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ABSTRACT

In problems with large amounts of missing data one must model two distinct data generating processes:
the outcome process, which generates the response, and the missing data mechanism, which determines
the data we observe. Under the ignorability condition of Rubin, however, likelihood-based inference for
the outcome process does not depend on the missing data mechanism so that only the former needs
to be estimated; partially because of this simplification, ignorability is often used as a baseline assump-
tion. We study the implications of Bayesian ignorability in the presence of high-dimensional nuisance
parameters and argue that ignorability is typically incompatible with sensible prior beliefs about the
amount of confounding bias. We show that, for many problems, ignorability directly implies that the
prior on the selection bias is tightly concentrated around zero. This is demonstrated on several models
of practical interest, and the effect of ignorability on the posterior distribution is characterized for high-
dimensional linear models with a ridge regression prior. We then show both how to build high-dimensional
models that encode sensible beliefs about the confounding bias and also show that under certain nar-
row circumstances ignorability is less problematic. Supplementary materials for this article are available
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1. Introduction

Dealing with missing data is a fundamental problem in data
analysis: it complicates inference in clinical trials (National
Research Council 2010) and is inherent in the potential out-
comes framework for causal inference (Rubin 2005). A common
starting point for addressing missingness is to assume that the
mechanism that generated the missingness is ignorable (Rubin
1976). Ignorability allows likelihood-based inference to pro-
ceed without modeling the missing data mechanism, which can
greatly simplify an analysis.

In this article we consider the Bayesian approach to account
for missingness. For the sake of specificity, we focus on the
Rubin causal model (Rubin 1974, 1978) for observational studies,
which considers the potential outcome Yi(a) of some outcome
under an exposure level a € .7, such that we observe both
the received exposure A; and its associated potential outcome
Y; = Yi(A)); in this case, Y;(a) is regarded as missing for all
a # A;. Let X; be a vector of confounders that are predictive of
both A; and Y;(a). Following Seaman et al. (2013) (see also Little
and Rubin 2002, Definition 6.5), we will say that the exposure
model fy(A; | X;) is Bayesian-ignorable, or simply ignorable, if
the following conditions hold:

IG.1 The potential outcomes {Y;(a) : a € &/} are conditionally
independent of A; given X;.

IG.2 The parameters 8 and ¢ are a-priori independent, where
B parameterizes the model for the potential outcomes and

¢ parameterizes the missing data mechanism. That is, the
prior factors as w (B8, ¢) = mwg(B) 7y ().

We opt for the term Bayesian ignorability to distinguish it from
the term ignorability (Rosenbaum and Rubin 1983; Imai, Keele,
and Tingley 2010) as used in causal inference, which is often
taken to be synonymous with the exchangeability Assumption 1
(also sometimes referred to as unconfoundedness). Condition
IG.1 constrains the data generating mechanism and is a type
of missing at random (MAR) assumption (Rubin 1976), which
itself is sometimes conflated with ignorability in the sense of
missing data (see Seaman et al. 2013, for a thorough discussion
of MAR and ignorability). Condition IG.2, which constrains the
prior, is also key to ignorability: it guarantees that the posterior
distribution of 8 given the observed data is proportional to
7g(B) [1;fslYi(A) | Xi}, which does not depend on the
exposure model. Without IG.2 we are still obligated to specify
an exposure model.

It has been argued, from a Frequentist perspective, that IG.2
is highly problematic in high-dimensional problems (Robins
and Ritov 1997; Robins and Wasserman 2012). We complement
this view by studying 1G.2 from a Bayesian perspective. That
such a perspective is valuable is demonstrated by the fact that
Bayesian researchers have run afoul of this problem specifi-
cally when attempting to address the examples of Robins and
Wasserman (2012). For example, Li (2010) proposes a prior that
leads to Bayes estimators that do not appropriately correct for
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confounding bias. We argue that, while IG.2 is seemingly an
innocuous convenience, it can inadvertently encode strong prior
beliefs about the total amount of confounding bias, to the degree
that the data has no reasonable chance of overcoming the prior.
Following Sims (2012), we refer to priors with this property as
dogmatic about the confounding bias. We make the following
three points.

1. Priors that impose IG.2 are typically dogmatic about the
degree of confounding bias, particularly in settings that
require informative priors. We illustrate this in the simple,
but representative, settings of ridge regression and Gaussian
process regression, and argue further that it holds for the
spike-and-slab priors. While we note some exceptions, we
conclude that IG.2 does not reflect substantive prior knowl-
edge in many cases.

2. By understanding this induced prior on the confounding
bias, we are able to identify several highly effective methods
for correcting this problem and unify several approaches
proposed in the Bayesian causal inference literature that were
not motivated by Bayesian considerations. Our remedies take
the form of propensity score adjustments, which have typi-
cally been recommended in applied Bayesian analysis on the
grounds of pragmatism and robustness (see, e.g., Rubin 1985;
Li, Ding, and Mealli 2022) rather than subjective Bayesian
principles. A limitation of these corrections is that they are
derived on a case-by-case basis.

3. We study some relatively narrow settings in which prior dog-
matism does not occur, even in high dimensional problems.
For example, strong dependence structure in X; can act as
a shield against dogmatism; in our ridge regression exam-
ple, we use random matrix theory to quantify this behavior
(Dobriban and Wager 2018; Dicker 2016). Despite this, we
find little benefit to failing to correct for dogmatism in these
settings.

Remark 1. Many of our conclusions are reminiscent of D’Amour
et al. (2021), who study the assumption of overlap in high-
dimensional settings; they show that the strict overlap assump-
tion implies that the confounders either (i) are roughly balanced
across groups or (ii) are highly correlated. In the same way,
our results imply that priors satisfying IG.2 lead to dogmatism
unless either (i) there is some dimension-reducing structure
in the propensity/outcome regressions or (ii) the confounders
are highly correlated. An important difference between these
works is that D’ Amour et al. (2021) do not make any assumption
about the correlation between the propensity score and outcome
regression, and consequently their approach would yield bounds
on the confounding bias parameters that are weaker than those
obtained here.

1.1. Notation

Fori = 1,...,N we let Y;(a) denote a potential outcome, X; €
R denote a vector of confounders, A; € R denote an exposure
indicator, and define Y; = Y;(A;). Weset Y = (Yy,...,Yn) T,
A = (Aj,...,AN), and let X denote an N x P matrix obtained by
stacking the row vectors X, . Let 8 parameterize the distribution

of [Y;(-) | Xil, let ¢ parameterize the distribution of [A; | Xi],
andlet 6 = (B, ¢). We invoke IG.1 throughout.

