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Abstract

We consider sampling from a probability distribution on {0, 1}M , or an equivalent high-dimensional binary space. A number

of important applications rely on sampling from such distributions, including Bayesian variable selection problems and fitting

Bayesian regression trees. Direct sampling is prohibitive when the dimension is large due to the fact that there are 2M possible

states. One approach to sampling such distributions is to use a Metropolis–Hastings algorithm, which can require choosing

a decent proposal mechanism, with a default choice being the single-component switch proposal move. This is problematic

when multiple modes exist. In this paper, we propose a latent variable uniform sampling algorithm, such as a latent slice

sampler, which allows for large moves and proposal paths which give non-negligible probabilities for moving between modes,

even when the probabilities of states between these modes is low. A number of illustrations are presented, focusing primarily

on demonstrating the advantages over current generic samplers.

Keywords Ising model · Latent slice sampler · Markov chain Monte Carlo · Variable selection · Regression trees

1 Introduction

Slice sampling is a powerful technique for generating ran-

dom variables from complicated density functions; see Besag

and Green (1993), Damien et al. (1999), and Neal (2003).

The motivation is simple enough; for a target density π(x),

x ∈ R
M , the idea is to introduce the latent variable w and

consider the joint density f (x, w) = 1(w < π(x)). A Gibbs

sampler can be implemented in which the sampling of w

is straightforward and the sampling of x , conditional on w,

involves sampling uniformly from the interval Aw = {x :

π(x) > w}. It is the sampling of this latter uniform distri-

bution which poses the problem for slice samplers. Indeed,

uniform sampling from high dimensional spaces is a prob-

lem in its own right; see, for example, Chen et al. (2018).

However, the aim would be to achieve this without recourse

to complicated MCMC algorithms since this would defeat

the object of the slice sampler, and one could well be better

off performing a direct MCMC on π(x).
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In Neal (2003) a clever procedure for sampling the uni-

form distribution on Aw using a transition density f (x ′ | x)

satisfying f (x ′ | x, w) = f (x | x ′, w), and hence is station-

ary with respect to the target uniform density. A strategy for

proposing a x ′ given x satisfying the reversible condition is

given in Neal (2003). This involves a stepping out or dou-

bling procedure combined with a shrinkage procedure. The

former procedures require choosing a width parameter which

becomes fixed over the run of the chain and is, particularly

in high dimensions when one is required for each dimen-

sion, potentially a tricky tuning parameter to set. Further, the

stepping out and doubling procedures need to be performed

sequentially with a computation of π(x) after each step. This

makes it difficult to implement in high dimensions.

On the other hand, Li and Walker (2022) introduce further

latent variables which facilitates the uniform sampling via a

Gibbs framework. The algorithm avoids the stepping out or

doubling procedures and hence avoids the need for the tuning

width parameters and a potentially slow sequential search

for a valid substitute for Aw when the dimensions are large.

They start with, writing in the one dimensional case, the joint

density

f (x, w, s, l) = 1(w < π(x)) s−1 p(s) 1(|x − l| < s/2) (1)

for some density function p(s) on (0,∞). As before, all

variables are easy to sample and now the required den-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-023-10276-6&domain=pdf


102 Page 2 of 14 Statistics and Computing (2023) 33 :102

sity for x we need to sample is f (x | w, s, l) ∝ 1(w <

π(x)) 1(l − s/2 < x < l + s/2). This structure allows for

an easy search for a valid substitute for Aw, just from the

sampling of s. It is then also easy to set up a sequence of pro-

posals x ′ satisfying f (x ′ | x, w, s, l) = f (x | x ′, w, s, l).

The algorithm is detailed in Li and Walker (2022); briefly

here, take an initial proposal x∗ uniformly from the interval

(L−, L+) = (l − s/2, l + s/2) and keep repeating this until

w < π(x∗). After each rejection, the uniform interval, cur-

rently (L−, L+), can be narrowed to (x∗, L+) if x∗ < x or

(L−, x∗) if x∗ > x, where x is the current value. As the rejec-

tions mount, the interval will start to concentrate on x . This is

effectively equivalent to the shrinkage procedure described

in Neal (2003). Hence, at the very least, the algorithm can

become a local sampler, but with the possibility of having

large jumps.

The accepted sample x ′ and the current value are reversible

according to this procedure; i.e. f (x ′ | x, . . .) = f (x |

x ′, . . .). This is one of the ideas behind (Neal 2003), though

we avoid the stepping out and doubling parts of his algorithm.

Extending the dimensions is straightforward and numerous

illustrations are presented in Li and Walker (2022).

Walker (2014) and Ekin et al. (2022) cover the case when

x ∈ N
M . However, a class of problematic density functions

is given by

π(z1, . . . , zM ) (2)

where each z j ∈ {0, 1}, or an equivalent binary set. The two

aforementioned papers do not cover this case; they would

both collapse to a Gibbs sampler, which is not in general

suitable for the distributions we are going to look at.

When M is large these binary joint distributions can be

difficult to sample, particularly if they are multimodal. Typi-

cally, Metropolis algorithms (Metropolis et al. 1953) or Gibbs

samplers (Tierney 1994) are applied where one of the vari-

ables is updated at a time. Such algorithms may not produce

sufficiently well-mixing chains, or even a chain that moves

at all. We demonstrate through a number of illustrations the

mixing abilities of the latent slice sampler for multivariate

binary distirbutions. We compare with other generic algo-

rithms, such as the single flip proposal Metropolis algorithm,

which is named the Metropolized Gibbs sampler in Schafer

(2012). Our algorithm is closely related, but an extension of

the random walk kernel sampler, described, for example, in

Schafer and Chopin (2013). The algorithm of Schafer and

Chopin (2013) is sequential Monte Carlo (SMC). However,

there is a necessity for resampling which requires a Metropo-

lis step for each πt , where t indexes the temperature, which

moves to temperature T for which πT = π . The Metropo-

lis step uses an independence proposal which depends on an

estimated parameter, and is not always trivial to estimate,

requiring in some instances a Newton-Raphson sequence

to find the best proposal density. The paper of Schafer and

Chopin (2013) also describes a number of MCMC algorithms

and discusses the merits of the two types of algorithm; i.e.

SMC and MCMC.

Two recent papers for sampling continuous multimodal

distributions include (Tak et al. 2018) and Pompe et al.

(2020), but we do not believe these are suited to binary vari-

ables.

There are models, such as the Ising model, where due to

the nature of the distributions, specialized algorithms work,

such as the Swendsen–Wang (Swendsen and Wang 1987) and

Wolff (Wolff 1989) algorithms. We will develop an alterna-

tive to the uniform sampler based on slices for this model.

Just as the latent slice sampler provides a uniform conditional

density for the variable of interest, this aspect is retained

though the uniform conditional density is obtained in a dif-

ferent way.

