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Abstract

We consider sampling from a probability distribution on {0, 1}™, or an equivalent high-dimensional binary space. A number
of important applications rely on sampling from such distributions, including Bayesian variable selection problems and fitting
Bayesian regression trees. Direct sampling is prohibitive when the dimension is large due to the fact that there are 2™ possible
states. One approach to sampling such distributions is to use a Metropolis—Hastings algorithm, which can require choosing
a decent proposal mechanism, with a default choice being the single-component switch proposal move. This is problematic
when multiple modes exist. In this paper, we propose a latent variable uniform sampling algorithm, such as a latent slice
sampler, which allows for large moves and proposal paths which give non-negligible probabilities for moving between modes,
even when the probabilities of states between these modes is low. A number of illustrations are presented, focusing primarily
on demonstrating the advantages over current generic samplers.

Keywords Ising model - Latent slice sampler - Markov chain Monte Carlo - Variable selection - Regression trees

1 Introduction

Slice sampling is a powerful technique for generating ran-
dom variables from complicated density functions; see Besag
and Green (1993), Damien et al. (1999), and Neal (2003).
The motivation is simple enough; for a target density 7 (x),
x € RM  the idea is to introduce the latent variable w and
consider the joint density f(x, w) = 1(w < 7w (x)). A Gibbs
sampler can be implemented in which the sampling of w
is straightforward and the sampling of x, conditional on w,
involves sampling uniformly from the interval A,, = {x :
m(x) > w}. It is the sampling of this latter uniform distri-
bution which poses the problem for slice samplers. Indeed,
uniform sampling from high dimensional spaces is a prob-
lem in its own right; see, for example, Chen et al. (2018).
However, the aim would be to achieve this without recourse
to complicated MCMC algorithms since this would defeat
the object of the slice sampler, and one could well be better
off performing a direct MCMC on 7 (x).
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In Neal (2003) a clever procedure for sampling the uni-
form distribution on A, using a transition density f(x’ | x)
satisfying f(x" | x, w) = f(x | x/, w), and hence is station-
ary with respect to the target uniform density. A strategy for
proposing a x’ given x satisfying the reversible condition is
given in Neal (2003). This involves a stepping out or dou-
bling procedure combined with a shrinkage procedure. The
former procedures require choosing a width parameter which
becomes fixed over the run of the chain and is, particularly
in high dimensions when one is required for each dimen-
sion, potentially a tricky tuning parameter to set. Further, the
stepping out and doubling procedures need to be performed
sequentially with a computation of 7 (x) after each step. This
makes it difficult to implement in high dimensions.

On the other hand, Li and Walker (2022) introduce further
latent variables which facilitates the uniform sampling via a
Gibbs framework. The algorithm avoids the stepping out or
doubling procedures and hence avoids the need for the tuning
width parameters and a potentially slow sequential search
for a valid substitute for A,, when the dimensions are large.
They start with, writing in the one dimensional case, the joint
density

fe,w,s,)=1w <7(x)s ' p)1(x — 1] <s/2) (1)

for some density function p(s) on (0, o). As before, all
variables are easy to sample and now the required den-
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sity for x we need to sample is f(x | w,s,l) « 1l(w <
m(x))1( —s/2 < x <1+ s/2). This structure allows for
an easy search for a valid substitute for A,,, just from the
sampling of s. It is then also easy to set up a sequence of pro-
posals x’ satisfying f(x" | x,w,s,]) = f(x | x', w,s,[).
The algorithm is detailed in Li and Walker (2022); briefly
here, take an initial proposal x* uniformly from the interval
(L-,Ly) =(—s/2,14 s/2) and keep repeating this until
w < m(x*). After each rejection, the uniform interval, cur-
rently (L_, L), can be narrowed to (x*, L) if x* < x or
(L_, x*)if x* > x, where x is the current value. As the rejec-
tions mount, the interval will start to concentrate on x. This is
effectively equivalent to the shrinkage procedure described
in Neal (2003). Hence, at the very least, the algorithm can
become a local sampler, but with the possibility of having
large jumps.

The accepted sample x” and the current value are reversible
according to this procedure; i.e. f(x’ | x,...) = f(x |
x’,...). This is one of the ideas behind (Neal 2003), though
we avoid the stepping out and doubling parts of his algorithm.
Extending the dimensions is straightforward and numerous
illustrations are presented in Li and Walker (2022).

Walker (2014) and Ekin et al. (2022) cover the case when
x € NM. However, a class of problematic density functions
is given by
w21y ey ZM) 2)
where each z; € {0, 1}, or an equivalent binary set. The two
aforementioned papers do not cover this case; they would
both collapse to a Gibbs sampler, which is not in general
suitable for the distributions we are going to look at.

When M is large these binary joint distributions can be
difficult to sample, particularly if they are multimodal. Typi-
cally, Metropolis algorithms (Metropolis et al. 1953) or Gibbs
samplers (Tierney 1994) are applied where one of the vari-
ables is updated at a time. Such algorithms may not produce
sufficiently well-mixing chains, or even a chain that moves
at all. We demonstrate through a number of illustrations the
mixing abilities of the latent slice sampler for multivariate
binary distirbutions. We compare with other generic algo-
rithms, such as the single flip proposal Metropolis algorithm,
which is named the Metropolized Gibbs sampler in Schafer
(2012). Our algorithm is closely related, but an extension of
the random walk kernel sampler, described, for example, in
Schafer and Chopin (2013). The algorithm of Schafer and
Chopin (2013) is sequential Monte Carlo (SMC). However,
there is a necessity for resampling which requires a Metropo-
lis step for each m;, where r indexes the temperature, which
moves to temperature 7' for which 77 = . The Metropo-
lis step uses an independence proposal which depends on an
estimated parameter, and is not always trivial to estimate,
requiring in some instances a Newton-Raphson sequence
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to find the best proposal density. The paper of Schafer and
Chopin (2013) also describes a number of MCMC algorithms
and discusses the merits of the two types of algorithm; i.e.
SMC and MCMC.

Two recent papers for sampling continuous multimodal
distributions include (Tak et al. 2018) and Pompe et al.
(2020), but we do not believe these are suited to binary vari-
ables.

There are models, such as the Ising model, where due to
the nature of the distributions, specialized algorithms work,
such as the Swendsen—Wang (Swendsen and Wang 1987) and
Wolff (Wolff 1989) algorithms. We will develop an alterna-
tive to the uniform sampler based on slices for this model.
Just as the latent slice sampler provides a uniform conditional
density for the variable of interest, this aspect is retained
though the uniform conditional density is obtained in a dif-
ferent way.

