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ABSTRACT

In problems with large amounts of missing data one must model two distinct data generating processes:
the outcome process, which generates the response, and the missing data mechanism, which determines
the data we observe. Under the ignorability condition of Rubin, however, likelihood-based inference for
the outcome process does not depend on the missing data mechanism so that only the former needs
to be estimated; partially because of this simpli�cation, ignorability is often used as a baseline assump-
tion. We study the implications of Bayesian ignorability in the presence of high-dimensional nuisance
parameters and argue that ignorability is typically incompatible with sensible prior beliefs about the
amount of confounding bias. We show that, for many problems, ignorability directly implies that the
prior on the selection bias is tightly concentrated around zero. This is demonstrated on several models
of practical interest, and the e�ect of ignorability on the posterior distribution is characterized for high-
dimensional linear models with a ridge regression prior. We then show both how to build high-dimensional
models that encode sensible beliefs about the confounding bias and also show that under certain nar-
row circumstances ignorability is less problematic. Supplementary materials for this article are available
online.
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1. Introduction

Dealing with missing data is a fundamental problem in data
analysis: it complicates inference in clinical trials (National
Research Council 2010) and is inherent in the potential out-
comes framework for causal inference (Rubin 2005). A common
starting point for addressing missingness is to assume that the
mechanism that generated the missingness is ignorable (Rubin
1976). Ignorability allows likelihood-based inference to pro-
ceed without modeling the missing data mechanism, which can
greatly simplify an analysis.

In this article we consider the Bayesian approach to account
for missingness. For the sake of speci�city, we focus on the
Rubin causalmodel (Rubin 1974, 1978) for observational studies,
which considers the potential outcome Yi(a) of some outcome
under an exposure level a ∈ A , such that we observe both
the received exposure Ai and its associated potential outcome
Yi ≡ Yi(Ai); in this case, Yi(a) is regarded as missing for all
a �= Ai. Let Xi be a vector of confounders that are predictive of
bothAi andYi(a). Following Seaman et al. (2013) (see also Little
and Rubin 2002, De�nition 6.5), we will say that the exposure
model fφ(Ai | Xi) is Bayesian-ignorable, or simply ignorable, if
the following conditions hold:

IG.1 The potential outcomes {Yi(a) : a ∈ A } are conditionally
independent of Ai given Xi.

IG.2 The parameters β and φ are a-priori independent, where
β parameterizes the model for the potential outcomes and
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φ parameterizes the missing data mechanism. That is, the
prior factors as π(β ,φ) = πβ(β) πφ(φ).

We opt for the term Bayesian ignorability to distinguish it from
the term ignorability (Rosenbaum and Rubin 1983; Imai, Keele,
and Tingley 2010) as used in causal inference, which is o�en
taken to be synonymous with the exchangeability Assumption 1
(also sometimes referred to as unconfoundedness). Condition
IG.1 constrains the data generating mechanism and is a type
of missing at random (MAR) assumption (Rubin 1976), which
itself is sometimes con�ated with ignorability in the sense of
missing data (see Seaman et al. 2013, for a thorough discussion
of MAR and ignorability). Condition IG.2, which constrains the
prior, is also key to ignorability: it guarantees that the posterior
distribution of β given the observed data is proportional to
πβ(β)

∏
i fβ{Yi(Ai) | Xi}, which does not depend on the

exposure model. Without IG.2 we are still obligated to specify
an exposure model.

It has been argued, from a Frequentist perspective, that IG.2
is highly problematic in high-dimensional problems (Robins
and Ritov 1997; Robins andWasserman 2012). We complement
this view by studying IG.2 from a Bayesian perspective. That
such a perspective is valuable is demonstrated by the fact that
Bayesian researchers have run afoul of this problem speci�-
cally when attempting to address the examples of Robins and
Wasserman (2012). For example, Li (2010) proposes a prior that
leads to Bayes estimators that do not appropriately correct for
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confounding bias. We argue that, while IG.2 is seemingly an
innocuous convenience, it can inadvertently encode strong prior
beliefs about the total amount of confounding bias, to the degree
that the data has no reasonable chance of overcoming the prior.
Following Sims (2012), we refer to priors with this property as
dogmatic about the confounding bias. We make the following
three points.

1. Priors that impose IG.2 are typically dogmatic about the
degree of confounding bias, particularly in settings that
require informative priors. We illustrate this in the simple,
but representative, settings of ridge regression and Gaussian
process regression, and argue further that it holds for the
spike-and-slab priors. While we note some exceptions, we
conclude that IG.2 does not re�ect substantive prior knowl-
edge in many cases.

2. By understanding this induced prior on the confounding
bias, we are able to identify several highly e�ective methods
for correcting this problem and unify several approaches
proposed in the Bayesian causal inference literature that were
not motivated by Bayesian considerations. Our remedies take
the form of propensity score adjustments, which have typi-
cally been recommended in applied Bayesian analysis on the
grounds of pragmatism and robustness (see, e.g., Rubin 1985;
Li, Ding, and Mealli 2022) rather than subjective Bayesian
principles. A limitation of these corrections is that they are
derived on a case-by-case basis.

3. We study some relatively narrow settings in which prior dog-
matism does not occur, even in high dimensional problems.
For example, strong dependence structure in Xi can act as
a shield against dogmatism; in our ridge regression exam-
ple, we use random matrix theory to quantify this behavior
(Dobriban and Wager 2018; Dicker 2016). Despite this, we
�nd little bene�t to failing to correct for dogmatism in these
settings.

Remark 1. Many of our conclusions are reminiscent ofD’Amour
et al. (2021), who study the assumption of overlap in high-
dimensional settings; they show that the strict overlap assump-
tion implies that the confounders either (i) are roughly balanced
across groups or (ii) are highly correlated. In the same way,
our results imply that priors satisfying IG.2 lead to dogmatism
unless either (i) there is some dimension-reducing structure
in the propensity/outcome regressions or (ii) the confounders
are highly correlated. An important di�erence between these
works is that D’Amour et al. (2021) do notmake any assumption
about the correlation between the propensity score and outcome
regression, and consequently their approachwould yield bounds
on the confounding bias parameters that are weaker than those
obtained here.

1.1. Notation

For i = 1, . . . ,N we let Yi(a) denote a potential outcome, Xi ∈
R
P denote a vector of confounders, Ai ∈ R denote an exposure

indicator, and de�ne Yi = Yi(Ai). We set Y = (Y1, . . . ,YN)�,
A = (A1, . . . ,AN), and letX denote anN×Pmatrix obtained by
stacking the row vectorsX�

i . Let β parameterize the distribution

of [Yi(·) | Xi], let φ parameterize the distribution of [Ai | Xi],
and let θ = (β ,φ). We invoke IG.1 throughout.

