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Abstract

Stream fluxes are commonly reported without a complete accounting for uncertainty

in the estimates, which makes it difficult to evaluate the significance of findings or to

identify where to direct efforts to improve monitoring programs. At the Hubbard

Brook Experimental Forest in the White Mountains of New Hampshire, USA, stream

flow has been monitored continuously and solute concentrations have been sampled

approximately weekly in small, gaged headwater streams since 1963, yet comprehen-

sive uncertainty analyses have not been reported. We propagated uncertainty in the

stage height–discharge relationship, watershed area, analytical chemistry, the

concentration–discharge relationship used to interpolate solute concentrations, and

the streamflow gap-filling procedure to estimate uncertainty for both streamflow and

solute fluxes for a recent 6-year period (2013–2018) using a Monte Carlo approach.

As a percentage of solute fluxes, uncertainty was highest for NH4
+ (34%), total dis-

solved nitrogen (8.8%), NO3
� (8.1%), and K+ (7.4%), and lowest for dissolved organic

carbon (3.7%), SO4
2� (4.0%), and Mg2+ (4.4%). In units of flux, uncertainties were

highest for solutes in highest concentration (Si, DOC, SO4
2�, and Na+) and lowest for

those lowest in concentration (H+ and NH4
+). Laboratory analysis of solute concen-

tration was a greater source of uncertainty than streamflow for solute flux, with the

exception of DOC. Our results suggest that uncertainty in solute fluxes could be

reduced with more precise measurements of solute concentrations. Additionally,

more discharge measurements during high flows are needed to better characterize

the stage-discharge relationship. Quantifying uncertainty in streamflow and element

export is important because it allows for determination of significance of differences

in fluxes, which can be used to assess watershed response to disturbance and envi-

ronmental change.

K E YWORD S
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1 | INTRODUCTION

Characterizing fluxes of solutes in stream water at a watershed outlet

provides insight on ecosystem processes occurring within the upslope

contributing area. Since stream water solute fluxes are a spatially

integrated signal, they are useful for characterizing processes such as

plant uptake, mineral weathering, and microbially mediated transfor-

mations across broad spatial scales (Holloway & Dahlgren, 2001; Tittel

et al., 2022). Additionally, solute fluxes in stream water can be com-

pared with fluxes in precipitation to evaluate whether nutrients are
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being retained or lost from an ecosystem (Bormann & Likens, 1967).

These nutrient budgets aid in assessing impacts from both natural and

human disturbances, such as forest harvesting, air pollution

and extreme weather events. Understanding and predicting the

impacts of disturbances on stream solute fluxes is important to water

resource managers in their efforts to meet water quality objectives

such as total maximum daily loads (e.g., Lewis et al., 2006).

Replication is commonly used to establish significance of differ-

ence, but watershed studies are difficult to replicate, because individ-

ual watersheds have unique characteristics. Even where replicate

watersheds can be identified, replicated whole-watershed experi-

ments (e.g., harvesting, nutrient addition) may be prohibitively expen-

sive because of their large scale. Instead, in paired watershed

experiments, a treated watershed is compared to an untreated refer-

ence watershed without replication of the treatment (Bosch &

Hewlett, 1982; Neary, 2016). In these cases, other sources of infor-

mation on uncertainty are needed to evaluate differences between

watersheds or the significance of change over time. In the case of

paired-watershed experiments, a pre-treatment comparison of the

two watersheds is sometimes included (Bosch & Hewlett, 1982;

Hornbeck et al., 1993). Quantifying each source of uncertainty and

combining them, either through numerical methods involving Monte

Carlo error propagation or through analytical methods, is another

option. A comprehensive uncertainty analysis has other benefits to

monitoring designs, as it can be used to help identify where best

to focus efforts, such as determining the optimal strategy of stream

chemistry sampling (Levine et al., 2014). Despite its importance,

uncertainty analysis has not been widely adopted in watershed stud-

ies because of the challenges involved in its quantification

(Pappenberger & Beven, 2006).