In this paper, we apply a latent uniform sampling algo-
rithm to the joint density (2). For the latent slice sampler the
ideais tointroduce a latent variable, say y; foreach z;, and set
zj = 1(y; > 0). This gives us a joint density in (y;) which
can be sampled as in Li and Walker (2022). If it is possible
to allow the sampler on the (y;) to move sufficiently around
some bounded space in M-dimensions, we should be able to
construct a sampler which also jumps around in the {0, 1}
space. For the Ising model we use a different construct to
obtain a latent uniform sampler directly on the (z;).

The layout of the paper is as follows: in Sect. 2 we describe
the details of the algorithm. We also provide some theory
about the algorithm and prove the reversibility of the sam-
pling of f(x" | w,s, ). In Sect. 3 we first present a couple
of introductory examples with some further substantial illus-
trations presented subsequently; in Sect. 3.3 we consider a
conditional logistic distribution, Sect. 3.4 a Bayesian vari-
able selection model, and in Sect. 3.5 we consider a Bayesian
decision tree model. In Sect. 3.6 we present a comparison of
the latent slice sampler and Metropolis algorithms by look-
ing at eigenvalues of transition probability matrices. Section
4 considers the special case of the Ising model and the paper
concludes with a brief discussion in Sect. 5.

2 Slice sampling algorithm

Sampling from 7 (z) is equivalent to sampling from the joint
density

f(y,w,s,l) 0(1<w <7r(zl,...,zM))

M
x Hsflp(sj)l(yj —sj/2<lj<yj+sj/2, |yjl < a>,
j=1
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where z; = 1(y; > 0), for some a > 0. The introduction
of the finite a here is to ensure the joint density is proper.
As with the continuous case, the variables are all easy to
sample, and the y = (y1, ..., yu) can be sampled jointly,
as in the continuous case, and with the shrinking procedure,
until the proposal y* satisfies w < 7 (z* = 1(y* > 0)).
Write y* = y; as the initial proposal and, if all are rejected,
let (y}) be the sequence of proposals.

At each iteration, the initial proposal z* is being sampled
approximately uniformly on {0, 1}¥. This is equivalent to
restarting the chain. However, rather than the chain move
aimlessly along points with low probability looking for a
point with high probability, it drifts back to the current value,
with each interim point being tested for a possible move.
If nothing is accepted along the way, the chain stays at its
current value and the next iteration proceeds with another
uniform sample being generated. Viewed in this way, the
algorithm provides a jump mechanism with multiple propos-
als and if these are all rejected it behaves as a local sampler.

Here we write the algorithm (detailed as a single loop) for
the sampler for a given 7 and with a = 2 (the choice of a is
without loss of generality), and p(s) o s exp(—sA):

1. Initializing step: Given s = s1.) and z = z1.p, and for

eachi = 1,...,n, set y; > —a negative if z; = 0 and
yi < a positive if z; = 1.

2. Seta; =b; =0fori =1,...,n. Sample w = u; 7(z)
andfori = 1,...,n,take [; = y; —s;/2 + uy; s;, where

u1 is a uniform r.v. and the u,; are i.i.d. uniform r.v.s
3. Sample s; as an exponential r.v. with mean 1/A and
constrained to be greater than 2|l; — y;|. Set a; =
max{—a, l; — s;/2} and b; = min{a, [; + s; /2}.
4. Propose the new ylf as a; + v; (b; — a;), where the v; are
iid. uniformr.v.s, and z; = 1(y; > 0).
4a. Compute w’' = 7(z).
4b. If w’ > w then z = 7" and goto 2.
4c. Else, set ¢; = 1(y/ < ;) then reset ¢q; =
g max{a;, y;}+(1—q)a; and b; = (1—¢q) min{b;, y;}+
gb;. Goto 4 and repeat until w’ > w.

Anilllustration of the change from yy to y; in a one dimen-
sional case is presented in Figs. 1 and 2. The step occurs at
the origin 0 and the end points are a. In the first, both 7 (0)
and 7 (1) are greater than w, whereas in the second it is only
(1) which is greater than w.

To demonstrate the properties of the sampler, we now
show that it can propose any point from any current loca-
tion with high probability. Due to the independence nature
of the proposals, we only need to consider one dimension.
Let yo and 59 be the current values and assume without loss
of generality that yy > 0. We take p(s) to be proportional to
se~%/* 50 the conditional for s constrained to be larger than
can be sampled as ¥ + 1, where ¥ is an exponential random
variable with mean A.

y1 ~ Uniform(f -s / 2, £ + s/2)

& ° ° &
* L 2 * 4

{-s/2 { Yo £+ s/2

Fig.1 Latent sampler for 7 (1), 7 (0) > w

y¥1 ~ Uniform(0, ¢ + s/2)

& Py ® &
<> L -« \ g

Yo ¢+ s/2

¢-s/2 4

Fig.2 Latent sampler for only 7 (1) > w

Lemma 1 The probability that the proposal for y, i.e. y*, is
of opposite sign to yo > 0 is given by
2v—1
O.Smax{o, - W}
¥ +502v — 1]

where v is an independent standard uniform random variable

The proof is straightforward. Noting that 0 < yp < a we
see that provided A is sufficiently large, the probability of y*
being negative when yy is positive (and vica versa) can be
close to %

The role of a is to ensure the density for y from

p(y,l,s) x 57! p)1(y—s/2<l<y+s/2)

is proper. Its value can be taken without loss of generality,
but the choice of A would then depend on it. The basic idea
is to ensure the proposals for each y can be of either sign. If
so and yp are the current values, then the initial proposal for
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y is from
(max{a,l — s/2}, min{a, [ + s/2})

and in terms of yg and so we have [ — s/2 = yg — (|c| —
c)so/2 —€/2and I + s/2 = yo + (Jc| + ¢) s0/2 + €/2,
where ¢ = 2v — 1 and v is a standard uniform r.v., and €
is the exponential r.v. with mean 1/A. If we want these to
cover both positive and negative values, but not excessively,
we would as a rule of thumb take A = 1/(2a). In short, we
ensure that the sign of the proposals for the y can switch with
high probability.

Before proceeding we focus on the sampling of the f(y |
w, s, I) viaareversible Markov sequence. To do this we set up
a more generic setting for the problem. So let f(y) o< 1(y €
C) 1(y € B) where C is an unknown interval, but a specific
value of y can be tested to see whether it lies in C or not; i.e.
y € C < w < g(y) for some continuous function g,
and B is a known single connected interval. Define the initial
B = By = (ap, bo) and let y( be the current point which lies
in C N B. The sequence of proposals (y,),>1 is given by

Vr =ar-1+ ur(br—1 —ar,—1), 3)

where the (u,) are an independent sequence of standard uni-
form random variables, and if y, ¢ C, the B,._; is updated
to B, via

ar = ar—1 1(yr > yo) + yr 1(y» < yo) @)
by = br—1 1(y; < yo) + yr 1(yr > y0)-

This sequence continues until y, € C for some r.

