactions were assembled in a nitrogen
filled glovebox in 1.25 mL of DMA. Yields determined by GC.
1.0 equiv of Nal used.

Table 3. L5 Enables the Coupling of Organic Chlorides®

NiCly(dme) (10 mol%)

L (11 mol%,
B C'+ a L0, gqui)v) /@’Alk
cl- o
Et0,67 ;:9((:.?) Z;JS; Et0,C
(0.125 mmol) (1.2 equiv) DMA (0.1 M), 80 °C
1b 2b 3
entry L yield 3 (%) selectivity (3:4)
1 L1 4 1:114
2 L2 11 1:9
3 L5 62 25:1

aAlk = 3-Phenylpropyl. Reactions were assembled in a nitrogen
filled glovebox in 1.25 mL of DMA. Yields determined by GC.

For example, the low reactivity of organochlorides compli-
cates their activation in XEC reactions. Slow activation of the
alkyl chloride can lead to decomposition of the (L)Ni(Ar)X in-
termediate and low selectivity. Current methods overcome this
obstacle by utilizing specialized ligands or stoichiometric
silane reagents.63.64¢ We hypothesized that the increased stabil-
ity of the (L)Ni''(Ar)X intermediate afforded by L5 may allow
for the coupling of unactivated alkyl chlorides. Indeed, by mod-
ifying the model reaction conditions, we found that L5 enables
the coupling of an aryl and alkyl chloride in 62% GC yield, while
other common bipyridines L1 and L2 provide low yield and se-
lectivity (Table 3, Figure S4.10). These results demonstrate
that improved bipyridine ligands can expand the accessible
pools of coupling partners for bipyridine-nickel catalysts and
suggest that more general improvements in scope and yield
may be possible.



Table 4. L5 Improves the Selectivity of Decarboxylative
XECe

NiCly(dme) (10 mol%)

L (11 mol%)
/(j/ Br+ NHPW AK " Nal (1.0 equiv) J/irAlk
E10,67 ~F e} TFOA (10 mol%) E10,67 7
) Zn° (4.0 equiv)
(0.125 mmol) (1.2 equiv) DMA (0.1 M), 32 °C
1a 2c 3
entry L yield 3 (%) selectivity (3:4)
1 L2 62 25:1
2 L5 68b 226:1

aAlk = 3-Phenylpropyl. NHP = N-hydroxyphthalimide. Reac-
tions were assembled in a nitrogen filled glovebox in 1.25 mL
of DMA. Yields determined by GC. 5The remaining mass balance
was recovered as unreacted 1a.

Table 5. L5 Increases the Efficiency of N-Alkyl Pyri-
dinium Salt XEC and Enables a New Substrate Pairing®

(%F4 Ph NiCly(dme) (10 mol%)
L5 (11 mol%
/©/X . ﬁAlk Mg((3I2 (T.O eZ]uiv) @Alk
Pz MnP (2.0 equiv) Pz
EtO,C Ph Ph o~ EtO,C
(0.125 mmol) (1.2 equiv) NMP (017 M), 80 °C
1 2d 3
entry X yield 3 (%) selectivity (3:4)
1 Br 98 84:1
2 Cl 55 7:1
3b Cl 86 8:1

aAlk = 3-Phenylpropyl. Reactions were assembled in a nitrogen
filled glovebox in 735 uL of NMP. Yields determined by GC. »20
mol% of NiClz(dme) and 22 mol% of L5 were used.

