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Alcohol induced behavioral and
Immune perturbations are
attenuated by activation of
CB2 cannabinoid receptors

Aaliyah Roberts?®, Mahli Christian®, Lizbeth Nivar Dilone?,
Natania Nelson?', Mark Joseph Endrino’, Adam Kneebone?,
Shymaa Embaby?, Justin Fernandez!, Qing-Rong Liu?,
Emmanuel S. Onaivi'* and Berhanu Geresu Kibret**!

Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ,
United States, ?Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of
Health, Baltimore, MD, United States

The endocannabinoidome (eCBome) is the expanded endocannabinoid system
(ECS) and studies show that there is a link between this system and how it modulates
alcohol induced neuroinflammation. Using conditional knockout (cKO) mice with
selective deletion of cannabinoid type 2 receptors (CB2Rs) in dopamine neurons
(DAT-Cnr2) and in microglia (Cx3Crl1-Cnr2), we investigated how CB2Rs modulate
behavioral and neuroinflammation induced by alcohol. Behavioral tests including
locomotor and wheel running activity, rotarod performance test, and alcohol
preference tests were used to evaluate behavioral changes induced by alcohol.
Using ELISA assay, we investigated the level of pro-inflammatory cytokines, tumor
necrosis factor-a (TNF-a), interleukin-6 (IL-6), interleukin-1a (IL-1a), and interleukin-
1B (IL-1p) in the hippocampus of mice. The findings demonstrated that locomotor
activity, wheel running, and rotarod performance activities were significantly
affected by cell-type specific deletion of CB2Rs in dopamine neurons and
microglia. The non-selective CB2R agonist, WIN 55,212-2, reduced alcohol
preference in the wild type and cell-type specific CB2R cKO mice. In addition,
the result showed that cell-type specific deletion of CB2Rs per se and administration
of alcohol to CB2R cKO mice increased the expression of proinflammatory
cytokines in the hippocampus. These findings suggest the involvement of CB2Rs
in modulating behavioral and immune alterations induced by alcohol.
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Introduction

The characterization of additional lipid mediators, enzymes and receptors, has led to
the discovery of an expanded endocannabinoid system (ECS) called the
endocannabinoidome (eCBome) [1]. The ECS is composed of two canonical
cannabinoid receptors (CBRs); cannabinoid type 1 receptors (CBIRs) and
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cannabinoid type 2 receptors (CB2Rs), endocannabinoids (eCBs)
and enzymes responsible for the synthesis and degradation of
eCBs [2, 3]. While cannabinoids represent a group of substances
that share the common property of binding with cannabinoid
(CBRs),
ethanolamide (anandamide) and 2-arachidonoyl glycerol, are

receptors only two substances, arachidonoyl
considered primary eCBs [4-6]. CBIRs, which are expressed
in the hippocampus, neocortex, cerebellum, and basal ganglia
nuclei, are the most abundant GPCRs in the brain [3]. CB2Rs are
found in abundance in the periphery and predominantly in
organs with immune function [7-9]. Contrary to the previous
notion that CB2Rs were absent in brain [9-11], a growing body of
evidence now demonstrates CB2R expression in microglia, and
neurons in the hippocampus, striatum and brain stem [12, 13].
There has been continuous debate and controversy about the
expression of functional neuronal CB2Rs, however, following our
discovery of the presence and functional expression of CB2Rs in
brain [14-17], other studies have overwhelming confirmed that
functional CB2Rs are present in neurons and are regulated by
drugs of abuse [18-21].