We let Ey () denote the expectation operator conditional on
0. If the subscript 0 is omitted then E(-) is the expectation
operator with respect to a prior distribution on 6, for example,
E(Y;) = f]E@(Yi) 7(0) db. We use the Big-O notation W =
O, (V) to mean that |W|/| V| is bounded in probability as P —
oo. Finally, we let 4;(X) denote the jth largest eigenvalue of a
covariance matrix ¥; for example, A1(X) denotes the largest
eigenvalue of X.

1.2. llustrative Problems

We consider two problems to illustrate the existence of dogma-
tism and how to correct for it. We assume X; ~ Normal(0, X) for
some ¥ € RP*P to simplify our analysis. All proofs are deferred
to the supplementary material.

High-Dimensional Linear Regression. We posit linear models
for the outcome and the exposure models, Yi(a) = Xl-—r B+
ya+ €i(a) and A; = XiTq) + v; with €;(a) ~ Normal(O,a}?)
and v; ~ Normal(0, oaz), and allow P to grow with N. The
Bayesian ridge regression prior, which satisfies IG.2, takes g ~
Normal(0, té 1), ¢ ~ Normal(0, r; I), and a flat (improper)
prior on y. The parameter of interest is the mean response at
a given exposure Eg{Y;(a)} = y a. Define the confounding bias
parameter as A(a) = Eg(Y; | A; = a) — Eg{Yi(a)}.

Semiparametric Regression. We posit a semiparametric nor-
mal regression model Y;(a) ~ Normal{u(X;) + at(X;),0?}
with a binary exposure variable A; ~ Bernoulli{¢ (X;)}. This
parameterization was proposed by Hahn, Murray, and Carvalho
(2020) for their Bayesian causal forests method. The parameter
of interest in this problem is the population average causal effect
T = [ 7(x) Fx(dx). For convenience, we will assume that 1 (-)
and 7(-) are both given independent Gaussian process priors
(Rasmussen and Williams 2006) with covariance function« (-, -),

written u, T i GP(0, k). For this model, 8 = (u, 7). We define
the confounding bias parameter for this model tobe A = Ey (Y; |
Aj=1) —Eo(Y; | Ai = 0) — Ep{Yi(1) — Yi(0)}.

2. The Induced Prior on the Confounding Bias

The fundamental difficulty with missingness is confounding bias.
In both of our illustrative examples, this amounts to the fact
that A # 0. Note that the statement A = 0 is much stronger
than the claim that there are no unmeasured confounders—it
instead states that, for the purpose of conducting valid infer-
ence, it suffices to ignore the confounders (both measured and
unmeasured) entirely! More precisely, A = 0 implies that the
effect of confounding is, on average, 0; hence, inference that is
Frequentist-valid under an assumption that A = 0 would also
be valid under the assumption that there are no confounders.
The possibility that A # 0 is the only issue that makes
estimation of average causal effects nontrivial, as otherwise we
could ignore the covariates X; and directly estimate Ey{Yi(a)}



by estimating Eg (Y; | A; = a) nonparametrically. The following
proposition gives an expression for A in our problems.

Proposition 1. The confounding bias parameter is given by
¢'zp
o2+¢T s
_covp{n(X), ¢ (Xi)} covg{T(Xi), ¢ (Xi)}

Prg(A; = 1) Prg(A; = 0) Prg(A; =1)
in the high-dimensional linear regression problem and semi-
parametric regression problem, respectively.

A(a) =a and

>

Given the importance of A and the working assumption
that confounding bias is non-negligible, one would hope that
the prior distribution of A is relatively diffuse. However, using
Proposition 1, we can see this is not the case; for example, for the
ridge regression prior we have the following.

Proposition 2. Assume the setup of Proposition 1 for the ridge
regression problem and suppose B ~ Normal(0, ré I) and

¢ ~ Normal(0, rq% I) independently. Assume 1% ]le kj(E)k
converges to a positive constant as P — oo fork = 1,2,2 + €
for some ¢, and let A and A? be the limits with k = 1,2. Then
A(a) ~ Normal(0, ¢/P)where c = a* (Ié/tq%) (A%/22).

Proposition 2 contains several lessons, but the most impor-
tant is that if confounding bias is a-priori a concern for us then
it seems unwise to specify a Normal(0, c¢/P) prior for it when
P is large. This behavior becomes even more suspect when one
considers that the definition of A(a) is completely free of the
Xi’s, and that there is little reason to expect that the number
of confounders we need to control for should change our prior
beliefs about A(a). In Section 2.1 we follow up on the inferential
consequences of this.

At a high level, the source of the problem in our illustrative
examples is the following well-known phenomenon, which we
refer to as the orthogonality principle.

Principle 1 (The Orthogonality Principle). Let B and ¢ be
random unit vectors with mean 0 taking values in some
high/infinite dimensional Hilbert space H with inner product
(+,-). Then, if ¢ and B are independent and there is no dimension
reducing structure in the problem, with high probability, we
have (E, 5) ~ 0.

This principle emerges from the geometric properties of
high-dimensional spaces (Wegner 2021; Vershynin 2018) and
variants of it have proven useful in many problems; one example
among many is that, in compressed sensing, random Gaussian
ensembles satisfy the restricted isometry property with high
probability (Candes and Tao 2007). Examples of “dimension
reducing structure” include high degrees of anisotropy of either
the distribution of the random vectors or of {-,-), which can
cause the vectors to behave more like low-dimensional vectors.

The orthogonality principle becomes important when P is
large (or in nonparametric problems) because A is quantifi-
able in terms of (8,¢) for some suitable inner product (see
Proposition 1). If IG.2 holds then the orthogonality principle
immediately suggests (8, ¢) ~ 0 with high probability, implying
that our prior is dogmatic about the confounding bias.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 3

2.1. Asymptotics for High-Dimensional Ridge Regression

While the dogmatism implied by Proposition 2 is troubling,
one might hope that the informative prior on A is a theoretical
curiosity that is nevertheless swamped by the data. We show that
this is not the case, and that the prior concentration on A leads
to heavily biased inferences if P grows sufficiently quickly with
N. We summarize our main results as follows.

o In the regime P/N — r for some r € (0,00) (i.e., P grows
at the same rate as N), the Bayes estimator that takes a flat
prior on y and a Gaussian prior 8 ~ Normal(0, 72 P71 1) is
heavily biased. Specifically, when confounding bias is present
through the auxiliary covariate A= X." ¢, the Bayes estimate
will have bias of order A(1).

o In some sense the setting ¥ = I is inherently difficult, and
the problem is generally easier when the components of X;
are highly correlated. We return to this point in Section 5.

We make two sets of assumptions. The first (high-
dimensional asymptotics, or HDA) is used to describe the
distribution of the X;’s as N — oc. The second (random effects
model, or REM) describes a particular random effects model
for the regression coefficients. This framework modifies the
framework of Dobriban and Wager (2018) so that it is suitable
for our aims.

HDA.1 The covariates are multivariate normal with X; ~
Normal(0, X).