Stream solute fluxes are calculated as the product of discharge

and solute concentration. It is important to collect, analyse and com-

pute the fluxes in a way that ensures the results are of the desired

quality. Stream flux data reflect many sources of uncertainty

(Campbell et al., 2016; McMillan et al., 2012; Yanai et al., 2015) that

should be characterized for proper interpretation of the data. Uncer-

tainty in streamflow estimates have been investigated using linear

regression, generalized likelihood uncertainty estimation, Bayesian

approaches, and fuzzy methods (Kiang et al., 2018). Few studies have

attempted to combine uncertainty in streamflow with that of solute

chemistry to produce an overall estimate of uncertainty in solute flux

(but see Campbell et al., 2016; Harmel et al., 2006).

The objective of this study was to quantify uncertainty in stream

solute fluxes from a small-watershed ecosystem at the Hubbard

Brook Experimental Forest in New Hampshire, USA, using a Monte

Carlo approach. The work improves on a previous Monte Carlo analy-

sis of uncertainty in the hydrologic flux of Ca2+ at Hubbard Brook

(Campbell et al., 2016) by including more measured solutes and

improving estimates of uncertainty associated with gaps (based on

See et al., 2020), high streamflow, watershed area, and solute flux cal-

culations (i.e., using concentration–discharge relationships to inform

interpolation between sampling dates; Aulenbach & Hooper, 2006).

We determined the overall uncertainty in stream solute flux and also

quantified the individual sources of uncertainty in discharge and sol-

ute concentration to rank the sources of uncertainty in the

calculations.

2 | METHODS

2.1 | Study site

The Hubbard Brook Experimental Forest is located in the White

Mountain National Forest in central New Hampshire, USA (43�56 'N,

71�45 'W). In this study we focused on Watershed 3 (W3), the hydro-

logic reference watershed, which has not been experimentally manip-

ulated. The watershed is 42 ha in area with an elevation range of

527–732 m. Vegetation consists mostly of northern hardwoods: sugar

maple (Acer saccharum Marsh.), American beech (Fagus grandifolia

Ehrh.), and yellow birch (Betula alleghaniensis Britt.), with red spruce

(Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.) in areas of

shallow soils and bedrock outcrops. Soils are derived from glacial drift

of sandy loam to loamy sand texture, with thickness varying up to

8 m. Soils are classified mostly as base-poor Spodosols spanning a

range of drainage classes (Bailey et al., 2014). The underlying bedrock

is sillimanite grade mica schist, quartz schist, and calc-silicate granulite

of the Silurian Rangeley formation (Barton et al., 1997).

2.2 | Stream solute flux calculations

At Hubbard Brook, solute fluxes are calculated as the product of sol-

ute concentration and discharge, normalized by watershed area. We

used data collected during the 2013–2018 water years (i.e., beginning

on 1 June 2013 and ending on 31 May 2019), because 2013 marked

the advent of digital stage-height recording and a change in the ana-

lytical laboratory. Streamflow at the outlet of W3 is measured using a

120-degree v-notch weir for stage heights up to 0.6 m (2 feet); above

that height, the rectangular area of the cement structure above the

v-notch is used. Stream stage height was recorded in a stilling basin

with a float-and-pulley system equipped with a shaft encoder

(Campbell Scientific, CS410) until October 2017, when it was replaced

with an optical encoder (AMASS Data Technologies, model PSE-SDI

\D\LiPO). Weekly grab samples for stream chemistry are collected

just upstream from the stilling basin to avoid sample contamination

from the cement structure. In most years, additional automated sam-

pling was done periodically during rainstorm and snowmelt events

(Table 1).

Chemical analyses were performed at the U.S. Forest Service Lab-

oratory in Durham, New Hampshire, except for pH, which was mea-

sured with a benchtop pH meter (Thermo Scientific, Orion 3-Star) at

the Hubbard Brook Experimental Forest laboratory on the same day

samples were collected. Samples were filtered with a pre-combusted

glass-fibre filter (0.7 μm nominal pore size) and stored frozen prior to

analysis, except for Ca2+, Mg2+, Na+, K+ and Si, for which an aliquot

was poured off and refrigerated. Samples were analysed for SO4
2�,
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NO3
� and Cl� using ion chromatography (Metrohm 761); NH4

+ with

automated colorimetry (SmartChem AQ2 Discrete Analyser); Ca2+,

Mg2+, Na+, K+, and Si with inductively coupled plasma optical emis-

sion spectroscopy (Agilent 730); and DOC and TDN using high-

temperature catalytic oxidation with chemiluminescent N detection

(Shimadzu TOC-VCSH/TNM-1 analyser).