Chronic alcohol consumption, through abnormal brain
circuits, can cause neuronal damage, behavioral alterations,
and neuroinflammation that are characterized by an enhanced
release of pro-inflammatory cytokines called cytokine storm
[22-24]. Recent preclinical reports suggest that enhanced
innate immune system signaling increases consumption of
alcohol [25]. Studies also indicated that CB2R activation has
been shown to inhibit neuroinflammation, attenuate neuronal
[26, 27]. We
hypothesized that CB2Rs can play a role in preventing

tissue damage, and drive neurogenesis

alcohol induced behavioral and neuroimmune changes in
mice. We addressed this question by investigating the roles
of dopamine neuron and microglia CB2Rs using DAT-Cnr2,
Cx3crl-Cnr2 cKO, and wild type (WT) control mice in
modulating  behavioral
induced by the effects of alcohol.

and neuroimmune alterations

Materials and methods
Animals

In this study, we employed DAT-Cnr2 and Cx3Crl-Cnr2
cKO mice which are created in our lab [28]. The mice were
generated through a breeding approach involving Cnr2-
floxed mice and DAT-Cre and Cx3-Cre We
confirmed the specific deletion of CB2Rs in dopamine cells

mice.

and microglia in homozygous cKO mice through genotyping
and RNAscope in situ hybridization, while no deletion
the WT mice. The
conducted on adult male mice weighing between 20 g and

occurred in experiments were

30 g, all bred in the mouse laboratory at William Paterson
University of New Jersey. These mice were kept under
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controlled conditions, including room temperature (25°C +
2°C), a 12:12 h light-dark cycle, and ad libitum access to food
and water. Our study adhered to the guidelines in the Guide
for the Care and Use of Laboratory Animals and received
approval from the William Paterson University Animal Care
and Use Committee (IACUC).

Drugs and administration

Absolute ethanol was purchased from Pharmaco-AAper in
Bristol, PA. 8% of the absolute alcohol was mixed with distilled
water and administered as 0.8 g/lkg dose into the peritoneum
(i.p.) at a volume of 10 mL/kg body weight. The non-selective
cannabinoid receptor agonist, WIN55,212-2 (WIN), was
purchased from Cayman Chemical Co. located in Ann Arbor,
ML After dissolving WIN in a mixture of DMSO, tween 80, and
saline in a ratio of 1:2:7, a dosage of 3 mg/kg was administered.
The doses of alcohol and WIN were determined based on
previous research [21, 28-30]. Both alcohol and WIN were
injected i.p. in a volume of 10 mL/kg body weight.

Locomotor activity test

To evaluate total distance travelled in the activity box, the
locomotor activity monitoring apparatus (ENV-510: Med
Associates Inc., St. Albans, VT, USA) was utilized. Thirty
minutes after acute alcohol injection, the animals were placed
gently into separate test boxes (measuring 43.2 x 43.2 x
Total
distance traveled by mice was recorded and analyzed over

30.5cm) that were connected to a computer.

a 10-min period [21]. Prior to the test, the mice were given
three consecutive days to freely explore the open field
chambers for 10 min each day in order to acclimate to the
environment.

Wheel running activity test

The wheel running activity of the mice was observed using a
spontaneous wheel-running monitor (Wahmann, Geo. H.,
Manufacturing Company, Baltimore, MD, USA) after 40 min
of acute alcohol administration. Each mouse was placed in the
monitor, and their wheel running behavior was tracked using
auto-counters, which recorded the total number of revolutions
made by each animal during the 10-min testing session [21].

Rota rod performance test

Mice were placed on a stationary rota rod (AccuRotor
Rotarod, AccuScan Instruments Inc.) by gently gripping their

Published by Frontiers


https://doi.org/10.3389/adar.2023.11602

Roberts et al.

tails, positioning them away from the direction of rotation. To
maintain balance, the mice had to walk forward on the rod.
The rota rod was set at a height of 30 cm above the ground and
featured a rotating rod with a 3 cm diameter. The duration
each mouse managed to stay on the rod for 180 s was recorded,
excluding falls occurring within the initial 5s due to
improper placement by the experimenter [21]. A soft
padded surface was positioned at the base of the apparatus
to cushion any falls.

