Decision-Oriented Learning with Differentiable Submodular
Maximization for Vehicle Routing Problem

Guangyao Shi, Pratap Tokekar

Abstract— We study the problem of learning a function
that maps context observations (input) to parameters of a
submodular function (output). Our motivating case study is
a specific type of vehicle routing problem, in which a team
of Unmanned Ground Vehicles (UGVs) can serve as mobile
charging stations to recharge a team of Unmanned Ground
Vehicles (UAVs) that execute persistent monitoring tasks. We
want to learn the mapping from observations of UAV task
routes and wind field to the parameters of a submodular
objective function, which describes the distribution of landing
positions of the UAVs . Traditionally, such a learning problem is
solved independently as a prediction phase without considering
the downstream task optimization phase. However, the loss
function used in prediction may be misaligned with our final
goal, i.e., a good routing decision. Good performance in the
isolated prediction phase does not necessarily lead to good
decisions in the downstream routing task. In this paper, we
propose a framework that incorporates task optimization as a
differentiable layer in the prediction phase. Our framework
allows end-to-end training of the prediction model without
using engineered intermediate loss that is targeted only at
the prediction performance. In the proposed framework, task
optimization (submodular maximization) is made differentiable
by introducing stochastic perturbations into deterministic algo-
rithms (i.e., stochastic smoothing). We demonstrate the efficacy
of the proposed framework using synthetic data. Experimental
results of the mobile charging station routing problem show that
the proposed framework can result in better routing decisions,
e.g. the average number of UAVs recharged increases, compared
to the prediction-optimization separate approach.

I. INTRODUCTION

Many multi-robot decision-making problems can be for-
mulated as combinatorial optimization problems, among
which the objectives in some problems (e.g., mutual infor-
mation [1], area explored, number of targets tracked [2], de-
tection probability [3] etc.) have diminishing returns property
i.e., submodularity. Intuitively, submodularity formalizes the
notion that adding more robots to a larger multi-robot team
cannot yield a smaller marginal gain in the objective than
adding the same robot to a smaller team.

If the submodular objective is known and fixed, the multi-
robot decision-making problem boils down to a submodular
maximization problem, which is NP-hard but can be solved
with an (1 — 1)-approximation by the greedy algorithm [4].
However, in practice, there are several parameters that affect
the objective function that may not be known exactly.

Consider the following illustrative example of a vehicle
routing problem shown in Figure 2. Here, a team of Un-

This work is supported in part by National Science Foundation Grant No.
1943368 and Army Grant No. W911NF2120076.

Guangyao Shi, Pratap Tokekar are with the University of Maryland,
College Park, MD 20742 USA [gyshi, tokekar]@umd.edu

O

f(S;w)

max
SCT, SeT Loss
—>

Qo0
(XXX X]
(XX XX]

o

tin
e

Predictive Model
g0(2)

—> Forward pass

Submodular
Maximization

Input z
<— Backpropagation

Fig. 1. Decision-Oriented Learning framework. The training loss is defined
after the downstream task.

depot

5

candidate recharging locations

Fig. 2. An illustrative example for vehicle routing problems.

manned Ground Vehicles (UGVs) are tasked with servicing
a set of requests that appear throughout the environment. We
have a set of candidate routes of which we must select one
for each UGV. The objective is to maximize the number of
requests serviced. If a request location lies on more than one
UGVs path (the paths may overlap as the UGVs move on a
road network), it only counts once in the objective function.
Thus, the objective function is a coverage function, which is
a special case of the submodular function.

If we know the location of the requests, then we can solve
this problem greedily to obtain a (1 — %)—approximation.
The greedy algorithm requires the capability to compute the
objective function f(S). However, there are many scenarios
where we may not know where the requests show up and
as such not know f(S). For example, the requests could
correspond to Unmanned Aerial Vehicles (UAVs) that are
carrying out persistent monitoring missions that land when
out of charge so as to be recharged by mobile recharging
stations [5]-[10]. Here, even if we know the routes followed
by each UAV, we may not know their exact landing locations
since the energy consumption is stochastic [9], [10] and
communication between UAVs and UGVs is not available
(e.g., due to stealth). In such cases, we may be able to predict
f(S) using all the available information. We call the latter
as context z, which can include the routes of the UAVs, the
environmental conditions including the wind conditions, etc.