Some solutes are commonly below the method detection limit

(Table 2). In these cases, solute fluxes at Hubbard Brook have tradi-

tionally been calculated using half the detection limit (Buso

et al., 2000). For the purpose of quantifying uncertainty, however, we

used the actual values obtained from the instrument, even for those

below zero. We used this approach to avoid the bias that occurs with

other methods of handling values below detection, such as eliminating

them, setting them to zero, or using half the detection limit

(Helsel, 1990). Because we report uncertainty using the 2.5th and

97.5th percentile of Monte Carlo iterations, occasional negative

values in solute fluxes were not a problem for the analysis.

2.3 | Monte Carlo uncertainty analysis

We used Monte Carlo simulation to generate many estimates of

stream loads by randomly sampling from possible values for each vari-

able used in the calculations, (Figure 1), as described below, resulting

in a probability distribution of the estimates (Press et al., 1986). The

analyses were performed in the statistical computing language R

(v3.5.2), and the documented computer code is included in the

archived supplemental material. Confidence intervals were deter-

mined from the 2.5 and 97.5 percentiles of the distribution of the esti-

mates, indicating with 95% certainty that the true value falls within

this range. With this method, the distribution need not be normally

distributed, and the error bars may be asymmetrical.

We conducted the Monte Carlo analysis with all the sources of

uncertainty combined and then one source of uncertainty at a time, to

evaluate the relative importance of each source of uncertainty. We

ran three sets of iterations for each combination of sources, increasing

the number of iterations (500, 1000, 2000, or 4000) as needed for the

three flux estimates to agree within 1%. In the case of NH4
+, many

more iterations (18000) were required to achieve this target, because

concentrations were so low. A target agreement in units of concentra-

tion would have been attained more easily. The following is an expla-

nation of how each source of uncertainty was estimated, including the

determination of input distributions for the Monte Carlo analysis.

2.4 | Chemical analysis

To characterize uncertainty in the chemical analysis of stream sam-

ples, we used measured values of check standards run during routine

sample analysis (Table 2). The uncertainty in each sample was repre-

sented by randomly sampling an error term from the comparison of

the expected and measured concentrations of the check standard

with the concentration closest to the stream sample in question. The

number of different concentrations of check standards ranged from

8 to 12, depending on the element, across the range of stream water

concentrations in our data set. The number of observations per con-

centration of check standards averaged from 2 to 1367, depending on

the element and the concentration of the check standard. In the case

of pH, we sampled a set of measured pH deviations from two check

standards (pH 4 and 7) and used those as the analytical errors, before

transforming the data from pH into H+ concentration for calculation

of fluxes.

2.5 | Stage height–discharge relationship

Uncertainty in the relationship between stream stage height and dis-

charge was determined at Watershed 2, the weir adjacent to our

TABLE 2 Distribution of solute concentrations in W3 for 2013–2018 (5th, 50th, and 95th percentiles).

W3 stream concentrations (mg/L)
Method detection limit (mg/L) Samples below MDL (%)

Analyte 5 50 95

Ca2+ 0.48 0.64 0.98 0.028 0

Mg2+ 0.14 0.19 0.31 0.003 0

K+ 0.07 0.12 0.51 0.011 0

Na+ 0.57 0.82 1.56 0.010 0

NH4
+–N 0.00006 0.004 0.01 0.003 63

SO4
2�–S 0.59 0.85 1.19 0.050 1

NO3
�–N 0.0021 0.041 0.31 0.013 21

Cl� 0.32 0.44 0.70 0.088 0

DOC 1.68 2.46 5.14 0.340 0

TDN 0.08 0.14 0.38 0.099 18

Si 1.74 2.47 3.96 0.045 3

Note: The method detection limits and the proportion of samples below detection are also shown.
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focus watershed; such measurements have not been made at W3.

