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ABSTRACT

We consider the problem of high-dimensional Bayesian nonparametric variable selection using an aggre-
gation of so-called “weak learners.” The most popular variant of this is the Bayesian additive regression
trees (BART) model, which is the natural Bayesian analog to boosting decision trees. In this article, we
use Gibbs distributions on random partitions to induce sparsity in ensembles of weak learners. Looking at
BART as a special case, we show that the class of Gibbs priors includes two recently proposed models—the
Dirichlet additive regression trees (DART) model and the spike-and-forest model—as extremal cases, and
we show that certain Gibbs priors are capable of achieving the bene�ts of both the DART and spike-and-
forest models while avoiding some of their key drawbacks. We then show the promising performance of
Gibbs priors for other classes of weak learners, such as tensor products of spline basis functions. A Pólya
Urn scheme is developed for e�cient computations. Supplementary materials for this article are available
online.
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1. Introduction

Bayesian machine learning methods that aggregate many “weak
learners” have seen increased interest in recent years due to
their ability to combine the principled uncertainty quanti�-
cation of Bayesian inference with the predictive accuracy of
modern machine learning (Chipman, George, and McCulloch
2010; Awaya and Ma 2021). The strategy is to approximate a

function of interest as r0(x) ≈
∑M

m=1 βm b(x; γm) where the
b(x; γm)’s are relatively simple functions of a multivariate x
determined by γm (such as a step function or spline) and βm is a
regression coe�cient. The most popular implementation of this
idea is the Bayesian additive regression trees (BART) framework,
which builds an ensemble of shallow decision trees. BART was
inspired by, and is generally competitive with, decision tree
boosting (Freund, Schapire, and Abe 1999; Friedman 2001),
but also gives immediate uncertainty quanti�cation (Chipman,
George, and McCulloch 2010). BART has been successfully
used in many settings, including applications to survival anal-
ysis (Sparapani et al. 2016; Linero et al. 2021; Basak et al.
2021), log-linear models (Murray 2021), heteroscedastic regres-
sion (Pratola et al. 2020), causal inference (Hill 2011; Dorie
et al. 2019; Hahn, Murray, and Carvalho 2020), and density
regression (Li, Linero, andMurray 2022), among others. Rather
than estimating the function by using greedy stagewise learn-
ing to “boost” the model, Bayesian ensembles are �t using a
“Bayesian back�tting” algorithm (Hastie and Tibshirani 2000),
which iteratively re�nes the learners usingMarkov chainMonte
Carlo (MCMC).

Ensembles of weak learners are o�en applied in high-
dimensional settings where some form of variable selec-
tion is desirable for the purpose of both regularization and
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interpretability. The learners b(x; γ ) are typically chosen to be
“sparse” in the sense that b(x; γ ) depends on x = (x1, . . . , xP)
only through a small number of the xj’s; because of this, one
might guess that ensembles of weak learners naturally adapt
to sparsity. Theoretical results for boosting notwithstanding
(Bühlmann 2006), Linero (2018) shows that this is not the case
in the Bayesian setting and that penalization beyond the inher-
ent sparsity of the ensemble is required—the essential di�culty
is that combining many weak learners together provides many
opportunities for irrelevant variables to sneak into the model.
Developing simple, e�ective, and computationally e�cient ways
of imposing sparsity in general Bayesian ensembles is therefore
of great interest.

Our goal is to propose a general technique for imposing
sparsity in Bayesian ensembles of weak learners. For simplicity
wewill focus on BARTmodels; we emphasize, however, that this
is not at all required by our approach, and we show in Section 5
that other choices of weak learners can also perform remarkably
well. Our primary reason for focusing on BART is practical, as
(i) it is highly accurate for many tasks of interest (Chipman,
George, and McCulloch 2010; Dorie et al. 2019), (ii) it is the
most popular Bayesian ensemble of weak learners, and (iii) it
already has sparsity-inducing variants which we can contrast
our approachwith (Linero 2018; Rockova and van der Pas 2020).
An abbreviated summary of this work is given in Linero and Du
(2021).

Our main strategy is to build sparsity into the model using
a Gibbs-type random partition process (Pitman 2002; Gnedin
and Pitman 2006; De Blasi et al. 2013; Miller and Harrison
2018). Standard applications of random partitions include clus-
tering, species sampling, and constructing randommeasures for
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Bayesian nonparametric models. We show here that random
partition processes can also be remarkably useful for performing
Bayesian nonparametric variable selection. At a high level, the
prior we propose (a) randomly partitions the decision rules in
a decision tree ensemble (or the variable selection indicators
for a generic weak learner) into clusters and then (b) assigns a
unique predictor to each cluster. We consider the class of Gibbs
priors (De Blasi et al. 2013) for the random partition, which is
rich enough to allow for e�cient computations, intuitive prior
speci�cations, and simple analytic properties.

We show that, when applied to BART, the class of Gibbs pri-
ors includes two recently proposed variable selection strategies
as special cases: theDARTmodel of Linero (2018) and the spike-
and-forest model of Rockova and van der Pas (2020). These
models correspond to extreme Gibbs priors that are suboptimal
for di�erent reasons. An advantage of the DART prior is that it
is nearly trivial to implement, requiring only an additional step
in standardGibbs samplers; on the theoretical side, however, the
variable selection properties of DART are not well understood,
and empirically we �nd that the posterior will tend to overstate
the number of relevant predictors. Conversely, spike-and-forest
priors are very di�cult to implement due to their need for
rather complex MCMC schemes; to the best of our knowledge,
the only variant of this model that is computationally tractable
uses an approximate Bayesian computation (ABC, Liu, Ročková,
and Wang 2021) algorithm that targets a surrogate distribution
other than the posterior. Spike-and-forest priors are easier to
analyze, however, as they allow for the size of the model to
be controlled directly. In addition to being simpler to study,
priors which directly control the size of the model are arguably
more intuitive, particularly for users who are already experi-
encedwith spike-and-slab (George andMcCulloch 1993) priors.
When placed in this context, Gibbs priors carry the strengths of
both models: we obtain the e�cient computations and ease of
implementation of the DART model while retaining the intu-
itive appeal and theoretical properties of the spike-and-forest
prior.

We provide numerical evidence illustrating the advantages of
Gibbs priors for BARTmodels; speci�cally, MCMC schemes for
Gibbs priorsmixmuch better than spike-and-forest priors while
also performing better at variable selection than DART due to a
reduction in false positives. To make computations e�cient, we
take advantage of a characterization of Gibbs priors in terms of a
Pólya urn scheme: if a predictor is used in a given decision rule,
this directly increases the probability of it being used in other

decision rules. We use this Pólya urn scheme to construct an
e�cient Metropolis-Hastings algorithm for updating the deci-
sion rules in the ensemble; a side bene�t of this scheme is that it
also provides a simpleMetropolis-Hastings algorithm for spike-
and-forest priors.We then illustrate the use of our methodology
on four benchmark datasets, where we show that Gibbs priors
generally lead to both sparser models and improved predictive
performance.

Moving away from BART, we also argue that Gibbs priors
are highly e�ective as a variable selection mechanism for a wide
class ofweak learners including: polynomials, tensor products of
splines, and radial basis functions.We illustrate this in particular
for Bayesian multivariate adaptive regression splines (MARS,
Friedman 1991; Denison, Mallick, and Smith 1998) where the
Gibbs prior performs extremely well on a commonly used
benchmark simulation. Of independent interest, we �nd that a
weak-learner-ensembling variant of Bayesian MARS performs
much better than the usual (non-Bayesian) MARS algorithm,
providing another data point in the literature showing the power
of Bayesian ensembling of weak learners.