The traditional pipeline here would be to use the context
information and predict f(S) and then solve the downstream

15(8)=B 1,(S) + (1-) 1,(S)

,(8)

(-

15(8)

Function value

|
1720358
I

0 01 02 03 04 05 06 07 08 09 1
3

(a) Basis function f1

(b) Basis function fo

(c) Weighted sum of f; and f2

o training data

0gl| © training data
-~ optimal decision boundary s

-~~~ optimal decision boundary ! 1
08 —=—Learned model using MSE
~ -~ - decision boundary for MSE

O ftraining data
-~~~ optimal decision boundary
—=—DOL
-~ - optimal decision boundary

07 choose (s, s,} < 08

04 04t 403

| o
00000 gESoOoO d9
/D/a 04 0.3

0000000

1-0.358

03 02 o

a5
R i)
5880

02 i~ choose {s,. s} g

04 €—2"-0.8988 2°=0.8988—>>

- RIS o

0coo000?

2-0.8988—>1 r€—z'=1.02

0 05 1 15 2 0 05
Observation z

(d) Ground truth data

Fig. 3.
in good decisions.

UGV route selection problem, argmaxg f(S), using this
predicted f (S). However, as the following example shows
a good predictor of f(S) does not necessarily align with
making good decisions on the downstream task. On the other
hand, a predictor that does not necessarily yield the best
predictions of f(S) may still yield the best decisions for the
downstream argmaxg f(S) problem.

We present an illustrative example of such misalignment
in Fig. 3. Let fi, fo be two coverage functions (cover-
age function is submodular by definition) defined over set
{51, 82, 83}. Given a subset S C {s1, 82, s3}, fi(S),i =1,2
will return the area covered by the selection. The submodular
objective that we are interested in is defined as fg(S) =
Bf1(S)+(1—75)f2(S), B8 € [0, 1], which is also submodular
by definition. Suppose that we want to maximize fg with
a partition matroid: |S N {s1}| < 1, |S N {s2,s3}] < 1L
Then the optimal solution is either {s1,s2} or {s1,s3}. In
Fig. 3c, we show how the optimal decision changes w.r.t.
B. When 3 > 0.358, the optimal decision is {si,s3} since
fa({s1,83}) > fs({s1,s2}) (the blue line is above the red
line). By contrast, when 5 < 0.358, the optimal decision
is {s1,s2}. Next, let us look at the learning problem for
fs. We want to find a mapping from the observation z to
B. In Fig. 3d, we show the training data sampled from the
ground truth and the optimal decision boundary z* = 0.8988,
which is obtained by finding the intersection between the
ground truth curve and 8 = 0.358. If we use Mean Square
Error (MSE) as the objective for learning without considering
the downstream task, we will get two lines as shown in
Fig. 3e. The decision boundary (dashed vertical red line,
z* = 1.34, passing the intersection of the learned red line
and 5 = 0.358) is on the right of the optimal boundary,
thus not optimal. By contrast, if we consider the downstream
optimization, we will get two lines as shown in Fig. 3f

Observation z

(e) Learned model using MSE

15 2 0 05 1 15 2
Observation z

(f) Decision-Oriented-Learning results

An illustrative example to show the misalignment between the prediction model that achieves high predictive accuracy and the one that results

and the decision boundary (dashed vertical blue line, z* =
1.02, passing the intersection of the learned blue line and
B = 0.358) is closer to the optimal boundary, thus reducing
the regions of suboptimal decisions. Such an observation
motivates us to incorporate the decision process (submodular
maximization) into the learning process.

To this end, we propose a Decision-Oriented-Learning
(DOL) framework for learning context-aware parameterized
submodular objectives. We focus on submodular functions
that can be parameterized, i.e., f(S,w), where the parame-
ters are to be learned from the context. As described earlier
and pointed out in [11]-[13], the best estimator of w does
not necessarily yield the best decisions for the downstream
task. Instead, in the proposed framework, the decision-
making problem (submodular maximization) is treated as a
differentiable layer that takes as input the output from the
prediction module as shown in Fig. 1. The prediction module
takes as input a context observation z and predicts w, i.e., the
parameterized submodular function. By using a differentiable
submodular optimization layer, we can train the prediction
module using the loss from the downstream task, thereby
yielding aligned predictions.

In summary, the main contribution is this paper is:

e We propose a decision-oriented learning framework for
mobile charging routing problems. We show how to
formulate the learning problem for mobile charging
routing and how to solve it.