HDA.2 As N — oo we have P/N — r for some r € (0, 00).

HDA.3 The spectral distribution Zﬁ:l 85,/ P associated to X
converges to some limiting distribution H on [0, 00),
where Xj,...,Ap are the eigenvalues of ¥ and 8
denotes a point-mass distribution at A.

HDA is a standard assumption for understanding the case where
P grows like N. HDA.3 allows us to use results from random
matrix theory to compute limp_, tr{(X"X + NAD) ¥} for
k e N. Under HDA, the empirical distribution of the eigen-
values of S = XX'/N, namely F(dx) = N3N, 85>
converges to a distribution F(dx) called the empirical spectral
distribution.

Next, we describe a random effects model (REM) for 8 and
¢ that we will base our analysis on. Similar models have been
used to study both the prediction risk and minimax-optimality
of ridge regression (Dicker 2016; Dobriban and Wager 2018).
REM is a fruitful assumption for us as it allows exact for-
mulas for the bias to be derived that are free of the particu-
lar values of B and ¢. In Remark 2 we discuss relaxing this
assumption.

REM.1 The coefficient vector ¢ is randomly sampled as ¢ ~
Normal(0, 72 P71 1).

REM.2 The coefficient vector 8 is randomly sampled as § ~
Normal(wg ¢, 2 P71 ).

REM.3 Given 8 and ¢, Y; ~ Normal(XiTﬁ +Aiy,1)and A; ~
Normal(XiTqﬁ, 1).

We note that REM.2 is equivalent to setting Y; ~
Normal(Xin + wo Ai + Yo Ai, 1), where A; = X?(f) = E(A; |
Xi,¢) and b ~ Normal(0, 72> P~ I). REM.2 allows for non-
negligible confounding bias to enter the model, and priors based



4 (&) AR.LINERO

n=205
0.3

Gannttt

.

0.2 o
"

*

014 ¢ -

.
0
*

0.0

s
Q apuussat?
I“‘

Gc0=

TTLLLILLT
.IIIIIIIIIII.IIIII
---""'

s
ampusuasRTERRAAREEE
(]
LA
'

0.2 pore

o*

\d T LLLLLE)
annus
o aunse®?

go=+4

.
L
R

guspsnEuEEREEEEEREREEAEN
PP L
ws
.

.

Bias

sssususEENRESEREREEEEEEERS
..‘.--lul
Y
.
.

saEEEEEEEEVEEEEENE
aussun@uuuns Il
ot

CawanEEYRE@EEEEEENEESEEISEEEEEEEEERENES

Method

Direct =@ Naive

Figure 1. Comparison of the bias of naive ridge regression (dashed blue) to the direct prior (solid, orange) of Section 3.1 for different values of  and r with wy = 1. The
points on each line correspond to a value of the ridge parameter 2 that obtained from estimating A via empirical Bayes on a single dataset simulated according to the model

and prior.

on this parameterization have been used to account for con-
founding bias by other researchers (Zigler et al. 2013; Hahn et al.
2018). The parameter wy is closely connected to the confounding
bias.

Proposition 3. Suppose that HDA and REM hold and that ¥ sat-

e
isfies the conditions of Proposition 2. Then A(1) — a)olfr—t%in

probability as P — oo.

Theorem 1 explicitly computes the bias of the ridge regression
estimator under IG.2 when the prior 8 ~ Normal(0, N"!A~'I)
is used, that is, when we apply the usual ridge regression estima-
tor. We sketch a proof of Theorem 1 and verify it numerically in
the supplementary material.

Theorem 1. Suppose HDA and REM hold. Let (¥, ET )T denote
the Bayes estimate of (y, BT under a prior that takes f ~
Normal(0, N~! A7!T) and places a flat prior on y under IG.2.

Then the asymptotic bias of ¥ is given by

wo [ x/(x+ 1) F(dx)
Jx+n)/(x+ x) F(dx)
L L=hv=h)

L= —nv(=2)

lim E@y — = 1
Jlim E@ ) M

= (UO

where v(z) = Ooo Fdx)

n=r/t>

is the Stieltjes transform of F(dx) and

X—z

Ideally we would like the bias to be close to 0 for moderate-
to-large values of A so that we have both small variance and
bias; the approach outlined in Section 3.1 does accomplish this
goal for a properly chosen A. Figure 1 contrasts this alternative
method with standard ridge regression when ¥ = I and we
see that the bias is quite large for ridge regression unless A is
close to 0 and r < 1; this latter case corresponds to OLS, which
(while unbiased) defeats the purpose of using ridge regression.



Additionally, a data-guided choice of A (obtained via empirical
Bayes on single dataset simulated with wg = 1 and yp = 3)
does not result in alow-bias estimate of y, whereas a data-guided
choice of the tuning parameter of our proposed approach does.

A qualitative observation based on (1) is that a smaller bias
is obtained when most of the eigenvalues of S are small. For
example, unbiasedness is possible (even if P 3> N) if S is rank
deficient, because F(dx) will assign mass to 0, which will cause
Av(—1) — 0 (by bounded convergence) while n v(—1) — oo
as A — 0.

When P > N the only hope for nonnegligible bias is for the
eigenvalues of S to be heavily concentrated near 0. As S has the
same nonzero eigenvalues as the sample covariance S = X ' X/N
this means we should hope for strong colinearities among the
covariates. A particularly unfavorable setting is ¥ = I, where
the Marchenko-Pastur theorem (see, e.g., Couillet and Debbah
2011, Theorem 2.13) states that if » > 1 then F(dx) has density
qr) = —Wl(a < A < b) where (a,b) = (1 £ 1%
this bounds the support of the eigenvalues away from 0. In
Section 5 we show that much better results are obtained when
the X;’s follow a latent factor model.

Remark 2. REM is a strong assumption, and one might worry
that conclusions drawn under REM do not generalize to other
settings. In the supplementary material, we study the setting
r < 1 when REM does not hold and show that the g-prior
(¢, B ~ Normal(0, A~ N~1 §~1)) leads to inconsistent estima-
tion of y (Liang et al. 2008) unless A — 0 with N (with the
bias proportional to the confounding bias); moreover, the A used
in the g-prior that is optimal for prediction purposes can be
shown to not converge to 0, suggesting that inconsistency will
remain if we place a fixed prior on A. On the other hand, a g-
prior variant of the model described in Section 3.1 is shown to
be +/N-consistent. We argue on this basis that the conclusions
drawn under REM are also representative of what occurs when
¢ and B are instead regarded from the Frequentist perspective as
fixed-but-unknown parameters, while also providing additional
insight into the role that the spectral distribution of ¥ plays and
being applicable for r > 1.