In this paper, we apply a latent uniform sampling algo-

rithm to the joint density (2). For the latent slice sampler the

idea is to introduce a latent variable, say y j for each z j , and set

z j = 1(y j > 0). This gives us a joint density in (y j ) which

can be sampled as in Li and Walker (2022). If it is possible

to allow the sampler on the (y j ) to move sufficiently around

some bounded space in M-dimensions, we should be able to

construct a sampler which also jumps around in the {0, 1}M

space. For the Ising model we use a different construct to

obtain a latent uniform sampler directly on the (z j ).

The layout of the paper is as follows: in Sect. 2 we describe

the details of the algorithm. We also provide some theory

about the algorithm and prove the reversibility of the sam-

pling of f (x ′ | w, s, l). In Sect. 3 we first present a couple

of introductory examples with some further substantial illus-

trations presented subsequently; in Sect. 3.3 we consider a

conditional logistic distribution, Sect. 3.4 a Bayesian vari-

able selection model, and in Sect. 3.5 we consider a Bayesian

decision tree model. In Sect. 3.6 we present a comparison of

the latent slice sampler and Metropolis algorithms by look-

ing at eigenvalues of transition probability matrices. Section

4 considers the special case of the Ising model and the paper

concludes with a brief discussion in Sect. 5.

2 Slice sampling algorithm

Sampling from π(z) is equivalent to sampling from the joint

density

f (y, w, s, l) ∝ 1

(
w < π(z1, . . . , zM )

)

×

M∏

j=1

s−1
j p(s j ) 1

(
y j − s j/2 < l j < y j + s j/2, |y j | < a

)
,

123



Statistics and Computing (2023) 33 :102 Page 3 of 14 102

where z j = 1(y j > 0), for some a > 0. The introduction

of the finite a here is to ensure the joint density is proper.

As with the continuous case, the variables are all easy to

sample, and the y = (y1, . . . , yM ) can be sampled jointly,

as in the continuous case, and with the shrinking procedure,

until the proposal y∗ satisfies w < π(z∗ = 1(y∗ > 0)).

Write y∗ = y∗
0 as the initial proposal and, if all are rejected,

let (y∗
r ) be the sequence of proposals.

At each iteration, the initial proposal z∗ is being sampled

approximately uniformly on {0, 1}M . This is equivalent to

restarting the chain. However, rather than the chain move

aimlessly along points with low probability looking for a

point with high probability, it drifts back to the current value,

with each interim point being tested for a possible move.

If nothing is accepted along the way, the chain stays at its

current value and the next iteration proceeds with another

uniform sample being generated. Viewed in this way, the

algorithm provides a jump mechanism with multiple propos-

als and if these are all rejected it behaves as a local sampler.

Here we write the algorithm (detailed as a single loop) for

the sampler for a given π and with a = 2 (the choice of a is

without loss of generality), and p(s) ∝ s exp(−sλ):

1. Initializing step: Given s = s1:M and z = z1:M , and for

each i = 1, . . . , n, set yi > −a negative if zi = 0 and

yi < a positive if zi = 1.

2. Set ai = bi = 0 for i = 1, . . . , n. Sample w = u1 π(z)

and for i = 1, . . . , n, take li = yi − si/2 + u2i si , where

u1 is a uniform r.v. and the u2i are i.i.d. uniform r.v.s

3. Sample si as an exponential r.v. with mean 1/λ and

constrained to be greater than 2|li − yi |. Set ai =

max{−a, li − si/2} and bi = min{a, li + si/2}.

4. Propose the new y′
i as ai + vi (bi − ai ), where the vi are

i.i.d. uniform r.v.s, and z′
i = 1(y′

i > 0).

4a. Compute w′ = π(z′).

4b. If w′ > w then z = z′ and goto 2.

4c. Else, set qi = 1(y′
i < yi ) then reset ai =

q max{ai , y′
i }+(1−q)ai and bi = (1−q) min{bi , y′

i }+

qbi . Goto 4 and repeat until w′ > w.

An illlustration of the change from y0 to y1 in a one dimen-

sional case is presented in Figs. 1 and 2. The step occurs at

the origin 0 and the end points are ±a. In the first, both π(0)

and π(1) are greater than w, whereas in the second it is only

π(1) which is greater than w.

To demonstrate the properties of the sampler, we now

show that it can propose any point from any current loca-

tion with high probability. Due to the independence nature

of the proposals, we only need to consider one dimension.

Let y0 and s0 be the current values and assume without loss

of generality that y0 > 0. We take p(s) to be proportional to

se−s/λ so the conditional for s constrained to be larger than η

can be sampled as ψ +η, where ψ is an exponential random

variable with mean λ.

Fig. 1 Latent sampler for π(1), π(0) > w

Fig. 2 Latent sampler for only π(1) > w

Lemma 1 The probability that the proposal for y, i.e. y∗, is

of opposite sign to y0 > 0 is given by

0.5 max

{
0, 1 −

y0 + s0(2v − 1)

ψ + s0|2v − 1|

}
,

where v is an independent standard uniform random variable

The proof is straightforward. Noting that 0 < y0 < a we

see that provided λ is sufficiently large, the probability of y∗

being negative when y0 is positive (and vica versa) can be

close to 1
2

.

The role of a is to ensure the density for y from

p(y, l, s) ∝ s−1 p(s) 1(y − s/2 < l < y + s/2)

is proper. Its value can be taken without loss of generality,

but the choice of λ would then depend on it. The basic idea

is to ensure the proposals for each y can be of either sign. If

s0 and y0 are the current values, then the initial proposal for
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y is from

(max{a, l − s/2}, min{a, l + s/2})

and in terms of y0 and s0 we have l − s/2 = y0 − (|c| −

c) s0/2 − ε/2 and l + s/2 = y0 + (|c| + c) s0/2 + ε/2,

where c = 2v − 1 and v is a standard uniform r.v., and ε

is the exponential r.v. with mean 1/λ. If we want these to

cover both positive and negative values, but not excessively,

we would as a rule of thumb take λ = 1/(2a). In short, we

ensure that the sign of the proposals for the y can switch with

high probability.

Before proceeding we focus on the sampling of the f (y |

w, s, l) via a reversible Markov sequence. To do this we set up

a more generic setting for the problem. So let f (y) ∝ 1(y ∈

C) 1(y ∈ B) where C is an unknown interval, but a specific

value of y can be tested to see whether it lies in C or not; i.e.

y ∈ C ⇐⇒ w < g(y) for some continuous function g,

and B is a known single connected interval. Define the initial

B = B0 = (a0, b0) and let y0 be the current point which lies

in C ∩ B. The sequence of proposals (yr )r≥1 is given by

yr = ar−1 + ur (br−1 − ar−1), (3)

where the (ur ) are an independent sequence of standard uni-

form random variables, and if yr /∈ C , the Br−1 is updated

to Br via

ar = ar−1 1(yr > y0) + yr 1(yr < y0)

br = br−1 1(yr < y0) + yr 1(yr > y0).
(4)

This sequence continues until yr ∈ C for some r .