We let Eθ (·) denote the expectation operator conditional on
θ . If the subscript θ is omitted then E(·) is the expectation
operator with respect to a prior distribution on θ , for example,
E(Yi) =

∫
Eθ (Yi) π(θ) dθ . We use the Big-O notation W =

Op(V) to mean that |W|/|V| is bounded in probability as P →
∞. Finally, we let λj(�) denote the jth largest eigenvalue of a
covariance matrix �; for example, λ1(�) denotes the largest
eigenvalue of �.

1.2. Illustrative Problems

We consider two problems to illustrate the existence of dogma-
tism andhow to correct for it.We assumeXi ∼ Normal(0,�) for
some� ∈ R

P×P to simplify our analysis. All proofs are deferred
to the supplementary material.

High-Dimensional Linear Regression. We posit linear models
for the outcome and the exposure models, Yi(a) = X�

i β +
γ a + εi(a) and Ai = X�

i φ + νi with εi(a) ∼ Normal(0, σ 2
y )

and νi ∼ Normal(0, σ 2
a ), and allow P to grow with N. The

Bayesian ridge regression prior, which satis�es IG.2, takes β ∼
Normal(0, τ 2β I), φ ∼ Normal(0, τ 2φ I), and a �at (improper)
prior on γ . The parameter of interest is the mean response at
a given exposure Eθ {Yi(a)} = γ a. De�ne the confounding bias
parameter as 
(a) = Eθ (Yi | Ai = a) − Eθ {Yi(a)}.

Semiparametric Regression. We posit a semiparametric nor-
mal regression model Yi(a) ∼ Normal{μ(Xi) + a τ(Xi), σ

2}
with a binary exposure variable Ai ∼ Bernoulli{φ(Xi)}. This
parameterization was proposed by Hahn, Murray, and Carvalho
(2020) for their Bayesian causal forests method. The parameter
of interest in this problem is the population average causal e�ect
τ =

∫
τ(x) FX(dx). For convenience, we will assume that μ(·)

and τ(·) are both given independent Gaussian process priors
(Rasmussen andWilliams 2006)with covariance function κ(·, ·),
written μ, τ

iid∼ GP(0, κ). For this model, β = (μ, τ). We de�ne
the confounding bias parameter for thismodel to be
 = Eθ (Yi |
Ai = 1) − Eθ (Yi | Ai = 0) − Eθ {Yi(1) − Yi(0)}.

2. The Induced Prior on the Confounding Bias

The fundamental di�culty withmissingness is confounding bias.
In both of our illustrative examples, this amounts to the fact
that 
 �= 0. Note that the statement 
 = 0 is much stronger
than the claim that there are no unmeasured confounders—it
instead states that, for the purpose of conducting valid infer-
ence, it su�ces to ignore the confounders (both measured and
unmeasured) entirely! More precisely, 
 = 0 implies that the
e�ect of confounding is, on average, 0; hence, inference that is
Frequentist-valid under an assumption that 
 = 0 would also
be valid under the assumption that there are no confounders.
The possibility that 
 �= 0 is the only issue that makes
estimation of average causal e�ects nontrivial, as otherwise we
could ignore the covariates Xi and directly estimate Eθ {Yi(a)}
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by estimatingEθ (Yi | Ai = a) nonparametrically. The following
proposition gives an expression for 
 in our problems.

Proposition 1. The confounding bias parameter is given by


(a) = a
φ��β

σ 2
a + φ��φ

and


 =
covθ {μ(Xi),φ(Xi)}

Prθ (Ai = 1)Prθ (Ai = 0)
+

covθ {τ(Xi),φ(Xi)}
Prθ (Ai = 1)

,

in the high-dimensional linear regression problem and semi-
parametric regression problem, respectively.

Given the importance of 
 and the working assumption
that confounding bias is non-negligible, one would hope that
the prior distribution of 
 is relatively di�use. However, using
Proposition 1, we can see this is not the case; for example, for the
ridge regression prior we have the following.

Proposition 2. Assume the setup of Proposition 1 for the ridge
regression problem and suppose β ∼ Normal(0, τ 2β I) and

φ ∼ Normal(0, τ 2φ I) independently. Assume 1
P

∑P
j=1 λj(�)k

converges to a positive constant as P → ∞ for k = 1, 2, 2 + ε

for some ε, and let λ̃ and λ̄2 be the limits with k = 1, 2. Then

(a)

•∼ Normal(0, c/P)where c = a2 (τ 2β/τ 2φ) (λ̄2/̃λ2).

Proposition 2 contains several lessons, but the most impor-
tant is that if confounding bias is a-priori a concern for us then
it seems unwise to specify a Normal(0, c/P) prior for it when
P is large. This behavior becomes even more suspect when one
considers that the de�nition of 
(a) is completely free of the
Xi’s, and that there is little reason to expect that the number
of confounders we need to control for should change our prior
beliefs about
(a). In Section 2.1 we follow up on the inferential
consequences of this.

At a high level, the source of the problem in our illustrative
examples is the following well-known phenomenon, which we
refer to as the orthogonality principle.

Principle 1 (The Orthogonality Principle). Let β̃ and φ̃ be
random unit vectors with mean 0 taking values in some
high/in�nite dimensional Hilbert space H with inner product
〈·, ·〉. Then, if φ̃ and β̃ are independent and there is no dimension
reducing structure in the problem, with high probability, we
have 〈β̃ , φ̃〉 ≈ 0.

This principle emerges from the geometric properties of
high-dimensional spaces (Wegner 2021; Vershynin 2018) and
variants of it have proven useful in many problems; one example
among many is that, in compressed sensing, random Gaussian
ensembles satisfy the restricted isometry property with high
probability (Candes and Tao 2007). Examples of “dimension
reducing structure” include high degrees of anisotropy of either
the distribution of the random vectors or of 〈·, ·〉, which can
cause the vectors to behave more like low-dimensional vectors.

The orthogonality principle becomes important when P is
large (or in nonparametric problems) because 
 is quanti�-
able in terms of 〈β ,φ〉 for some suitable inner product (see
Proposition 1). If IG.2 holds then the orthogonality principle
immediately suggests 〈β ,φ〉 ≈ 0 with high probability, implying
that our prior is dogmatic about the confounding bias.

2.1. Asymptotics for High-Dimensional Ridge Regression

While the dogmatism implied by Proposition 2 is troubling,
one might hope that the informative prior on 
 is a theoretical
curiosity that is nevertheless swamped by the data.We show that
this is not the case, and that the prior concentration on 
 leads
to heavily biased inferences if P grows su�ciently quickly with
N. We summarize our main results as follows.