Lemma 2 If I, is the current length of the interval from which
vy is taken uniformly, then the size of the next interval is ran-
dom and I, +1 = u I, where u is a uniform random variable
from (0, 1) and independent of I,.

Proof If the interval B, = (a,, b, ), then y,| = a, +u(b, —
a,), and

ary1 = ar 1(yr41 > yo) + (ar +u(by —a;)) 1(yr41 < Yo)
and

bry1 = by W(yrg1 < yo) + (ar + u(br — ar)) 1(yr41 > yo).
Hence,

liv1 =bryy —ary1 = (by —ay)

X ((1 —w1(yr+1 > yo) + ul(yry1 < )’0)).

This completes the proof. U

@ Springer

Corollary 1 In one dimension, if m = min, {1, /Iy < €}, then
m is a 1 4+ Pois(— log €) random variable. In n dimensions,
and with the size of interval is represented as I; for i =
1,...,n, then if m = min,{max; I;;/lio < €}, then m is
the largest order statistic of n independent 1 + Pois(— log €)
random variables.

These two lemmas indicate how the sampler acts as both a
jump, almost uniform, and local sampler. And recall that at
each iteration as the sampler moves from its initial proposal
y* back to yp, a new proposal is being made. In short, a
sequence of proposals is being generated ranging from a jump
proposal to a local proposal, the latter applying if all the jump
proposals are rejected.

The next two results establish that our shrinking proce-
dure leaves the posterior distribution invariant. First, we note
that Corollary 1 implies that the shrinking procedure will
terminate almost-surely for almost-all starting values y. In
particular, it will terminate when y is a continuity point of
g(y), and the set of discontinuity points of g(y) has Lebesgue
measure 0.

Lemma 3 Let J denote the number of rejected points in the
shrinking procedure and suppose that y is a continuity point
of g(v). Then J is finite almost-surely.

Proof With probability 1 we will have w < g(y), and by
continuity we will have w < g(y =% ¢€) for sufficiently small
€. Hence, if the shrinking procedure is eventually contained
in an e-neighborhood of y the procedure will terminate.
Corollary 1 implies that the time for this to occur is Pois-
son distributed, and hence finite almost surely. O

Theorem 1 The shrinking procedure defined by (3) and (4)
defines a Markov transition function Q(y | y',w,s,I)
which is reversible in the sense that f(y | w,s,l) Q(y |
yow,s, )= fO Tw,s, )00 |y, w,s,0).

Proof For simplicity, we will consider only the case of uni-
variate y; the proof for multivariate y is essentially the same.
Also, we suppress dependence of Q on w, s, [ to lighten nota-
tion. First, we note that f(y | w, s, /) is uniform on the set
{y:w=<gO®),lely—s/2,y+s/2], |y| < a}.Ifeither y or
v’ are outside of this set, we will have f(y | w,s,1) Q()y' |
y) = fO& | w,s,1)Q(y | y) = 0 trivially, so assume
without loss-of-generality that this is not the case.
Following Neal (2003), weletr = (rq, ..., rj) denote the
sequence of rejected points in the shrinking procedure; by
Lemma 3, r is a random vector of finite length. Let Q(y’, r |
y) denote the transition density of moving from y to y’ via
the intermediate rejected points r; formally, Q(y', r | y) isa
density with respect to dy x Zjo:o Aj(dr) I(J = j) where
Aj denotes Lebesgue measure on R’. To show reversibility,
it suffices to establish the stronger result that Q(y’, r | y) =

Q(y,r |y forall r. To show Q(y',r | y) = Q(y,r | ¥),



Statistics and Computing (2023) 33:102

Page50f14 102

we first consider the case that some r; lies in between y
and y’. In this case, the shrinking procedure starting from y
will eliminate y’ as a potential value, and vice-versa. Hence
QO/,r | y) = Q(y,r | y) = 0 in this case. Otherwise,
by the uniformity of the sampling, we have Q(y,r | y') =
oy, rly) = ]_[]J-:O(bj — aj)_1 where (ag, bg) is the start-
ing interval, (aj, by) is the interval after rejecting the joint
r1, and so forth. Hence Q(y,r | y') = Q(y',r | y).

The logic behind extending this proof to the multivariate
setting is essentially the same: we again introduce the set
of intermediate moves r, where it will only be possible to
transition from y to y’ if none of the rejected proposed points
¥’ for coordinate j lies in between y; and y}, and in this case
the probability of transitioning from y to y’ via r is the same
as transitioning from y to y’ via r by uniformity. O

3 lllustrations

Here we present a number of illustrations, starting with two
simple expository examples. We then move to more substan-
tive cases involving high dimensional models, including a
conditional logistic distribution, a variable selection model,
and a Bayesian decision tree model. In many cases we com-
pare with the Metropolis—Hastings algorithm. We refer the
reader to the paper (Li and Walker 2022), where in Sect. 3, the
authors provide a detailed comparison of their slice sampling
algorithm with the slice sampler of Neal (2003). In partic-
ular, they make comparisons involving EES. Results should
be transferable because the latent slice sampler and the algo-
rithm of the present paper share key properties in terms of
how elements of the proposals are made.

3.1 Example 1

To demonstrate the accuracy of the algorithm we present a
simple example where M is small enough so we know exactly
the 2™ probabilities. We take M = 3 and

! !
T(21,22,23) = €47/ Y et
zeC

where C is the set of 8 possible values of z. The matrix
A is randomly generated with independent standard normal
random variables. The matrix A is

—0.322 —0.314 —1.541
0.332 1.109 —-0.909
—0.391 0.213 0.118

A=

and the correct probabilities are g 0,0 = 0.099, 70,1 =
0.111, mp,1,1 = 0.168, m1,1,1 = 0.018, w01 = 0.012,
mo.1,0 = 0.300, w00 = 0.072, 71,10 = 0.221. The

1.0

- © w®ao ®» @ o o o o ao aD o amo am

06 08
| |

04

02
|

- @ o e o crp D IS GENTD GO GEIEED | GEOIED  aDdd @ O

00

T T T T T T
o 20 40 60 80 100

iteration

Fig.3 Plot of first 100 samples of z;

sum(z)
4
1

T T T T T
o 2000 4000 6000 8000

iteration

Fig.4 Plot of sum of components of z vector

algorithm was run for 100,000 iterations and the estimated
probabilities are 30,0,0 = 0.097, ;T\O,O,l = 0.113, 5'[\(),1’1 =
0.171,71,11 = 0.018, 7101 = 0.012,7p.10 = 0.295,
71,00 = 0.072, 71,10 = 0.221. The mixing is excellent;
as an illustration we present a plot of the first 100 samples of
the (z1) variable in Fig. 3.