In Section 2 we review BART, introduce the Gibbs prior, and
establish its fundamental properties. In Section 3 we construct a
Metropolis-Hastings algorithm for updating the decision trees.
In Section 4 we illustrate our methodology on both simulated
and benchmark datasets. In Section 5 we show how to apply
Gibbs priors to other classes of weak learners, and show that
Gibbs priors work extremely well with multivariate adaptive
regression splines. We conclude in Section 6 with a discussion.
An implementation of our methodology is available publicly at
www.github.com/theodds/So�Bart.

2. Model Description

2.1. Review of BART

The Bayesian additive regression trees (BART, Chipman,
George, and McCulloch 2010) framework models an unknown

function of interest as r(x) =
∑T

t=1 g(x; Tt ,Mt) where
g(x; Tt ,Mt) is a regression tree with decision tree Tt and
leaf node parameters Mt . Together Tt and Mt de�ne the step
function g(x; Tt ,Mt); a schematic illustrating this is given in
Figure 1. We let L(T ) denote the leaf nodes (i.e., nodes with
no children) of T and let B(T ) denote the branch nodes (i.e.,
nodes which are not leaves). We use the notation x � n for
some n ∈ L(T )∪B(T ) to mean that x passes through the node

Figure 1. Schematic showing how a decision tree and leaf node parameters (left) maps to a step function of the predictors (right).
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n at some point in its path to a leaf node; because of how the tree
is constructed, each n is associated with a hyperrectangle of the

form H =
∏P

p=1[Ap,Bp] such that x � n if and only if x ∈ H.
The prediction associated to leaf � in tree t is given by μt� so
thatMt = {μt� : � ∈ L(Tt)}. Associated to each b ∈ B(T ) is a
splitting rule of the form [xj ≤ Cb], with x associated to the le�
(right) node if the rule is true (false).

For concreteness, we will consider the semiparametric
regression model

Yi = r(Xi) + εi, εi
iid∼ Normal(0, σ 2), (1)

with the understanding that all of our developements extend
to all other types of settings for which BART models exist. To
specify a BART prior we need (i) a prior πT (·) on the shape of
the trees and (ii) a priorπM(· | T ) on the values of the leaf node
parameters given the trees. We then specify independent priors

for the decision trees and leaf node parameters (Tt ,Mt)
iid∼

πT (T ) πM(M | T ), and write r ∼ BARTT(πT ,πM) to
denote that r(·) has a BART prior with T trees. Throughout
this work we use default BART priors described by Chipman,
George, and McCulloch (2010). Under this prior, a tree T can
be generated from the prior by iterating the following steps:

G1. Initialize the T to consist of a single node of depth d = 0.
G2. For each node of depth d, make that node a branch node

with two children with probability ρ(d) = γ (1 + d)−β .
Otherwise, the node becomes a leaf.

G3. If there are any branch nodes at depth d, set d ← d+1 and
return to Step 2. Otherwise, continue.

G4. Assign each branch node b a splitting rule of the form
[xjb ≤ Cb] by sampling jb ∼ Categorical(s) and sampling
Cb ∼ Uniform(Ajb ,Bjb) where

∏
p[Ap,Bp] is the hyperrect-

angle associated to b.
G5. Assign each leaf node a prediction μ� ∼ Normal(0, σ 2

μ).

We emphasize that iterating through the above steps constitutes
a draw from the prior distribution πT rather than the posterior,
which is approximated via the Bayesian back�tting algorithm.

Remark 1. Throughout this work, we will make a minor modi-
�cation to the BART model to improve performance by using
the so� Bayesian additive regression trees (SBART) prior; we
defer interested readers to Linero and Yang (2018) for details.
SBART replaces the trees Tt in the ensemble with so� decision
trees (Irsoy, Yildiz, and Alpaydin 2012). For our purposes, the
distinction between decision trees and so� decision trees does
not impact the methodology we propose.

Remark 2. To make the connection between decision trees
and learners of the form r(x) =

∑M
m=1 βm b(x; γm) more

explicit, note that we can write the decision tree in Figure 1
as g(x; T ,M) = μ1 I(x1 ≤ 0.3) I(x2 ≤ 0.6) + μ2 I(x1 >

0.3) I(x2 ≤ 0.6) + μ3 I(x2 > 0.6) where I(A) denotes an
indicator function that is 1 whenA is true and 0 otherwise. More
generally, a decision tree ensemble can be written as r(x) =∑T

t=1

∑
�∈L(Tt)

μt� I(x � �) =
∑M

m=1 βm b(x; γm) where the
βm’s correspond to the μt�’s, the b(x; γm)’s correspond to the
I(x � �)’s, and M is equal to the number of leaves in the
ensemble. Hence, a decision tree corresponds to taking r(x) =∑M

m=1 βm b(x; γm) whereM is learned adaptively.

Remark 3. We do not place any restrictions on the number of
observations per leaf; this is needed for our Bayesian back�tting
algorithm, as our derivations require each node to have the
possibility of splitting on any of the predictors. This does not
hurt performance in practice because (i) the trees are already
very shallow, making empty leaf nodes uncommon and (ii) the
heavy use of regularization prevents empty leaf nodes from
exerting much in�uence on the �t.

2.2. Sparsity Inducing Priors

Sparsity in the generative scheme described in Section 2.1 can be
encoded at Step G4 via the probability sj of using predictor j to
construct a decision rule (Bleich et al. 2014). The variable used
to construct a splitting rule is categorically distributed according
to s = (s1, . . . , sP) ∈ SP−1 where SP−1 = {s : sj ≥ 0,

∑
j sj = 1}

is a simplex; for example, in Figure 1 the prior probability that
the root is associated with variable X2 is given by s2. The default
value of the sj’s is P

−1 in most so�ware implementations so that
all predictors are equally likely to be used for each rule, but there
is no reason that this must be the case. By taking sj 	 1/P, for
example, we can e�ectively eliminate xj from the model.

Linero (2018) recommends taking s ∼
Dirichlet(α/P, . . . ,α/P) to perform variable selection in high
dimensions. We refer to this as the Dirichlet additive regression
trees, orDART, prior.When α 	 P, this prior ensures that swill
be nearly sparse in the sense that most entries of s will be very
close to 0; because of this, the prior favors using only a small
number Q 	 P of predictors in the model. This preference
can be sharply quanti�ed, with Linero (2018) showing that,
given that there are B decision rules in the ensemble, we

have Q − 1
•∼ Poisson{α

∑B−1
j=0 (α + j)−1}; more precisely, if

QB is the number of variables included in an ensemble with
B decision rules and s is given a Dirichlet(αB/P, . . . ,αB/P)

prior such that αB
∑B−1

j=0 (αB + j)−1 → θ as B,P → ∞,
then QB − 1 → Poisson(θ) in distribution. A further
prior on α can be speci�ed to allow for �ner control of Q.
Additionally, the Dirichlet prior is (provided that the prior πT

is speci�ed so that all predictors can be used at every decision
rule) conditionally conjugate, with the full conditional being
s ∼ Dirichlet(α/P+m1, . . . ,α/P+mP)wheremj is the number
of times variable j is included in the ensemble.

Rockova and van der Pas (2020) propose an alternative
sparsity-inducing prior which more directly controls the num-
ber of relevant predictors. Modifying their setup slightly, their
spike-and-forest prior works in terms of the set S , taking

D ∼ πD [S | D] ∼
(
P

D

)−1

I(|S| = D) and

sj =
I(j ∈ S)

D
.