• In the regime P/N → r for some r ∈ (0,∞) (i.e., P grows
at the same rate as N), the Bayes estimator that takes a �at
prior on γ and a Gaussian prior β ∼ Normal(0, τ 2 P−1 I) is
heavily biased. Speci�cally, when confounding bias is present
through the auxiliary covariate Âi = X�

i φ, the Bayes estimate
will have bias of order 
(1).

• In some sense the setting � = I is inherently di�cult, and
the problem is generally easier when the components of Xi

are highly correlated. We return to this point in Section 5.

We make two sets of assumptions. The �rst (high-
dimensional asymptotics, or HDA) is used to describe the
distribution of the Xi’s as N → ∞. The second (random e�ects
model, or REM) describes a particular random e�ects model
for the regression coe�cients. This framework modi�es the
framework of Dobriban and Wager (2018) so that it is suitable
for our aims.

HDA.1 The covariates are multivariate normal with Xi ∼
Normal(0,�).

HDA.2 As N → ∞ we have P/N → r for some r ∈ (0,∞).
HDA.3 The spectral distribution

∑P
p=1 δλp/P associated to �

converges to some limiting distribution H on [0,∞),
where λ1, . . . , λP are the eigenvalues of � and δλ

denotes a point-mass distribution at λ.

HDA is a standard assumption for understanding the case where
P grows like N. HDA.3 allows us to use results from random
matrix theory to compute limP→∞ tr{(X�

X + Nλ I)−k} for
k ∈ N. Under HDA, the empirical distribution of the eigen-

values of S = XX
�/N, namely F̂(dx) = N−1

∑N
i=1 δλi(S),

converges to a distribution F(dx) called the empirical spectral
distribution.

Next, we describe a random e�ects model (REM) for β and
φ that we will base our analysis on. Similar models have been
used to study both the prediction risk and minimax-optimality
of ridge regression (Dicker 2016; Dobriban and Wager 2018).
REM is a fruitful assumption for us as it allows exact for-
mulas for the bias to be derived that are free of the particu-
lar values of β and φ. In Remark 2 we discuss relaxing this
assumption.

REM.1 The coe�cient vector φ is randomly sampled as φ ∼
Normal(0, τ 2 P−1 I).

REM.2 The coe�cient vector β is randomly sampled as β ∼
Normal(ω0 φ, τ 2 P−1 I).

REM.3 Given β and φ, Yi ∼ Normal(X�
i β +Ai γ0, 1) andAi ∼

Normal(X�
i φ, 1).

We note that REM.2 is equivalent to setting Yi ∼
Normal(X�

i b + ω0 Âi + γ0 Ai, 1), where Âi = X�
i φ = E(Ai |

Xi,φ) and b ∼ Normal(0, τ 2 P−1 I). REM.2 allows for non-
negligible confounding bias to enter themodel, and priors based
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Figure 1. Comparison of the bias of naive ridge regression (dashed blue) to the direct prior (solid, orange) of Section 3.1 for di�erent values of η and r with ω0 ≡ 1. The
points on each line correspond to a value of the ridge parameterλ that obtained from estimatingλ via empirical Bayes on a single dataset simulated according to themodel
and prior.

on this parameterization have been used to account for con-
founding bias by other researchers (Zigler et al. 2013; Hahn et al.
2018). The parameterω0 is closely connected to the confounding
bias.

Proposition 3. Suppose that HDA and REMhold and that� sat-

is�es the conditions of Proposition 2. Then
(1) → ω0
τ 2 λ̃

1+τ 2 λ̃
in

probability as P → ∞.

Theorem1 explicitly computes the bias of the ridge regression
estimator under IG.2 when the prior β ∼ Normal(0,N−1λ−1I)
is used, that is, when we apply the usual ridge regression estima-
tor. We sketch a proof of Theorem 1 and verify it numerically in
the supplementary material.

Theorem 1. Suppose HDA and REM hold. Let (γ̃ , β̃�)� denote
the Bayes estimate of (γ ,β�)� under a prior that takes β ∼
Normal(0,N−1 λ−1I) and places a �at prior on γ under IG.2.

Then the asymptotic bias of γ̃ is given by

lim
N,P→∞

E(γ̃ − γ0) =
ω0

∫
x/(x + λ) F(dx)∫

(x + η)/(x + λ) F(dx)
(1)

= ω0 ×
1 − λ v(−λ)

1 − (λ − η) v(−λ)

where v(z) =
∫ ∞
0

F(dx)
x−z is the Stieltjes transform of F(dx) and

η = r/τ 2.

Ideally we would like the bias to be close to 0 for moderate-
to-large values of λ so that we have both small variance and
bias; the approach outlined in Section 3.1 does accomplish this
goal for a properly chosen λ. Figure 1 contrasts this alternative
method with standard ridge regression when � = I and we
see that the bias is quite large for ridge regression unless λ is
close to 0 and r ≤ 1; this latter case corresponds to OLS, which
(while unbiased) defeats the purpose of using ridge regression.
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Additionally, a data-guided choice of λ (obtained via empirical
Bayes on single dataset simulated with ω0 = 1 and γ0 = 3)
does not result in a low-bias estimate of γ , whereas a data-guided
choice of the tuning parameter of our proposed approach does.

A qualitative observation based on (1) is that a smaller bias
is obtained when most of the eigenvalues of S are small. For
example, unbiasedness is possible (even if P 
 N) if S is rank
de�cient, because F(dx) will assign mass to 0, which will cause
λ v(−λ) → 0 (by bounded convergence) while η v(−λ) → ∞
as λ → 0.

When P > N the only hope for nonnegligible bias is for the
eigenvalues of S to be heavily concentrated near 0. As S has the
same nonzero eigenvalues as the sample covariance S = X

�
X/N

this means we should hope for strong colinearities among the
covariates. A particularly unfavorable setting is � = I, where
the Marchenko-Pastur theorem (see, e.g., Couillet and Debbah
2011, Theorem 2.13) states that if r ≥ 1 then F(dx) has density

q(λ) =
√

(b−λ)(λ−a)
2π λ

I(a < λ < b) where (a, b) = (1 ±
√
r−1)2;

this bounds the support of the eigenvalues away from 0. In
Section 5 we show that much better results are obtained when
the Xi’s follow a latent factor model.

Remark 2. REM is a strong assumption, and one might worry
that conclusions drawn under REM do not generalize to other
settings. In the supplementary material, we study the setting
r < 1 when REM does not hold and show that the g-prior
(φ,β ∼ Normal(0, λ−1 N−1 S−1)) leads to inconsistent estima-
tion of γ (Liang et al. 2008) unless λ → 0 with N (with the
bias proportional to the confounding bias); moreover, the λ used
in the g-prior that is optimal for prediction purposes can be
shown to not converge to 0, suggesting that inconsistency will
remain if we place a �xed prior on λ. On the other hand, a g-
prior variant of the model described in Section 3.1 is shown to
be

√
N-consistent. We argue on this basis that the conclusions

drawn under REM are also representative of what occurs when
φ and β are instead regarded from the Frequentist perspective as
�xed-but-unknown parameters, while also providing additional
insight into the role that the spectral distribution of� plays and
being applicable for r ≥ 1.