Alcohol preference test

For preference testing, individually housed mice (N =
10 mice per group) were used. Throughout a 24 h period, the
mice had access to two conical tubes with a drinking spout
attached filled with water. In order to institute a baseline, both
tubes were initially filled with 40 mL of water and placed above
the cages for three consecutive days. During the preference
measurement phase, one of the tubes was replaced with a
solution containing 8% alcohol. The amount of alcohol
consumed by each animal was recorded over five consecutive
days between 10 and 11 AM. To ensure unbiased positioning, the
placement of the tubes within the various cages was randomized
with regard to the side of the cages they were placed on. In all
experiments, the ratio of alcohol to water consumed, and the total
fluid consumption, were calculated to obtain a preference ratio.
Additionally, half of the animals in each group (N = 5) were
injected with WIN daily for five consecutive days. The alcohol
preference ratio was determined by dividing the amount of
alcohol consumed by the total fluid (alcohol + water)
consumption [21].

Cytokine assay

Mice involved in the acute behavioral experiments were
continuously administered either the vehicle or alcohol for
seven consecutive days. On the eighth day, the mice were
decapitated, and their brains were removed from the skull. To
aid dissection, the brains were promptly frozen in liquid
nitrogen. Specific brain regions containing the hippocampus
were dissected and placed in cell lysis buffer. Using an
ultrasonic homogenizer, the tissue was homogenized. The
resulting homogenates were then centrifuged at 10,000 RPM
for 5 min to separate the tissue debris. Samples of the resulting
supernatants were collected and, after determining the protein
concentration, frozen and stored at —80°C until needed for
cytokine analysis. To profile the expression of IL-la
(interleukin-la), IL-1B (interleukin-1p), IL-6 (interleukin-6),
and TNF-a (tumor necrosis factor-a), a Mouse Inflammation
ELISA Strip kit (Signosis, Sunnyvale CA, USA) was employed. In
brief, 100 pL of the diluted cell lysate sample was added to wells
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coated with a specific primary antibody against each cytokine.
After incubation for 1h at room temperature, the wells were
aspirated and washed three times with 200 uL of assay wash
buffer. Subsequently, 100 L of a biotin-labeled antibody mixture
was added to each well and incubated for 1h at room
temperature. The wells were again aspirated and washed three
times with 200 uL of assay wash buffer. Then, 100 uL of
streptavidin-HRP conjugate was added to each well and
incubated for 45min at room temperature. Following
aspiration and another round of washes, 100 pL of substrate
was added and incubated for 10 min, followed by the addition
of 50 pL of stop solution to each well. The optical density
of each well was measured using a microplate reader at

450 nm [21].

Statistical analysis

Data are presented as mean + SEM. Sigma Plot 12.0 statistical
program was used. Prior to performing the tests, we conducted a
normality test (Shapiro-Wilk) to verify the distribution of the data.
The statistical analysis was performed by the two-way analysis of
variance (ANOVA). Post hoc comparisons of means were carried
out with Tukey’s test for multiple comparisons when appropriate.
We used two-way ANOVA for the analysis of behavioral and
cytokine assay data. Data from the alcohol preference study were
analyzed by using repeated measures two-way ANOVA. The
confidence limit of p < 0.05 was considered statistically
significant. One of the factors of the ANOVA was the genotype
(DAT-Cnr2, Cx3Cr1-Cnr2 or WT mice) and the other factor was
treatment groups (vehicle or alcohol).

Results

Brain CB2Rs modifies locomotor activity
induced by alcohol

We evaluated acute motor activity in C57, DAT-Cnr2, and
Cx3Crl1-Cnr2 mice following the administration of 8% alcohol using
an activity monitor apparatus. The results showed significant main
effects for both treatment and genotype (F,, 3 = 70.30, p < 0.001 and
B, 30 = 8153, p < 0.001, respectively), as well as a significant
interaction between treatment and genotype (F,, 3 = 16.22, p <
0.001). Post-hoc analysis using Tukey's test for multiple
comparisons revealed that alcohol administration significantly
increased the total distance traveled in the activity box compared
to the control group treated with vehicle. Interestingly, the results
also indicated that specific deletion of CB2R in dopamine neurons
(DAT-Cnr2 cKO) enhanced alcohol-induced locomotor activity,
with a statistically significant (p < 0.01) increase in the total
distance traveled compared to WT mice. In contrast, the cell-
type specific deletion of CB2R in microglia (Cx3Crl-Cnr2
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FIGURE 1