Lemma 2 If Ir is the current length of the interval from which

yr is taken uniformly, then the size of the next interval is ran-

dom and Ir+1 = u Ir , where u is a uniform random variable

from (0, 1) and independent of Ir .

Proof If the interval Br = (ar , br ), then yr+1 = ar +u(br −

ar ), and

ar+1 = ar 1(yr+1 > y0) + (ar + u(br − ar )) 1(yr+1 < y0)

and

br+1 = br 1(yr+1 < y0) + (ar + u(br − ar )) 1(yr+1 > y0).

Hence,

Ir+1 = br+1 − ar+1 = (br − ar )

×

(
(1 − u)1(yr+1 > y0) + u1(yr+1 < y0)

)
.

This completes the proof. �

Corollary 1 In one dimension, if m = minr {Ir/I0 < ε}, then

m is a 1 + Pois(− log ε) random variable. In n dimensions,

and with the size of interval is represented as Iir for i =

1, . . . , n, then if m = minr {maxi Iir/Ii0 < ε}, then m is

the largest order statistic of n independent 1 + Pois(− log ε)

random variables.

These two lemmas indicate how the sampler acts as both a

jump, almost uniform, and local sampler. And recall that at

each iteration as the sampler moves from its initial proposal

y∗ back to y0, a new proposal is being made. In short, a

sequence of proposals is being generated ranging from a jump

proposal to a local proposal, the latter applying if all the jump

proposals are rejected.

The next two results establish that our shrinking proce-

dure leaves the posterior distribution invariant. First, we note

that Corollary 1 implies that the shrinking procedure will

terminate almost-surely for almost-all starting values y. In

particular, it will terminate when y is a continuity point of

g(y), and the set of discontinuity points of g(y) has Lebesgue

measure 0.

Lemma 3 Let J denote the number of rejected points in the

shrinking procedure and suppose that y is a continuity point

of g(y). Then J is finite almost-surely.

Proof With probability 1 we will have w < g(y), and by

continuity we will have w < g(y ± ε) for sufficiently small

ε. Hence, if the shrinking procedure is eventually contained

in an ε-neighborhood of y the procedure will terminate.

Corollary 1 implies that the time for this to occur is Pois-

son distributed, and hence finite almost surely. ��

Theorem 1 The shrinking procedure defined by (3) and (4)

defines a Markov transition function Q(y | y′, w, s, l)

which is reversible in the sense that f (y | w, s, l) Q(y′ |

y, w, s, l) = f (y′ | w, s, l) Q(y | y′, w, s, l).

Proof For simplicity, we will consider only the case of uni-

variate y; the proof for multivariate y is essentially the same.

Also, we suppress dependence of Q on w, s, l to lighten nota-

tion. First, we note that f (y | w, s, l) is uniform on the set

{y : w ≤ g(y), l ∈ [y−s/2, y+s/2], |y| ≤ a}. If either y or

y′ are outside of this set, we will have f (y | w, s, l) Q(y′ |

y) = f (y′ | w, s, l) Q(y | y′) = 0 trivially, so assume

without loss-of-generality that this is not the case.

Following Neal (2003), we let r = (r1, . . . , rJ ) denote the

sequence of rejected points in the shrinking procedure; by

Lemma 3, r is a random vector of finite length. Let Q(y′, r |

y) denote the transition density of moving from y to y′ via

the intermediate rejected points r ; formally, Q(y′, r | y) is a

density with respect to dy ×
∑∞

j=0 λ j (dr) I (J = j) where

λ j denotes Lebesgue measure on R
J . To show reversibility,

it suffices to establish the stronger result that Q(y′, r | y) =

Q(y, r | y′) for all r . To show Q(y′, r | y) = Q(y, r | y′),
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we first consider the case that some r j lies in between y

and y′. In this case, the shrinking procedure starting from y

will eliminate y′ as a potential value, and vice-versa. Hence

Q(y′, r | y) = Q(y, r | y′) = 0 in this case. Otherwise,

by the uniformity of the sampling, we have Q(y, r | y′) =

Q(y′, r | y) =
∏J

j=0(b j − a j )
−1 where (a0, b0) is the start-

ing interval, (a1, b1) is the interval after rejecting the joint

r1, and so forth. Hence Q(y, r | y′) = Q(y′, r | y).

The logic behind extending this proof to the multivariate

setting is essentially the same: we again introduce the set

of intermediate moves r , where it will only be possible to

transition from y to y′ if none of the rejected proposed points

y�
j for coordinate j lies in between y j and y′

j , and in this case

the probability of transitioning from y to y′ via r is the same

as transitioning from y to y′ via r by uniformity. ��

3 Illustrations

Here we present a number of illustrations, starting with two

simple expository examples. We then move to more substan-

tive cases involving high dimensional models, including a

conditional logistic distribution, a variable selection model,

and a Bayesian decision tree model. In many cases we com-

pare with the Metropolis–Hastings algorithm. We refer the

reader to the paper (Li and Walker 2022), where in Sect. 3, the

authors provide a detailed comparison of their slice sampling

algorithm with the slice sampler of Neal (2003). In partic-

ular, they make comparisons involving EES. Results should

be transferable because the latent slice sampler and the algo-

rithm of the present paper share key properties in terms of

how elements of the proposals are made.

3.1 Example 1

To demonstrate the accuracy of the algorithm we present a

simple example where M is small enough so we know exactly

the 2M probabilities. We take M = 3 and

π(z1, z2, z3) = ez′ Az/
∑

z∈C

ez′ Az

where C is the set of 8 possible values of z. The matrix

A is randomly generated with independent standard normal

random variables. The matrix A is

A =

⎛
⎝

−0.322 −0.314 −1.541

0.332 1.109 −0.909

−0.391 0.213 0.118

⎞
⎠

and the correct probabilities are π0,0,0 = 0.099, π0,0,1 =

0.111, π0,1,1 = 0.168, π1,1,1 = 0.018, π1,0,1 = 0.012,

π0,1,0 = 0.300, π1,0,0 = 0.072, π1,1,0 = 0.221. The
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Fig. 3 Plot of first 100 samples of z1

Fig. 4 Plot of sum of components of z vector

algorithm was run for 100,000 iterations and the estimated

probabilities are π̂0,0,0 = 0.097, π̂0,0,1 = 0.113, π̂0,1,1 =

0.171, π̂1,1,1 = 0.018, π̂1,0,1 = 0.012, π̂0,1,0 = 0.295,

π̂1,0,0 = 0.072, π̂1,1,0 = 0.221. The mixing is excellent;

as an illustration we present a plot of the first 100 samples of

the (z1) variable in Fig. 3.