The control structures for W3 and W2 are similar sizes and designs,

and both are tied into bedrock. Discharge was measured by timing the

capture of stream water in a large container at flows up to 4 L/s and

by salt-dilution gauging (Moore, 2005) at flows up to 33 L/s

(Figure 2). There are 49 observations in the data set, collected on

26 dates between April and December 2017. Although stream dis-

charge in W3 was within the range of these manual measurements

93% of the time (i.e., <32 L/s), higher flows accounted for 50% of the

streamflow. The observations were compared to the theoretical weir

equation, Q = 2302 � H2.449, where H is in m and Q is in L/s (Lindell

et al., 2018) and the deviation of the observations from the discharge

predicted by the theoretical curve was described with an equation of

form ΔQ = a � H/(b + H), where a and b are parameters. Rather than

randomly selecting 49 values, we randomly selected 26 dates, with

replacement, because measurements within a date were clearly not

independent, and we randomly selected one observation from each

date. We fit this relationship 10 000 times (using the minpack.lm non-

linear solver implemented in R; Elzhov et al., 2016) (Figure 3). To esti-

mate uncertainty in the stage height–discharge relationship, we

randomly selected one of these 10 000 relationships for each iteration

of the Monte Carlo. Measurement uncertainty in stage-height and dis-

charge are reflected in the model fit and were not additionally sam-

pled in the Monte Carlo. Uncertainty in stage-height measurement

can be characterized by comparing continuous measurements with

manual measurements made with a hook gauge (Yanai et al., 2013).

2.6 | Gaps in stream streamflow measurements

We simulated uncertainty due to gaps in the streamflow record during

the study period in W3. The most common causes of gaps at Hubbard

Brook, in descending frequency, are debris in the v-notch, malfunc-

tioning sensors, ice in the v-notch, weir maintenance and repairs, and

F IGURE 1 Flowchart of the steps in the Monte Carlo calculation of uncertainty in solute flux. Bold and underscore type indicates random
sampling from data. Processes between the dotted lines showing the “Monte Carlo Iteration” and “Time series Iteration” involve selecting
parameters that are held constant during each time series loop.
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technician error (Campbell et al., 2016). Gaps were filled using an

ensemble of regressions built with data from 1955 to 2012, which

relate discharge at each stream to the five other streams on the

south-facing slope (See et al., 2020). Predicted values at the beginning

and end of a gap were forced to match the measured values at the

beginning and end of each gap. Uncertainty associated with filling

gaps was characterized by comparing observed streamflow to stream-

flow estimated by this approach for a population of 1 000 000 artifi-

cial gaps produced for W6, a nearby reference watershed at Hubbard

Brook (See et al., 2020). To account for uncertainty in filling gaps in

the streamflow record for W3, we randomly selected a value from this

population of errors (in quantiles of 1000, each with 1000 possible

values) based on streamflow during each gap in the record for W3.

2.7 | Watershed area

To allow comparisons to precipitation inputs and to watersheds of dif-

ferent areas, stream discharge is divided by the area of each water-

shed. The measured area of the watershed is thus a source of

uncertainty in stream flux estimates. We used areas delineated from

two independent LiDAR-derived 1-m digital elevation models (DEMs)

resampled to 3-m resolution with a low-pass smoothing filter, which

gave areas of 41.8 and 42.1 ha (Gillin et al., 2015). The area of the

original chain-and-compass survey of the topographic divides, con-

ducted on the ground in the 1950s, produced a similar estimate

(42.3 ha) but was not used in our analysis because the method is infe-

rior to the DEM delineations. To characterize uncertainty in the best

estimate of the watershed area, we randomly selected (with replace-

ment) two values from our two estimates and used the mean value at

each iteration of the Monte Carlo simulation (this is the simplest pos-

sible instance of bootstrapping).

2.8 | Temporal interpolation of stream chemistry

While stream discharge is measured nearly continuously, stream

chemistry is measured at specific points in time; thus temporal inter-

polation of chemical concentrations is needed (Swistock et al., 1997;

Ullrich & Volk, 2010), and the interpolation process is a source of

uncertainty. Traditionally, solute fluxes at Hubbard Brook were calcu-

lated on a daily basis using daily streamflow and the chemical concen-

tration measured on that day, if it was measured, and for the

intervening days, using the average of the previous and subsequent

samples (Buso et al., 2000). A better estimate of concentration

between sampling dates can be obtained using the concentration–

discharge relationship (Figure 4), if one exists (Aulenbach et al., 2016).

We used this approach for Ca2+, Mg2+, Na+, H+, SO4
2�, DOC, and Si,

which had a coefficient of determination (r2) of at least 0.3 between

concentration and streamflow (Aulenbach et al., 2016). For K+, NH4
+,

Cl�, NO3
�, and TDN, the concentration–discharge relationships were

not strong (r2 < 0.3), and concentrations were linearly interpolated

between sampling dates. The uncertainty associated with linear inter-

polation of streamwater concentrations was not estimated.