« We demonstrate the effectiveness of our framework in
several examples through simulation.

The rest of the paper is organized as follows. We first give

a brief overview of the related work in Section II. Then, we
explain the problem setup and formulation in Section III. We
introduce the learning algorithm in Section V and validate
the formulation and the proposed framework in Section VI.

II. RELATED WORK

Most existing multi-robot decision-making work consider
the case where the optimization objective is well-defined and
known. Wilde et al. [14] consider the case where the opti-
mization objective is hard to quantitatively specify and may
be subjective and proposed an interactive learning framework
to learn the objectives. Our work shares a similar stance with
[14] but differs in two aspects. First, we consider the fact
that the task objective may change in different contexts, for
example in different weather conditions, and aim at learning
a context-aware objective. Second, our learning framework
integrates the downstream decision-making process into the
learning process.

Another line of research related to this work is decision-
oriented learning. The key idea is to embed the decision-
making problem as a differentiable layer in the learning
pipelines. The main advantage is that it allows end-to-end
training and reduces the engineering efforts to design some
intermediate learning objectives. Such an idea was initially
explored for continuous optimization problems [15], [16] and
has gained popularity in control and robotics [17]-[20]. The
idea was later extended to the combinatorial problems [12],
[13], [21], [22]. Our work is inspired by [12], [21] and our
framework integrates the decision-making process for mobile
charging station routing, which is modeled as submodular
maximization, into the learning process.

This work is also closely related to differentiable sub-
modular maximization. Submodular maximization and its
variants have been widely used in multi-robot decision-
making problems including coverage, target tracking, ex-
ploration, and information gathering. These studies are all
based on the fact that the greedy algorithm and its variants
can solve submodular maximization problems its variants
efficiently with a provable performance guarantee. Since
the submodular objective and greedy algorithm are tightly
coupled, it is better to take into account the influence of
the greedy algorithm when we consider learning submodular
functions [23]. To this end, several differentiable versions of
the greedy algorithms have been proposed [23], [24]. The
core idea behind these algorithms is stochastic smoothing,
i.e., perturb the algorithm by introducing some probability
distribution in the intermediate steps. Our framework is built
on these differentiable greedy algorithms but is targeted
specifically for context-dependent routing problems.

III. PROBLEM FORMULATION

In this section, we first introduce the formulation of the
learning problem. Then, we explain the setup of the case
study and the parameterization of the objective.

We are interested in parameterized submodular objec-
tive function f(S,w), where w is the parameter vector.
Readers are referred to [14] for a formal definition. In
practice, such an objective is usually unknown and context-
dependent, i.e., the parameters w € WV depend on the
environment features. Our goal is to learn a function gg :
Z — VYV that maps the context observation z € Z to

the objective parameters w. Traditionally, finding the map-
ping ge and optimizing the downstream objective f(S,w)
are considered separately: given the training data D =
{(z1,w1), (22, w2), ..., (2p,wp|)}, first find the map-
ping ge by optimizing over € in a supervised fashion, and
then use the parameter w = gy(z) to optimize f(S,w).

By contrast, the proposed paradigm that integrates down-
stream optimization is given below.

Problem 1. Given the training data D =
{(z1,w1), (22, w2), ..., (zip|, wyp|)}, learn a function
Jdo parameterlzed by 0 such that the learning cost
L= ‘D‘ ZID‘ L (w;, ;) is minimized, where {;(w;, Ww;) is
defined through Egq. (1) to Eq. (3):

ge(zi) (D
S = S*(w;) by solving (5) with w =w; (2)
(wuwz) = (()awz) _f(ngi)a 3)

where S*(w;) denotes the solution of (5) returned by some
approximation algorithms with w = w;; f(S*(w;),w;)
denotes the decision quality when we use the ground truth
parameter w; for decisions; f (3 ,w;) denotes the decision
quality when we use the predicted parameter Ww; for deci-
sions, i.e., use w; to obtain the decision S’, but the decision
is evaluated w.r.t. the true parameter w;.

w;

The intuition for Eq. (3) is that we want to minimize
the gap between the decision quality of the true parameters
and that of the predicted parameters. One challenge is when
we use the chain rule to compute the gradient of the loss
function, we need to differentiate through the optimization
problem (the first term on the r.h.s. of Eq. (4)) as shown in
the illustrative computational graph in Fig. 1.

ol; ot Ow;

06 dw; 00
In the following sections, we will show how to approximately
compute the first term on the r.h.s. of Eq. (4).