Acute effect of alcohol (0.8 g/kg) on distance travelled
(centimeters) in the activity monitor apparatus (A), on the absolute
number of revolutions in the wheel-running test (B) and on fall
latency (seconds) in the rotarod test (C) in WT, DAT-Cnr2,
Cx3Crl1-Cnr2 mice. Values are mean + SEM (n = 6 in each group).
Statistical analysis was done using Two-way ANOVA test. **p <
0.01, *p < 0.05 compared to C57-WT group.

cKO) reduced alcohol-induced locomotor activity, showing a
statistically significant (p < 0.05) decrease in the total distance
traveled compared to WT mice (Figure 1A).

Dopamine and microglia specific deletions
of CB2Rs enhance alcohol induced wheel-
running activity

In this study, we investigated acute wheel running behavior
in C57, DAT-Cnr2, and Cx3Crl-Cnr2 mice following the
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FIGURE 2

Role of WIN in alcohol preference. WIN significantly reduced
alcohol preference in C57 wild type (A), DAT-Cnr2 (B) and Cx3Cr1-
Cnr2 (C) mice compared to vehicle treated controls. Values are
mean + SEM (n = 6 in each group). Statistical analysis was
done using Repeated Measures Two-way ANOVA test. ***p <
0.001, **p < 0.01, *p < 0.05.

administration of 8% alcohol using a mechanical wheel
running apparatus. The number of revolutions exhibited a
significant association with the treatment groups (F; 3o =
112.2, p < 0.001) and genotype (F, 30 = 56.12, p < 0.001).
Post-hoc analysis using Tukey’s test revealed that both the
vehicle and alcohol treatment of DAT-Cnr2 mice resulted in a
significant (p < 0.01) increase in the absolute number of
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revolutions compared to the control group of WT mice
(Figure 1B).

Deletion of CB2R in dopamine neurons
enhances alcohol induced reduction in fall
latency

We examined the ability of mice to maintain their position
on a rotating cylinder following the administration of 8% alcohol.
We employed a constant speed rotarod apparatus for this
assessment in C57, DAT-Cnr2, and Cx3Crl-Cnr2 mice. The
results showed that cell type specific deletion of CB2R in
dopamine neurons enhanced alcohol induced reduction in fall
latency in the rotarod test of DAT-Cnr2 mice, whereas this effect
was not observed in the deletion of CB2R in microglia of Cx3Cr1-
Cnr2 mice. There was a significant main effect for both treatment
and genotype (F;, 30 = 28.43, p < 0.001 and F; 30 = 62.52, p <
0.001, respectively). Post-hoc analysis using Tukey’s test
indicated a statistically significant (p < 0.05) increase in fall
latency in DAT-Cnr2 mice compared to the WT controls.
However, the cell-type specific deletion of CB2R in microglia
did not affect the alcohol-induced changes in fall latency when
compared to the WT controls (Figure 1C).

WIN 55,212-2 reduces alcohol preference
in the wild type and cell-type specific
CB2R cKO mice