The choices for the algorithm include p(s) and a. The idea

is to enable the intervals (l − s/2 < y < l + s/2 ∩ |y| < a)

to be large; therefore a is not such an important choice, and

we fix it at 2, while to ensure the largest intervals we take

p(s) ∝ se−λs with λ = 0.05. Note then that the sampling of

the s within an iteration is an exponential random variable

with parameter λ added to 2|y − l|.

3.2 Example 2

Another example, but a demanding one, is taking M = 8

and log π(z j ≡ 1) = log π(z j ≡ 0) ∝ 100 with all the

other vectors for z have log π(z) ∝ 1, so the probabilities

differ by 100 on log scale. This distribution is bimodal with

no route via local sampling from one to the other. Indeed,

any local sampler would fail to move from one of the modes

once there.
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This illustration is as difficult for local samplers as it

possibly can be for distributions on {0, 1}M . There are two

separated modes with single points and with all other proba-

bilities effectively 0. The only way to be able to jump between

modes in this case is to have uniform proposals. Our algo-

rithm has this as a key component. Needless to say, the

Metropolis sampler or Gibbs sampler does not switch modes

once one has been reached.

The algorithm mixes over the two modes well; see Fig. 4.

The vertical axis represents the sum of the components of the

z vector which has modes at 0 and m. A pure local sampler

would of course not leave a mode once reached. To test this

illustration to an extreme, we set M = 20. On a number

of runs of size 106 we get at least one switch between the

two modes. Note that 220 is just over 1,000,000. Hence, the

nature of the sampler is as if we restart the chain randomly at a

location for each iteration. However, instead of the chain then

moving locally about this location, it moves—with proposals

at each step, which can be accepted—towards the previous

location and hence can then at least mimic a local sampler.

3.3 Logistic conditional distribution

The joint distribution on (z1, . . . , zM ) here is given by

π(z) =
∏M

i=1 p
zi

i (1− pi )
1−zi , where pi = p(z1:i−1) = [1+

exp(−si )]
−1 and si = ai i +

∑i−1
j=1 ai j z j with A = (ai j ) j≤i

a lower triangular matrix. With i = 1 we have s1 = a1,1.

This joint binary distribution appears in the PhD Thesis of

Schafer (Schafer, 2012).

The aim here is to compare the latent slice sampler with

the Metropolis single flip algorithm. This is named the

Metropolized Gibbs sampler in Schafer (2012) and in general

can be shown to be an improvement on the Gibbs sampler;

see Liu (1996). An alternative algorithm in which proposals

z′ are made uniformly on |z′ − z| < k for some k, Schafer

and Chopin (2013), can be seen as a special case of our own

algorithm, in that we have a framework in which k can be

made random for each iteration.

The elements of the A matrix are generated using indepen-

dent uniform random variables from the interval (−2, 2). We

take M = 30, so the size of space of possible outcomes is 230

which is approximately 1000 million. To assess how different

sampling algorithms work in this example, it is noted that the

joint distribution can be sampled exactly using the sequence

of conditional distributions p(zi | z1:i−1). We therefore ran

three chains for 5, 000 iterations each; the correct sampling

algorithm, the latent slice sampler, and the Metropolis algo-

rithm.

We focus on the estimation of the correct mean values from

the samples, taking as the benchmark the means from the

samples from the correct conditional sampler. The results are

presented in Fig. 5. As can be seen, from this perspective, the
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Fig. 5 Means from Metropolis algorithm (dotted line), slice sampler

algorithm (dashed line) and the true means (bold line)

latent slice sampler significantly outperforms the Metropolis

sampler. In fact, for some of the (zi ), specifically for those

i > 7, the Metropolis sampler did not move from the starting

value.

For this illustration we took p(s) ∝ s exp(−s/10) and

a = 2. At each iteration of the chain, the latent slice sam-

pler makes a single jump proposal. As it shrinks back to

the current value, with proposals being rejected, it makes

new proposals as it goes. The average number of proposals

per iteration done this way is 6. Hence, the total number of

proposals is 6×5000. On the other hand, the Metropolis sam-

pler makes M proposals, one for each ordinate, per iteration,

resulting in the total number of 30×5000 proposals. Despite

the more proposals coming from the Metropolis sampler, the

slice sampler made more moves. Timewise, the algorithms

take roughly the same amount of time—a matter of seconds

for both.

3.4 Bayesian variable selection

In this subsection we obtain a joint distribution for the vari-

able selection indicators of a linear model. The model is given

by

yi =

p∑

j=1

xi j z jβ j + σεi , (5)

where the z = (z j ) are the indicators, taking the values

0 or 1, and the (εi ) are assumed to be independent stan-

dard normal. This model was first proposed in Kuo and

Mallick (1998) as an alternative framework to the hierar-

chical model of George and McCulloch (1993). We adopt a

slightly different prior set up compared to that of Kuo and

Mallick (1998). We write the likelihood, using λ = 1/σ 2, as

λn/2 exp
{
− 1

2
λ(y − Xβ)′(y − Xβ)

}
where X = X0 Z with

X0 the design matrix based on the (xi j ) and Z = diag(z j ).

We take a g-prior (Zellner 1983) for β; so for some g > 0,
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β ∼ N
(
0, gσ 2(X ′ X)−1

)
. If Z ≡ 0 then β = 0 which is

compatible with the idea that no predictors are active. The

prior for λ is taken to be gamma with parameters (a, a).

The aim now is to find the marginal posterior distribu-

tion for z given the data. This involves some straightforward

integration. First

p(y | λ, x, z) ∝ λn/2+a−1 exp
{
−λ(a + 1

2
y′y)

} (
g

1 + g

)|z|/2

× exp

{
1
2

λ

1 + g
y′ HX y

}
,

where HX is the hat matrix corresponding to the X0 and Z ;

effectively removing the columns for which the z = 0, and

|z| is the number of {z = 1}. Hence, assuming a uniform

prior for z, we get

π(z | y, x) ∝
(

g

1 + g

)|z|/2 {
a + 1

2
y′y + 1

2
y′ HX y/(1 + g)

}−a−n/2
.

On the other hand, Kuo and Mallick (1998) employed a

MCMC algorithm which worked as a Gibbs sampler and

sampled the conditional distributions of β, z and λ.

When the distribution π(z | y, x) is unimodal both the

latent slice sampler and Metropolis algorithms work well.

The latter, using single move proposals, mixes slightly better,

though all the marginal probabilities of the (z j ) are estimated

exactly the same. To illustrate this we take a sample of size

n = 100 and p = 3, σ = 1, and the design matrix ele-

ments are taken as independent standard normal. The true

value of β is β = (0.3,−0.3, 0). We ran the slice sampling

algorithm for 10000 iterations and the means of the sampled

indicator variables were z̄1 = 0.359, z̄2 = 0.988, z̄3 =

0.090. With the same dataset, we ran a Metropolis algo-

rithm also over 10000 iterations. One iteration here involves

proposing a flip of each indicator variable and the Metropo-

lis accept/reject criterion is used to determine whether the

flip occurs or not. The corresponding sampled means are

z̄1 = 0.359, z̄2 = 0.984, z̄3 = 0.097, which are essen-

tially the same as those from the slice sampler.