The uncertainty in the concentration–discharge relationship was

characterized by randomly selecting observations with replacement

and fitting a log–log relationship for each solute for each iteration of

the Monte Carlo. We did not add analytical uncertainty to these data,

because uncertainty in measurement contributes to the model error

and should not be counted twice. The solute concentration was pre-

dicted using this concentration–discharge relationship, but forcing the

curve through the observed concentrations (including uncertainty in

chemical analysis) by adding in the linearly interpolated residual

(Figure 5; Aulenbach & Hooper, 2006). For elements that have lower

correlations, we used linear interpolation, and uncertainty was esti-

mated only from the uncertainty in chemical analysis (described

F IGURE 3 The deviation of the observed from the theoretical
discharge as a function of stage height (H). There are 49 observations
in the data set, collected on 26 dates between April and December
2017 at Watershed 2, which is adjacent to our focus watershed. The
10 000 lines show best-fit curves of the form a � H/(b + H), based on
bootstrap resampling of data from the 26 dates.F IGURE 2 Relationship between stage height and discharge at

the outlet of Watershed 2, which is adjacent to our focus watershed.
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F IGURE 4 Concentration–discharge relationships. For solutes with r2 > 0.03, we used these relationships for interpolating concentration
values between sampling dates (illustrated in Figure 5).

F IGURE 5 Example of interpolation of solute concentration using SO4
2� from March through April 2019 showing: (a) discharge, (b) linear

interpolation (in black) between observations (red dots), (c) modelled concentration based on discharge (Figure 4), (d) interpolation based on
modelled concentration.
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above). In both approaches, we predicted concentrations at 5-min

time intervals, consistent with the resolution of the streamflow

record.

3 | RESULTS

3.1 | Streamflow

Uncertainty in annual streamflow from W3 at Hubbard Brook varied

somewhat from year to year (Table 1; Figure 6). In most years, the

most important source of uncertainty in streamflow, represented as

the 95% CI of Monte Carlo iterations, was the stage height–discharge

relationship, which accounted for uncertainties of 1.9%–2.2%,

depending on the year. Median values of the parameters for the rela-

tionship between the Q residual and stage height were a = 1.32 and

b = 0.13, resulting in a range of bootstrapped curves used in the

Monte Carlo analysis (Figure 3).

In 2 years, the most important source of uncertainty in stream-

flow was the filling of gaps in the record of stage heights (Figure 6a).

Overall, there were 1100 gaps of at least 5 min duration in the

streamflow record from W3 during the 6 years of this study.

The average gap duration was 0.3 days; the longest gap was 20 days.

Figure 7 shows the distribution of all gap durations against their corre-

sponding simulated cumulative streamflow. Half of the gaps fell

between 10 and 20 min (interquartile range), and cumulative

F IGURE 6 Uncertainty (95% CI relative to the median) in (a) annual streamflow, (b) annual volume-weighted average concentration, and
(c) annual solute flux for each solute, for each year and for the 6-year study period.

F IGURE 7 The distribution of all gap durations against their
corresponding simulated cumulative runoff.
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TABLE 3 Routine check standards were used to characterize uncertainty in solute chemistry.

Analyte Check standard (mg/L) Number of replicates Accuracy (mg/L) Bias (mg/L) Precision (mg/L) Number of stream samples