We further investigated the potential association between
subacute treatment with WIN and alcohol preference. In WT
mice, the results demonstrated a significant effect of both
treatment and time on the alcohol preference ratio (F;, 50 =
79.229, p < 0.001 and F, , = 3.172, p < 0.05, respectively), as
well as a significant interaction between treatment and time (Fy o =
6421, p < 0.05). Post hoc analysis revealed a significant (p < 0.01)
reduction in alcohol preference in mice treated with WIN compared
to the vehicle-treated controls (Figure 2A). Similarly, in DAT-Cnr2
mice, there was a significant effect of both treatment and time on the
alcohol preference ratio (F;, 5o = 233.855, p < 0.001 and F, ,, =4.956,
P < 0.05, respectively), along with a significant interaction between
treatment and time (Fy, 5 = 9.042, p < 0.001). Post hoc analysis
indicated a significant (p < 0.01) reduction in alcohol preference in
mice treated with WIN compared to the vehicle-treated controls
(Figure 2B). In Cx3Cr1-Cnr2 mice, statistical analysis also revealed a
significant effect of both treatment and time on the alcohol
preference ratio (F;, » = 68.225, p < 0.001 and F, ,, = 5.716,
p < 0.05, respectively), as well as a significant interaction between
treatment and time (Fy, o = 2.812, p < 0.05). Post hoc analysis
demonstrated a significant (p < 0.05) reduction in alcohol preference
in mice treated with WIN compared to the vehicle-treated controls
(Figure 2C).
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CB2Rs reduce alcohol induced increase in
pro-inflammatory cytokines in mice
hippocampus

The result form the cytokine study showed both treatment and
genotype significantly affected the expression of TNF-a [treatment
effect: F; 30 = 29.33, p < 0.001; genotype effect: F, 39 = 20.51, p <
0.001; treatment X genotype interaction: F; 39 = 5.43, p < 0.05] and
IL-1p [treatment effect: F) 3, = 12.27, p < 0.001; genotype effect: F,,
30 = 1643, p < 0.001; treatment X genotype interaction: F, 3o = 9.62,
p < 0.01]. Compared to the WT controls, Tukey’s test revealed that
there was statistically significant increase in the levels of TNF-a and
IL-B, as evidenced by enhanced absorbance values, in DAT-Cnr2
and Cx3Cr1-Cnr2 mice treated with alcohol (Figures 3A-D).

Discussion

Due to the neuro-immune functioning associated with the
reward pathway, recently, there is an increasing interest and
attention on CB2Rs as a target for the treatment of drug addiction
[31-34]. The aim of this study was to examine the effect of
genetic and pharmacological modulation, using the non-selective
CBR agonist WIN 55, 212-2, of CB2Rs on behavior and neuro-
immune changes induced by alcohol. The results demonstrate
that cell-type specific deletion of CB2Rs in dopamine neurons
and microglia significantly altered locomotor activity, and wheel
running activity, and on the rota rod performance test. The
results also revealed that cell-type specific deletion of CB2Rs
addition,
pharmacologic activation of CB2Rs using WIN 55, 212-

enhanced alcohol-induced inflammation. In
2 reduced alcohol preference.

The results of the current study support our earlier finding
that CB2Rs acts as a “brake” on dopamine neurons’ ability to
activate the locomotor system and that its deletion in DAT-Cnr2
cKO mice improves psychomotor behavior [21, 28, 35]. The
observation that deletion of CB2Rs in DA neurons resulted in
enhanced spontaneous motor activity reinforces the notion that
CB2R mediates inhibition of spontaneous movement via
modulation of the dopamine system, probably through
reduction of neuronal firing frequency [36]. However, in
contrast to the DAT-Cnr2 mice, Cx3Crl1-Cnr2 mice showed a
reduction in locomotor activity compared to the wild type
controls. In vitro and in vivo studies demonstrated that
activation of CB2R decreases inflammation and protect
neurons from degeneration [26, 27]. In this study, the
hypolocomotion observed in the Cx3Cr1-Cnr2 mice might be
due to lack of the neuroprotective effects of CB2Rs from
neurodegeneration.

Alcohol dose, route of administration, and mouse strain all
have an impact on how alcohol affects locomotor activity in mice.
In this work, we discovered that locomotor activity was increased

in both the wild-type and genetically modified mice after sub-
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Measures of the levels of proinflammatory cytokines TNF-a (A), IL-6 (B), IL-1a (C) and IL-1p (D) in the hippocampus of mice (WT, DAT-Cnr2,
Cx3Crl1-Cnr2) after seven consecutive days of sub-acute treatment with vehicle or alcohol (0.8 g/kg). Statistical analysis was done using Two-way
ANOVA followed by Tukey's multiple comparisons test. Values are mean + SEM (n = 4 in each group). **p < 0.01, *p < 0.05. AU - absorbance unit.

acute i.p. administration of 8% alcohol. Previous research have
shown that alcohol enhances locomotor activity and locomotor
sensitization [37-42], which is consistent with the findings of the
present investigation.