The choices for the algorithm include p(s) and a. The idea
is to enable the intervals (/ —s/2 <y <l +s/2N|y| < a)
to be large; therefore a is not such an important choice, and
we fix it at 2, while to ensure the largest intervals we take
p(s) o se™** with A = 0.05. Note then that the sampling of
the s within an iteration is an exponential random variable
with parameter A added to 2|y —[|.

3.2 Example 2

Another example, but a demanding one, is taking M = 8
and logm(z; = 1) = logm(z; = 0) o 100 with all the
other vectors for z have logw(z) o 1, so the probabilities
differ by 100 on log scale. This distribution is bimodal with
no route via local sampling from one to the other. Indeed,
any local sampler would fail to move from one of the modes
once there.
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This illustration is as difficult for local samplers as it
possibly can be for distributions on {0, 1}*. There are two
separated modes with single points and with all other proba-
bilities effectively 0. The only way to be able to jump between
modes in this case is to have uniform proposals. Our algo-
rithm has this as a key component. Needless to say, the
Metropolis sampler or Gibbs sampler does not switch modes
once one has been reached.

The algorithm mixes over the two modes well; see Fig. 4.
The vertical axis represents the sum of the components of the
z vector which has modes at 0 and m. A pure local sampler
would of course not leave a mode once reached. To test this
illustration to an extreme, we set M = 20. On a number
of runs of size 10 we get at least one switch between the
two modes. Note that 220 is just over 1,000,000. Hence, the
nature of the sampler is as if we restart the chain randomly at a
location for each iteration. However, instead of the chain then
moving locally about this location, it moves—with proposals
at each step, which can be accepted—towards the previous
location and hence can then at least mimic a local sampler.

3.3 Logistic conditional distribution

The joint distribution on (z1,...,zy) here is given by
w(2) =1L, pi (1—pi)' =4, where p; = p(z1i-1) = [1+
exp(—s;)]~ ! and s; = a;; + le;]l a;j z; with A = (a;j) j<i
a lower triangular matrix. With i = 1 we have s; = aj ;.
This joint binary distribution appears in the PhD Thesis of
Schafer (Schafer, 2012).

The aim here is to compare the latent slice sampler with
the Metropolis single flip algorithm. This is named the
Metropolized Gibbs sampler in Schafer (2012) and in general
can be shown to be an improvement on the Gibbs sampler;
see Liu (1996). An alternative algorithm in which proposals
7/ are made uniformly on |7/ — z| < k for some k, Schafer
and Chopin (2013), can be seen as a special case of our own
algorithm, in that we have a framework in which k can be
made random for each iteration.

The elements of the A matrix are generated using indepen-
dent uniform random variables from the interval (—2, 2). We
take M = 30, so the size of space of possible outcomes is 23°
which is approximately 1000 million. To assess how different
sampling algorithms work in this example, it is noted that the
joint distribution can be sampled exactly using the sequence
of conditional distributions p(z; | z1:;—1). We therefore ran
three chains for 5, 000 iterations each; the correct sampling
algorithm, the latent slice sampler, and the Metropolis algo-
rithm.

We focus on the estimation of the correct mean values from
the samples, taking as the benchmark the means from the
samples from the correct conditional sampler. The results are
presented in Fig. 5. As can be seen, from this perspective, the
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Fig. 5 Means from Metropolis algorithm (dotted line), slice sampler
algorithm (dashed line) and the true means (bold line)

latent slice sampler significantly outperforms the Metropolis
sampler. In fact, for some of the (z;), specifically for those
i > 7, the Metropolis sampler did not move from the starting
value.

For this illustration we took p(s) o sexp(—s/10) and
a = 2. At each iteration of the chain, the latent slice sam-
pler makes a single jump proposal. As it shrinks back to
the current value, with proposals being rejected, it makes
new proposals as it goes. The average number of proposals
per iteration done this way is 6. Hence, the total number of
proposals is 6 x 5000. On the other hand, the Metropolis sam-
pler makes M proposals, one for each ordinate, per iteration,
resulting in the total number of 30 x 5000 proposals. Despite
the more proposals coming from the Metropolis sampler, the
slice sampler made more moves. Timewise, the algorithms
take roughly the same amount of time—a matter of seconds
for both.

3.4 Bayesian variable selection
In this subsection we obtain a joint distribution for the vari-

able selection indicators of a linear model. The model is given
by

)4

i =Y xijz;Bj + o€, )
j=1

where the z = (z;) are the indicators, taking the values

0 or 1, and the (¢;) are assumed to be independent stan-
dard normal. This model was first proposed in Kuo and
Mallick (1998) as an alternative framework to the hierar-
chical model of George and McCulloch (1993). We adopt a
slightly different prior set up compared to that of Kuo and
Mallick (1998). We write the likelihood, using A = 1/ o2, as
A2 exp {—3A(y — XB) (v — XB)} where X = X(Z with
X the design matrix based on the (x;;) and Z = diag(z;).
We take a g-prior (Zellner 1983) for B; so for some g > 0,
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B ~ N(0,g0%(X'X)™"). If Z = 0 then B = 0 which is
compatible with the idea that no predictors are active. The
prior for A is taken to be gamma with parameters (a, a).

The aim now is to find the marginal posterior distribu-
tion for z given the data. This involves some straightforward
integration. First

2172
POy I hx,2) cc A2 exp {—ia + 3¥'y)} (@)

X ex { 1y H }
P32 T+g XY(s
where Hy is the hat matrix corresponding to the X¢ and Z;
effectively removing the columns for which the z = 0, and
|z| is the number of {z = 1}. Hence, assuming a uniform
prior for z, we get

m(z ]y, x)

g \”? R, ~a-n/2
T+g la+3Y'y+ 3y Hxy/(0 + 9} :

On the other hand, Kuo and Mallick (1998) employed a
MCMC algorithm which worked as a Gibbs sampler and
sampled the conditional distributions of 8, z and A.