“4)

IV. CASE STUDY

Suppose that there is a set of candidate routes, 7, each of
which starts and terminates at the same depot. Our goal is
to select a subset from 7 for UGVs to traverse and recharge
the UAV along the way such that the total number of UAVs
that UGVs will recharge is maximized.

Environment Model: As shown in Fig. 2, the working
environment is described by an area £ C R2. There are n,
UAVs that are executing persistent monitoring. The energy
consumption of UAVs will be affected by the wind. The
wind field is represented as a tuple (ws,w,), Where wg
and w, denote the description vectors for the speed and the
orientation of the wind, respectively. There are n, UGVs in
€, denoted by the set {1,...,n,4}.

UAV Behavior: There are three components defining the
behavior of each UAV. The first one is the task route, which
is defined as a sequence of ordered locations projected on
the ground, and the UAV will persistently monitor these

locations. The UAV will fly at a fixed speed v, between
two task locations and its energy consumption will be af-
fected by the wind. The second component is the recharging
strategy dealing with the depletion of the battery. The third
component is the energy consumption model. We use the
same model as that in [25].

Context Observation: Each observation z consists of two
components: the task routes of all UAVs; and the wind field
(ws,w,) of the working area.

If such submodular objective f is known, the problem
boils down to a submodular maximization problem with
a matroid constraint: let 7 be set of all candidate routes,
the problem is to select a subset from 7 to maximize the
objective, i.e.,

f(S,w), (&)

max
SCT, |S|<ng

where w denotes the parameters in the objective function.

Parameterization of the Objective Function In general,
such applications have no closed-form expression of the
objective function. In this paper, we consider the case where
the objective function f is the linear combination of a set
of basis functions. Such parameterization techniques are
commonly used in the literature on learning submodular
functions [3], [14], [26]. Similar to [14], we assume without
loss of generality that each basis function is characterized by
a subset W; C V. That is, for any W;, let ¢;(S) be a count
of how many vertices of the tours S lie in W;, then f; is a
functional of ;(S).

The overall objective function is:

n |7

w) = Zzwi,jfi,j(‘s)a (6)

i=1 j=1

where w = [w; ;] denotes the matrix of unknown parameters
of the function; basis functions are defined as f; ;(S) =

SIS %(a Y and 7v; € (0,1] comes from a known set I".

V. LEARNING ALGORITHM

In this section, we describe the stochastic techniques to
smoothe the greedy algorithm for submodular maximization
and how can we apply the result to our framework. The key
idea is: by introducing proper stochastic perturbances into
combinatorial optimization, the expected output as a function
of its parameters can be smoothed and differentiable.

A. Smoothed Greedy Algorithm

The Smoothed Greedy (SG) algorithm is given in Al-
gorithm 1, which was first proposed in [24]. For a
given w € W, In each iteration step, we compute
marginal gain fs(u,w) for each candidate element u €
U (line 3); we define ni = |Ug|. Let my(w) =
(mg(ur, w), mg(ug, w), ..., mg(un,, w)) € R" denote
the marginal gain vector. The probability vector, pi(w) =
(pk(ur,w), ..., pr(tn,,w)), is computed as:

pr(w) = argmax{(my(w), p) = A(p)}. ()

PEATE

Algorithm 1: Smoothed Greedy

Input : f(S,w) and independent set 7
Output: Set S of tours for each robot
1S+ 0
2 for k< 1to N do
// find all addable elements in the current round

3 Up={us,...,un, < {T¢S|SU{T} €T}
/I marginal gain for all addable elements

4 mk(w)<_(fS(u17w)7'~-7f5(unww))

// compute a probability distribution

s | pr(w) < argmax,can, {(my(w), p) — Q(p)}
6 s < sample u € Uy with probability py(u,w)

7 | S+« SU{s}

8 end

9 return S

where A" = {p € R"™ | p > 0,,,(p,1,,) = 1} is the
(n — 1)-dimensional probability simplex; £ : R™ — R is
a strictly convex function and is a regularization function.

Next, we will show the theoretical results for Algorithm 1.
Detailed explanations and proofs can be found in [24]. Let
d > 0 be a constant that satisfies § > Q(p) — Qi (q) for all
k=1,...,|S| and p,q € A™. We will use § to quantify
the performance of SG.