That is, we �rst sample the total number D of variables which
will be allowed to split on, then we sample a subset of variables
of size D from the available P variables. Given that a variable is
included in S it will have sj = 1/D; otherwise, sj = 0 so that
variable j will not appear in any splitting rule. The variable D is
distinct from the total number of variables which appear Q, as
there is a possibility that variable j is never used to construct a
splitting rule even if j ∈ S .
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There are several substantive di�erences between the spike-
and-forest andDirichlet priors.Much of the bene�t of theDART
prior is computational. To the best of our knowledge, there has
not been any practical algorithm for implementing the spike-
and-forest prior; one is proposed by Liu, Ročková, and Wang
(2021) but this is seen to perform worse than their ABC-Forests
algorithm. We will show that part of the issue is that, because
sj ≡ 1/D, it is di�cult for any Bayesian back�tting algorithm to
add or remove predictors from themodel. If there areB branches
in the ensemble then adding a new variable at a single location
must contend with the fact that 1/B 	 1/D so that a-priori the
new variable is appearing in far fewer branches than it should.
Conversely, removing an irrelevant variable is di�cult because
the posterior is encouraged to have an existing variable appear
inB/D branches, butmodifying a tree in a local fashion can only
reduce the number of appearances by 1. By contrast, DARThas a
simple implementation which only requires sampling s from its
full conditional. It also avoids these mixing problems because it
allows for (and, indeed, encourages) entries of sj > 0 which are
smaller than 1/D.

Aminor additional bene�t of the DART prior is that it allows
for di�erent variable importances among the relevant variables;
for example, the model can adapt to the need for more splits on
(say) x1 than x2 by having s1 > s2. This is not possible for the
spike-and-forest prior, as s1 = s2 = 1/D when both x1 and
x2 are relevant. Linero (2017) links this property of DART to
anisotropic Gaussian processes, which are appropriate if r0(x)
varies more in some directions than others.

Bene�ts of spike-and-forest priors over DART include the
relative transparency of the prior speci�cation and their known
theoretical properties. Rather than inducing a prior on Q
through a prior on s, the spike-and-forest prior directly works in
terms of variable inclusion indicators γj = I(j ∈ S), a strategy
which is familiar to most applied Bayesian researchers. On the
theoretical side, Liu, Ročková, and Wang (2021) prove variable
selection consistency results for spike-and-forest priors. It is not
clear whether similar results could be proven for DART. One
challenge is that the Dirichlet priormay not su�ciently penalize
a variable appearing (say) only once in the ensemble, causing
the DART posterior to overestimate the number of relevant
variables on average; a similar phenomenonwas noted byMiller
and Harrison (2013) to cause Dirichlet process mixture models
to be inconsistent for the number of mixture components in
in�nite Gaussian mixture models.

Remark 4. In this work, we select variable xj for �nal inclusion
into the model using the posterior inclusion probability, which is
given by the posterior probability that xj is used in at least one
decision rule. The �nal selected model is given by the median
probability model, which includes variable xj if its posterior
inclusion probability is at least 0.5 (Barbieri and Berger 2004).

2.3. Gibbs Priors

When applied to Bayesian decision tree ensembles, the Gibbs
priors we introduce combine the practical bene�ts of DART
priors with the conceptual and theoretical bene�ts of spike-
and-forest priors. Our starting point, which corresponds to a
particular Gibbs prior, is a simple merger of the two priors
together by adding a Dirichlet hyperprior into the spike-and-
forest hierarchy:

D ∼ πD, [S | D] ∼
(
P

D

)−1

I(|S| = D), and

[s | S] ∼ Dirichlet(α γ1, . . . ,α γP) (2)

where γj = I(j ∈ S). We adopt the convention that if the shape
parameter associated to sj is zero then sj ≡ 0; for example,
we interpret s ∼ Dirichlet(1, 0, 2) to mean that (s1, s3) ∼
Dirichlet(1, 2) and s2 ≡ 0.Model (2) generalizes both the spike-
and-forest and DART priors: we obtain the DART model when
D ≡ P (with α/P in the role of α) and the spike-and-forest prior
when α → ∞.

Figure 2 compares the DART, spike-and-forest, and (2) in
terms of their induced prior on s. In this �gure, the center of
the simplex corresponds to the point (1/3, 1/3, 1/3), the edges
correspond to 2-sparse models, and the vertices to 1-sparse
models. Like the spike-and-forestmodel, theGibbs prior assigns
mass to values of s on the edges and vertices of the simplex
while not forcing the values of s to be any particular value.
This provides a path through the state-space of s which con-
nectsmodels with di�ering levels of sparsity, which heuristically
should helpMCMC schemes that make local changes to the tree
structures; by contrast, good samplers for the spike-and-forest
priormust “jump” across edges and vertices, which require large,
simultaneous, modi�cations to the tree topologies.

We also see from Figure 2 that the DART prior tends to favor
imbalance in s, particularly for small values of α. For example,
if s(1) < s(2) < · · · < s(P) are the order statistics of s,

Figure 2. Samples of s = (s1 , s2 , s3) under the DART, Gibbs, and spike-and-forest priors for P = 3. The parameters for each prior are chosen so that the expected model
size is roughly 1.5; the value α = 2.5 is used for the Gibbs prior.
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Figure 3. Samples of s from the DART (left), Gibbs (middle), and spike-and-forest (right) priors when each prior is tuned to have 11 out of 50 relevant variables on average.
We see that, even whenmultiple variables are relevant, the DART prior loads most of the weight onto a single predictor, whereas the Gibbs and spike-and-forest priors are
more equitable.

then the sparsity-inducing Dirichlet prior causes exponential
decay in s(j) as j decreases. This behavior causes most of the
weight to be concentrated in a small number of variables even
among the relevant predictors. This is illustrated in Figure 3,
which shows how the s vector decays for a single sample from
each of the priors tuned to have 11 variables on average. This
property of sparsity-inducing Dirichlet priors has been noted in
other contexts as well, such as mixturemodeling using Dirichlet
processes (Miller and Harrison 2018, sec. 5.3). By contrast,
taking α = 1 in (2) distributes the weight uniformly across
the relevant predictors. Another conceptual �aw of the DART
prior is that the number of variables included in the model
is sensitive to the number of decision rules in the ensemble:
because sj is nonzero for all j, this implies that all P predictors
will be included in themodel if we allow the number of decision
rules in the ensemble B to tend to ∞. While this e�ect is mild
(Linero 2018 shows that the number of predictors included
grows logarithmically in B) we would prefer for the number
of predictors in the model to be decoupled from the number
of trees.

Conceptually, the prior (2) has the same bene�ts as the
spike-and-forest prior: it directly penalizes the model size and
performs variable selection through an interpretable spike-and-
slab. Like the DARTmodel, it also allows for di�erential weight-
ing of the relevant variables.

It is not clear yet, however, that the prior (2) possesses the
computational tractability of DART; indeed, it seems like we
have made the problem more complicated by introducing the
additional parameters γ1, . . . , γP and hyperprior πD into the
model for s. We can make progress by instead casting (2) in
terms of random partition processes. The following de�nition is
taken from (Pitman 2002, chap. 2).