When the distribution 7 (z | y, x) is unimodal both the
latent slice sampler and Metropolis algorithms work well.
The latter, using single move proposals, mixes slightly better,
though all the marginal probabilities of the (z ;) are estimated
exactly the same. To illustrate this we take a sample of size
n = 100 and p = 3, 0 = 1, and the design matrix ele-
ments are taken as independent standard normal. The true
value of B is B = (0.3, —0.3, 0). We ran the slice sampling
algorithm for 10000 iterations and the means of the sampled
indicator variables were z; = 0.359, z> = 0.988, z3 =
0.090. With the same dataset, we ran a Metropolis algo-
rithm also over 10000 iterations. One iteration here involves
proposing a flip of each indicator variable and the Metropo-
lis accept/reject criterion is used to determine whether the
flip occurs or not. The corresponding sampled means are
zZ1 = 0.359, 7z = 0.984, z3 = 0.097, which are essen-
tially the same as those from the slice sampler.

In Fig. 6 we illustrate the sampled indicator variable z; for
both the slice sampling algorithm (top) and the Metropolis
algorithm (bottom) over a period of 100 iterations. It can
be seen the Metropolis algorithm mixes better than the slice
sampling algorithm. However, in this simple case the local
sampler is effective as the distribution of z is well behaved
and nicely unimodal. The slice sampling algorithm acts as
both a local and global sampler, explaining the differences.

However, when 7 (z | x, y) is bi-modal, the mixing of the
latent slice sampler is superior due to its ability to make large
jumps in the z-space. A bimodal distribution can be arranged
and can also occur naturally when there is high co-linearity
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Fig.6 Comparison of mixing of slice algorithm and Metropolis algo-
rithm

08

04

00

08

04

00

o 20 40 60 80 100

Metropolis

Fig.7 Comparison of switching between modes for latent slice sampler
(top) and Metropolis (bottom)

between predictor variables. To describe the experiment,
we take n = 100 and p = 10, and only one predictor is
active, say x; = (x11,...,X1p), where the (x;) are taken
as independent standard normal. The true f; = 5 and we
generate the data with o = 1. To create co-linearity we
take xp; = 0.99x1; + 0.01§;, with the (§;) as indepen-
dent standard normal. Hence, the 7 (z | y, x) is bi-modal at
z=(1,0,0,...)and (0, 1,0, ...) with approximately equal
weight for each. Indeed, for both the slice sampling algo-
rithm and the Metropolis algorithm, the mean values of the
z1 and zp are 0.59 and 0.47, respectively.

However, for the single move Metropolis algorithm, the
only way from one mode to the other is to go via (1, 1, ...).
The probability of this combination is 0.05 and it is this prob-
ability which determines the mixing ability of the Metropolis
algorithm. For example, over 100 iterations, we would expect
5 switches. This is demonstrated in Fig. 7. The bold lines are
the z; values and the lines in red are the z, values. As is
seen the number of switches for the Metropolis algorithm is
6, while for the latent slice sampler it is 13, since for this
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algorithm the number of switches does not depend on the
probability of 7 (1, 1, ...).

If the probability of (1, 1, ...) becomes too small then
the ability of the Metropolis algorithm to move between the
two modes becomes increasingly improbable. To make this
point we take p = 2 and the value of g as 107 with all
other settings remaining the same. This makes the 7 (1, 1)
probability very small. The latent slice sampler chain mixes
well and the mean values for z; and z, are 0.504 and 0.4006,
respectively. On the other hand, the corresponding values for
the Metropolis sampler are 1 and 0, respectively, indicating
the chain is fixed at one of the modes. See also Example 2
in Sect. 3.2. The slice sampler can generate effectively uni-
form proposals in z space that, if rejected, set up a sequence
of proposals contracting back to the current point; on the
way back, we can then accept small local moves. So if the
Metropolis chain of only local moves based on flips of a
single z are switched to a uniform proposal to solve the bot-
tleneck problem, the inferiority to the slice sampler becomes
very apparent in that now the probability of a small move is
becoming negligible.

In Sect. 3.6 we discuss the mixing of the two types of
chain via transition matrices in z space. By only considering
4 states we can easily compute the second largest eigenvalues
of each transition matrix. Generally speaking, the second
largest eigenvalue quantifies the mixing of the chain, with
smaller eigenvalues corresponding to faster mixing chains.
The Metropolis chain has the bottleneck which creates a large
second-largest-eigenvalue, whereas the jumping potential of
our latent slice sampler allows the second largest eigenvalue
to be small. Though the setting is zooming in on a few states,
the problem is going to be the same whatever the overall
dimension of the z space is.

3.5 Bayesian decision tree methods

Methods based on Bayesian decision trees, and ensembles
thereof, have recently seen remarkable success across a broad
range of applications, including causal inference (Hill 2011),
survival analysis (Basak et al. 2020) and density regression
(Li et al. 2020). For a review of Bayesian decision tree meth-
ods, see Linero (2017). Let g(x; 7, M) denote a regression
tree such that g(x; 7, M) = ug if x is associated to leaf
node ¢ of decision tree T . Associated to the regression tree
defined by the decision tree 7 and the leaf node param-
eters M = {ug : € = 1,...,L} is a partition of the
predictor space; see Fig. 8 for a schematic depiction of this.
Bayesian regression tree models, such as the Bayesian CART
(Chipman et al. 1998; Denison et al. 1998), estimate 7 via
Metropolis—Hastings. The proposals used in practice are typ-
ically local in nature: we can convert a leaf node to a branch
with two new children (BIRTH), delete a leaf-pair and con-
vert their parent to a leaf (DEATH), change the splitting rule

@ Springer

i3

False

)

Fig.8 Left: an example of a decision tree 7 with leaf node predictions
{m1, 2, n3}. Right: the induced partition of [0, 112

of a branch (CHANGE), or swap the decision rules of two
neighboring branches (SWAP).

A challenge for inference with Bayesian decision trees
is that the posterior distribution frequently has several
well-separated modes. To make this point, consider the
“checkerboard” setting in Fig.9. The response Y; is sam-
pled from a N(go(X;), 0.1%) distribution where go(x) =
(l4x1] + [4x2]) mod 2. The function go(x)) can be repre-
sented exactly using a regression tree; an example of such a
tree is given in Fig. 10. However, due to permutation invari-
ance of go(x), the decision tree in Fig. 10 is not the only
decision tree capable of capturing go(x), and in fact there are
many equivalent ways of partitioning [0, 1]? in a way which
is consistent with go(x).

What makes the posterior of a decision tree difficult
to sample for this particular choice of go(x) is that (i)
typical Metropolis moves for decision trees, such as the
BIRTH/DEATH/SWAP/CHANGE moves described by Chip-
man et al. (1998) are only capable of making small changes
to the tree structure but (ii) moving to a different mode of
the posterior, which is associated to a vastly different tree
topology, must essentially be done in a single step. In other
words, all local modifications to the tree result in models
of exceedingly low posterior probability, so that all standard
Metropolis—Hastings moves will have acceptance probability
near 0. While this example is admittedly extreme, the gen-
eral phenomenon of regression tree posteriors having many
highly-separated modes is typical of practice (Chipman et al.
1998).