In Fig. 6 we illustrate the sampled indicator variable z1 for

both the slice sampling algorithm (top) and the Metropolis

algorithm (bottom) over a period of 100 iterations. It can

be seen the Metropolis algorithm mixes better than the slice

sampling algorithm. However, in this simple case the local

sampler is effective as the distribution of z is well behaved

and nicely unimodal. The slice sampling algorithm acts as

both a local and global sampler, explaining the differences.

However, when π(z | x, y) is bi-modal, the mixing of the

latent slice sampler is superior due to its ability to make large

jumps in the z-space. A bimodal distribution can be arranged

and can also occur naturally when there is high co-linearity
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slice algorithm
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Fig. 6 Comparison of mixing of slice algorithm and Metropolis algo-

rithm
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slice sampler
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Fig. 7 Comparison of switching between modes for latent slice sampler

(top) and Metropolis (bottom)

between predictor variables. To describe the experiment,

we take n = 100 and p = 10, and only one predictor is

active, say x1 = (x11, . . . , x1p), where the (x1 j ) are taken

as independent standard normal. The true β1 = 5 and we

generate the data with σ = 1. To create co-linearity we

take x2 j = 0.99 x1 j + 0.01 ξ j , with the (ξ j ) as indepen-

dent standard normal. Hence, the π(z | y, x) is bi-modal at

z = (1, 0, 0, . . .) and (0, 1, 0, . . .) with approximately equal

weight for each. Indeed, for both the slice sampling algo-

rithm and the Metropolis algorithm, the mean values of the

z1 and z2 are 0.59 and 0.47, respectively.

However, for the single move Metropolis algorithm, the

only way from one mode to the other is to go via (1, 1, . . .).

The probability of this combination is 0.05 and it is this prob-

ability which determines the mixing ability of the Metropolis

algorithm. For example, over 100 iterations, we would expect

5 switches. This is demonstrated in Fig. 7. The bold lines are

the z1 values and the lines in red are the z2 values. As is

seen the number of switches for the Metropolis algorithm is

6, while for the latent slice sampler it is 13, since for this
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algorithm the number of switches does not depend on the

probability of π(1, 1, . . .).

If the probability of π(1, 1, . . .) becomes too small then

the ability of the Metropolis algorithm to move between the

two modes becomes increasingly improbable. To make this

point we take p = 2 and the value of g as 10−6 with all

other settings remaining the same. This makes the π(1, 1)

probability very small. The latent slice sampler chain mixes

well and the mean values for z1 and z2 are 0.504 and 0.406,

respectively. On the other hand, the corresponding values for

the Metropolis sampler are 1 and 0, respectively, indicating

the chain is fixed at one of the modes. See also Example 2

in Sect. 3.2. The slice sampler can generate effectively uni-

form proposals in z space that, if rejected, set up a sequence

of proposals contracting back to the current point; on the

way back, we can then accept small local moves. So if the

Metropolis chain of only local moves based on flips of a

single z are switched to a uniform proposal to solve the bot-

tleneck problem, the inferiority to the slice sampler becomes

very apparent in that now the probability of a small move is

becoming negligible.

In Sect. 3.6 we discuss the mixing of the two types of

chain via transition matrices in z space. By only considering

4 states we can easily compute the second largest eigenvalues

of each transition matrix. Generally speaking, the second

largest eigenvalue quantifies the mixing of the chain, with

smaller eigenvalues corresponding to faster mixing chains.

The Metropolis chain has the bottleneck which creates a large

second-largest-eigenvalue, whereas the jumping potential of

our latent slice sampler allows the second largest eigenvalue

to be small. Though the setting is zooming in on a few states,

the problem is going to be the same whatever the overall

dimension of the z space is.

3.5 Bayesian decision treemethods

Methods based on Bayesian decision trees, and ensembles

thereof, have recently seen remarkable success across a broad

range of applications, including causal inference (Hill 2011),

survival analysis (Basak et al. 2020) and density regression

(Li et al. 2020). For a review of Bayesian decision tree meth-

ods, see Linero (2017). Let g(x; T ,M) denote a regression

tree such that g(x; T ,M) = μ� if x is associated to leaf

node � of decision tree T . Associated to the regression tree

defined by the decision tree T and the leaf node param-

eters M = {μ� : � = 1, . . . , L} is a partition of the

predictor space; see Fig. 8 for a schematic depiction of this.

Bayesian regression tree models, such as the Bayesian CART

(Chipman et al. 1998; Denison et al. 1998), estimate T via

Metropolis–Hastings. The proposals used in practice are typ-

ically local in nature: we can convert a leaf node to a branch

with two new children (BIRTH), delete a leaf-pair and con-

vert their parent to a leaf (DEATH), change the splitting rule

Fig. 8 Left: an example of a decision tree T with leaf node predictions

{μ1, μ2, μ3}. Right: the induced partition of [0, 1]2

of a branch (CHANGE), or swap the decision rules of two

neighboring branches (SWAP).

A challenge for inference with Bayesian decision trees

is that the posterior distribution frequently has several

well-separated modes. To make this point, consider the

“checkerboard” setting in Fig. 9. The response Yi is sam-

pled from a N(g0(X i ), 0.12) distribution where g0(x) =

(�4x1� + �4x2�) mod 2. The function g0(x)) can be repre-

sented exactly using a regression tree; an example of such a

tree is given in Fig. 10. However, due to permutation invari-

ance of g0(x), the decision tree in Fig. 10 is not the only

decision tree capable of capturing g0(x), and in fact there are

many equivalent ways of partitioning [0, 1]2 in a way which

is consistent with g0(x).

What makes the posterior of a decision tree difficult

to sample for this particular choice of g0(x) is that (i)

typical Metropolis moves for decision trees, such as the

BIRTH/DEATH/SWAP/CHANGE moves described by Chip-

man et al. (1998) are only capable of making small changes

to the tree structure but (ii) moving to a different mode of

the posterior, which is associated to a vastly different tree

topology, must essentially be done in a single step. In other

words, all local modifications to the tree result in models

of exceedingly low posterior probability, so that all standard

Metropolis–Hastings moves will have acceptance probability

near 0. While this example is admittedly extreme, the gen-

eral phenomenon of regression tree posteriors having many

highly-separated modes is typical of practice (Chipman et al.

1998).