Ca2+ 0.5 148 0.024 0.015 0.033 229

1 1307 0.031 �0.001 0.050 104

Mg2+ 0.1 1367 0.004 0.002 0.005 46

0.25 148 0.009 0.005 0.012 281

0.5 148 0.017 0.001 0.025 6

K+ 0.005 150 0.006 0.006 0.012 1

0.05 161 0.006 0.000 0.009 20

0.1 1347 0.007 0.001 0.010 228

0.25 148 0.014 0.002 0.023 52

0.5 148 0.024 0.000 0.036 23

1 1306 0.044 �0.009 0.072 9

Na+ 0.5 148 0.031 0.000 0.058 60

1 1307 0.048 �0.018 0.069 264

NH4+-N 0.005 396 0.002 0.001 0.003 229

0.01 313 0.002 0.002 0.003 90

0.025 476 0.003 0.002 0.003 14

0.05 226 0.003 0.003 0.003 1

SO4
2�-S 1.5 30 0.019 �0.003 0.025 16

2.5 785 0.020 �0.002 0.029 306

5 798 0.031 0.010 0.045 12

NO3�-N 0.05 775 0.005 �0.001 0.006 75

0.1 837 0.004 0.000 0.006 107

0.5 889 0.006 �0.003 0.007 58

1 820 0.006 �0.002 0.012 80

2.5 795 0.010 0.003 0.015 13

3.07 23 0.021 �0.009 0.028 1

Cl� 0.3 30 0.017 0.011 0.019 90

0.5 843 0.023 �0.008 0.029 234

1 743 0.032 �0.003 0.041 10

DOC 1 431 0.053 0.004 0.072 47

2.5 451 0.060 �0.007 0.079 243

5 521 0.089 �0.007 0.120 39

7.5 430 0.122 �0.001 0.163 4

TDN 0.05 291 0.002 0.001 0.011 61

0.1 523 0.028 �0.006 0.033 124

0.25 582 0.014 �0.001 0.018 115

0.5 431 0.020 �0.010 0.024 30

0.75 448 0.027 �0.018 0.029 4

Si 0.01 172 0.038 0.038 0.019 10

1 1242 0.033 �0.008 0.048 4

2.5 114 0.162 0.156 0.211 296

5 113 0.155 0.075 0.206 26

H+ 0.0001 44 1.91 � 10�6 �1.27 � 10�6 2.37 � 10�6 286

0.1 44 2.50 � 10�3 �5.76 � 10�4 3.20 � 10�3 47

Note: Each stream water sample was assigned a random error term taken from the population of check standards closest to it in concentration. Accuracy is

the difference between the observed and target concentration, reported as the average of the absolute values of the errors. Bias is the average of the

positive and negative errors. Precision is the standard deviation of the difference between the laboratory check standard and measured concentration. The

number of stream samples from this study associated with each check standard is also shown.

PU ET AL. 9 of 13

 10991085, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14961 by Suny Forestry-Esf, W

iley O
nline Library on [24/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



streamflow during the gaps had an interquartile range of 0.008–

0.04 mm. The uncertainty in streamflow due to filling gaps in the

record averaged 1.8% (17.3 mm) and ranged from 0.6% to 3.0%,

depending on the year. The years with highest uncertainty due to

gaps were those with the most streamflow during the gap, which ran-

ged from 18 to 107 mm.

The other source of uncertainty in streamflow was the watershed

area (Figure 6a). This was only 0.7% of annual streamflow, as the two

independent LiDAR-derived 1-m digital elevation models gave similar

results. The uncertainties were the same every year because the

inputs to the calculation did not vary.

With all sources combined, uncertainty in annual streamflow for

water years 2013–2018 ranged from 20 to 35 mm, depending on the

year. Uncertainties were consistent as a percentage of annual stream-

flow (2.3%–3.6%, Figure 6), with no relationship to wet or dry years

(Table 1).

3.2 | Solute concentrations

For most solutes, the greatest source of uncertainty in stream fluxes

was the determination of concentrations in the laboratory. Based on

variation in concentrations of quality control standards (Table 3),

NH4
+-, which was the most dilute solute in our dataset (Table 1) had

the highest uncertainty—18%–35%, depending on the year. Nitrate

had similar uncertainties in units of concentration, but smaller uncer-

tainties as a percentage of concentration—3%–10%—because NO3
�

concentrations were higher than NH4
+ concentrations (Table 1). Total

dissolved N had higher uncertainties in units of concentration, but con-

centrations were higher, so percentage uncertainties ranged from 4%

to 9%. Base cations are analysed by ICP, and they had similar uncer-

tainties in laboratory determination of concentration: the average

annual volume-weighted uncertainties were 2.8% for Mg2+, 2.9% for

Ca2+, 3.1% for Cl�, 3.7% for Si, 3.8% for Na+, and 5.1% for K+. Uncer-

tainties were lowest for DOC (1.3%), H+ (1.4%), and SO4
2� (1.6%).

The concentration–discharge relationships used to interpolate

concentration between observations (where these relationships had

r2 > 0.3) produced uncertainties of 0.1% for SO4
2� and Si, 0.4% for

Ca2+, Mg2+, and H+, 0.5% for DOC, and 0.6% for Na+.