We show that the discrete latent slice sampler is capable of
switching modes of the posterior of our decision tree, despite
the fact that the sampler will make little use of the underlying
structure of the space of decision trees. For simplicity, we will
assume that the decision tree makes cuts only at the midpoints
of each coordinate of the hypercube associated with a given
branch. Let D denote an a-priori specified maximal depth
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Fig. 9 Samples of a response Y; = go(X;) + €; with ¢; ~ N(O, 0.1%)
plotted against the predictors X;; and X

' ' ' '

' ' ' '

Fig. 10 Example of a regression tree which is capable of exactly cal-
culating go(x)

of the decision tree. We represent a decision tree over two
variables (x1, x2) with a pair of binary vectors v, u of length
2P+l _ 1 (the maximal number of nodes of the tree), the
first of which indicates whether the associated node of the
tree is a leaf or a branch, and the second of which indicates
which variable the node will split on. We choose our prior
on (7, M) so that 7 has a uniform distribution over the
collection of all possible decision trees of maximal depth
D = 4 with ug ~ N(O, 300%). We then applied the latent
slice sampler to sample from 7 (7 | Yi,...,Y,) with u,
integrated out using via conjugacy of the normal distribution.

Figure 11 displays the mixing of the variables vy, v2, v4
(the splitting variables for several branches, including the
root), and the marginal log-likelihood of the tree for the
model. The fact that the log-likelihood is constant is not a

1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
@ 0.00 — 0.00
%‘ Tree Marginal Likelihood
@2 1.00 —— 674.000
0.75 673.975
0-50 673.950
0.2
673.925
0.00
0 25000 50000 75000 100000 0 25000 50000 75000 100000

Iteration

Fig. 11 Traceplots of the samples of the variables vy, vy, v4, and the
log-marginal likelihood of 7" produced from the latent slice sampler

concern, as the only trees with non-negligible posterior mass
are the trees which exactly partition go(x). We see, how-
ever, that the latent slice sampler is capable of navigating
across modes without ever making a move which lowers the
marginal likelihood. This behavior would be impossible if we
made local Metropolis—Hastings modifications to the tree,
because these modifications would inevitably result in the
log-likelihood decreasing substantially.

We conclude from this experiment that the latent slice
sampler provides an intriguing possibility for performing
MCMC on binary decision trees. Further modifications are
necessary to apply this approach to the decision tree models
used in practice—in particular, we require a latent slice sam-
pler which can accommodate both continuous and discrete
variables. We leave such modifications to future work.

3.6 Eigenvalues

Consider the joint probability mass function 7 (z1, z2) with
21,22 € {0, 1}and 7(0,0) = (1, 1) = § —eand (0, 1) =
m(1,0) = ¢, for some small €.

The Metropolis transition matrix obtained from proposing
aflip of a z;, j = 1,2, with probability % each is given
by

1_26 € €0

1-2¢ 1-2¢ 1-2¢
o |12 0 0 1/2
M=11,2 0 0 1,2
0 € €1 — 2¢
1-2¢ 1-2¢ 1-2¢

Here row 1 corresponds to (0, 0), row 2 to (0, 1), row 3 to
(1,0) and row 4 to (1, 1) with the same ordering for the
columns. It is straightforward to confirm = Py, = 7.

As can be seen, to arrive at (1, 1) from (0, 0), for exam-
ple, the chain must pass through either (0, 1) or (1, 0), yet
the probability of such a move is small. Hence there is a
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bottleneck separating (1, 1) from (0, 0). This will hinder con-
vergence of the chain, which can be measured in terms of the
eigenvalues of P. Indeed, the largest eigenvalue is 1, and
the second largest eigenvalue contributes to the convergence
rate: the closer it is to 1, the slower the rate. The distance
between 7 and 1y, where 7y, is the probability mass function
of z at iteration k, depends on 2k , where )\, is the second
largest eigenvalue of the transition matrix. See for example
Diaconis and Strook (1991). The second largest eigenvalue
is given by 0.89 when e.g. ¢ = 0.05 and is 0.98 when
e =0.01.

When we consider the transition matrix for the latent slice
sampler, we assume that the proposal is uniform, i.e. for any
z the proposal for the new z is uniform over the 4 states.
This is based on the idea that the y7s are positive or negative
with probability roughly % for j = 1, 2. For simplicity, we
consider a simplified transition matrix with strictly inferior
mixing compared to our latent slice sampler; specifically, we
ignore the multiple proposals possible during the proposed
states return to the current state. Such neglect of multiple
proposals only occurs for moves from either (0, 0) or (1, 1)
to either (0, 1) or (1, 0).

For a proposal frome.g. (0, 0) to (0, 1), acceptance occurs
when € > v (% — €) where v is a standard uniform random
variable. Hence the probability of acceptance is 2¢ /(1 — 2¢);
conversely, the probability of accepting a transition frome.g.
(0, 1) to (0, 0) is 1, assuming that € < %. Hence, the inferior
mixing transition matrix for the latent slice sampler in this
case is given by Pg equal to

}‘_’_%(]_ 26)%26 1 2¢ 1/4

1-2¢ 1—=2¢ 41=2¢
1/4 /4 1/4 1/4
1/4 14 1/4  1/4
1 2 1 2 1 1 2,
1/4 iTw iTe 1t 20— %)

The second largest eigenvalues are given by 0.44 when € =
0.05 and by 0.49 when € = 0.01, which is approximately
half the values from the Metropolis sampler.

To illustrate the theory, we simulate the latent slice sam-
pler algorithm with € = 0.05. We take a = 2 and p(s)/s
to be an exponential density with mean 20. Over a run of
10,000 iterations, the estimated transition probability from
(0, 0) to (0, 1) is given by 0.0283, whereas the value within
Pyg is evaluated at 0.0278, which is smaller than the estimated
value, yet extremely close to it.

Further, to investigate the assumption of uniform propos-
als, we recorded the number of first proposals to be 0 for
z1. Out of the 10000 from the run of the chain, 5003 were
0. See also Lemma 1 for theoretical support for uniform
proposals.
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4 The Ising model

In this section we consider the special case of the Ising model
and a new latent uniform sampler for sampling it. The proba-
bility model associated with the two dimensional Ising model
(Ising 1925) has joint density on a two dimensional lattice
given up to a constant of proportionality by

p(s) ocexpyJ Z i 8

<i,j>

The square lattice is of size d and the number of (s;) is D =
d?; one located at every grid point within the lattice. The
sum is over neighboring grid points and so, for example, if
the indices run from left to right along the rows from first to
last then < i, j > includes (1, 2), (1,d + 1), (d, 2d), and so
on. Further, each (s;) is associated with a spin which is either
+1 or —1. Here the J > O is the strength of interaction,
usually scaled and represented by J/(kT), where k is the
Boltzmann constant and 7 is the temperature. However, for
the purposes of the paper, we will simply use J.