De�nition 1. A random partition process on {1, 2, . . . , } is a
sequence of partitions C1, C2, . . . such that Ck is a partition of
[k] = {1, . . . , k} and such that (for all k′ < k) Ck and Ck′ are con-
sistent in the sense that the restriction of Ck to [k′] is equal to Ck′ .
We write k ∼ k′ if k and k′ are members of the same equivalence
class in Ck. A random partition process is called exchangeable if
the mass function π(Ck) depends only on the sizes and number

of the equivalence classes of Ck, that is, if we can write the dis-
tribution of Ck in terms of an exchangeable partition probability
function (EPPF) π(Ck) = q(|c1|, . . . , |cj|)such that q is sym-

metric,
∑

j |cj| = k, and q(n1, . . . , nj) =
∑j

i=1 q(n1, . . . , ni +
1, . . . , nk) + q(n1, . . . , nj, 1).

In the case of BART priors, a partition naturally arises on the
set of branches of the ensemble. Let Bk = {b1, . . . , bk} denote
the collection of the �rst k branches of the ensemble and let
B = BB be the collection of all B branches. Then the branches
can be partitioned according to whether they split on the same
predictor as follows: we let Ck be a partition of {1, . . . , k} such
that n ∼ n′ if-and-only-if jn = jn′ (here, n ∼ n′ means
that n and n′ are members of the same equivalence class of
the partition); hence, two elements bn, bn′ of Bk split on the
same predictor if-and-only-if n and n′ are members of the same
equivalence class of Ck.

The advantage of taking this perspective is that it allows us
to avoid working with the γj’s and s, working instead with the
induced prior distribution on CB ≡ C where B is the number of
branches. While this may seem even more complicated, it turns
out this is actually rather easy provided that the Ck’s are a Gibbs
type random partition process.

De�nition 2. An exchangeable random partition process
C1, C2, . . . is of Gibbs type (Gnedin and Pitman 2006) if Ck has
mass function

πk(Ck) = Vk(|Ck|)
∏

c∈Ck

�(α + |c|)
�(α)

(3)

for some α > 0 and positive weights Vk(q) for q > 0. We say
the process is P-�nite if |Ck| ≤ P almost-surely for all k, in which
case we let D = limk→∞ |Ck| denote the (random) number of
equivalence classes in the limit and letπD(d) denote the induced
mass function of D.

We write C ∼ Gibbs(VB,α) to denote that C has the associ-
ated Gibbs prior. Exchangeability in the above de�nition refers
to the fact that the probabilities are invariant under relabeling of
the natural numbers, for example, the probability of partitioning
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{1, 2, 3, 4, 5} as {{1, 2}, {3, 4, 5}} is the same as the probability of
partitioning {2, 3, 5, 6, 7} as {{2, 5}, {3, 6, 7}}.

The Proposition 1, which follows fromTheorem 3.1 ofMiller
andHarrison (2018), states that the hierarchical speci�cation (2)
is associated to a P-�nite Gibbs type prior provided that πD(d)
is supported on {1, . . . ,P}. We use this speci�cation as a default,
as it allows us to specify a prior directly on D.

Proposition 1. The prior (2) implies that C ∼ Gibbs(VB,α)

given B where

VB(t) =
P∑

d=t

d!
(d − t)!

�(α d)

�(α d + B)
πD(d). (4)

As a special case, the DART prior s ∼ Dirichlet(α/P, . . . ,α/P)

corresponds to taking VB(t) = P!
(P−t)!

�(α)
�(α+B)

.

We note that the variable D in De�nition 2 is not identical to
the number of relevant variables Q, as it is possible for not all D
variables to be used in the ensemble. Instead we haveQ → D as
B → ∞. For the DART prior we have πD(P) = 1 (in the sense
of De�nition 2), another instantiation of the fact that the DART
prior will include all predictors as B → ∞.

Once the decision rules have been partitioned, we simply
randomly assign each equivalence class a unique predictor.

De�nition 3. Let j� = (j�1, . . . , j
�
Q) denote the unique splitting

variables used in the ensemble. We say that (j1, . . . , jB) has a
�nite Gibbs prior if

C ∼ Gibbs(VB,α) and π(j� | C) =
(P − Q)!

P!
for 1 ≤ j�n ≤ P and j�n �= j�n′ .

The following result, which is established in Appendix A,
characterizes the Gibbs prior in terms of a Pólya urn scheme.

Proposition 2. Let Jb = {jb′ : b′ �= b} denote the collection of
branches not including the bth. Then we have

π(jb = j | Jb) =

⎧
⎨
⎩

VB(Qb)
VB−1(Qb)

(α + m
(−b)
j ) ifm

(−b)
j �= 0,

VB(Qb+1)
(P−Qb)VB−1(Qb)

α otherwise,

(5)

wherem
(−b)
j denotes the number of times the jth variable is used

in a splitting rule excluding the bth branch andQb is the number
of unique variables in Jb. In the special case of the spike-and-
forest prior, we have

π(jb = j | Jb) =

⎧
⎪⎨
⎪⎩

V ′
B(Qb)

V ′
B−1(Qb)

ifm
(−b)
j �= 0,

V ′
B(Qb+1)

(P−Qb)V
′
B−1(Qb)

otherwise,
(6)

where V ′
B(t) =

∑P
d=t

d!
(d−t)! dB πD(d).

As noted by Miller and Harrison (2018), the mechanism for
partitioning the jb’s in this fashion is analogous to the Pólya urn
scheme of Blackwell andMacQueen (1973) that gives rise to the
Dirichlet process. Using the Pólya urn representation, we can
alternately describe the generative mechanism for the trees by
modifying step G4 in Section 2.1 to state the following:

G4A. Assign each branch node b a splitting rule of the form
[xjb ≤ Cb] by sampling jb according to Proposition 2 with
Jb consisting of all previously sampled splitting rules. Then
sample Cb as in G4.

An interesting aspect of this characterization is that it provides
an alternate explanation of the sparsity-inducing properties of
the prior—the scheme for generating splitting rules reinforces
the coordinates which have been used in the past, withVB and α

determining how strongly previously chosen variables are rein-
forced. Because they are special cases, the same characterization
in terms of reinforcement holds for the DART and spike-and-
forests priors.

Importantly, because Gibbs type priors are exchangeable, the
probabilities in Proposition 2 remain the same regardless of the
order in which the jb’s are generated.

Proposition 3. To sample splitting rules from the Gibbs prior it
su�ces to iteratively sample rules j1, . . . , jB successively from (5)
with Jb replaced by Jbn = {jbn′ : n

′ < n} and B replaced by n.

To implement the Gibbs prior we need to compute VB(t)
for potentially many di�erent values of (t,B). Fortunately, if we
use (2) with a �xed choice of πD then these values only need
to be computed once. In our implementations, whenever we
require VB(t) we �rst check if it has already been computed; if
it has not, then we compute it using (4) and store the result in
a hash table, while if it has then we simply retrieve the value
from the table. This ensures that computation of VB(t) requires
negligible overhead relative to sampling the model via MCMC.
A less e�cient, but still practical, solution is to compute VB(t)
for all plausible values of (t,B) prior to running the chain, as
done by Miller and Harrison (2018).

2.4. Default Priors

To specify a Gibbs prior we need to select (πD,α,VB). As a
default we recommend using the Gibbs prior associated with (2)
so thatVB is chosen according to (4).We then specify a uniform
prior on the selected variables by taking α = 1.

An advantage of the Gibbs prior is that the choice of πD(d)
is e�ectively arbitrary and makes little di�erence in terms of
computations. By default, we encode a preference for sparsity

by using a truncated zeta distribution πD(d) = d−ζ /
∑P

p=1 p
−ζ .