Our investigation into the subacute effects of the WIN
compound on alcohol preference revealed that it greatly
decreased alcohol intake in DAT-Cnr2 and Cx3Crl-Cnr2 cKO
mice, providing one piece of support for the idea that CB2Rs are
involved in the behavioral effects of alcohol. In our previous study
we showed that the DAT-Cnr2 cKO mice consumed less alcohol
than wild type mice with and without the stress, suggesting that the
deletion of CB2Rs in DA neurons contributed to the reduction in
alcohol consumption and preference [28]. Studies showed
contradicting result on the effect of CB2Rs on ethanol intake.
Some reported that a naturally available full-agonist of CB2Rs,
beta-caryophyllene (BCP) lowered ethanol intake in the two
bottle paradigm in mutant Cnr2”~ mice [20, 43] whereas, others
reported that sub-chronic injection of JWHO015 enhanced alcohol
intake in mice [44, 45]. The variation in response might be due to
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different factors such as concentration and route of administration
of ethanol, duration of exposure, strain of animal and the animal
model used in the experiment. However, accumulating data support
a role of CB2Rs in modulating the addictive effects of alcohol
indicating that CB2Rs might be targeted in the treatment of
behavioral impairment induced by alcohol consumption.

Alcohol causes organ damage that affects the liver, cardiovascular
system, and brain. This organ damage is characterized by
inflammation and altered innate immune responses [46-48].
Chronic alcohol consumption results in neuroinflammation [49]
and neurodegeneration in humans as well as animal models, as
evidenced by increased expression of MCP-1, TNF-qa, IL-1p and
caspase-3 in the brain [48, 50, 51]. The hippocampus has been
repeatedly affected by the neuroimmune dysregulations induced by
alcohol [52]. Here we report that cell-type specific deletion of CB2Rs
per se and administration of alcohol to CB2R ¢KO mice increased the
expression of proinflammatory cytokines TNF-a, IL-6, IL-1a and IL-
1B in the hippocampus of mice, which is an evidence for the
neuroprotective role of CB2Rs. The use of CB2R ligands in the
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neuroprotective and  anti-inflaimmatory activity linked to
neuropsychiatric and neurodegenerative disorders is based on the
fact that CB2Rs expression is increased during injury and
inflammation, with their upregulation during CNS disorders
providing a basis and focus of attention [33, 53]. Studies showed
that the activation of CB2R is related to decreases in pro-
inflammatory cytokines (ITNF-q, interferon gamma (IFN-y), IL-1,
IL-2, IL-6 or IL-12) [21, 54-56]. The outcome of our current
investigation points to a critical role for CB2Rs and
neuroinflammatory processes in alcohol-related neurobiological
and behavioral changes. However, it should be noted that
complete loss of the anti-inflammatory CX3CR1 receptor in
homozygous mice is a potential confounder since this receptor is
important for sustaining normal microglia function and lack of
CX3CR1 reportedly results neurotoxic microglia phenotype. To
prevent alcohol-induced neuroinflammation and related brain
dysfunctions, pharmacological regulation of CB2Rs may be a
focus. In summary, cell-type specific deletion of CB2Rs enhances
psychomotor activity and increases the level of proinflammatory
cytokines in the hippocampus. In addition, pharmacologic
modification of CB2Rs using the WIN 55,212-2 compound
reduced alcohol consumption in mice compared to vehicle.
However, more studies are required to provide additional
molecular and cellular mechanisms associated with neuro-
immuno-eCB modulation of the effects of alcohol and CB2Rs in
autoimmune disorders.

Data availability statement

The original contributions presented in the study are
included in the article/supplementary material, further
inquiries can be directed to the corresponding authors.
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