Remark 3. As noted by a reviewer, one might also worry that
our conclusions are partially driven by the effect of scaling
by P in REM.1, and REM.2, or the scaling by N in the prior
distribution 8~ Normal(0, N~!A7!1). Instead, we might
have analyzed the behavior of the ridge regression estimator
based on the Normal(0, A~! I) under the REM assumption ¢ ~
Normal(0,7%1) and 8 ~ Normal(wg ¢, 7>I). We feel that
this setting is less natural in the high-dimensional setting, as
it implies the signal-to-noise ratios (SNRs) ||¢||? and ||| for
both the A and Y models diverge; typically, the optimal choice
of A for prediction purposes in our setup is on the same order as
the SNRs. In the supplementary material we show that allowing
the SNRs to diverge still results in asymptotic bias; specifically,
the bias converges to wo x r*/{1 — (1 — r*)(1 — n/A)} where
r* = min(r,1). We note that, in this regime, the covariance
matrix X does not play any role.

Remark 4. That the most favorable situation occurs when X is
nearly low-rank is the opposite of the most favorable situation

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

for estimating the regression coefficients (¥ = I). A related
phenomena is described by Dobriban and Wager (2018), who
show that inference and prediction are generally at odds with
each other when REM holds.

2.2. Confounding Bias Dogmatism for Semiparametric
Regression

Recall the semiparametric regression problem described in
Section 1.2 with the confounding bias parameter given in
Proposition 1. For convenience, we will assume that ¢ (x) is

id
known a-priori to be ¢o(x) and that u,t N GP(0,x) (Ras-
mussen and Williams 2006); the statement 8 ~ GP(m,«)
here means that, for any finite collection (xi,...,xp), we

have (ﬁ(xl),...,,B(xj\/I))T ~ Normal(m,K) where m =

(m(xl), ces m(xM))—r and K has (j, k)th entry « (xj, x). Gaus-
sian processes have been proposed as priors for causal inference
by several authors (Ray and van der Vaart 2020; Ren et al. 2021)
and they are convenient to study theoretically.

Figure 2 gives a sense of what to expect. In this figure, g, 7,
and logit(¢) are sampled from Gaussian processes with squared
exponential kernel « (x,x") = e~ Ix=¥13/2 As P increases we
see that A concentrates around 0. As in the setting of ridge
regression, this is troubling both because (i) it will typically
violate our prior beliefs about A for large P and (ii) given the
definition of A, there is no reason for our prior beliefs to be
dependent on the number of variables that act as confounders.

We apply the orthogonality principle to the Hilbert space
2 (Fx) of square-integrable functions {g : f g2 dFx < o0}
with inner product (8,¢) = [ B(x)¢(x) Fx(dx), where Fx
denotes the distribution of X;. Let g(x) = g(x) — [ g(x) Fx(dx)
and g(x) = g(x)/|1Z|l. The following proposition shows that the
confounding bias is controlled by (it + T, ¢), implying that the
orthogonality principle is in effect.

Proposition 4. Suppose E{1(X;)?} and E{r (X;)?} are bounded
as P — oo, and that there exists a § > 0 such that Prg (A; =

_ _ Il el ~ 7
a) >_8 fora = 0,1. Then A = W(M,(b} +
P ey (T 8) = Op(( + T, 4)

For Gaussian process models, and nonparametric models in
general, model complexity tends to scale very rapidly in P. To
connect our results for Gaussian processes to ridge regression,
we define the effective number of parameters of f ~ GP(0, x) as

_ | K (x, %) Fx(dx) _ var{f(X)}
[k (x,x') Fx(dx) Fx(dx') ~ var{[ f(x) Fx(dx)}’

The intuition behind this definition, which is a natural gener-
alization of Kish’s effective sample size to stochastic processes
(Kish 1965), is that [ f(x) Fx(dx) is an average of infinitely many
of the f(x)’s, and its variance should be roughly (i) the variance
of one of its constituents f(xp) divided by (ii) the number of
“independent” entities being averaged D; to account for the
fact that the different evaluations f(xp) might have different
variances, we average the variance against Fx to get var{f(X)}
in the numerator.
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Figure 2. Prior distribution of A under a Gaussian process prior in Section 2.2 for P € {5, 10, 20}.

We now show that the variance of (it + T, ¢~5) scales inversely
with D and that, for the squared-exponential kernel, D grows
quickly in both P and the inverse length-scale.

. indep 2 "o
Proposition 5. Let u,t  ~  GP(0, 75 0) where p(x,x’) is a

W2
correlation function. Then A ~ Normal(0, ¢) where ¢ < Dﬂ

for a constant WV that depends only on Prg,(A; = 1) and
Pry, (A; = 0).

The conclusion here is similar to the conclusion for ridge
regression, with the prior concentration depending inversely on
the effective number of parameters D rather than the raw dimen-
sionality P. Next, we consider the specific case of the squared-
exponential kernel, which is among the most commonly used
kernels for performing Gaussian process regression.

Proposition 6. Let k(x,x') = Tép(x,x/) where p(x,x") =

exp{—(x — ) TH™!(x — x’)/2} and H is a covariance matrix,
and suppose X; ~ Normal(0, ¥). Then

det(H+25) [ (det() e ?
det(H) + (det(H))

2/03)P12) while if

In particular, if H = ¢2% then D = (1 +
H=(*1thenD = 1‘[;;1(1 +24(2) /e2)V2,

Regarding P as fixed, we see that D grows like £~ as £ — 0,
implying var(A) = O(£"). Consequently, reducing the length-
scale of the process quickly leads to prior dogmatism. As the
following corollary shows, letting P diverge makes the problem
much worse.

Corollary 1. Under the same conditions as Proposition 6, we
have D > exp(CP) for some constant C as P — 00, provided
that det(2)!/?/ det(H)'/? is bounded; in particular, this occurs
if either H = ¢2% and ¢2 is bounded, or if H = ¢I and
det(X)'/?/¢2 is bounded.

Note that Proposition 5 shows that dogmatism occurs in a
uniform sense: no matter how favorably ¢ (x) is selected, the
naive use of Gaussian process priors causes the prior variance on

A to scale inversely in D. In the case of the squared-exponential
kernel, D grows exponentially in P for reasonable choices of
H, including the commonly used isotropic (H = ¢*I) and
an anistropic kernel that makes the prior invariant to linear
transformations of the predictors (H = £2X).

3. Correcting for Dogmatism
3.1. Direct Priors for Ridge Regression

A simple approach to addressing dogmatism for ridge regres-
sion is to make BTX¢ large by encouraging B to align
with ¢. For example, we might center 8 on ¢ by taking
B~ Normal(wd),tg I). Doing this, we now have A(a) =
a ¢'Tb

o +¢ T
same argument as in Proposition 2, the first term is Op (P_l/ 2);
the second term, however, does not tend to 0 as P — o0,
preventing prior dogmatism from taking hold. This allows us to
place a direct prior on A(a) by placing a prior on w. For exam-
ple, following common practice, we might attempt to express
“ignorance” about the degree of confounding bias by placing a
flat prior on w.