For ζ > 0 the truncated zeta distribution encodes a preference
for sparsity while when ζ = 0 it induces a uniform prior on
{1, . . . ,P}. In our illustrations we set ζ = 1.

For ζ ≤ 2 the zeta prior has the feature that, as P → ∞, the
prior expectation ofD diverges, while it does not for ζ > 2. One
can, for example, choose ζ speci�cally to target a desired prior
mean for D. Alternatively, one can use a complexity penalizing
prior that more heavily penalizes the number of predictors
included in the model. For example, Rockova and van der Pas
(2020) study geometric priors of the form πD(d) ∝ c−d P−a d

for some positive constants (a, c).
For the remaining parameters in the model (γ ,β , σ 2, σ 2

μ)we
use the default settings described by Linero and Yang (2018)
a�er scaling the outcome Yi to lie in [−0.5, 0.5]. For the sake
of self-containment, these choices are γ = 0.95, β = 2, σμ =
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0.5/(k
√
T) where k = 2, and σ ∼ Cauchy+(0, σ̂ ) where σ̂ is a

pilot estimate of σ obtained by �tting the lasso to the data.

3. Markov ChainMonte Carlo for Gibbs Priors

In this section we develop a Metropolis-Hastings algorithm for
�tting BART models that incorporate the Gibbs prior. Fortu-
nately, the Pólya urn characterization in Proposition 2 makes it
easy to derive the Metropolis-Hastings acceptance ratios.

BART models are typically updated using a two-stage
Metropolis-within-Gibbs algorithm. We de�ne T−t = {Tm :
m �= t} andM−t similarly.We let q(T ′ | T ) denote a yet-to-be-
speci�ed Markov transition function on the state space of trees.
The following steps are used to update the pair (Tt ,Mt).

1. Propose a new tree structure T ′ ∼ q(T ′ | Tt) then set Tt ←
T with probability

A = 1 ∧
πT (T ′)�(T ′ | T−t ,M−t ,X,Y) q(Tt | T ′)

πT (Tt)�(Tt | T−t ,M−t ,X,Y) q(T ′ | Tt)
,

where � is the integrated likelihood function

�(T | T−t ,M−t ,X,Y) =
∏

�∈L(T )

∫
Normal(μ | 0, σ 2

μ)

∏

i:Xi��

Normal(Yi | λi + μ, σ 2) dμ

and λi =
∑

m�=t g(Xi; Tm,Mm).
2. DrawMt from its full conditional distribution.

The particular formulas for � and the full conditional of
Mt are not of relevance to us, however, and we refer interested
readers to Kapelner and Bleich (2016) for details. To lighten
notation, we will write �(T ) = �(T | T−t ,M−t ,X,Y), with
the relevant index t inferred by the reader from context. Both
steps rely critically on the conjugacy of the normal prior to
the normal likelihood. Hill, Linero, and Murray (2019) show
more generally that this can be carried out for other conjugate
likelihood/prior pairs such as log-linear (Murray 2021) and
gamma (Linero, Sinha, and Lipsitz 2020) BART models.

The proposal distribution q(T | T ′) we use is a mixture of
local modi�cations to T . We consider the following steps.

BIRTH Convert a randomly chosen leaf node � of depth d into
a branch node with two children �L and �R by randomly
selecting a predictor j with probability (5)—or (6) for the
spike-and-forest prior—and randomly selecting a cutpoint

C� ∼ Uniform(Aj,Bj) where
∏P

p=1[Ap,Bp] is the hyperrect-
angle associated to {x : x � �}.

DEATH Convert a randomly chosen branch b with exactly two
child nodes of depth d into a leaf node by deleting its chil-
dren.

PRIOR Sample T ′ from its prior distribution conditional on
(T−t ,M−t)using (5)—or (6) for the spike-and-forest prior—
to sample splitting coordinates conditional on all other exist-
ing splits in the ensemble.

The following proposition gives the associated Metropolis-
Hastings acceptance probabilities. Recall that ρ(d) = γ (1 +
d)−β is the prior probability that a node of depth d is a branch.

Proposition 4. For the BIRTH, DEATH, and PRIOR moves,
respectively, a valid acceptance probability is given byA = 1∧R
where

RBIRTH = ρ(d) {1−ρ(d+1)}2
1−ρ(d) × �(T ′)

�(T )
× qDEATH(T ′) |L(T )|

qBIRTH(T ) |NOG(T ′)|

RDEATH = 1−ρ(d)
ρ(d) {1−ρ(d+1)}2 × �(T ′)

�(T )
× qBIRTH(T ′) |NOG(T )|

qDEATH(T ) |L(T ′)|

RPRIOR = �(T ′)
�(T )

,

and NOG(T ) denotes the set of branches with exactly two
children which are leaves, qDEATH(T ) denotes the probability
of proposing a DEATH to modify T , qBIRTH(T ) denotes the
probability of proposing a BIRTH to modify T , and |A| denotes
the number of elements in the set A.

The expressions above are particularly simple because we
have incorporated Proposition 2 into the proposal distribution,
causing the entire Gibbs prior structure to drop out of the
acceptance ratios; in fact, Proposition 4 gives the same accep-
tance ratios given by Kapelner and Bleich (2016). Hence, imple-
menting the Gibbs prior only requires modifying the proposal
distribution q(T | T ′) in the BIRTH, DEATH, and PRIOR

moves of existing BART implementations.

4. Illustrations

4.1. Simulation Experiment

We conduct a simulation experiment to illustrate the salient
features of the Gibbs prior. We consider the data generating
mechanism Yi ∼ Normal{r0(Xi), σ

2} where

r0(x) = 10 sin(π x1 x2) + 20(x3 − 0.5)2 + 10 x4 + 5 x5. (7)

This regression function possess nonlinearities, interactions,
and linear terms. This simulation scenario was considered �rst
by Friedman (1991) and has since been used many times in the
BART literature as a benchmark. We allow for P > 5 so that xj
is irrelevant for all j > 5.

Each of the methods under consideration (DART, spike-
and-forest, and Gibbs priors) are �t with T ∈ {50, 200, 500}
trees and 10,000 samples from the Markov chain, with the �rst
5000 discarded to burn-in. Both the spike-and-forest and Gibbs
priors use the truncated zeta distribution with ζ = 1 for the
model size, while the DART prior uses the hyperprior α/(α +
P) ∼ Beta(0.5, 1). We use the Gibbs prior implied by (2) with
α ≡ 1 or, equivalently, we let the nonzero components of s be
uniformly distributed on the simplex SD−1.

We �rst �t the spike-and-forest andGibbs priormodels to the
data with N = 250, P ∈ {7, 50, 150, 400, 1000} and σ ∈ {3, 5}.
Some results of a single �t are given in Figure 4 when σ = 3
and P = 1000. From the posterior inclusion probability plot
we see that both the DART and the Gibbs prior are e�ective
at removing irrelevant predictors, whereas the spike-and-forest
prior does not choose the correct model (using a posterior
inclusion probability cuto� of 0.5). Themiddle and bottom rows
of Figure 4 suggest that this is partially due to poor mixing
for the spike-and-forest prior: the mixing of the model size is
substantially worse for the spike-and-forest prior due to the fact
that ourMCMCschemehas trouble eliminating predictors. This
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Figure 4. Results of the simulation study of Section 4.1 for the Gibbs (left), spike-and-forest (middle), and DART (right) for a single run. Top: posterior inclusion probabilities
of the variables, with spurious predictors in gray. Middle: traceplot of themodel size. Bottom: traceplot of the number of times variable x159 is included, a spurious variable
which was included by the spike-and-forest prior but not the Gibbs prior.

is apparent in the bottom row, where we look at the mixing of
the spuriously selected variable x159: we see that the the DART
andGibbs priors are capable of including, using, and then subse-
quently removing this variable, whereas the MCMC scheme for
the spike-and-forest model cannot remove this variable once it
has been included in the model.