The combined effect of uncertainty from both laboratory analyses

and the concentration–discharge relationship produced average

uncertainties in annual volume-weighted concentrations ranging from

1.6% to 29%, with DOC having the lowest and NH4
+ the highest

uncertainty (Figure 6b). In units of concentration, the solutes with

high uncertainty (Si, SO4
2�, Na+, DOC, Ca2+, in descending order)

were the ones with greatest concentrations (Table 1) (Si, DOC, SO4
2�,

Na+, Ca2+); uncertainties varied less across solutes as a percentage of

the mean (Figure 6b).

3.3 | Solute fluxes

Uncertainties in solute fluxes (Figure 6c) were dominated by uncer-

tainty in concentration (Figure 6b), which exceeded uncertainty in

streamflow (Figure 6a) for all solutes with the exception of DOC,

which had the lowest concentration uncertainty. Combining stream-

flow with solute concentrations resulted in uncertainties in annual

stream fluxes ranging from 3.7% for DOC in water year 2017 to 34%

for NH4
+ in water year 2013 (Figure 6c). Excluding NH4

+, for which

uncertainties are high in units of % but low in kg/ha/year, the highest

solute flux uncertainty was 9% for TDN. In units of flux, uncertainties

were highest for Si (1.4 kg/ha/year), DOC (1.1 kg/ha/year), SO4
2�

(0.9 kg/ha/year), and Na+ (0.5 kg/ha/year) and lowest for H+

(0.00003 kg/ha/year) and NH4
+ (0.02 kg/ha/year), reflecting the mag-

nitudes of the fluxes.

4 | DISCUSSION

Overall, uncertainty in streamflow (Figure 6a), solute concentrations

(Figure 6b), and solute fluxes (Figure 6c) were low, generally <10%.

Uncertainty in streamflow or river discharge would obviously be much

higher if measured in a natural channel with an empirical rating curve

instead of a weir where hydraulic conditions are better controlled.

Uncertainty in solute concentrations in units of concentration are

likely similar across sites if analytical methods are similar, but differ-

ences in stream water solute concentrations across sites will result in

differences in uncertainty as a percentage of solute flux. For this anal-

ysis, we selected a period of consistent methods for laboratory ana-

lyses and stream discharge measurements. Thus our analysis does not

reflect changes in methods over time. Earlier methods included chart

recorders, hook gage readings, and different analytical methods (Yanai

et al., 2015). It is not common to collect and retain all the information

necessary to conduct a complete uncertainty analysis; we hope that

this paper helps increase awareness of the value of full uncertainty

accounting.

The uncertainties we report differ slightly from those in our previ-

ous analysis of Ca2+ flux in a nearby watershed at Hubbard Brook

(Campbell et al., 2016). The uncertainty in the stage height–discharge

relationship was the smallest source of uncertainty in the earlier anal-

ysis. The current study quantified uncertainty in the stage height–

discharge relationship at flows up to 33 L/s; the previous rating

curves applied to flows up to 1.3 or 2.5 L/s. Gaps were a more promi-

nent source of uncertainty compared to this analysis, because the cur-

rent study used a better method for interpolating streamflow

between collection dates (See et al., 2020). The previous method

(Campbell et al., 2016), like this one, filled gaps with a regression

model but did not force the predictions through the observations, as

illustrated in this paper for concentration interpolation (Figure 5). The

current study also used a better method for interpolating stream

chemistry.

Some sources of uncertainty are widely reported and some are

generally overlooked. Sampling error, characterized by replicate mea-

surements, is the source most commonly reported in the ecological lit-

erature (Yanai et al., 2021). At Hubbard Brook, there are six similar

south-facing headwater watersheds and three larger north-facing

watersheds that can be considered replicates (Yanai et al., 2015).

However, replication is not an option when characterizing streamflow
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at a single point or solute export from a particular watershed. This is

why propagating the sources of error involved in the calculation

is often the best way to evaluate the uncertainty in watershed

studies.

For all solutes except for DOC, the greatest source of uncertainty

was the measurement of solute concentrations. This source of uncer-

tainty is generally easy to characterize, when the chemical analysis of

solutes is conducted in laboratories that follow standard procedures

for quality assurance and quality control (e.g., APHA, 2017). Since

stream water is so dilute at Hubbard Brook (Likens & Buso, 2012), the

uncertainty in lab analysis (Table 3) constitutes a larger fraction of

the total uncertainty than at sites with higher solute concentrations.