Remark 3. As noted by a reviewer, one might also worry that
our conclusions are partially driven by the e�ect of scaling
by P in REM.1, and REM.2, or the scaling by N in the prior
distribution β ∼ Normal(0,N−1 λ−1 I). Instead, we might
have analyzed the behavior of the ridge regression estimator
based on the Normal(0, λ−1 I) under the REM assumption φ ∼
Normal(0, τ 2 I) and β ∼ Normal(ω0 φ, τ 2 I). We feel that
this setting is less natural in the high-dimensional setting, as
it implies the signal-to-noise ratios (SNRs) ‖φ‖2 and ‖β‖2 for
both the A and Y models diverge; typically, the optimal choice
of λ for prediction purposes in our setup is on the same order as
the SNRs. In the supplementary material we show that allowing
the SNRs to diverge still results in asymptotic bias; speci�cally,
the bias converges to ω0 × r�/{1 − (1 − r�)(1 − η/λ)} where
r� = min(r, 1). We note that, in this regime, the covariance
matrix � does not play any role.

Remark 4. That the most favorable situation occurs when � is
nearly low-rank is the opposite of the most favorable situation

for estimating the regression coe�cients (� = I). A related
phenomena is described by Dobriban and Wager (2018), who
show that inference and prediction are generally at odds with
each other when REM holds.

2.2. Confounding Bias Dogmatism for Semiparametric

Regression

Recall the semiparametric regression problem described in
Section 1.2 with the confounding bias parameter given in
Proposition 1. For convenience, we will assume that φ(x) is

known a-priori to be φ0(x) and that μ, τ
iid∼ GP(0, κ) (Ras-

mussen and Williams 2006); the statement β ∼ GP(m, κ)

here means that, for any �nite collection (x1, . . . , xM), we

have
(
β(x1), . . . ,β(xM)

)� ∼ Normal(m,K) where m =(
m(x1), . . . ,m(xM)

)�
and K has (j, k)th entry κ(xj, xk). Gaus-

sian processes have been proposed as priors for causal inference
by several authors (Ray and van der Vaart 2020; Ren et al. 2021)
and they are convenient to study theoretically.

Figure 2 gives a sense of what to expect. In this �gure, β , τ ,
and logit(φ) are sampled from Gaussian processes with squared

exponential kernel κ(x, x′) = e−‖x−x′‖22/2. As P increases we
see that 
 concentrates around 0. As in the setting of ridge
regression, this is troubling both because (i) it will typically
violate our prior beliefs about 
 for large P and (ii) given the
de�nition of 
, there is no reason for our prior beliefs to be
dependent on the number of variables that act as confounders.

We apply the orthogonality principle to the Hilbert space
L2(FX) of square-integrable functions {g :

∫
g2 dFX < ∞}

with inner product 〈β ,φ〉 =
∫

β(x) φ(x) FX(dx), where FX
denotes the distribution of Xi. Let ḡ(x) = g(x) −

∫
g(x) FX(dx)

and g̃(x) = ḡ(x)/‖ḡ‖. The following proposition shows that the
confounding bias is controlled by 〈μ̃ + τ̃ , φ̃〉, implying that the
orthogonality principle is in e�ect.

Proposition 4. Suppose E{μ(Xi)
2} and E{τ(Xi)

2} are bounded
as P → ∞, and that there exists a δ > 0 such that Prφ0(Ai =
a) > δ for a = 0, 1. Then 
 = ‖μ̄‖ ‖φ̄‖

Prφ0 (A=1)Prφ0 (A=0) 〈μ̃, φ̃〉 +
‖τ̄‖ ‖φ̄‖

Prφ0 (A=1) 〈̃τ , φ̃〉 = Op(〈μ̃ + τ̃ , φ̃〉)

For Gaussian process models, and nonparametric models in
general, model complexity tends to scale very rapidly in P. To
connect our results for Gaussian processes to ridge regression,
we de�ne the e�ective number of parameters of f ∼ GP(0, κ) as

D =
∫

κ(x, x) FX(dx)∫
κ(x, x′) FX(dx) FX(dx′)

=
var{f (X)}

var{
∫
f (x) FX(dx)}

.

The intuition behind this de�nition, which is a natural gener-
alization of Kish’s e�ective sample size to stochastic processes
(Kish 1965), is that

∫
f (x) FX(dx) is an average of in�nitelymany

of the f (x)’s, and its variance should be roughly (i) the variance
of one of its constituents f (x0) divided by (ii) the number of
“independent” entities being averaged D; to account for the
fact that the di�erent evaluations f (x0) might have di�erent
variances, we average the variance against FX to get var{f (X)}
in the numerator.
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Figure 2. Prior distribution of
 under a Gaussian process prior in Section 2.2 for P ∈ {5, 10, 20}.

We now show that the variance of 〈μ̃ + τ̃ , φ̃〉 scales inversely
with D and that, for the squared-exponential kernel, D grows
quickly in both P and the inverse length-scale.

Proposition 5. Let μ, τ
indep
∼ GP(0, τ 2β ρ) where ρ(x, x′) is a

correlation function. Then 
 ∼ Normal(0, c) where c ≤
W τ 2β
D

for a constant W that depends only on Prφ0(Ai = 1) and
Prφ0(Ai = 0).

The conclusion here is similar to the conclusion for ridge
regression, with the prior concentration depending inversely on
the e�ective number of parametersD rather than the raw dimen-
sionality P. Next, we consider the speci�c case of the squared-
exponential kernel, which is among the most commonly used
kernels for performing Gaussian process regression.

Proposition 6. Let κ(x, x′) = τ 2βρ(x, x′) where ρ(x, x′) =
exp{−(x − x′)�H−1(x − x′)/2} and H is a covariance matrix,
and suppose Xi ∼ Normal(0,�). Then

D =

√
det(H + 2�)

det(H)
≥

{
1 + 2

(
det(�)

det(H)

)1/P
}P

.

In particular, if H = �2� then D = (1 + 2/�2)P/2, while if
H = �2 I then D =

∏P
j=1(1 + 2λj(�)/�2)1/2.

Regarding P as �xed, we see that D grows like �−P as � → 0,
implying var(
) = O(�P). Consequently, reducing the length-
scale of the process quickly leads to prior dogmatism. As the
following corollary shows, letting P diverge makes the problem
much worse.