We replicated the simulation 200 times for each combination
of P and σ and computed the following performance metrics.
Below, the number of “positives” is the number of predictors
which are included in the median probability model (Barbieri

and Berger 2004) and the number of “true positives” is the
number of predictors included in the median probability model
which are relevant (we similarly de�ne the “false positives,”
“negatives,” and so forth).

Precision. The ratio of true positives to total positives.
Recall. The ratio of true positives to the total number of relevant

predictors.
F1 Score. The harmonic mean of the precision and recall, used

as an omnibus measure of variable selection accuracy.
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Table 1. Results of the simulation study; standard errors for all quantities are less than 0.01.

T = 50 T = 200 T = 500

P σ Method Prec Rec F1 Prec Rec F1 Prec Rec F1

7 3 DART 0.79 1.00 0.88 0.75 1.00 0.85 0.72 1.00 0.84
Gibbs 0.98 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99
SAD 0.95 1.00 0.97 0.71 1.00 0.83 0.71 1.00 0.83

5 DART 0.72 1.00 0.83 0.71 1.00 0.83 0.71 1.00 0.83
Gibbs 0.95 1.00 0.97 0.91 1.00 0.95 0.92 1.00 0.95
SAD 0.88 0.99 0.93 0.71 1.00 0.83 0.71 1.00 0.83

50 3 DART 0.95 1.00 0.97 0.92 1.00 0.96 0.91 1.00 0.95
Gibbs 0.98 1.00 0.99 0.97 1.00 0.98 0.97 1.00 0.98
SAD 0.88 1.00 0.93 0.23 1.00 0.38 0.10 1.00 0.19

5 DART 0.85 0.96 0.89 0.77 0.96 0.84 0.72 0.97 0.80
Gibbs 0.92 0.94 0.92 0.91 0.94 0.92 0.92 0.93 0.92
SAD 0.82 0.95 0.87 0.20 0.97 0.34 0.10 1.00 0.19

150 3 DART 0.95 1.00 0.97 0.94 1.00 0.97 0.93 1.00 0.96
Gibbs 0.98 1.00 0.99 0.97 1.00 0.98 0.97 1.00 0.98
SAD 0.83 1.00 0.91 0.23 1.00 0.37 0.08 1.00 0.16

5 DART 0.88 0.91 0.89 0.87 0.92 0.88 0.82 0.92 0.86
Gibbs 0.93 0.90 0.90 0.92 0.90 0.90 0.91 0.90 0.89
SAD 0.82 0.92 0.86 0.22 0.94 0.36 0.07 0.96 0.14

400 3 DART 0.94 1.00 0.97 0.92 1.00 0.96 0.92 1.00 0.96
Gibbs 0.98 1.00 0.99 0.95 1.00 0.97 0.94 1.00 0.96
SAD 0.81 1.00 0.89 0.22 1.00 0.37 0.08 0.99 0.16

5 DART 0.89 0.86 0.86 0.86 0.88 0.85 0.84 0.88 0.84
Gibbs 0.92 0.85 0.87 0.91 0.85 0.87 0.89 0.84 0.85
SAD 0.80 0.86 0.82 0.25 0.90 0.38 0.10 0.90 0.18

1000 3 DART 0.98 0.99 0.98 0.97 0.99 0.97 0.88 1.00 0.93
Gibbs 0.99 0.98 0.98 0.97 0.98 0.97 0.94 0.99 0.96
SAD 0.80 0.99 0.88 0.22 0.98 0.36 0.09 0.97 0.16

5 DART 0.98 0.74 0.84 0.95 0.74 0.82 0.84 0.81 0.81
Gibbs 0.93 0.78 0.84 0.90 0.79 0.83 0.86 0.79 0.81
SAD 0.80 0.80 0.79 0.30 0.84 0.43 0.14 0.85 0.24

NOTE: The precision, recall, and F1 scores represent averages of these quantities over 200 replications of the experiment. Bold text denotes best performance for a given
value of T , while bold italic text denotes best performance cross all values of T .

Results are given in Table 1.
We note at the outset that the spike-and-forest prior, as

implemented using the sameMCMC scheme as the Gibbs prior,
performs poorly across all settings (especially so when T = 200
or T = 500). We attribute this primarily to the poor mixing of
the local sampler for the spike-and-forest prior seen in Figure 4
rather than to any fundamental problem with the spike-and-
forest model itself; at a minimum, the mixing issues are severe
enough that we cannot rule out that this is what is causing the
poor performance.

The results for P = 7 reveal one of the bene�ts of the Gibbs
prior relative to DART: the default DART prior recommended
by Linero (2018) tends to be ine�ective at �ltering out irrelevant
predictors when P is small. This is because DART provides
only indirect control on the number of variables included in
the model, and is more tolerant of variables which have minis-
cule impact on the outcome than the spike-and-forest or Gibbs
priors. Conversely, the Gibbs prior (which explicitly penalizes
the inclusion of unnecessary predictors) performs well in this
setting.

The number of trees T included in the model has a relatively
minor impact on theGibbs andDART priors, with thesemodels
performing slightly better when using fewer trees; the �nding
that using fewer trees may result in better variable selection is
consistent with other results in the literature (Bleich et al. 2014).
Speaking generally, however, the recall of the DART and Gibbs
priors are fairly robust to the choice of T, while the precision

of the Gibbs prior tends to decay more slowly as T is increased
(for example, the mean precision of the Gibbs prior for (P, σ) =
(50, 5) is the same for T = 50 and T = 500, while the precision
of DARTdecreases from 85% to 72%.)We also see that for larger
values of P (400 and 1000) the recall for all methods drops. This
is due to systematic omissions of the two lowest-signal variables
(x3 and x5) for all methods, which is caused both by a lack
of signal and the large number of noise variables making the
variable selection task intrinsically more di�cult.

Summarizing the main points: DART, being more tolerant
of spurious variables, naturally performs worse in terms of
precision and better in terms of recall than the Gibbs prior. The
Gibbs prior has the advantage of performing well across the
board when P is small, and also has the advantage of having a
precision which decays only mildly as T increases, making it
more robust to the number of trees in the ensemble than DART.

Computational Cost. In Table 2 we give a brief comparison
of the time to collect 10,000 samples from the approximate

Table 2. Time to �t the DART and Gibbs priors in seconds for various T and P; Ratio
denotes the time of Gibbs divided by the time of DART.

T P DART Gibbs Ratio

50 100 73 86 1.18
50 1000 73 88 1.21
200 100 279 340 1.22
200 1000 279 356 1.28
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posterior distribution for the DART and Gibbs priors under our
simulation scenario with N = 250 and σ = 1. We generally
expect for Gibbs to be more expensive due to both the cost
of computing VB(t) and the more involved sampling of the
candidate predictors for each split. From Table 2 we see that the
Gibbs prior is only slightly slower (20%–30%) computationally
than DART.