As shown in Theorem 1 in [24], in expectation, the output
of SG satisfies that E [f(S,w)] > (1 — 1)f(OPT,w) —
ong, where OPT denotes the optimal solution. This result
suggests that the SG algorithm in expectation almost pre-
serves the performance of the deterministic greedy algorithm,
whose approximation factor is (1 — 1), with one extra term
dng, which is the price for differentiability. It should be
noted that by using SG, the output is stochastic and we
focus on the expected result of the output. The regularization
functions () are chosen to guarantee the expected outputs
of SG differentiable. Examples for €2; will be discussed in
the Sec. VI.

B. Gradient Estimation

Let Oz be the set of all possible solutions returned by SG.
Let p(S,w) € [0, 1] be the probability for S € Oz. Specif-
ically, for a returned sequence S = {s1,...,5s} € Oz,
the assomated probability can be computed as p(S,w) =
Hk 1 Pk(sk, w), where py (s, w) is the element of pj(w)
defined Eq. (7) corresponding to s € Uy.

Next, we will show how to construct a gradient esti-
mator based on the output distribution. Let Q(S) be any
scalar- or vector-valued function. We want to compute
VuwEspmw) [Q(S)] = Y sco, R(S)Vwp(S, w). Since the
size of the independent set will increase exponentially w.r.t.
the size of the ground set, it is computationally expensive
to compute this gradient exactly. Instead, we will use the
following unbiased estimator for the gradient in training.

As shown in Proposition 1 in [24], let S; =
(815--+815;]) ~ p(w)(j = 1,...,N) be outputs of SG.

Then, N
1
7 2 QS) © Va lnp(S;, w) (8)
j=1

is an unbiased estimator of V. Espw) [Q(S)], where ®
denotes the outer product.

C. Differentiable Submodular Maximization for DOL

For the i-th training sample (z;, w;), the associated cost
w.r.t. 8 is redefined for SG as:

(i, w;) = f(S"(wi), wi) = Eg e, [f(g”wi)} , 9

where w; = g(z;,0).

For a training set with batch size M, we are interested
. c e .. s . . 1 M
in minimizing the empirical objective function 57 > ;= ;.
where p(w) is the output distribution of SG and ¢; is defined
in Eq. (9).

We compute the gradient using the chain rule:

a]ESNp(wi) [f(‘évwi)} _ ow;

ow; 00’
(10

ol _ Ol dw;
90 dw; 00

where W = g(z;,0). R
Suppose we take N trials of SG, by setting Q(S) =
f(S,w;) in Eq. (8), we have:

r.h.s. of (10)
1N \ ow; (11
=N Z f(Sj,w;) ® Vg, Inp(S, w;) - 801’
j=1
where w; = g(z;,0).
Then, the remaining problem is how to compute

Ve, 1np(3j,121i) for a given sample Sj = (31,...,s|3j|)
returned by SG. It should be noticed that V., In p(S;, ;) =
S; N S .
Ve, T2 plsko b)) = Y02 sy Ve Pk, 3),
where p(sk,w;) can be obtained when we run the SG al-
gorithm. Therefore, we just need to compute V.5, p(sg, W;).
Let py (w;) be the probability returned by Eq. (7) at the step
k corresponding to the sample S;. By using the chain rule,

Vi, Pk (Wi) = Vin, Pr(my) - Vg, my(w;), (12)

the row in Vg, pr(w;) corresponding to s, will give
V., P(Sk, w;). The first term on the r.h.s. of Eq. (12) can be
computed using auto-differentiation tools [16] (the objective
in (7) is strictly concave) and the second term can be
computed by differentiating the parameterized submodular
objective. We can then use the above result to compute the
gradient of a batch and update the parameters 0 using the
stochastic gradient descent method.

VI. EXPERIMENTS

1) Simulation Setup:
Environment Model: There are n, = 10 UAVs and ny = 3
UGVs. The global wind w is represented as [a, b, w,|, where
a and b are the shape and scale parameters of Weibull
distribution, respectively, and w, is the wind direction.