We show that the discrete latent slice sampler is capable of

switching modes of the posterior of our decision tree, despite

the fact that the sampler will make little use of the underlying

structure of the space of decision trees. For simplicity, we will

assume that the decision tree makes cuts only at the midpoints

of each coordinate of the hypercube associated with a given

branch. Let D denote an a-priori specified maximal depth
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Fig. 9 Samples of a response Yi = g0(X i ) + εi with εi ∼ N(0, 0.12)

plotted against the predictors X i1 and X i2

Fig. 10 Example of a regression tree which is capable of exactly cal-

culating g0(x)

of the decision tree. We represent a decision tree over two

variables (x1, x2) with a pair of binary vectors v, u of length

2D+1 − 1 (the maximal number of nodes of the tree), the

first of which indicates whether the associated node of the

tree is a leaf or a branch, and the second of which indicates

which variable the node will split on. We choose our prior

on π(T ,M) so that T has a uniform distribution over the

collection of all possible decision trees of maximal depth

D = 4 with μ� ∼ N(0, 3002). We then applied the latent

slice sampler to sample from π(T | Y1, . . . , Yn) with μ�

integrated out using via conjugacy of the normal distribution.

Figure 11 displays the mixing of the variables v1, v2, v4

(the splitting variables for several branches, including the

root), and the marginal log-likelihood of the tree for the

model. The fact that the log-likelihood is constant is not a

Fig. 11 Traceplots of the samples of the variables v1, v2, v4, and the

log-marginal likelihood of T produced from the latent slice sampler

concern, as the only trees with non-negligible posterior mass

are the trees which exactly partition g0(x). We see, how-

ever, that the latent slice sampler is capable of navigating

across modes without ever making a move which lowers the

marginal likelihood. This behavior would be impossible if we

made local Metropolis–Hastings modifications to the tree,

because these modifications would inevitably result in the

log-likelihood decreasing substantially.

We conclude from this experiment that the latent slice

sampler provides an intriguing possibility for performing

MCMC on binary decision trees. Further modifications are

necessary to apply this approach to the decision tree models

used in practice—in particular, we require a latent slice sam-

pler which can accommodate both continuous and discrete

variables. We leave such modifications to future work.

3.6 Eigenvalues

Consider the joint probability mass function π(z1, z2) with

z1, z2 ∈ {0, 1} and π(0, 0) = π(1, 1) = 1
2
−ε and π(0, 1) =

π(1, 0) = ε, for some small ε.

The Metropolis transition matrix obtained from proposing

a flip of a z j , j = 1, 2, with probability 1
2

each is given

by

PM =

⎛
⎜⎜⎝

1 − 2ε
1−2ε

ε
1−2ε

ε
1−2ε

0

1/2 0 0 1/2

1/2 0 0 1/2

0 ε
1−2ε

ε
1−2ε

1 − 2ε
1−2ε

⎞
⎟⎟⎠ .

Here row 1 corresponds to (0, 0), row 2 to (0, 1), row 3 to

(1, 0) and row 4 to (1, 1) with the same ordering for the

columns. It is straightforward to confirm π PM = π .

As can be seen, to arrive at (1, 1) from (0, 0), for exam-

ple, the chain must pass through either (0, 1) or (1, 0), yet

the probability of such a move is small. Hence there is a
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bottleneck separating (1, 1) from (0, 0). This will hinder con-

vergence of the chain, which can be measured in terms of the

eigenvalues of P . Indeed, the largest eigenvalue is 1, and

the second largest eigenvalue contributes to the convergence

rate: the closer it is to 1, the slower the rate. The distance

between π and πk , where πk is the probability mass function

of z at iteration k, depends on λk
2, where λ2 is the second

largest eigenvalue of the transition matrix. See for example

Diaconis and Strook (1991). The second largest eigenvalue

is given by 0.89 when e.g. ε = 0.05 and is 0.98 when

ε = 0.01.

When we consider the transition matrix for the latent slice

sampler, we assume that the proposal is uniform, i.e. for any

z the proposal for the new z is uniform over the 4 states.

This is based on the idea that the y∗
j ’s are positive or negative

with probability roughly 1
2

for j = 1, 2. For simplicity, we

consider a simplified transition matrix with strictly inferior

mixing compared to our latent slice sampler; specifically, we

ignore the multiple proposals possible during the proposed

states return to the current state. Such neglect of multiple

proposals only occurs for moves from either (0, 0) or (1, 1)

to either (0, 1) or (1, 0).

For a proposal from e.g. (0, 0) to (0, 1), acceptance occurs

when ε > v ( 1
2

− ε) where v is a standard uniform random

variable. Hence the probability of acceptance is 2ε/(1−2ε);

conversely, the probability of accepting a transition from e.g.

(0, 1) to (0, 0) is 1, assuming that ε < 1
4

. Hence, the inferior

mixing transition matrix for the latent slice sampler in this

case is given by PS equal to

⎛
⎜⎜⎝

1
4

+ 1
2
(1 − 2ε

1−2ε
) 1

4
2ε

1−2ε
1
4

2ε
1−2ε

1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1
4

2ε
1−2ε

1
4

2ε
1−2ε

1
4

+ 1
2
(1 − 2ε

1−2ε
)

⎞
⎟⎟⎠ .

The second largest eigenvalues are given by 0.44 when ε =

0.05 and by 0.49 when ε = 0.01, which is approximately

half the values from the Metropolis sampler.

To illustrate the theory, we simulate the latent slice sam-

pler algorithm with ε = 0.05. We take a = 2 and p(s)/s

to be an exponential density with mean 20. Over a run of

10,000 iterations, the estimated transition probability from

(0, 0) to (0, 1) is given by 0.0283, whereas the value within

PS is evaluated at 0.0278, which is smaller than the estimated

value, yet extremely close to it.

Further, to investigate the assumption of uniform propos-

als, we recorded the number of first proposals to be 0 for

z1. Out of the 10000 from the run of the chain, 5003 were

0. See also Lemma 1 for theoretical support for uniform

proposals.

4 The Isingmodel

In this section we consider the special case of the Ising model

and a new latent uniform sampler for sampling it. The proba-

bility model associated with the two dimensional Ising model

(Ising 1925) has joint density on a two dimensional lattice

given up to a constant of proportionality by

p(s) ∝ exp

⎧
⎨
⎩J

∑

<i, j>

si s j

⎫
⎬
⎭ .

The square lattice is of size d and the number of (si ) is D =

d2; one located at every grid point within the lattice. The

sum is over neighboring grid points and so, for example, if

the indices run from left to right along the rows from first to

last then < i, j > includes (1, 2), (1, d + 1), (d, 2d), and so

on. Further, each (si ) is associated with a spin which is either

+1 or −1. Here the J > 0 is the strength of interaction,

usually scaled and represented by J/(kT ), where k is the

Boltzmann constant and T is the temperature. However, for

the purposes of the paper, we will simply use J .