Corollary 1. Under the same conditions as Proposition 6, we
have D ≥ exp(CP) for some constant C as P → ∞, provided
that det(�)1/P/ det(H)1/P is bounded; in particular, this occurs
if either H = �2� and �2 is bounded, or if H = �2I and
det(�)1/P/�2 is bounded.

Note that Proposition 5 shows that dogmatism occurs in a
uniform sense: no matter how favorably φ(x) is selected, the
naive use of Gaussian process priors causes the prior variance on


 to scale inversely in D. In the case of the squared-exponential
kernel, D grows exponentially in P for reasonable choices of
H, including the commonly used isotropic (H = �2I) and
an anistropic kernel that makes the prior invariant to linear
transformations of the predictors (H = �2�).

3. Correcting for Dogmatism

3.1. Direct Priors for Ridge Regression

A simple approach to addressing dogmatism for ridge regres-
sion is to make β��φ large by encouraging β to align
with φ. For example, we might center β on φ by taking
β ∼ Normal(ωφ, τ 2β I). Doing this, we now have 
(a) =

a φ��b
σ 2
a +φ��φ

+ aω
φ��φ

σ 2
a +φ��φ

,where b ∼ Normal(0, τ 2β I). By the

same argument as in Proposition 2, the �rst term is Op(P
−1/2);

the second term, however, does not tend to 0 as P → ∞,
preventing prior dogmatism from taking hold. This allows us to
place a direct prior on 
(a) by placing a prior on ω. For exam-
ple, following common practice, we might attempt to express
“ignorance” about the degree of confounding bias by placing a
�at prior on ω.

This approach is related to the targeted maximum likelihood
estimation strategy of introducing a “clever covariate” into the
outcome model to account for confounding (see, e.g., van der
Laan and Rose 2011, sec. 4.2.1). The parameterization β =
b+ωφ gives Yi(a) = β0 +X�

i b+ω(X�
i φ)+ γ a+ εi(a),which

e�ectively introduces the new covariate Âi = X�
i φ into the

model. A related idea proposed by (Hahn et al. 2018) is to replace
a in the outcome model with the residual (a − Âi), which is
equivalent to setting ω = −γ .

In practice, rather than jointly modeling (β ,φ) it may be
more convenient to set Âi = X�

i φ̂ for some point estimator

of φ — for example, φ̂ might be obtained via ridge regression.
In addition to being easier to implement, this also reduces the
risk of model feedback occurring when one of the models is
misspeci�ed (Zigler et al. 2013). In the Supplementary Material
we show that, when φ̂ is the Bayes estimator obtained from
a g-prior and ω is given a �at prior, this strategy results in a√
N-consistent estimator of γ if both the exposure and outcome

models are correctly speci�ed.We also study the bias induced by
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ridge regression (rather than the g-prior) under HDA and REM
for the direct prior.

Evaluation of the Direct Prior via Simulation

We conduct a simulation study to determine if there is any
bene�t to using the direct prior relative to either (i) the naive
ridge regression prior or (ii) the approach of (Hahn et al. 2018),
which we call the “debiased” approach (equivalent to �xing ω =
−γ ). In all cases we set N = 200 and P = 1000 so that
N � P. We consider a dense model with φ = (1, . . . , 1)/

√
P,

β ∼ Normal(0,P−1I), and σa ≡ 1. The methods di�er in the
treatment e�ect size γ and the degree to which the coe�cients
are shi�ed in the direction of φ. We considered four simulation
settings.

Fixed We set γ = 2 and ω = −γ /4 so that β is shi�ed in the
direction of φ, but not by the amount implied by the debiased
approach (
 ≈ −1/4).

Hahn We set γ = 2 and ω = −2 so that β is shi�ed in the
direction of φ by exactly the amount implied by the debiased
approach (
 = 1/2).

Naive We set γ = 2 and ω = 0 so that the model corresponds
precisely to the naive ridge model (
 ≈ 0).

Mixed We set γ = 1 and βj ∼ Normal(−δj φj,P
−1), where

δj = 1 for j < 500 and δj = 0 otherwise. Note that neither the
naive ridge prior nor the direct prior hold under this setting
(
 ≈ −1/4).

The simulation was replicated 200 times for each setting
and with σy =∈ {1, 2, 4, 8, 16}. We evaluated each procedure
according to the following criteria.Coverage:The proportion of
nominal 95% credible intervals that capture the true value of γ .
Width: The average width of the nominal 95% credible interval.
Avg SE: The average estimated standard error from the model,
that is, the posterior standard deviation of γ averaged over all
replications. RMSE: The root mean squared error in estimating
γ with the Bayes estimator γ̂ .

Results are compiled in Figure 3. The direct and debiased
approaches always attain the nominal coverage level, while the
naive approach does not come close when the confounding bias
is non-negligible unless the signal-to-noise ratio is exceedingly
small. We also see that the debiased approach generally requires

Figure 3. Results for the simulation setting of Section 3.1. The top panels vary σy with P ≡ 1000 while the bottom panels �x σy ≡ 4 and vary P. Left: the coverage of
nominal 95% con�dence/credible intervals. Middle: Interval width (log scale). Right: root mean-squared error (log scale) of Bayes estimates.



8 A. R. LINERO

larger intervals than the direct approach to cover at the appro-
priate rate. The only exception is under the Mixed and Hahn
settings; this is expected because Mixed and Hahn set ω = −γ ,
which is implicitly assumed by the debiased approach. The naive
ridge prior only performs well when it is correctly speci�ed
(ω = 0), in which case it is unsurprisingly the best method.

Also included in Figure 3 are results for a simulation that
�xes (σ ,N) ≡ (4, 200), with P ranging from 4 to 1000. The
results in here broadly agree with our previous conclusions, with
the exception that the Naive model performs reasonably well
in terms of coverage when P � N but performs poorly as P
approaches the scale of N.

Additional simulation results that take γ = 0 with 
 =
ω
2 and σ varying Figure 4. We see that the direct prior and
the approach of Hahn, Murray, and Carvalho (2017) are to be
preferred unless either
 is small or σ is large; for small values of

 this is logical, as the ridge model is only slightly misspeci�ed
and is slightly more parsimonious. For reference, the signal-to-
noise ratio is roughly (1 + 2
)2/σ 2, and we see that even with
signal-to-noise ratios as low as 0.25 (
 = 0.6, σ = 4) the
coverage of the Bayesian ridge regression model is very poor.