Although uncertainty in solute concentrations is easily determined, it

is not always reported; only 16 of 45 papers reporting solute concen-

trations reported on uncertainty of chemical analyses in a random

sample of the literature (Yanai et al., 2021).

Watershed area is a source of uncertainty in annual streamflow

that is rarely addressed. Although there have been eight DEM-based

estimates of the area of Watershed 3, they were based on only two

independent DEMs, each processed four different ways (Gillin

et al., 2015). We used only the best estimate based on each DEM for

our Monte Carlo, rather than sample from eight observations as if

they were independent estimates. Obviously, with only two indepen-

dent DEMs, we cannot be confident that they characterize the true

uncertainty in watershed area at our site. A potentially more impor-

tant source of uncertainty is whether the topographic divide describes

the watershed, due to subsurface drainage patterns that may not fol-

low surface topography. Consistently low evapotranspiration calcu-

lated for the watershed adjacent to our study site, using mean annual

precipitation minus streamflow (Bailey, 2003), suggests that the mag-

nitude of this effect may be on the order of 11% of streamflow. The

hydrologic divide could even change with the hydrologic conditions,

depending on the difference between the topography of the imper-

meable layer and the land surface. This possible discrepancy between

the topographic and hydrologic watershed area is not addressed in

our approach to quantifying uncertainty.

Uncertainty in annual streamflow is difficult to evaluate due to

the challenge of estimating uncertainty at high flows. Measuring dis-

charge is relatively easy at low flow but difficult at high flow

(Hornbeck, 1965). In this case study, we have good data at low

flow measured with a bucket and stopwatch, but few measurements

of high flows with salt dilution (Moore, 2005); high flows are hard to

capture because they occur infrequently. Unfortunately, they are also

important: half of the streamflow volume occurred at flows higher

than we had data for the relationship of stage height to discharge,

although these high flows took place in just 7% of the record, in units

of time. We hope to improve our knowledge of this relationship at

Hubbard Brook with additional measurements, as our uncertainty in

this uncertainty source is high.

Our Monte Carlo estimate of uncertainty does not account for

bias, which is important to acknowledge. Bias is more difficult to

quantify than precision. In the case of laboratory analyses, precision

can be calculated based on replicate measurements of the same sam-

ple, but evaluating bias depends on an external standard of known

concentration. Based on external reference samples, the median bias

in Hubbard Brook solute concentrations for the time period of our

study was �0.1% for NH4
+, �2.0% for NO3

�, 2.9% for Cl, and �5.0%

for TDN (Table 3). The stage height–discharge relationship has a theo-

retical basis, but can be affected by factors such as the sharpness of

the weir blade and the velocity of the water as it approaches the

v-notch (Hornbeck, 1965); calibrating this relationship is a means of

describing bias. Errors in quantifying watershed area could be a source

of bias in estimates of streamflow and stream fluxes. Specifically, if

watershed area is underestimated, streamflow per unit area is overes-

timated, and vice versa. This bias would be constant over time, unless

the contributing area changes with hydrologic condition, as described

above. The solute sampling regime can also be a source of bias for

concentration and flux estimation, insofar as the samples do not rep-

resent the true distribution of concentrations. One way to address

this a priori could be to leverage basic understanding of solute sources

and their travel time distributions to determine how to time stream

water sampling across flow conditions and seasons. Scrutinizing the

assumptions of an uncertainty analysis can help to identify potential

sources of bias. Even though they may not be included in the analysis,

it is now more likely that we will conduct quality assurance measure-

ments that help identify them.

Uncertainty analyses are useful in setting priorities for making

improvements in environmental monitoring. In this case study, the

greatest source of uncertainty was in measurement of chemical con-

centrations, especially as a percentage of concentration or flux when

these were very low. If quantifying these low values is important,

rather than simply knowing that they are low (uncertainties were low

in units of fluxes), then other methods would be needed for measuring

them. More independent measurements of discharge at high flows are

needed to better characterize the uncertainty in annual streamflow at

Hubbard Brook, which is challenging because these events are rare

and difficult to capture. When data such as these are not available,

providing an estimate of uncertainty and the methods used to quan-

tify it makes it possible to evaluate confidence in the values.
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