The problem, which has attracted significant attention and

which is the focus of the present paper, is how to sample from

p(s). The original sampling algorithm was the Metropolis;

see Metropolis et al. (1953), in which a single point is pro-

posed to be flipped in sign. The acceptance probability of the

proposal is determined by the usual Metropolis acceptance

probability based on the joint density function value of the

current state and the proposed state. This algorithm can run

into problems if the J is too large; see, for example, Diaconis

and Saloff-Coste (1998).

The most popular algorithm is provided by Wolff (1989)

which is a variant of the original cluster flipping algorithm

presented in Swendsen and Wang (1987). The Wolff algo-

rithm is popular due to its effectiveness and simplicity to

code. An iteration proceeds by selecting an index at random

and then taking all connected paths emanating from this point

which have the same spin as the chosen point. Along each

path, the path continues with probability 1 − exp(−2J ) or

is terminated with probability exp(−2J ). All points on the

sampled paths are then flipped sign. A recent review is pro-

vided in Landau and Binder (2015).

The algorithm is a reversible Markov chain; in the sense

that the proposed move p(s′ | s) which is always accepted

satisfies p(s) p(s′ | s) = p(s′) p(s | s′). The reason why

the Wolff algorithm works is quite straightforward to under-

stand. The number of 1 − exp(2J ) in p(s | s′) and p(s′ | s)

will be the same, the number of them being the number of

different spins between s and s′. Then whereas p(s) will

have a exp(+J ) to represent two neighboring points having

the same spin, if one of the points gets rejected there will

arise a exp(−2J ) in p(s′ | s). And in p(s′) there will be a
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exp(−J ) due to the opposite spins for the two points, and the

two points do not appear in p(s | s′) as they are of opposite

spins.

4.1 Latent uniform sampler

We first transform to z variables on {0, 1} by taking zi =

(si + 1)/2, the resulting model would then be classified as

an occupancy model or a lattice gas model. Then

π(z) ∝ exp

⎧
⎨
⎩J

∑

<i, j>

(2zi − 1) (2z j − 1)

⎫
⎬
⎭

which can be written as

π(z) ∝ exp

⎧
⎨
⎩J

∑

<i, j>

2zi z j

⎫
⎬
⎭

× exp

⎧
⎨
⎩J

∑

<i, j>

2(1 − zi ) (1 − z j )

⎫
⎬
⎭ .

Since both terms are non-negative we can introduce latent

variables k1 and k2 and construct the joint density

p(z, k1, k2) ∝
1

k1!

⎛
⎝J

∑

<i, j>

2zi z j

⎞
⎠

k1

×
1

k2!

⎛
⎝J

∑

<i, j>

2(1 − zi ) (1 − z j )

⎞
⎠

k2

.

This clearly has the correct marginal for z by summing out the

ks over the non-negative integers. Further, it is easy to see that

k1 conditional on z is Poisson with mean J
∑

<i, j> 2zi z j ,

with k1 = 0 if the sum is zero. A similar Poisson conditional

distribution holds for k2.

To organize cluster flips for the z we introduce further

variables. So consider the term

qk1(z) =

⎛
⎝J

∑

<i, j>

2zi z j

⎞
⎠

k1

which we extend to

p(z, αl , βl , l = 1, . . . , k1 | k1) ∝

k1∏

l=1

Hαl ,βl
zαl

zβl
,

where Hα,β = 1 if (α, β) belongs to the sum < i, j >, and

is otherwise 0. Marginalizing over the (αl , βl) returns the

qk1(z). We do the same for the qk2(z) term and then have

p(z, α, β, γ, δ | k1, k2) ∝

k1∏

l=1

Hαl ,βl
zαl

zβl

×

k2∏

l=1

Hγl ,δl
(1 − zγl

) (1 − zδl
).

Sampling the (αl , βl , γl , δl) conditional on the z and k1 and

k2 is straightforward; for example, (α1, β1) is sampled uni-

formly from the set A1 = {(i, j) : Hi, j = 1, zi = z j = 1}.

If this set is empty then k1 is 0. All the other (αl , βl) follow

likewise, while the (γl , δl) come independently and uni-

formly from the set A0 = {(i, j) : Hi, j = 1, zi = z j = 0}.

Note in particular that

k1∏

l=1

Hαl ,βl
zαl

zβl

k2∏

l=1

Hγl ,δl
(1 − zγl

) (1 − zδl
)

must be equal to 1, and that both separate products must be

1. This forms the basis for the cluster flips. We can now take

all the zi for which i ∈ {αl} ∪ {βl} and change zi → 1 − zi ,

and also perform the same flip to all the zi in i ∈ {γl} ∪ {δl}.

The full proposal which gets accepted automatically would

also involve switching the k1 and k2.

A single iteration of the algorithm proceeds as follows:

starting with (zi ).

1. Sample independently k1 and k2 from the Poisson distri-

butions.

2. Sample ((αl , βl), l = 1 : k1) and ((γl , δl), l = 1 : k2)

uniformly and independently from the sets A1 and A0,

respectively.

3. Flip the zi to 1 − zi if the index i appears as any of the

(αl , βl , γl , δl).

4. For all (zi ) for which i is not dealt with in 3., sample as an

independent Bernoulli random variable with probability

1/2.

The chain is a Gibbs sampler; each iteration first samples

[k1, k2 | z] followed by the [αl , βl , γl , δl | k1, k2, z] and

then finally [z | α, β, γ, δ, k1, k2]. When the chain is run the

original variables (si ) can be recovered by taking si = 2zi −1

for each i = 1, . . . , D.

To focus on a specific point, say sw = 1; if sw is

surrounded by spins of opposite sign then with the Wolff

algorithm it can only get flipped in sign if it is selected as the

starting point of a cluster, which arises with probability 1/D.

On the other hand, with the new algorithm, the new value for

sw will be an independent Bernoulli variable, and so will flip

sign with probability 1/2.

Now suppose sw has κ > 0 neighbors all equal to 1. Then

the probability of sw being flipped is given by P(flip sw) =
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Fig. 12 Histogram samples of T from new algorithm (upper panel) and

from Wolff algorithm (lower panel)
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Fig. 13 ACF estimator for T samples from the new algorithm (upper

panel) and from Wolff algorithm (lower panel)

1 − (1 − κ/N )k1 . Now k1 is Poisson with mean 2J N and so

P(flip sw) = 1 − exp(−2Jκ).

4.2 Illustrations

We first run the new algorithm in a small setting where the

true density can be evaluated. So we take d = 2 and focus on

the probabilities for the sum of the (zi ), writing T =
∑D

i=1 zi .

Then, taking J = 0.2, we get P(T = 4) = P(T = −4) =

0.128, P(T = 2) = P(T = −2) = 0.231 and P(T =

0) = 0.282. Over a run of 100,000 iterations we obtain the

estimators P̂(T = 0) = 0.283, P̂(T = 2) = 0.230, P̂(T =

−2) = 0.230, P̂(T = 4) = 0.129 and P̂(T = −4) = 0.129.