This approach is related to the targeted maximum likelihood
estimation strategy of introducing a “clever covariate” into the
outcome model to account for confounding (see, e.g., van der
Laan and Rose 2011, sec. 4.2.1). The parameterization 8 =
b+ w¢ gives Yi(a) = o —i—XTb + a)(XTqS) + y a+ €;(a),which
effectively introduces the new covariate A = X' ¢ into the
model. A related idea proposed by (Hahn et al. 2018) is to replace
a in the outcome model with the residual (a — A; i), which is
equivalent to setting w = —y.

In practice, rather than ]omtly ‘modeling (B8,¢) it may be
more convenient to set A, = X ¢ for some point estimator
of ¢ — for example, ¢ might be obtalned via ridge regression.
In addition to being easier to implement, this also reduces the
risk of model feedback occurring when one of the models is
misspecified (Zigler et al. 2013). In the Supplementary Material
we show that, when ¢ is the Bayes estimator obtained from
a g-prior and w is given a flat prior, this strategy results in a
+/N-consistent estimator of y if both the exposure and outcome
models are correctly specified. We also study the bias induced by

¢ x¢ -~ 2
+ aw02+¢TZ¢,where b Normal(0, L I). By the



ridge regression (rather than the g-prior) under HDA and REM
for the direct prior.

Evaluation of the Direct Prior via Simulation

We conduct a simulation study to determine if there is any
benefit to using the direct prior relative to either (i) the naive
ridge regression prior or (ii) the approach of (Hahn et al. 2018),
which we call the “debiased” approach (equivalent to fixing @ =
—y). In all cases we set N = 200 and P = 1000 so that
N < P. We consider a dense model with ¢ = (1,...,1)/+/P,
B ~ Normal(0, P~'I), and 0, = 1. The methods differ in the
treatment effect size y and the degree to which the coefficients
are shifted in the direction of ¢. We considered four simulation
settings.

Fixed We set y = 2 and w = —y /4 so that g is shifted in the
direction of ¢, but not by the amount implied by the debiased
approach (A ~ —1/4).

Hahn We set y = 2 and @ = —2 so that 8 is shifted in the
direction of ¢ by exactly the amount implied by the debiased
approach (A = 1/2).

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 7

Naive We set y = 2 and @ = 0 so that the model corresponds
precisely to the naive ridge model (A & 0).

Mixed We set y = 1and f; ~ Normal(—3;¢;, P~"), where
8j = lforj < 500 and §; = 0 otherwise. Note that neither the
naive ridge prior nor the direct prior hold under this setting
(A~ —1/4).

The simulation was replicated 200 times for each setting
and with 0, =€ {1,2,4,8,16}. We evaluated each procedure
according to the following criteria. Coverage: The proportion of
nominal 95% credible intervals that capture the true value of y.
Width: The average width of the nominal 95% credible interval.
Avg SE: The average estimated standard error from the model,
that is, the posterior standard deviation of y averaged over all
replications. RMSE: The root mean squared error in estimating
y with the Bayes estimator 7.

Results are compiled in Figure 3. The direct and debiased
approaches always attain the nominal coverage level, while the
naive approach does not come close when the confounding bias
is non-negligible unless the signal-to-noise ratio is exceedingly
small. We also see that the debiased approach generally requires

Fixed Hahn Fixed Hahn Fixed Hahn
1.00 E— N ———
3.0 1.04
0.75 ’
).50 —_ 24
0.5 T 10- 0.3
<
0.25 g =
o g ¥ £ 0.1
ao 0.00 = 0.3- 3
< o o0
) . . = . . =} . .
4 Mixed Naive =] Mixed Naive = Mixed Naive
2 1.00 =
O S S ep—" w— P S——— —— 511
—_ = 1.01
< 3.0- =
0.75 z [t
e
5 k=
0.50 — 1.0- 0.3
0.25
Ll 0.1
('()U L T T T T T T ()3 i T T T T T T T T T T T
1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10
o (log scale) o (log scale) o (log scale)
Method Debiased —&— Direct Naive Method Debiased —&— Direct Naive Method Debiased —#— Direct Naive
Fixed Hahn Fixed Hahn Fixed Hahn
L S S gy WP | ] P i N W Y 1.3 1.04
0.75 1.24 U s e I RS e eRr e
1.1- :
0.50 = 05
E 1.0
0.25 % o 0.3 fm ‘_*_W-A—A\i
0 0.9 =
o i) 31
g0 0.004 ~ ®
< o o0
5 . . = . . S . .
4 Mixed Naive o Mixed Naive = Mixed Naive
Q 1.004—— : 2 = 13- = 1
O F oo tge ity | At s o2 = u o = 13 o L0
—_ =
c 19-
0.751 4 12 oy aE ahaatt é
5 +
< 1.1-
0.50 1 | 0.5
1.07 MHH
0.25 N : T {
’ 0.9- 037 el fi . . [t
OUU T T T T T T T T T T T T T T T T T T
10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000
P (log scale) P (log scale) P (log scale)
Method Debiased ~—&— Direct Naive Method Debiased ~—+— Direct Naive Method Debiased ~ —— Direct Naive

Figure 3. Results for the simulation setting of Section 3.1. The top panels vary oy with P = 1000 while the bottom panels fix oy = 4 and vary P. Left: the coverage of
nominal 95% confidence/credible intervals. Middle: Interval width (log scale). Right: root mean-squared error (log scale) of Bayes estimates.



8 A.R.LINERO

larger intervals than the direct approach to cover at the appro-
priate rate. The only exception is under the Mixed and Hahn
settings; this is expected because Mixed and Hahn set w = —y,
which is implicitly assumed by the debiased approach. The naive
ridge prior only performs well when it is correctly specified
(w = 0), in which case it is unsurprisingly the best method.

Also included in Figure 3 are results for a simulation that
fixes (0,N) = (4,200), with P ranging from 4 to 1000. The
results in here broadly agree with our previous conclusions, with
the exception that the Naive model performs reasonably well
in terms of coverage when P <« N but performs poorly as P
approaches the scale of N.

Additional simulation results that take y = 0 with A =
$ and o varying Figure 4. We see that the direct prior and
the approach of Hahn, Murray, and Carvalho (2017) are to be
preferred unless either A is small or o is large; for small values of
A this is logical, as the ridge model is only slightly misspecified
and is slightly more parsimonious. For reference, the signal-to-
noise ratio is roughly (1 + 2A)2 /02, and we see that even with
signal-to-noise ratios as low as 0.25 (A = 0.6,0 = 4) the
coverage of the Bayesian ridge regression model is very poor.