3.2. Semiparametric Regressionwith Clever Covariates

Mimicking our strategy in Section 3.1, for the semiparametric
regression problem we propose settingμ(x) = μ�(x)+ g{φ(x)}
and τ(x) = τ �(x) + h{φ(x)} for some choice of functions g(·)
and h(·), with μ� and τ � given independent Gaussian process
priors independent of φ(·). The confounding bias is then given
by


 =
covθ [μ�(Xi) + g{φ(Xi)},φ(Xi)]

Prφ(Ai = 0) Prφ(Ai = 1)

+
covθ [τ �(Xi) + h{φ(Xi)},φ(Xi)]

Prφ(Ai = 1)

≈
covθ [g{φ(Xi)},φ(Xi)]

Prφ(Ai = 0) Prφ(Ai = 1)
+

covθ [h{φ(Xi)},φ(Xi)]
Prφ(Ai = 1)

by the orthogonality principle. The confounding bias does not
concentrate for 0 on this model because φ(Xi) will generally
be highly correlated with g{φ(Xi)} and h{φ(Xi)}, even if these
functions are modeled nonparametrically.

There are several considerations for choosing g and h. If we
are concerned strictly with obtaining good Frequentist proper-

ties, an appropriate choice is to take g(φ) + a h(φ) = ω
a−φ

φ(1−φ)

and place a �at prior on ω; when φ is known, this guarantees√
N-consistency. Alternatively, we can set g, h ∼ GP(0, κg) with

the covariance function κg(φ,φ
′) = τ 2g exp{−(φ − φ′)2/(2s2g)}.

This choice of covariance functionwas noted by Ren et al. (2021)
to induce matching on the propensity score: individuals with
similar propensity scores have their values of g(φ) and h(φ)

shrunk together. The penalized-spline-of-propensity approach
of Zhou, Elliott, and Little (2019) is similar, except that splines
are used instead of Gaussian processes.

Simulation Experiment

We use the simulation setting of Hahn, Murray, and Car-
valho (2020, sec. 6.1) to evaluate several di�erent approaches
to correcting a Gaussian process prior for dogmatism. We

consider the generative model Yi(a) = μ(Xi) + a τ(Xi) +
εi, εi ∼ Normal(0, 1)with Xi2 ∼ Bernoulli(1/2), Xi4 ∼
Uniform({1, 2, 3}), and the other covariates iidNormal(0, 1).We
let

τ(x) =

{
3 homogeneous,

1 + 2 x2 x5 heterogeneous,
and

μ(x) =

{
1 + g(x4) + x1 x3 linear,

−6 + g(x4) + 6 |x3 − 1| nonlinear,
(2)

where g(1) = 2, g(2) = −1, and g(3) = −4. We then set Ai ∼
Bernoulli{φ(Xi)} with φ(x) = 0.8�{3μ(x)/s − 0.5 x1} + 0.1,
where s is the empirical standard deviation of the μ(Xi)’s. In
total we consider 16 possible simulation settings, correspond-
ing to a factorial design with N ∈ {250, 500}, P ∈ {5, 20},
and the four combinations of linear/nonlinear and homoge-
neous/heterogeneous. We model E{Yi(a) | Xi = x} = β(a, x)
using a Gaussian process β ∼ GP(0, κ) with the following
choices of κ

(
(a, x), (a, x′)

)

Naive A kernel that makes no correction for dogmatism:
κ
(
(a, x), (a′, x′)

)
= 100(1 + a a′) + λ exp{−b‖(a, x) −

(a′, x′)‖22}.
IPW-GP A kernel that incorporates the inverse propensity

score linearly as a “clever covariate”: κ
(
(a, x), (a′, x′)

)
=

100(1 + a a′ + ww′ + z z′) + λ exp{−b‖(a, x) − (a′, x′)‖22}
where w = a/φ(x) and z = (1 − a)/(1 − φ(x)).

Spline-of-propensity-GP A kernel that incorporates the
propensity score using a spline basis function expansion:
κ
(
(a, x), (a′, x′)

)
= 100(1 + a a′ +

∑
k ψk ψ ′

k) +
λ exp{−b‖(a, x)−(a′, x′)‖22}whereψk = ψk(x),ψ

′
k = ψ(x′),

and {ψ1, . . . ,ψK} are natural cubic spline basis functions
using 10 knots (see Zhou, Elliott, and Little 2019, for related
methods).

Spline-of-propensity Same as spline-of-propensity-GP but
without the Gaussian kernel.

In order to separate the issue of accurately estimating the
propensity scores from the bene�t of using them, we assume that
φ(x) is known a-priori. The parameters (λ, b, σy)were estimated
via empirical Bayes (see Rasmussen and Williams 2006, sec.
5.4.1). The factor of 100 in the various kernels corresponds
to including linear terms in the models; for example, in the
Naive kernel, inclusion of the term 100(1 + a a′) corresponds
to including linear terms β(a, x) = α0 + α1 a + β�(a, x) where
(α0,α1) ∼ Normal(0, 100) and β�(a, x) is an independent
Gaussian process with kernel λ exp{−b‖(a, x) − (a′, x′)‖22}.

Our main goals are to (i) determine the extent to which
the Naive kernel su�ers due to dogmatism, (ii) determine
which of the IPW or spline approaches perform better in this
case, and (iii) determine whether the propensity score alone
is su�cient to produce a good estimator. A subset of the
results corresponding to the nonlinear heterogeneous setting
with N = 250 are given in Figure 5, with the remaining
results deferred to the supplementary material. Summarizing
these results, we �nd (i) that the Naive kernel performs well
when P = 5 where dogmatism is mild, but breaks down
completely when P = 20; (ii) that the IPW-GP and spline-
of-propensity-GP approaches perform comparably in terms of
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Figure 4. Simulation results for γ = 0 as
 and σy vary.

coverage, but that the spline-of-propensity-GP generally pro-
duces smaller standard errors and RMSEs, suggesting that
the spline-of-propensity approach is more stable while accom-
plishing the same goals as IPW methods; and (iii) that the

spline-of-propensity-GP produces smaller standard errors and
RMSEs than the spline-of-propensity approach, indicating that
there is a bene�t to going beyond simply adjusting for the
propensity score.
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Figure 5. Results for the semiparametric manifold regression problem of Section 5. Bias denotes the average bias of γ̂ , coverage denotes the coverage of nominal 95%
intervals, RMSE denotes the root-mean-squared-error in estimating γ , and SE denotes the average posterior standard deviation of γ .

4. Prior Dogmatism in Other Settings

We now discuss how the proposals given here relate to other
existing Bayesian proposals for correcting for confounding bias
that have not been discussed above. In particular, we discuss
the approaches of propensity score strati�cation and the use of
sparsity-inducing priors.