The problem, which has attracted significant attention and
which is the focus of the present paper, is how to sample from
p(s). The original sampling algorithm was the Metropolis;
see Metropolis et al. (1953), in which a single point is pro-
posed to be flipped in sign. The acceptance probability of the
proposal is determined by the usual Metropolis acceptance
probability based on the joint density function value of the
current state and the proposed state. This algorithm can run
into problems if the J is too large; see, for example, Diaconis
and Saloff-Coste (1998).

The most popular algorithm is provided by Wolff (1989)
which is a variant of the original cluster flipping algorithm
presented in Swendsen and Wang (1987). The Wolff algo-
rithm is popular due to its effectiveness and simplicity to
code. An iteration proceeds by selecting an index at random
and then taking all connected paths emanating from this point
which have the same spin as the chosen point. Along each
path, the path continues with probability 1 — exp(—2J) or
is terminated with probability exp(—2J). All points on the
sampled paths are then flipped sign. A recent review is pro-
vided in Landau and Binder (2015).

The algorithm is a reversible Markov chain; in the sense
that the proposed move p(s’ | s) which is always accepted
satisfies p(s) p(s’ | s) = p(s’) p(s | s’). The reason why
the Wolff algorithm works is quite straightforward to under-
stand. The number of 1 — exp(2J) in p(s | ') and p(s’ | s)
will be the same, the number of them being the number of
different spins between s and s’. Then whereas p(s) will
have a exp(4J) to represent two neighboring points having
the same spin, if one of the points gets rejected there will
arise a exp(—2J) in p(s’ | 5). And in p(s’) there will be a
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exp(—J) due to the opposite spins for the two points, and the
two points do not appear in p(s | s”) as they are of opposite
spins.

4.1 Latent uniform sampler

We first transform to z variables on {0, 1} by taking z; =
(s; + 1)/2, the resulting model would then be classified as
an occupancy model or a lattice gas model. Then

w(z) xexpiJ Z 2zi = 1) (2z; = 1)

<i,j>
which can be written as

(z) ocexp{ J Z 27; 7

<i,j>
x exp{J Z 2(1 —z)) (A —zj)
<i,j>

Since both terms are non-negative we can introduce latent
variables k; and k> and construct the joint density

ki
1
p(z, ki, kp) o J Z 2zi zj
<i,j>
ko
oY Z 21 —zi) (1 —z)
<i,j>

This clearly has the correct marginal for z by summing out the
ks over the non-negative integers. Further, it is easy to see that
ki conditional on z is Poisson with mean J Z<i,j> 2z; zj,
with k; = 0 if the sum is zero. A similar Poisson conditional
distribution holds for k5.

To organize cluster flips for the z we introduce further
variables. So consider the term

ki

an @) = J Z 2z zj

<i,j>
which we extend to

k1

pz o, B, l=1,... ki | k) x HHa,,ﬂ, 2oy 285
I=1

where Hy g = 1if (o, B) belongs to the sum < 7, j >, and
is otherwise 0. Marginalizing over the (¢, B;) returns the
gk, (z). We do the same for the gy, (z) term and then have

ki
p(z’ o, ﬂ’ yv 8 | kl»kQ.) X l_IHalvﬂl Zﬂll Zﬁl
=1
ko
X 1_[ Hy 5 (1 = zyy) (1 = z5)).

=1

Sampling the (o, B;, y1, §;) conditional on the z and k; and

k> is straightforward; for example, (o1, B1) is sampled uni-

formly fromtheset Ay = {(i, j) : H;j =1, z; =z =1}.

If this set is empty then kj is 0. All the other (¢, f;) follow

likewise, while the (y;, §;) come independently and uni-

formly fromthe set Ag = {(i, j): H;j =1, z; =z; =0}.
Note in particular that

ki ko
l_[ Hyy g 2oy 28 1_[ Hy 5 (1 =2y) (1 = z5)
=1 =1

must be equal to 1, and that both separate products must be
1. This forms the basis for the cluster flips. We can now take
all the z; for which i € {o} U {8} and change z; — 1 — z;,
and also perform the same flip to all the z; ini € {y;} U {§;}.
The full proposal which gets accepted automatically would
also involve switching the k1 and k.

A single iteration of the algorithm proceeds as follows:
starting with (z;).

1. Sample independently k; and k» from the Poisson distri-
butions.

2. Sample ((o7, B1), I =1 : k1) and ((y,67), I = 1 : kp)
uniformly and independently from the sets A; and Ay,
respectively.

3. Flip the z; to 1 — z; if the index i appears as any of the
(o, Br, i, 01)-

4. Forall (z;) for which i is not dealt with in 3., sample as an
independent Bernoulli random variable with probability
1/2.

The chain is a Gibbs sampler; each iteration first samples
[k1, k2 | z] followed by the [oy, B1, 1,61 | ki1, k2, z] and
then finally [z | «, B, ¥, 8, k1, k2]. When the chain is run the
original variables (s;) can be recovered by taking s; = 2z; —1
foreachi =1,..., D.

To focus on a specific point, say s, = 1; if 5 is
surrounded by spins of opposite sign then with the Wolff
algorithm it can only get flipped in sign if it is selected as the
starting point of a cluster, which arises with probability 1/D.
On the other hand, with the new algorithm, the new value for
sy will be an independent Bernoulli variable, and so will flip
sign with probability 1/2.

Now suppose sy, has ¥ > 0 neighbors all equal to 1. Then
the probability of s, being flipped is given by P(flipsy) =
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Fig.12 Histogram samples of 7' from new algorithm (upper panel) and
from Wolff algorithm (lower panel)
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Fig. 13 ACF estimator for 7 samples from the new algorithm (upper
panel) and from Wolff algorithm (lower panel)

1 — (1 —«/N)*1. Now kj is Poisson with mean 2J N and so
P(flipsy) =1 —exp(—2Jk).

4.2 lllustrations

We first run the new algorithm in a small setting where the
true density can be evaluated. So we take d = 2 and focus on
the probabilities for the sum of the (z;), writing T = ZID: 1 i
Then, taking J = 0.2, we get P(T =4) = P(T = —4) =
0.128, P(T = 2) = P(T = =2) = 0.231 and P(T =
0) = 0.282. Over a run of 100,000 iterations we obtain the
estimators P(T = 0) = 0.283, P(T = 2) = 0.230, P(T =
—2) =0.230, P(T =4) = 0.129and P(T = —4) = 0.129.