3.2. Semiparametric Regression with Clever Covariates

Mimicking our strategy in Section 3.1, for the semiparametric
regression problem we propose setting u(x) = pu*(x) +g{¢ (x)}
and 7(x) = t*(x) + h{¢(x)} for some choice of functions g(-)
and h(-), with ©* and 7* given independent Gaussian process
priors independent of ¢ (-). The confounding bias is then given
by
_ Cove[u™(X) + gl¢ (X}, ¢ (Xi)]
PI’¢,(A,‘ = 0) PI’¢(A,‘ = 1)
covg[T*(Xi) + h{¢ (X}, ¢ (Xi)]
Pry(A; =1)
~ _Covo [glo (XD}, o (X)]
Pry(A; = 0) Pry(A; = 1)

covg[h{e (Xi)}, ¢ (X)]
Pr¢ (A,' = 1)

by the orthogonality principle. The confounding bias does not
concentrate for 0 on this model because ¢ (X;) will generally
be highly correlated with g{¢ (X;)} and h{¢ (X;)}, even if these
functions are modeled nonparametrically.

There are several considerations for choosing g and h. If we
are concerned strictly with obtaining good Frequentist proper-
ties, an appropriate choice is to take g(¢) + ah(¢) = a)d)(al;f;)
and place a flat prior on w; when ¢ is known, this guarantees
V/N-consistency. Alternatively, we can set g, h ~ GP(0, Kg) with
the covariance function kg (¢, ¢") = tg exp{—(¢ — ¢")?/ (25?)}.
This choice of covariance function was noted by Ren et al. (2021)
to induce matching on the propensity score: individuals with
similar propensity scores have their values of g(¢) and h(¢)
shrunk together. The penalized-spline-of-propensity approach
of Zhou, Elliott, and Little (2019) is similar, except that splines
are used instead of Gaussian processes.

Simulation Experiment

We use the simulation setting of Hahn, Murray, and Car-
valho (2020, sec. 6.1) to evaluate several different approaches
to correcting a Gaussian process prior for dogmatism. We

consider the generative model Yi(a) = u(X;) + at(X;) +
€,€; ~ Normal(0, 1)with X;; ~ Bernoulli(1/2), Xz ~
Uniform({1, 2, 3}), and the other covariates iid Normal(0, 1). We
let

3 homogeneous,
T(x) = and
1+ 2x;x5 heterogeneous,
1 li ,
) = + g(xq) + x1 %3 1nea.r @)
—6 4 g(x4) + 6|x3 — 1| nonlinear,

where g(1) = 2,¢(2) = —1, and g(3) = —4. We then set A; ~
Bernoulli{¢ (X;)} with ¢ (x) = 0.8 ®{3 u(x)/s — 0.5x;} + 0.1,
where s is the empirical standard deviation of the wu(X;)’s. In
total we consider 16 possible simulation settings, correspond-
ing to a factorial design with N € {250,500}, P € {5,20},
and the four combinations of linear/nonlinear and homoge-
neous/heterogeneous. We model E{Y;(a) | X; = x} = B(a,x)
using a Gaussian process § ~ GP(0,«) with the following
choices of ((a, x), (a, x’))

Naive A kernel that makes no correction for dogmatism:
K((a,x),(a’,x’)) = 100(1 + ad) + A exp{—Db|(a,x) —
(@, x)I2).

IPW-GP A Kkernel that incorporates the inverse propensity
score linearly as a “clever covariate™ /c((a, x), (a', x' )) =
100(1 + ad' + ww +z2') + A exp{—bll(a,x) — (a’,x)|3}
where w = a/¢(x) andz = (1 — a)/(1 — ¢ (x)).

Spline-of-propensity-GP A kernel that incorporates the
propensity score using a spline basis function expansion:
K((a, x), (a’,x’)) = 1001 + ad + D> ¥xvp) +
A exp{—bl|(a,x)—(a@',x) 13} where Y = Yx(x), ¥ = ¥ (x),
and {y1,..., ¥k} are natural cubic spline basis functions
using 10 knots (see Zhou, Elliott, and Little 2019, for related
methods).

Spline-of-propensity Same as spline-of-propensity-GP but
without the Gaussian kernel.

In order to separate the issue of accurately estimating the
propensity scores from the benefit of using them, we assume that
¢ (x) is known a-priori. The parameters (A, b, o) were estimated
via empirical Bayes (see Rasmussen and Williams 2006, sec.
5.4.1). The factor of 100 in the various kernels corresponds
to including linear terms in the models; for example, in the
Naive kernel, inclusion of the term 100(1 + aa’) corresponds
to including linear terms B(a,x) = oo + o1 a + B*(a, x) where
(a9,1) ~ Normal(0,100) and B*(a,x) is an independent
Gaussian process with kernel A exp{—b||(a,x) — (a’,x')||3}.
Our main goals are to (i) determine the extent to which
the Naive kernel suffers due to dogmatism, (ii) determine
which of the IPW or spline approaches perform better in this
case, and (iii) determine whether the propensity score alone
is sufficient to produce a good estimator. A subset of the
results corresponding to the nonlinear heterogeneous setting
with N = 250 are given in Figure 5, with the remaining
results deferred to the supplementary material. Summarizing
these results, we find (i) that the Naive kernel performs well
when P = 5 where dogmatism is mild, but breaks down
completely when P = 20; (ii) that the IPW-GP and spline-
of-propensity-GP approaches perform comparably in terms of



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

A=0 | A=01 A=02 |
1.00+3 - . ~ - 3 ~ ~ — ~ ~ —
0.75 -

0.50 1
0.251
0.00
A=06 |
g)o 1.00 &= & r - = =3
E 3‘3;}’
) .ol
% 0.25
© 0.00 -
A=1
1.00 &= s z - = —
0.754
0.50
0.25
0.00

(log scale)

Method —# Debiased —4— Direct —#- Naive

A=0 A—01 H A—02
3.0+
1.0
0.3-
lg A=03 A=05 H A=06
o
2] 30,
&
= 1.0+
=)
= 034
E A=07 A=09 | A=1
3.0-
1.0
()37 T T T T T T T T T
1 3 10 1 3 10 1 3 10
o (log scale)
Method —* Debiased —4— Direct —=— Naive
A=0 A—01 H A—02
1.0
0.3-
0.1-
O} A=03 A=05 | A=06
® 1.0-
o0
& 03-
M
201
=
~ A=07 A =09 ‘ ‘ A—1
1.0-
0.3-
0.1-
T T T T T T T T T
1 3 10 1 3 10 1 3 10

o (log scale)

Method —# Debiased —4— Direct —#- Naive

Figure 4. Simulation results for y = 0 as A and oy, vary.

coverage, but that the spline-of-propensity-GP generally pro-  spline-of-propensity-GP produces smaller standard errors and
duces smaller standard errors and RMSEs, suggesting that RMSEs than the spline-of-propensity approach, indicating that
the spline-of-propensity approach is more stable while accom-  there is a benefit to going beyond simply adjusting for the
plishing the same goals as IPW methods; and (iii) that the propensity score.
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Figure 5. Results for the semiparametric manifold regression problem of Section 5. Bias denotes the average bias of 77, coverage denotes the coverage of nominal 95%
intervals, RMSE denotes the root-mean-squared-error in estimating y, and SE denotes the average posterior standard deviation of y .