4.1. Propensity Score Strati�cation

Propensity score strati�cation (PSS) (Imbens and Rubin 2015,
chap. 17) is commonly used in applied Bayesian causal infer-
ence to robustly control for confounders when inferring average
treatment e�ects (Rubin 1985; Li, Ding, andMealli 2022). In this
section, we relate this method to the Gaussian process methods
described in Section 2.2. PSS is motivated by the fact that the
propensity score is a balancing score in the sense that covariate
distribution across treatments is exactly balanced at each level of

the propensity score: [Xi | φ(Xi) = �,Ai = 1] d= [Xi | φ(Xi) =
�,Ai = 0], where φ(x) denotes the propensity score Prφ(Ai =
1 | Xi = x). For the sake of exposition, we will regard φ(x) as
known, although typically this is replaced with an estimate φ̂(x)
constructed using only the exposure and confounder data.

PSS strati�es the set of possible confounders X into J groups

X =
⋃J

j=1 Bj where Bj = {x : bj−1 ≤ φ(x) < bj} (0 = b0 <

b1 < · · · < bJ = 1). Separate outcomemodels are then speci�ed
for the di�erent strata, with [Yi | Ai = a,Xi = x,β] ∼ f (y |
a, x,βB(x)) parameterized by β1, . . . ,βJ where B(x) = j if x ∈ Bj.

The within-strata models are o�en themselves simple; for
example, we might set [Yi | Ai = a,Xi = x,β] ∼
Normal{αB(x)+γB(x) a, σ

2}, in which case the average treatment
e�ect is γ =

∑
j Pr(Xi ∈ Bj) γj. This can be related to

the Gaussian process approach described in Section 3.2, where
β(a, x) ∼ GP(0, κ) and κ is given by

κ(x, x′) = I{φ(x) ∼ φ(x′)} × {σ 2
α + σ 2

γ a a
′}. (3)

Here, I{φ(x) ∼ φ(x′)} is the indicator that x and x′ are in the
same strata, while σ 2

α and σ 2
γ are the prior variances of αj and

γj under a normal prior. From this perspective, it is similar to
the spline-of-propensity approach, but di�ers in that (i) it uses a
step function rather than a cubic spline and (ii) it also smooths
over the treatment e�ect rather than treating it as constant in x.
This and other PSS approaches can therefore produce estimates
equivalent to those obtained from a Gaussian process regression
in which the kernel of the Gaussian process depends on the
propensity score, and hence the overall approach violates IG.2.

Interestingly, despite violating IG.2, the PSS model described
above can still be critiqued from the standpoint of the induced
prior on the selection bias; in the supplementary material, we
show that the Gaussian process with covariance (3) is itself
subject to prior dogmatism when the parameters σ 2

α and σ 2
γ are

kept �xed as the number of strata grows (speci�cally, var(
) =
O(J−1) under the model we consider); this is not a serious
concern for the applications where PSS is most commonly used,
as one typically uses �at priors on the (αj, γj)’s and the number
of strata is not too large, but is potentially of concern in settings
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where the within-strata models are complex and require regu-
larization.

4.2. Sparsity Inducing Priors

A common strategy for dealing with the N � P setting in
linear regression is to use a sparsity inducing spike-and-slab
prior (Mitchell and Beauchamp 1988), where the regression
coe�cients are allowed to be 0 with positive probability. Even
when sparsity is imposed, however, serious problems occur for
the confounding bias prior. To see this, suppose that � = σ 2

x I

and let d
β
j = I(βj �= 0) and d

φ
j = I(φj �= 0). Then we can write

the confounding bias as


(a) = a

∑
j:d

β
j =d

φ
j =1

σ 2
x φj βj

σ 2
a +

∑
j:d

φ
j =1

σ 2
x φ2

j

.

In this case, the denominator will be of orderDφ ≡
∑

j d
φ
j while

the numerator will be of orderD
1/2
φ∩β whereDφ∩β ≡

∑
j d

φ
j d

β
j . If

we now use independent spike-and-slab priors for β and φ that
are calibrated to have an on averageQ active variables, we expect
Dφ ≈ QwhileDφ∩β ≈ Q/P, so that the confounding biaswill be
a-priori negligible in high-dimensional sparse settings in which
spike-and-slab priors are applied. Hence, even if sparsity is
expected (but IG.2 is otherwise in e�ect) we run into essentially
the same problem as with ridge regression: the prior on 
(a)
regularizes it toward zero.

To correct this issue, it remains valid to include the “clever
covariate”X�

i φ̂ in themodel to correct for dogmatism.However,
an alternative is to make speci�c use of the variable selection
aspect of the model. One possibility, studied by Wang, Parmi-
giani, and Dominici (2012), is to use shared variable selection
for the two models; this approach ensures that any variable
appearing in the exposure model will have a high probability
of also appearing in the outcome model. To implement this, we

might set φj
iid∼ (1−pφ) δ0+pφ Normal(0, τ 2φ) and conditionally

set βj
indep
∼ {1 − pβ(φj)} δ0 + pβ(φj) Normal(0, τ 2β). Setting

pβ(φj) = 1 if φj �= 0 guarantees that βj is included whenever
φj is included.

In the supplementarymaterial we conduct a small simulation
experiment that veri�es that shared variable selection is an
e�ective strategy for combating dogmatism when the exposure
and outcome models are both sparse; we also show that using a
direct prior on 
 is su�cient for this purpose as well.

5. Factors Mitigating Dogmatism

In demonstrating the issue of dogmatism we made use of the
orthogonality principle, which required both that β and φ be
independent and that there be no “dimension reducing struc-
ture.” We have already considered violating the independence
assumption in Section 3 to control the prior on 
(a). Alterna-
tively, we might use dimension reducing structure. One source
of possible structure is var(Xi) = �, which is used to de�ne
the inner product 〈β ,φ〉 = β��φ; note that the spectrum of
� appears prominently in Proposition 2 and Theorem 1. We

now examine the role of � in the ridge and semiparametric
regression problems.

5.1. Dependence Structure and Ridge Regression

We�rst consider a latent factormodel that takesXi = �ηi+σx νi
where� ∈ R

P×L is a matrix of factor loadings and ηi ∈ R
L is an

L-dimensional vector of latent factors for observation i. If σx = 0
in this model then Xi is restricted to be in the L-dimensional
subspace span(�); similarly, if σx is small, then Xi lies very close
to span(�).

Consider now the induced prior on the confounding bias
parameter. Assuming ηi ∼ Normal(0, I) and ν ∼ Normal(0, I),
we have var(Xi) ≡ � = ��� + σ 2

x I. Letting κ1, . . . , κL denote
the L nonzero eigenvalues of ���, Proposition 1 gives


(a) = a

∑L
j=1(κj + σ 2

x )Wj Zj

σ 2
a +

∑L
j=1(κj + σ 2

x )Z2
j

+ a

∑P
j=L+1 σ 2

x Wj Zj

σ 2
a +

∑P
j=L+1 σ 2

x Z
2
j

≈ a

∑L
j=1 κjWj Zj

σ 2
a +

∑L
j=1 κj Z

2
j

,

where W = ��β ,Z = ��φ, and � ∈ R
P×L consists of the

L leading eigenvectors of ���. The approximation holds when
σx is near zero, so that � is approximately low-rank. Because
the le�-hand-side depends only on L rather than P, we expect

(a) to be roughly of order L−1/2 rather than P−1/2 for the
ridge regression prior. Hence, even if P 
 N, we may still avoid
dogmatism if L � N.