We found that L5 enables higher yields than L2 in the de-
carboxylative arylation of an N-hydroxyphthalimide ester with
an aryl bromide (Table 4, Figure S4.12). Notably, the coupling
of redox-active esters with bromoarenes often requires the use
of carboxamidine-based ligands to enable high conversion and
selectivity.65-67 These results suggest that L5 may be widely
useful in the coupling a variety of electrophiles. Indeed, we
were also able to directly substitute L5 for L2 in the reported
coupling of N-alkyl 2,4,6-triphenylpyridiniums with aryl bro-
mides (Table 5).68 We found that the use of this ligand yielded
the desired product in 98% yield (vs 74-85% published yield
for similar compounds using L2).68-70 This extended the ob-
served trend in yield from the published optimization in the
original report—L1<L2<L5. While arylation of N-alkylpyri-
diniums is well-known for bromoarenes, effective coupling of
chloroarenes remains undeveloped.1® We hypothesized that, in
addition to avoiding aryl homodimer, the increased electron-
density of L5 may allow for more rapid oxidative addition into
chloroarenes. We found that the equivalent chloroarene cou-
pled in 55% yield using the same conditions and increasing the
catalyst loading—leveraging the low rate of aryl dimerization
afforded by this catalyst, which should be increased at higher
catalyst concentrations—led to an 86% GC yield (Table 4, Fig-
ure S.11). Application of these ligands to a variety of XEC reac-
tions and the design of further improved ligands is in process
and will be reported in due course.

Overall, this work demonstrates that 4,4’-bis(dialkyla-
mino)-2,2’-bipyridines offer a significant increase in selectivity
over the state-of-the-art in bipyridine ligands. Despite the util-
ity of these electron-rich bpy ligands and their presence in the
development of novel photocatalysts, we could find only a sin-
gle use of L5 for nickel-catalyzed cross-coupling on a

particularly challenging substrate.”1-73 We hypothesize that the
relatively modest increase in yield when using L2 in lieu of L1
in combination with the difficulty in synthesizing novel, elec-
tron-rich bipyridines made these ligands an unattractive target
for synthetic efforts. This work shows how in silico evaluation
can aid in the prioritization of limited resources for maximum
success in catalyst development, similar to their routine use in
drug development. Currently, only the highest performing cat-
alyst, L5, is commercially available for a reasonable price.7475
While we found them to be slightly less selective in our bench-
mark reactions, L3 and L4 may offer benefits in solubility and
selectivity in specific applications.

Conclusions

In conclusion, we have applied computational and statisti-
cal methods to develop a model for selectivity in nickel-cata-
lyzed cross-electrophile coupling. The two resulting models—
a binary classification of a ligands’ applicability based on the
ground state geometry of their (L)Ni(Ph)Br complex and a lin-
ear relationship between the NPA charge of the ipso phenyl car-
bon of the low energy (L)Ni!'(Ph)Br complex—enable the pre-
diction of the performance of a variety of substitution patterns
with diverse functionalities. This study also highlighted the im-
portance of designing a diverse, informative training set to
minimize collinearity in computational parameters, and en-
hance interpretability. The use of parameters derived from a
representative on-cycle intermediate enable strong models
and mechanistic insight. These results suggest that, in contrast
to previous stoichiometric studies under redox-neutral condi-
tions, the primary dimerization pathway in XEC is not dispro-
portionation of the (L)Ni"(Ar)Br intermediate.

Using our model, we identified a series of improved 4,4’-
bis(dialkylamino)-2,2’-bipyridines. These ligands display sig-
nificant improvements in selectivity and yield compared to the
current state-of-the-art bipyridines. Further, they can be easily
substituted into other cross electrophile coupling reactions to
increase the yield and allow access to more diverse coupling
partners. We expect that adoption of these ligands will enable
more robust, selective, and widely applicable cross electrophile
couplings.

This study provides further evidence of how modern statis-
tical techniques are poised to make a large impact on nickel-
catalyzed XEC. Overall, the expanded use of diverse statistical
and computational tools will bolster experimental insight and
enable more efficient and impactful ligand design and selection.
The dataset that we used to generate these models persists and
should be applicable to a variety of nickel-catalyzed processes.
We have made the entire dataset, including parameters for
common and uncommon bipyridines (such as ligands that cur-
rently exist only in silico) available as a supplementary spread-
sheet. We hope that this dataset will make application of these
methods more accessible to other researchers.
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