4. Prior Dogmatism in Other Settings

We now discuss how the proposals given here relate to other
existing Bayesian proposals for correcting for confounding bias
that have not been discussed above. In particular, we discuss
the approaches of propensity score stratification and the use of
sparsity-inducing priors.

4.1. Propensity Score Stratification

Propensity score stratification (PSS) (Imbens and Rubin 2015,
chap. 17) is commonly used in applied Bayesian causal infer-
ence to robustly control for confounders when inferring average
treatment effects (Rubin 1985; Li, Ding, and Mealli 2022). In this
section, we relate this method to the Gaussian process methods
described in Section 2.2. PSS is motivated by the fact that the
propensity score is a balancing score in the sense that covariate
distribution across treatments is exactly balanced at each level of

the propensity score: [X; | ¢(X;) = £, A; = 1] 4 [Xi | o(Xi) =
£,A; = 0], where ¢ (x) denotes the propensity score Pry(A; =
1 | X; = x). For the sake of exposition, we will regard ¢ (x) as
known, although typically this is replaced with an estimate é(x)
constructed using only the exposure and confounder data.

PSS stratifies the set of possible confounders A" into J groups
X = U][:1 Bj where Bj = {x : bj_1 < ¢(x) < bj} (0 = by <
b1 < --- < by = 1). Separate outcome models are then specified
for the different strata, with [Y; | 4; = a,X; = x, 8] ~ f(y |
a, X, B(x)) parameterized by 1, . .., By where B(x) = jifx € B;.

The within-strata models are often themselves simple; for
example, we might set [Y; | A = aXi = xp] ~
Normal{ap(y) + ¥B(x) 4 02}, in which case the average treatment
effect is y = Zj Pr(X; € Bj)y;. This can be related to
the Gaussian process approach described in Section 3.2, where
B(a,x) ~ GP(0,«) and « is given by

cx) = @) ~ $()) x oF +oZad).  (3)

Here, I{¢)(x) ~ ¢(x')} is the indicator that x and x” are in the
same strata, while o2 and a)f are the prior variances of oj and
yj under a normal prior. From this perspective, it is similar to
the spline-of-propensity approach, but differs in that (i) it uses a
step function rather than a cubic spline and (ii) it also smooths
over the treatment effect rather than treating it as constant in x.
This and other PSS approaches can therefore produce estimates
equivalent to those obtained from a Gaussian process regression
in which the kernel of the Gaussian process depends on the
propensity score, and hence the overall approach violates IG.2.
Interestingly, despite violating IG.2, the PSS model described
above can still be critiqued from the standpoint of the induced
prior on the selection bias; in the supplementary material, we
show that the Gaussian process with covariance (3) is itself
subject to prior dogmatism when the parameters 5,2 and 03 are
kept fixed as the number of strata grows (specifically, var(A) =
O(J 1) under the model we consider); this is not a serious
concern for the applications where PSS is most commonly used,
as one typically uses flat priors on the (j, yj)’s and the number
of strata is not too large, but is potentially of concern in settings



where the within-strata models are complex and require regu-
larization.

4.2. Sparsity Inducing Priors

A common strategy for dealing with the N « P setting in
linear regression is to use a sparsity inducing spike-and-slab
prior (Mitchell and Beauchamp 1988), where the regression
coefficients are allowed to be 0 with positive probability. Even
when sparsity is imposed, however, serious problems occur for
the confounding bias prior. To see this, suppose that ¥ = 021
and let af =I(B;j # 0) and Oj’ = I(¢j # 0). Then we can write
the confounding bias as

7

2 2 42"
S SRR

Z';a’?:a‘.”:1 CI,? ¢j ﬂj
Al@) =a .

In this case, the denominator will be of order Dy = Zj Df while

the numerator will be of order D;/nz s where Dgng = 3, Of 0]/-3 If
we now use independent spike-and-slab priors for 8 and ¢ that
are calibrated to have an on average Q active variables, we expect
Dy ~ Qwhile Dgng =~ Q/P, so that the confounding bias will be
a-priori negligible in high-dimensional sparse settings in which
spike-and-slab priors are applied. Hence, even if sparsity is
expected (but IG.2 is otherwise in effect) we run into essentially
the same problem as with ridge regression: the prior on A(a)
regularizes it toward zero.

To correct this issue, it remains valid to include the “clever
covariate” X;' ¢ in the model to correct for dogmatism. However,
an alternative is to make specific use of the variable selection
aspect of the model. One possibility, studied by Wang, Parmi-
giani, and Dominici (2012), is to use shared variable selection
for the two models; this approach ensures that any variable
appearing in the exposure model will have a high probability
of also appearing in the outcome model. To implement this, we

might set ¢; i (1—pg¢) do+pgy Normal(0, ‘L'é) and conditionally

set B; ndep {1 — pp(Pp)} o + pp(¢;) Normal(0, ré). Setting
pp(¢j) = 1if ¢; # 0 guarantees that B; is included whenever
¢; is included.

In the supplementary material we conduct a small simulation
experiment that verifies that shared variable selection is an
effective strategy for combating dogmatism when the exposure
and outcome models are both sparse; we also show that using a
direct prior on A is sufficient for this purpose as well.

5. Factors Mitigating Dogmatism

In demonstrating the issue of dogmatism we made use of the
orthogonality principle, which required both that g and ¢ be
independent and that there be no “dimension reducing struc-
ture” We have already considered violating the independence
assumption in Section 3 to control the prior on A(a). Alterna-
tively, we might use dimension reducing structure. One source
of possible structure is var(X;) = X, which is used to define
the inner product (8,¢) = B' X¢; note that the spectrum of
¥ appears prominently in Proposition 2 and Theorem 1. We
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now examine the role of ¥ in the ridge and semiparametric
regression problems.

5.1. Dependence Structure and Ridge Regression

We first consider a latent factor model that takes X; = An;+oy v;
where A € RP*L is a matrix of factor loadings and ; € RE isan
L-dimensional vector of latent factors for observation i. If 6, = 0
in this model then X; is restricted to be in the L-dimensional
subspace span(A ); similarly, if oy is small, then X; lies very close
to span(A).