UAV and UGYV Behavior: In this case study, we consider the
case that the task route is defined as a sequence of ordered
locations uniformly sampled from a circle whose center is
[Cz, Cy] and radius is r. Using this geometric information,
each route can be represented as a vector Cy,Cy,r. As
for the recharging strategy, we use a simple strategy in the
simulation: whenever the state of charge drops below 30%,
fly to the nearest recharging location waiting for the UGVs.
We use the same energy model as that in [25]. We generate
UGV routes by first randomly selecting a set of nodes and
then solving a Traveling Salesman Problem to get a route.
Context Input z and mapping gg(z): As shown in Fig.
1, each z consists of two components: the task routes
of all UAVs and the wind field vector [a,b,w,| of the
working area. Since the route of the UAV can be param-
eterized by a circle (C;,Cy,7), z can be represented as
[CL, C’;,rl, C2, C’;, 2., Cpe,Cpa v a,b,w,]. ge(2)
is instantiated using neural networks with one hidden layer
(of size 64) with ReLu activation function.

Regularization and Basis Function We choose the en-
tropy function for experiments. Specifically, when Q(p) =
e> i* p(u;) Inp(u;), where p(u;) is the i—th entry of p €
[0,1]™ and € > O is an arbitrary constant, § can be set
to elnny. For the road graph G = (V, E), we use graph
partition algorithms to generate nine sets of nodes, i.e.,
{W1i,...,Wy}. For each partition W; C V, we define three
basis functions for decay parameters v € {0.001,0.5, 1}.

2) Generate Training Data:

Raw Data: Based on the UAV UGV behavior models, we
build a simulator for the routing problems. Given simulation
parameters (e.g., UAV routes, and wind conditions), it will
simulate UAVs’ execution of persistent tasks. If we provide
several selected routes to the simulator, it will return the
number of UAVs recharged if UGV follows these routes.
Based on this simulator, for each context observation z, we
test multiple possible route selections and obtain a set of the
actual number of UAVs that UGV recharged. We will use
this raw data to obtain the training data.

To train the decision-oriented framework proposed in
Sec. III, we need the ¢-th data point to be in the form
(2, w;), where z; denotes the context input and w; is the
corresponding parameter vector of the objective function.
However, w; is not directly available and we need to do
some pre-processing of the raw data. Specifically, for each
z, we have a set of values for different selections, i.e.,
F={f(S1),..., f(S7)} We find the corresponding w by
solving the following regularized least square optimization
problem [26], i.e., mingso 07| £(Si,w) — f(S)[I3 +
&|Jw]|3, where € is a user-specified regularization parameter.

3) Results:

Fig. 4 shows the learning curves over epochs. In each
epoch, we compute the gradient by sampling a batch size of
40 in each iteration. We can see that as the training epoch
increases, the loss will gradually decrease to a steady value.
It should be noticed that the loss here represents the solution
quality gap between the solution obtained using ground truth
parameters and the solution obtained using predicted param-

—— LossL

Training Loss
[
o N °
8 & g 8

123456 7 8 9101112131415 16
epoch

Fig. 4. Per epoch loss curve of DOL.

TABLE I
TEST RESULTS FOR LEARNED MODELS.

Avg # of UAV recharged DOL two-stage random
ng =6,ng =3 5.3+£0.5 4.6+04 21+14
ng =10,ng =3 9.2+£0.7 8.5+0.6 4.5+1.3
ng =15,n9 =4 141+08 132407 75+£1.6

eters as defined in Problem 1. Therefore, such a decrease
suggests that the decision quality is improving.

After training, we test the performance of the learned
models using the simulator. We generate a set of context ob-
servations {z; }es and compute the corresponding predicted
weights {wW; }est- Then, we use {w; }es to select routes and
feed the route to the simulator to obtain the actual number
of UAVs recharged. The result is shown in Table VI-.2. We
compare three approaches: DOL (our), two-stage (classic
supervise learning with MSE loss), and random (select routes
randomly without any learning). As shown in Table VI-.2,
our approach on average can result in better route selection
and recharge more UAVs.

VII. CONCLUSION

We propose a decision-oriented learning framework for
mobile charging routing problems. We first show how to
formulate the learning problem in the context of mobile
charging routing. Then, we show how to make submodu-
lar maximization a differentiable layer by using stochastic
smoothing techniques. The proposed framework and formu-
lation are validated through several case studies.

REFERENCES

[1] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical
studies.” Journal of Machine Learning Research, vol. 9, no. 2, 2008.

[2] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Resilient active
target tracking with multiple robots,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 129-136, 2018.