With a higher dimension, d = 5 so D = 25, while retain-
ing J = 0.2, we compare with the Wolff algorithm. The
outcome is that while the Wolff algorithm has positive auto-
correlation on the 7 output, the new algorithm generates
antithetic variables.

In Fig. 12 the output of the 7" samples represented by his-
tograms from both the new algorithm and the Wolff algorithm
are presented. As anticipated they are the same.
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Fig.14 Trace plot of first 100 7" samples from the new algorithm (upper
panel) and from Wolff algorithm (lower panel) withd =5 and J =1

In Fig. 13 we plot the corresponding ACF estimators. As
can be see the new algorithm is generating antithetic vari-
ables, while the Wolff algorithm has the usual positive decay
with higher lags. To explain this phenomenon, define Cy to
be the subset of Ag to be flipped to 1, and C; the subset of A
to be flipped to 0, and C the remainder which have new val-
ues independently generated from the Bernoulli distribution.
Then the current 7 and new T’ are given by

T=|Cl+)

ieC
and

T'=|Col+Y 2 =D—|Ci|—ICI+ Y 3,
ieC ieC

where the (z}) are independent Bernoulli random variables.

The introduction of the latent variables k; and k; makes
it very clear how the value of J influences the number of
flips. If J = 0, an infinite temperature, then k1 = k» = 0
with probability 1 and so all the (z;) will be independent
Bernoulli random variables. On the other hand, if J is very
large (alow temperature), then k| and k> will be stochastically
large. Hence, the sets Ag and A; will be large and covering
a large number, if not all, the clusters of common value (a
set of indices {i} connected as neighbors and with the (z;)
having the same value).

However, for large J, the two dominant probabilities arise
when the (z;) are either all O or 1. The new algorithm in this
case would be switching between these two states. From this
perspective, it is to be noted that high values of J which are
not as extreme as the aforementioned case, would perform
well. In Fig. 14 the first 100 7' samples are plotted for the
new algorithm (upper panel) and the Wolff algorithm. as can
be seen the mixing is substantially more pronounced for the
new algorithm.
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To investigate further large values of J when we know
the correct answer we return to d = 2. Taking J = 1 itis
possible to evaluate P(T = 4)/P(T = 0) which is given
by exp(4)/(4 + 2exp(—4)) = 13.53. The new algorithm,
using a sample of size 100, 000 gives a value of 13.47, while
the corresponding estimator from the Wolff algorithm gives
a value of 11.25.

5 Discussion

In this paper we have used latent uniform sampling algo-
rithms to sample a joint distribution on binary values. Such
distributions arise in classic contexts and are known to be
problematic to sample when the dimension is large and/or
the distribution is multimodal.

For the slice sampler, when the distribution is in fact
simple, in the sense it is unimodal, the single flip proposal
Metropolis chain works well and mixes faster than the latent
slice algorithm. However, this hides a couple of important
issues. One is that in practice it would not necessarily be
known that the distribution is unimodal and so other modes
would be left undetected. A further point is that generic algo-
rithms which have the ability to jump between modes are
needed and currently such suitable algorithms are lacking,
although specialized algorithms exists for some distributions,
such as the Ising model. These new algorithms would also
be required to exhibit certain flexibility, which is that local
moves can occur if the large jumps get rejected, as a lot of
them will be. This is precisely a feature of the latent slice
sampler; as the shrinkage proceeds from the initial jump pro-
posal, and if these get rejected, so the proposals become more
local to the current point.

A succinct way to describe the performance of the latent
slice sampler is that it is robust. It performs well if the distri-
bution is simple, such as being unimodal, yet has the ability
to find different modes if they exist.

In Sect. 3.1 we demonstrated the accuracy of the latent
slice sampler. The example in Sect. 3.2 is extreme but makes
a point very clearly about the ability of the latent slice sam-
pler to jump between modes and maintain a correct stationary
distribution. This is certainly a challenging problem and it
is not clear there are even any alternative algorithm capa-
ble of achieving this outcome. Section 3.3 considered the
conditional logistic distribution for which we can sample
exactly and hence compare the performance of various algo-
rithms. The latent slice sampler is shown to easily outperform
the Metropolis sampler. In Sect. 3.4 we look at a variable
selection problem. In this case, when the problem is regu-
lar, also referred to as “easy", the Metropolis sampler has an
advantage over the latent slice sampler. Though as we have
previously mentioned, this can be deceptive. For it might
not be known that multi-modes exist. On the other hand,

when high co-linearity exists the latent slice sampler outper-
forms the Metropolis, and with sufficiently high co-linearity
the Metropolis could be forced to come to a stop. Section
3.5 looked at Bayesian decision trees and set up a problem
in which the standard algorithms failed to mix adequately,
whereas the latent slice sampler did well and was able to mix
across modes in the space of decision trees.

Section 4 looks at the Ising model and we compare our
latent uniform sampling algorithm with the Wolff algorithm.
The new sampler compares favorably with the Wolff algo-
rithm. Specifically, we have shown how a latent Poisson
version of the Ising model has the ability to generate antithetic
variables from the output of a Markov chain. Developing the
algorithm, it is also possible to apply the same idea to the
more general

p(s) ocexp{ > " Hi jsis,
i

where now the H; ; > 0 is the only constraint. This can be
written as

p(s) o exp ZHI'J(I +s)(1+5;)/2
i,j

X exp X:Hi,j(l—Si)(l—Sj)/2

i,j

We can proceed as previously and the alteration to the algo-
rithm is that now we would sample (¢q, 8;) from the set
Ay ={(, j) : zi = z; = 1} with probability proportional to
H; ;. Allother aspects of the algorithm, including the flipping
procedure, remain the same.

Future work can go in a number of directions. One is to
look at problems involving multivariate distributions with
mixed types of variable; e.g. the most simple being a joint
distribution on {0, 1} x R. Obviously more complicated
cases can be considered including mixture models where
in a Bayesian setting there will be a joint distribution on
the component indicator variables as well as the component
parameters.

Another direction would be to consider an adaptive algo-
rithm and this would be naturally arising via a general version
of (1) letting the “free" density for s to depend on x; i.e.

fl,w, s, ) =1w < 7)) s pls | x)
1x —s/2 <l <x+5/2).

The marginal density for x remains as 7 (x). The aim would
be to adapt p(s | x) as the chain proceeds so to better propose
regions of higher probability, such as separated modes.
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