Consider now the induced prior on the confounding bias
parameter. Assuming 7; ~ Normal(0,I) and v ~ Normal(0,I),
wehavevar(X;)) = = = AAT + 0'31. Letting k1, . . ., k1, denote
the L nonzero eigenvalues of AA T, Proposition 1 gives

Z]'Lzl("j +07) Wi Z;
02+ Y1+ 0 2]
L
Zj:l Kj Wi Z,
L bl
oF + 2 i1 K Z].2

P 2W. 7.
a Zj:L-l—l Gx WTZ]

2 p 2 72
07+ 2im14+1 0% Z;

Aa) =a

~
~

where W = I'"8,Z = I'"¢,and I' € RP*L consists of the
L leading eigenvectors of AA T. The approximation holds when
oy is near zero, so that ¥ is approximately low-rank. Because
the left-hand-side depends only on L rather than P, we expect
A(a) to be roughly of order L='/2 rather than P~1/2 for the
ridge regression prior. Hence, even if P 3> N, we may still avoid
dogmatism if L < N.

Figure 6 confirms the intuition that the naive approach avoids
dogmatism when X is nearly low-rank; it shows the root mean
squared error of the direct approach we proposed in Section 3.1
and the naive ridge regression estimator. To generate this figure,
we applied the two approaches under the following conditions:
o

iid
2=0)=1LL=5N=P=200; Ay ~ Normal(0, 1);
y = 1; and both 8 and ¢ chosen so that XiT,B = XiT(ﬁ =
it Enie | X5).

A
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2 ().50 A .
= ;
~
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Figure 6. Root mean squared error in estimating y for direct and naive methods as
a function of oy.
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Figure 7. Results for the semiparametric manifold regression problem of Section 5. Bias denotes the average bias of 3, coverage denotes the coverage of nominal 95%
intervals, RMSE denotes the root-mean-squared-error in estimating y, and SE denotes the average posterior standard deviation of y.

5.2. Dependence Structure and Semiparametric
Regression

We now present evidence for the hypothesis that dimension
reducing structure in X; also shields us from dogmatism in

nonparametric problems. Rather than assuming that X; concen-
trates near a hyperplane, we instead assume that X; is concen-
trated near a manifold of intrinsic dimension L in R”. Specif-
ically, we take X; = A(n;) + ox€i,€; ~ Normal(0, 1)where
A : RF — RP is nonlinear. The function A is normalized for



each oy so that the components of X; have standard deviation 1;
hence, o, indexes how close X isto .#Z = {x : x = A(n),n €
R}. We use a continuous exposure A; = r,(X;) + v; and a

continuous outcome Y;(a) = r,(X;)+a y +¢€;(a), with €;(a), v id
Normal(0,1) and ry(x) = r; (x) + r4(x). The parameter of
interest is y, which represents the causal effect of the exposure
on the outcome,

To construct ground truths, we generated r;, ra ~ GP(0, p)
where p (x, x') = exp{—|lx—x'||3}. We then constructed A (1)) =
(Al(n), s AP(U))T by taking A; ~ GP(0, k) independently
forj = 1,...,P, where k(n,1') = exp{—|n — n'[I3}. We set
y = 1,L = 1, and consider P € {10,200}, N = 300, and
0y = 27 where the j’s are evenly spaced between —7 and —2. For
each o, and P we generated 200 simulated datasets and applied
the Direct and Naive methods to estimate y and construct a 95%
credible interval. We consider two priors.

Naive We impose IG.2, but otherwise use the “true” prior for
r*(x) using the kernel 2 (x, x'). We specify a Normal(0, 10%)
prior for y.

Direct We use the model Yi(a) = r,(X;) + 07a(X) + v a
where 7,(x) is a pilot estimate of r,(x) obtained from fitting
a Gaussian process to the relationship A; = r,(X;) + vi. We
specify a Normal(0, 10?) prior for both y and .

Figure 7 displays the bias, coverage, RMSE, and average
standard error in estimating y. For P = 10, the behavior is
similar to the ridge regression problem: the Direct approach
performs uniformly well, while the naive approach (while never
better than the direct approach) performs much better as oy
is decreased. The P = 200 setting, on the other hand, is too
difficult for the naive approach, although it does still perform
better as o, decreased. The behavior of the direct approach at
P = 200 is very interesting, however. We note a sharp phase
transition around o, = 0.07 where the problem essentially
goes from infeasible to feasible: the bias, RMSE, and standard
error all decrease dramatically at this point. We also see that the
direct approach is much more honest in terms of its uncertainty:
when the problem is infeasible, the model correctly gives a large
posterior standard error. Conversely, the naive model tends to
understate the uncertainty in y, leading to poor coverage.

6. Discussion

The main concrete recommendation we make in this article is
that Bayesian ignorability (and in particular IG.2) can encode
an informative prior on the degree of confounding bias, and
thus should not be imposed in most situations. This tends to
regularize confounding bias parameters toward 0, thereby intro-
ducing substantial bias in high-dimensional or nonparametric
problems. Instead, Bayesians should reject IG.2 by default in
favor of a prior that allows for more direct control over the con-
founding bias, and we have illustrated how to do this in several
problems of interest. Of secondary interest, we have noted that
features of the design can mitigate prior dogmatism about the
confounding bias, and showed that both ridge regression priors
and Gaussian process priors possess some degree of adaptivity
toward low-dimensional structures in X;. But this does not
change our general recommendation, as we have consistently
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observed improved performance of priors that reject IG.2 even
when such low-dimensional structures exist.

Dogmatism about other features of the model may also have
bad inferential consequences. In future work, we will extend our
results to other problems in causal inference. Some possibilities
include estimation of the conditional average treatment effect
(CATE) in observational studies, inference on the average causal
effect under sparsity assumptions on (8, ¢), and estimation of
the natural direct and indirect effects in mediation analysis. In
the context of mediation analysis, one must control for two
different sources of confounding: the effect of the confounders
both on the treatment received and on the mediating variable.

While we have presented a number of corrections for dogma-
tism, we have not presented any coherent framework for deriving
corrections. This presents an important question: are there any
objective Bayes principles that automatically lead to priors which
adequately account for dogmatism? Parameterization invariant
priors, like Jeffreys priors, cannot work because they imply that
IG.2 holds. By contrast, other objective principles that are not
parameterization invariant and do not necessarily imply 1G.2,
such as priors constructed from decision theoretical princi-
ples, entropy maximization, and reference priors, have some
chance of working (see Kass and Wasserman 1996, for a review).
The computational difficulty of implementing these priors can
make numeric experimentation difficult. Interestingly, entropy
maximization with respect to the distribution of the observed
(rather than complete) data can be used to generate models that
possess very strong Frequentist properties (Sims 2012), but lack
a satisfying justification.

Supplementary Materials
The supplementary materials contain code replicating our results, all proofs,
additional theoretical analyses for ridge regression, additional simulation

results, a general discussion of Robins-Wasserman-Ritov problems, and a
discussion of dogmatism in the context of propensity score stratification.
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