[3] K.-S. Tseng and B. Mettler, “Near-optimal probabilistic search via
submodularity and sparse regression,” Autonomous Robots, vol. 41,
no. 1, pp. 205-229, 2017.

[4] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Math-
ematical programming, vol. 14, pp. 265-294, 1978.

[5] D. Mitchell, N. Chakraborty, K. Sycara, and N. Michael, “Multi-robot
persistent coverage with stochastic task costs,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 3401-3406.

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

J. Derenick, N. Michael, and V. Kumar, “Energy-aware coverage
control with docking for robot teams,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2011, pp. 3667—
3672.

L. Liu and N. Michael, “Energy-aware aerial vehicle deployment
via bipartite graph matching,” in 2014 International Conference on
Unmanned Aircraft Systems (ICUAS). 1EEE, 2014, pp. 189-194.

K. Yu, J. M. O’Kane, and P. Tokekar, “Coverage of an environment
using energy-constrained unmanned aerial vehicles,” in 2019 interna-
tional conference on robotics and automation (ICRA). 1EEE, 2019,
pp. 3259-3265.

G. Shi, N. Karapetyan, A. B. Asghar, J.-P. Reddinger, J. Dotterweich,
J. Humann, and P. Tokekar, “Risk-aware uav-ugv rendezvous with
chance-constrained markov decision process,” The 61th IEEE Confer-
ence on Decision and Control (CDC), 2022.

A. B. Asghar, G. Shi, N. Karapetyan, J. Humann, J.-P. Reddinger,
J. Dotterweich, and P. Tokekar, “Risk-aware resource allocation for
multiple uavs-ugvs recharging rendezvous,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2023.
A. N. Elmachtoub and P. Grigas, “Smart “predict, then optimize”,”
Management Science, vol. 68, no. 1, pp. 9-26, 2022.

B. Wilder, B. Dilkina, and M. Tambe, “Melding the data-decisions
pipeline: Decision-focused learning for combinatorial optimization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 1658-1665.

J. Mandi, P. J. Stuckey, T. Guns et al., “Smart predict-and-optimize
for hard combinatorial optimization problems,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 02, 2020, pp.
1603-1610.

N. Wilde, A. Sadeghi, and S. L. Smith, “Learning submodular
objectives for team environmental monitoring,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 960-967, 2021.

B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 136-145.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” Advances in neu-
ral information processing systems, vol. 32, 2019.

S. Muntwiler, K. P. Wabersich, and M. N. Zeilinger, “Learning-based
moving horizon estimation through differentiable convex optimization
layers,” in Learning for Dynamics and Control Conference. PMLR,
2022, pp. 153-165.

B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J.
Pappas, and M. Morari, “Approximating explicit model predictive
control using constrained neural networks,” in 2018 Annual American
control conference (ACC). 1EEE, 2018, pp. 1520-1527.

M. Bhardwaj, B. Boots, and M. Mukadam, ‘Differentiable gaussian
process motion planning,” in 2020 IEEE international conference on
robotics and automation (ICRA). 1EEE, 2020, pp. 10598-10604.
A. Ferber, B. Wilder, B. Dilkina, and M. Tambe, “Mipaal: Mixed
integer program as a layer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 1504-1511.

M. V. Poganci¢, A. Paulus, V. Musil, G. Martius, and M. Rolinek,
“Differentiation of blackbox combinatorial solvers,” in International
Conference on Learning Representations, 2019.

J. Djolonga and A. Krause, “Differentiable learning of submodular
models,” Advances in Neural Information Processing Systems, vol. 30,
2017.

S. Sakaue, “Differentiable greedy algorithm for monotone submodu-
lar maximization: Guarantees, gradient estimators, and applications,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 28-36.

F. B. Sorbelli, F. Coro, S. K. Das, and C. M. Pinotti, “Energy-
constrained delivery of goods with drones under varying wind con-
ditions,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 9, pp. 6048-6060, 2020.

S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes, “Learning mix-
tures of submodular functions for image collection summarization,”
Advances in neural information processing systems, vol. 27, 2014.

	Introduction
	Related Work
	Problem Formulation
	Case Study
	Learning Algorithm
	Smoothed Greedy Algorithm
	Gradient Estimation
	Differentiable Submodular Maximization for DOL

	Experiments
	Simulation Setup
	Generate Training Data
	Results

	Conclusion
	References