Figure 6 con�rms the intuition that the naive approach avoids
dogmatism when � is nearly low-rank; it shows the root mean
squared error of the direct approach we proposed in Section 3.1
and the naive ridge regression estimator. To generate this �gure,
we applied the two approaches under the following conditions:

σ 2
a = σ 2

y = 1; L = 5; N = P = 200; �p�
iid∼ Normal(0, 1);

γ = 1; and both β and φ chosen so that X�
i β = X�

i φ =∑L
�=1 E(ηi� | Xi).

Figure 6. Root mean squared error in estimating γ for direct and naivemethods as
a function of σx .
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Figure 7. Results for the semiparametric manifold regression problem of Section 5. Bias denotes the average bias of γ̂ , coverage denotes the coverage of nominal 95%
intervals, RMSE denotes the root-mean-squared-error in estimating γ , and SE denotes the average posterior standard deviation of γ .

5.2. Dependence Structure and Semiparametric

Regression

We now present evidence for the hypothesis that dimension
reducing structure in Xi also shields us from dogmatism in

nonparametric problems. Rather than assuming that Xi concen-
trates near a hyperplane, we instead assume that Xi is concen-
trated near a manifold of intrinsic dimension L in R

P. Specif-
ically, we take Xi = �(ηi) + σx εi, εi ∼ Normal(0, 1)where
� : RL → R

P is nonlinear. The function � is normalized for
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each σx so that the components of Xi have standard deviation 1;
hence, σx indexes how close Xi is to M = {x : x = �(η), η ∈
R}. We use a continuous exposure Ai = ra(Xi) + νi and a

continuous outcomeYi(a) = ry(Xi)+a γ +εi(a), with εi(a), ν
iid∼

Normal(0, 1) and ry(x) = r�y(x) + ra(x). The parameter of
interest is γ , which represents the causal e�ect of the exposure
on the outcome.

To construct ground truths, we generated r�y , ra ∼ GP(0, ρ)

where ρ(x, x′) = exp{−‖x−x′‖22}.We then constructed�(η) =(
�1(η), . . . ,�P(η)

)�
by taking �j ∼ GP(0, κ) independently

for j = 1, . . . ,P, where κ(η, η′) = exp{−‖η − η′‖22}. We set
γ = 1, L = 1, and consider P ∈ {10, 200}, N = 300, and
σx = 2−j where the j’s are evenly spaced between−7 and−2. For
each σx and P we generated 200 simulated datasets and applied
the Direct andNaivemethods to estimate γ and construct a 95%
credible interval. We consider two priors.

Naive We impose IG.2, but otherwise use the “true” prior for
r�(x) using the kernel 2ρ(x, x′). We specify a Normal(0, 102)
prior for γ .

Direct We use the model Yi(a) = ry(Xi) + ω r̂a(Xi) + γ a
where r̂a(x) is a pilot estimate of ra(x) obtained from �tting
a Gaussian process to the relationship Ai = ra(Xi) + νi. We
specify a Normal(0, 102) prior for both γ and ω.

Figure 7 displays the bias, coverage, RMSE, and average
standard error in estimating γ . For P = 10, the behavior is
similar to the ridge regression problem: the Direct approach
performs uniformly well, while the naive approach (while never
better than the direct approach) performs much better as σx
is decreased. The P = 200 setting, on the other hand, is too
di�cult for the naive approach, although it does still perform
better as σx decreased. The behavior of the direct approach at
P = 200 is very interesting, however. We note a sharp phase
transition around σx = 0.07 where the problem essentially
goes from infeasible to feasible: the bias, RMSE, and standard
error all decrease dramatically at this point. We also see that the
direct approach is muchmore honest in terms of its uncertainty:
when the problem is infeasible, the model correctly gives a large
posterior standard error. Conversely, the naive model tends to
understate the uncertainty in γ , leading to poor coverage.

6. Discussion

The main concrete recommendation we make in this article is
that Bayesian ignorability (and in particular IG.2) can encode
an informative prior on the degree of confounding bias, and
thus should not be imposed in most situations. This tends to
regularize confounding bias parameters toward 0, thereby intro-
ducing substantial bias in high-dimensional or nonparametric
problems. Instead, Bayesians should reject IG.2 by default in
favor of a prior that allows for more direct control over the con-
founding bias, and we have illustrated how to do this in several
problems of interest. Of secondary interest, we have noted that
features of the design can mitigate prior dogmatism about the
confounding bias, and showed that both ridge regression priors
and Gaussian process priors possess some degree of adaptivity
toward low-dimensional structures in Xi. But this does not
change our general recommendation, as we have consistently

observed improved performance of priors that reject IG.2 even
when such low-dimensional structures exist.

Dogmatism about other features of the model may also have
bad inferential consequences. In future work, we will extend our
results to other problems in causal inference. Some possibilities
include estimation of the conditional average treatment e�ect
(CATE) in observational studies, inference on the average causal
e�ect under sparsity assumptions on (β ,φ), and estimation of
the natural direct and indirect e�ects in mediation analysis. In
the context of mediation analysis, one must control for two
di�erent sources of confounding: the e�ect of the confounders
both on the treatment received and on the mediating variable.

While we have presented a number of corrections for dogma-
tism,we have not presented any coherent framework for deriving
corrections. This presents an important question: are there any
objective Bayes principles that automatically lead to priorswhich
adequately account for dogmatism? Parameterization invariant
priors, like Je�reys’ priors, cannot work because they imply that
IG.2 holds. By contrast, other objective principles that are not
parameterization invariant and do not necessarily imply IG.2,
such as priors constructed from decision theoretical princi-
ples, entropy maximization, and reference priors, have some
chance of working (see Kass andWasserman 1996, for a review).
The computational di�culty of implementing these priors can
make numeric experimentation di�cult. Interestingly, entropy
maximization with respect to the distribution of the observed
(rather than complete) data can be used to generate models that
possess very strong Frequentist properties (Sims 2012), but lack
a satisfying justi�cation.

Supplementary Materials

The supplementarymaterials contain code replicating our results, all proofs,
additional theoretical analyses for ridge regression, additional simulation
results, a general discussion of Robins-Wasserman-Ritov problems, and a
discussion of dogmatism in the context of propensity score strati�cation.
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