4.2. Analysis of Benchmark Datasets

We compare the performance of Gibbs priors to DART on
four publicly available benchmark datasets: theBoston dataset
available in the MASS package, the Hitters dataset available
in the ISLR package, the WIPP dataset provided by Storlie et al.
(2011), and the Tecator dataset available from the datasets
archive of StatLib at http://lib.stat.cmu.edu/datasets/. We do not
include the spike-and-forest prior due to its aforementioned
mixing problems. We evaluate the priors using 5-fold cross-
validation replicated four times (so that each model was �t 20
times in total). Results for the di�erent datasets are given in
Table 3. We measure accuracy in terms of the heldout root

mean-squared error
√
N−1

∑
i(Ŷi − Yi)2 (RMSE) where Ŷi is

the predicted value of Yi computed on the fold with observation
i held out. We also report the average size of the median proba-
bilitymodel across the 20 �ts (Model Size) and the proportion of
the 20 train/test splits that the Gibbs prior outperforms DART
and vice-versa (%Superior); for example, if %Superior is 100%
for Gibbs then Gibbs outperformed DART across all 20 splits.
Each �t used T = 50 trees and the chains were run for 15,000
iterations with the �rst 5000 iterations discarded to burn-in.

The results in Table 3 show that the Gibbs prior obtains
better results than DART using fewer predictors on average.
For all datasets considered, the Gibbs prior made use of fewer
variables in the median probability model while also obtaining
a lower RMSE on average over all train/test splits. The Gibbs
prior also obtained lower RMSE on substantially more of the
splits than DART, with the only marginal case occurring on the
WIPP dataset. When comparing across the partitions into 5-
folds (as opposed to comparing across both the partitions and
the folds themselves), Gibbs outperformed DART on 100% of
the partitions. Lastly, we note that the Gibbs prior with the
truncated zeta choice for πD(d) is �exible enough to allow for
dense models when the underlying data generating process is
dense; we see this for theBoston dataset, where both theGibbs
and DART priors include the majority of the variables.

Table 3. Results of the 5-fold cross-validation experiment on the Boston,
Hitters, Tecator, and WIPP datasets.

Dataset Method RMSE Model size %Superior

Boston DART 1.09 10.7 15%
Gibbs 1.00 10.3 85%

Hitters DART 1.12 12.7 15%
Gibbs 1.00 7.6 85%

Tecator DART 1.09 15.9 20%
Gibbs 1.00 8.2 80%

WIPP DART 1.06 11.7 40%
Gibbs 1.00 8.6 60%

NOTE: Best results per dataset are given in bold.

Wenowconsider theHittersdataset in detail. This dataset
is described fully in the ISLR package (James et al. 2021) and
“…is part of the data that was used in the 1988 ASA Graph-
ics Section Poster Session,” where an inferential goal was to
determine which variables are predictive of a baseball player’s
salary. The dataset contains measurements of the salaries of
Major League Baseball (MLB) players during the 1986–1987
season, along with some candidate predictors of salary: number
of years playing in MLB, total number of hits both during the
current season and up-to the current season, and so forth. In
total there are 19 predictors. We �nd that, on the Hitters
dataset, there is evidence that the Gibbs prior outperforms
DART: the heldout RMSE is lower both on average and con-
sistently over many splits into train/test sets. Additionally, it
uses fewer of the predictors. Posterior inclusion probabilities
for the DART and Gibbs prior are given in Figure 5. Examin-
ing the predictors used, we �nd that the Gibbs prior focuses
on measures of past performance—the cumulative hits, runs,
runs-batted-in, at-bats, and years in the league prior to the
current season. DART instead uses features which measure
player performance both in past seasons and the current sea-
son; while metrics of performance in the current season are
possibly useful from a predictive perspective (the Gibbs prior
prefers number of walks in the current season to the cumulative
number of walks) they cannot causally determine the salary
since the salary is set before the season. Given the redun-
dancy in these features, we might expect that it is unnecessary
to use both current and past performance, with a preference
for past rather than current performance. This preference is
re�ected in the results for the Gibbs prior, but not for the
DART prior.

Next we consider the WIPP dataset described in Storlie et al.
(2011). This dataset comes froma two phase �uid �ow computer
model for a Waste Isolation Pilot Plant; the goal considered by
Storlie et al. (2011) is to predict the cumulative brine �ow into
the plant at 10,000 years assuming a drilling intrusion at 1000
years. There are 31 input variables, but not all of them are known
to be relevant for prediction. Posterior inclusion probabilities for
this model for the Gibbs and DART priors are given in Figure 6.
We see again that the Gibbs and DART priors agree on the most
relevant variables, but that the Gibbs prior more aggressively
removes the less useful variables.

In the supplementary materials we also provide traceplots of
the �t to the WIPP and Hitters datasets. There we see that
the Gibbs prior tends to mix better than the DART prior—this
is somewhat expected due to the fact that the Gibbs prior makes
use of a collapsed Gibbs sampler, that is, we have integrated
out s).

5. Other Classes of Weak Learners

In this section we show how to apply Gibbs priors to classes
of weak learners beyond the decision tree models considered
here. We consider a class of weak learners with the same vari-
able inclusion structure as decision trees: the function b(x; γ )

consists of some number of variables {j1, . . . , jK} where the
variables jb are allowed to repeat.We list some possible examples
below:
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Figure 5. Posterior inclusion probabilities for the variables in the Hitters dataset for the DART and Gibbs priors. A description of these variables is given in the ISLR
package in R. Variables are ordered by their posterior inclusion probability under the Gibbs prior.

Figure 6. Posterior inclusion probabilities for the variables in the WIPP dataset for the DART and Gibbs priors. A description of these variables is given in Storlie et al.
(2011). Variables are ordered by their posterior inclusion probabilities under the Gibbs prior.

• Polynomial learners of the form b(x; γ ) =
∏K

k=1 xjk .
• Multivariate adaptive regression splines (MARS) of the form

b(x; γ ) =
∏K

k=1max{0,Zk(xjk − ck)} where Zk ∈ {−1, 1}
(Friedman 1991; Denison, Mallick, and Smith 1998).

• Radial basis functions of the form b(x; γ ) =
exp{−ρ

∑P
j=1 Zj(xj − μj)

2} where Zj is the number of
times variable j is selected.

In the case of MARS, for example, γm consists of

{Z(m)

k , c
(m)

k , j
(m)

k : k = 1, . . . ,Km}. We can then apply the

Gibbs prior to the collection {j(m)

k : 1 ≤ k ≤ Km, 1 ≤ m ≤ M}
of coordinates, that is, we randomly partition the j

(m)

k ’s and then
assign a unique predictor to each equivalence class.

To illustrate, we �t Bayesian MARS to N = 250 samples
generated from the model (7) with P = 500 predictors and
σ = 1.WeusedM = 50 basis functions.We set ζ = 1 and chose
Km to take the values 0, 1, and 2with prior probability 10%, 50%,
and 40%. For themodel parameters we set βm ∼ Normal(0, σ 2

m)

and Zk = ±1 with equal probability. We specify half-Cauchy
priors σ ∼ Cauchy+(0, σ̂ ) and σβ ∼ Cauchy+(0, σ̂β) where σ̂

is a pilot estimate of the standard deviation obtained from�tting
a lasso to the scaled data and σ̂β = M−1/2. In the supplementary
materials we give a simple Bayesian back�tting algorithm for
�tting this model.