With a higher dimension, d = 5 so D = 25, while retain-

ing J = 0.2, we compare with the Wolff algorithm. The

outcome is that while the Wolff algorithm has positive auto-

correlation on the T output, the new algorithm generates

antithetic variables.

In Fig. 12 the output of the T samples represented by his-

tograms from both the new algorithm and the Wolff algorithm

are presented. As anticipated they are the same.
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Fig. 14 Trace plot of first 100 T samples from the new algorithm (upper

panel) and from Wolff algorithm (lower panel) with d = 5 and J = 1

In Fig. 13 we plot the corresponding ACF estimators. As

can be see the new algorithm is generating antithetic vari-

ables, while the Wolff algorithm has the usual positive decay

with higher lags. To explain this phenomenon, define C0 to

be the subset of A0 to be flipped to 1, and C1 the subset of A1

to be flipped to 0, and C the remainder which have new val-

ues independently generated from the Bernoulli distribution.

Then the current T and new T ′ are given by

T = |C1| +
∑

i∈C

zi

and

T ′ = |C0| +
∑

i∈C

z′
i = D − |C1| − |C | +

∑

i∈C

z′
i ,

where the (z′
i ) are independent Bernoulli random variables.

The introduction of the latent variables k1 and k2 makes

it very clear how the value of J influences the number of

flips. If J = 0, an infinite temperature, then k1 = k2 = 0

with probability 1 and so all the (zi ) will be independent

Bernoulli random variables. On the other hand, if J is very

large (a low temperature), then k1 and k2 will be stochastically

large. Hence, the sets A0 and A1 will be large and covering

a large number, if not all, the clusters of common value (a

set of indices {i} connected as neighbors and with the (zi )

having the same value).

However, for large J , the two dominant probabilities arise

when the (zi ) are either all 0 or 1. The new algorithm in this

case would be switching between these two states. From this

perspective, it is to be noted that high values of J which are

not as extreme as the aforementioned case, would perform

well. In Fig. 14 the first 100 T samples are plotted for the

new algorithm (upper panel) and the Wolff algorithm. as can

be seen the mixing is substantially more pronounced for the

new algorithm.
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To investigate further large values of J when we know

the correct answer we return to d = 2. Taking J = 1 it is

possible to evaluate P(T = 4)/P(T = 0) which is given

by exp(4)/(4 + 2 exp(−4)) = 13.53. The new algorithm,

using a sample of size 100, 000 gives a value of 13.47, while

the corresponding estimator from the Wolff algorithm gives

a value of 11.25.

5 Discussion

In this paper we have used latent uniform sampling algo-

rithms to sample a joint distribution on binary values. Such

distributions arise in classic contexts and are known to be

problematic to sample when the dimension is large and/or

the distribution is multimodal.

For the slice sampler, when the distribution is in fact

simple, in the sense it is unimodal, the single flip proposal

Metropolis chain works well and mixes faster than the latent

slice algorithm. However, this hides a couple of important

issues. One is that in practice it would not necessarily be

known that the distribution is unimodal and so other modes

would be left undetected. A further point is that generic algo-

rithms which have the ability to jump between modes are

needed and currently such suitable algorithms are lacking,

although specialized algorithms exists for some distributions,

such as the Ising model. These new algorithms would also

be required to exhibit certain flexibility, which is that local

moves can occur if the large jumps get rejected, as a lot of

them will be. This is precisely a feature of the latent slice

sampler; as the shrinkage proceeds from the initial jump pro-

posal, and if these get rejected, so the proposals become more

local to the current point.

A succinct way to describe the performance of the latent

slice sampler is that it is robust. It performs well if the distri-

bution is simple, such as being unimodal, yet has the ability

to find different modes if they exist.

In Sect. 3.1 we demonstrated the accuracy of the latent

slice sampler. The example in Sect. 3.2 is extreme but makes

a point very clearly about the ability of the latent slice sam-

pler to jump between modes and maintain a correct stationary

distribution. This is certainly a challenging problem and it

is not clear there are even any alternative algorithm capa-

ble of achieving this outcome. Section 3.3 considered the

conditional logistic distribution for which we can sample

exactly and hence compare the performance of various algo-

rithms. The latent slice sampler is shown to easily outperform

the Metropolis sampler. In Sect. 3.4 we look at a variable

selection problem. In this case, when the problem is regu-

lar, also referred to as “easy", the Metropolis sampler has an

advantage over the latent slice sampler. Though as we have

previously mentioned, this can be deceptive. For it might

not be known that multi-modes exist. On the other hand,

when high co-linearity exists the latent slice sampler outper-

forms the Metropolis, and with sufficiently high co-linearity

the Metropolis could be forced to come to a stop. Section

3.5 looked at Bayesian decision trees and set up a problem

in which the standard algorithms failed to mix adequately,

whereas the latent slice sampler did well and was able to mix

across modes in the space of decision trees.

Section 4 looks at the Ising model and we compare our

latent uniform sampling algorithm with the Wolff algorithm.

The new sampler compares favorably with the Wolff algo-

rithm. Specifically, we have shown how a latent Poisson

version of the Ising model has the ability to generate antithetic

variables from the output of a Markov chain. Developing the

algorithm, it is also possible to apply the same idea to the

more general

p(s) ∝ exp

⎧
⎨
⎩

∑

i, j

Hi, j si s j

⎫
⎬
⎭

where now the Hi, j ≥ 0 is the only constraint. This can be

written as

p(s) ∝ exp

⎧
⎨
⎩

∑

i, j

Hi, j (1 + si )(1 + s j )/2

⎫
⎬
⎭

× exp

⎧
⎨
⎩

∑

i, j

Hi, j (1 − si )(1 − s j )/2

⎫
⎬
⎭ .

We can proceed as previously and the alteration to the algo-

rithm is that now we would sample (αl , βl) from the set

A1 = {(i, j) : zi = z j = 1} with probability proportional to

Hi, j . All other aspects of the algorithm, including the flipping

procedure, remain the same.

Future work can go in a number of directions. One is to

look at problems involving multivariate distributions with

mixed types of variable; e.g. the most simple being a joint

distribution on {0, 1} × R. Obviously more complicated

cases can be considered including mixture models where

in a Bayesian setting there will be a joint distribution on

the component indicator variables as well as the component

parameters.

Another direction would be to consider an adaptive algo-

rithm and this would be naturally arising via a general version

of (1) letting the “free" density for s to depend on x ; i.e.

f (x, w, s, l) = 1(w < π(x)) s−1 p(s | x)

1(x − s/2 < l < x + s/2).

The marginal density for x remains as π(x). The aim would

be to adapt p(s | x) as the chain proceeds so to better propose

regions of higher probability, such as separated modes.
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