Results are given in Figure 7 for a single �t of themodel using
(i) the Gibbs prior and (ii) a prior which selects each covariate
in the basis function uniformly at random from the possible
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Figure 7. Top: predictions from the MARS models plotted against the true values of the function on a test set of 250 held out Xi ’s. Middle: posterior inclusion probabilities
for the MARS models with and without the Gibbs prior; relevant predictors are given by yellow triangles and the gray line at 0.5 is the cuto� for inclusion in the median
probability model. Bottom: traceplot of the total number of predictors used on a given sample from the posterior, obtained from the Bayesian back�tting algorithm with
and without the Gibbs prior; the gray line is the true model size (5).

covariates; the behaviorwe see is representative of replications of
the experiment.We see fromFigure 7 that, when combinedwith
the Gibbs prior, the MARS basis function expansion performs
extremely well; we have found that it outperforms BART and
is generally competitive with the SBART algorithm of Linero
and Yang (2018) on this problem. The Gibbs prior is capable of
accurately �ltering out irrelevant variables, and only selects the
�ve relevant predictors for inclusion in the model. The Gibbs
prior also prefers parsimoniousmodels, with 61%of the samples
from the posterior containing only the relevant predictors.

By contrast, the predictive performance of Bayesian MARS
without the Gibbs prior is rather poor, and it performs sub-
stantially worse than DART on this problem (see the results of
Linero 2018). Without the Gibbs prior we �nd that Bayesian
MARS includes several spurious covariates, both in the median
probabilitymodel and in the individual samples of r(x) from the
posterior; to the extent that it eliminates most of the irrelevant
variables from the median probability model, the bottom row
of Figure 7 shows that this is simply due to the fact that the
model can only accommodate so many variables with M = 50



1058 A. R. LINERO AND J. DU

basis functions. On average, the model without the Gibbs prior
includes 55 variables, although which irrelevant predictors are
included changes from sample to sample. In predictive terms,
the root mean-squared error on a held out set of covariates
(X�

1 , . . . ,X
�
N) given by

√
N−1

∑
i(̂r(X

�
i ) − r0(X

�
i ))

2 is roughly
one third as large when using the Gibbs prior (RMSE = 0.36)
relative to not using the Gibbs prior (RMSE = 1.06).

We conclude from this example that random basis function
expansions, such as Bayesian MARS, can perform extremely
well with the Gibbs prior for variable selection. We note
that, remarkably, BayesianMARS substantially outperforms the
MARS algorithm as implemented in the earth package in R
(RMSE = 1.26 under the constraint Km ≤ 2), an observation
which agrees with the simulation results of Linero (2018). Like
our Gibbs prior, the MARS algorithm also allows for penalizing
the inclusion of additional variables to induce sparsity; tuning
of this parameter by 10-fold cross-validation resulted in a test-
set RMSE of 1.22, and hence still performs far worse than the
Bayesian variant. The same is true when one compares BART
to its Frequentist variant of boosted decision trees (Linero 2018;
Linero and Yang 2018). One might conjecture on this basis that
the main strength of BART is not its use of decision trees, but
rather that ensembling of weak learners in the Bayesian frame-
work is powerful in general. Given that implementing BART
is a much more arduous task than implementing our Bayesian
MARS model, we believe that using weak learners other than
decision trees may be a better starting point for researchers.

6. Discussion

Much of our work is inspired by Bayesian nonparametric meth-
ods, which have long used Gibbs distributions as priors on
exchangeable randompartitions formixturemodeling (De Blasi
et al. 2013); in a sense, replacing aDARTpriorwith aGibbs prior
for us is analogous to the move from Dirichlet process mixture
models to the mixtures-of-�nite-mixtures models of Miller and
Harrison (2018). By borrowing the notion of a Gibbs prior
from the theory of random partitions, we have introduced a
method for performing nonparametric variable selection using
Bayesian decision tree ensembles. We argue that it shares the
computational bene�ts of theDARTprior while also beingmore
intuitive. Our method works by partitioning weak learners (in
this case, step functions) in such a way that di�erent groups of
learners focus on a limited set of variables.

We have not attempted a rigorous analysis of the theoretical
properties of BARTmodels using Gibbs priors along the lines of
Linero and Yang (2018), Rockova and van der Pas (2020), Liu,
Ročková, andWang (2021).While we have not done so here, it is
easy to adapt the proof of Theorem 3 of Linero and Yang (2018)
to allow for the use of Gibbs priors; this result establishes near-
minimax predictive accuracy of the SBART model adaptively
over smoothness and sparsity levels. Less immediate are the
variable selection consistency results of Liu, Ročková, andWang
(2021); we conjecture that there are no obstructions to obtaining
similar results, at least with α �xed as (N,P) → ∞, provided
that an appropriate complexity-penalizing prior πD(d) is used.
We leave establishing variable selection consistency to future
work.

It would be interesting to develop Gibbs prior extensions
of the Dirichlet process forest prior (Du and Linero 2019b),
which is useful for performing interaction detection, or the
overlapping groupDirichlet prior (Du and Linero 2019a), which
is used to perform bi-level selection using BART. Both of these
approaches make use of hierarchical structure; for example, the
Dirichlet process forest constructions mirrors the structure of
the hierarchical Dirichlet process (Teh et al. 2006). Extending
Gibbs priors to accommodate hierarchical structure is nontriv-
ial, but may be possible using the hierarchical species sampling
framework of Bassetti, Casarin, and Rossini (2020). We defer
this to future work.

We have also found some evidence that the performance of
BART may be due to the general power of ensembling weak
learners, rather than to the choice of decision trees as weak
learners. Decision trees have some computational bene�ts, but
MARS weak learners are also computationally convenient due
to their nonhierarchical structure and their sparsity. Precisely
characterizing the theoretical properties of generic Bayesian
weak learner ensembles is another potentially fruitful direction
for research.

Appendix A. Proof of Proposition 2

Let C denote the partition on {1, . . . ,B} induced by taking n ∼ n′ if
jn = jn′ where J = {j1, . . . , jB} is a list of all the splitting variables in
the ensemble. Let Cb denote the partition associated with Jb = {jn :

n �= b} instead. Note that the conditional distribution of Jb on either

Cb or C uniformly assigns variables to each equivalence class, that is,

π(Jb | Cb) = (P−Qb)!
P! . Ifm

(−b)
j �= 0 then C is obtained by adding b to

the equivalence class associated with j, so that the desired probability is

π(C | Jb) =
π(Jb, C)

π(Jb)
=

π(Jb | C) π(C)

π(Jb | Cb) π(Cb)
=

π(C)

π(Cb)

=
VB(Qb)

VB−1(Qb)
(α + m

(−b)
j )

by (3) and canceling the common terms (the second equality follows

from the fact that π(Jb) = π(Jb, Cb)).

If m
(−b)
j = 0 then setting j = jb corresponds to adding a new

equivalence class. The desired probability is given by

π(J | Jb) = π(J | C,Jb) π(C | Jb) =
π(C | Jb)

P − Qb

where the second equality follows from the fact that jb = j is chosen

uniformly from the (P − Qb) variables which have not been split on.

Next, we have

π(C | Jb) =
π(Jb | C) π(C)

π(Jb | Cb) π(Cb)
=

π(C)

π(Cb)
=

VB(Qb + 1)

VB−1(Qb)
α

by (3) and canceling common terms.

The result for the spike-and-forest prior follows from the above

computations and Proposition 1 by multiplying the numerator and

denominator by αB−1 and taking α → ∞ a�er observing that
d!

(d−t)!
αB �(α d)
�(α d+B)

→ d!
(d−t)! dB .

SupplementaryMaterials

The SupplementaryMaterial contains additional algorithmic details for the
Bayesian MARS model, proofs of propositions, and MCMC diagnostics.
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