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1 | INTRODUCTION

Characterizing fluxes of solutes in stream water at a watershed outlet
provides insight on ecosystem processes occurring within the upslope

contributing area. Since stream water solute fluxes are a spatially

Abstract

Stream fluxes are commonly reported without a complete accounting for uncertainty
in the estimates, which makes it difficult to evaluate the significance of findings or to
identify where to direct efforts to improve monitoring programs. At the Hubbard
Brook Experimental Forest in the White Mountains of New Hampshire, USA, stream
flow has been monitored continuously and solute concentrations have been sampled
approximately weekly in small, gaged headwater streams since 1963, yet comprehen-
sive uncertainty analyses have not been reported. We propagated uncertainty in the
stage height-discharge relationship, watershed area, analytical chemistry, the
concentration-discharge relationship used to interpolate solute concentrations, and
the streamflow gap-filling procedure to estimate uncertainty for both streamflow and
solute fluxes for a recent 6-year period (2013-2018) using a Monte Carlo approach.
As a percentage of solute fluxes, uncertainty was highest for NH,* (34%), total dis-
solved nitrogen (8.8%), NO3 ™ (8.1%), and K™ (7.4%), and lowest for dissolved organic
carbon (3.7%), SO42~ (4.0%), and Mg?* (4.4%). In units of flux, uncertainties were
highest for solutes in highest concentration (Si, DOC, 50,427, and Na™) and lowest for
those lowest in concentration (H" and NH,4*). Laboratory analysis of solute concen-
tration was a greater source of uncertainty than streamflow for solute flux, with the
exception of DOC. Our results suggest that uncertainty in solute fluxes could be
reduced with more precise measurements of solute concentrations. Additionally,
more discharge measurements during high flows are needed to better characterize
the stage-discharge relationship. Quantifying uncertainty in streamflow and element
export is important because it allows for determination of significance of differences
in fluxes, which can be used to assess watershed response to disturbance and envi-

ronmental change.
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integrated signal, they are useful for characterizing processes such as
plant uptake, mineral weathering, and microbially mediated transfor-
mations across broad spatial scales (Holloway & Dahlgren, 2001; Tittel
et al., 2022). Additionally, solute fluxes in stream water can be com-

pared with fluxes in precipitation to evaluate whether nutrients are
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being retained or lost from an ecosystem (Bormann & Likens, 1967).
These nutrient budgets aid in assessing impacts from both natural and
human disturbances, such as forest harvesting, air pollution
and extreme weather events. Understanding and predicting the
impacts of disturbances on stream solute fluxes is important to water
resource managers in their efforts to meet water quality objectives
such as total maximum daily loads (e.g., Lewis et al., 2006).

Replication is commonly used to establish significance of differ-
ence, but watershed studies are difficult to replicate, because individ-
ual watersheds have unique characteristics. Even where replicate
watersheds can be identified, replicated whole-watershed experi-
ments (e.g., harvesting, nutrient addition) may be prohibitively expen-
sive because of their large scale. Instead, in paired watershed
experiments, a treated watershed is compared to an untreated refer-
ence watershed without replication of the treatment (Bosch &
Hewlett, 1982; Neary, 2016). In these cases, other sources of infor-
mation on uncertainty are needed to evaluate differences between
watersheds or the significance of change over time. In the case of
paired-watershed experiments, a pre-treatment comparison of the
two watersheds is sometimes included (Bosch & Hewlett, 1982;
Hornbeck et al., 1993). Quantifying each source of uncertainty and
combining them, either through numerical methods involving Monte
Carlo error propagation or through analytical methods, is another
option. A comprehensive uncertainty analysis has other benefits to
monitoring designs, as it can be used to help identify where best
to focus efforts, such as determining the optimal strategy of stream
chemistry sampling (Levine et al., 2014). Despite its importance,
uncertainty analysis has not been widely adopted in watershed stud-
ies because of the challenges involved in its quantification
(Pappenberger & Beven, 2006).

Stream solute fluxes are calculated as the product of discharge
and solute concentration. It is important to collect, analyse and com-
pute the fluxes in a way that ensures the results are of the desired
quality. Stream flux data reflect many sources of uncertainty
(Campbell et al., 2016; McMillan et al., 2012; Yanai et al., 2015) that
should be characterized for proper interpretation of the data. Uncer-
tainty in streamflow estimates have been investigated using linear
regression, generalized likelihood uncertainty estimation, Bayesian
approaches, and fuzzy methods (Kiang et al., 2018). Few studies have
attempted to combine uncertainty in streamflow with that of solute
chemistry to produce an overall estimate of uncertainty in solute flux
(but see Campbell et al., 2016; Harmel et al., 2006).

The objective of this study was to quantify uncertainty in stream
solute fluxes from a small-watershed ecosystem at the Hubbard
Brook Experimental Forest in New Hampshire, USA, using a Monte
Carlo approach. The work improves on a previous Monte Carlo analy-
sis of uncertainty in the hydrologic flux of Ca?* at Hubbard Brook
(Campbell et al., 2016) by including more measured solutes and
improving estimates of uncertainty associated with gaps (based on
See et al., 2020), high streamflow, watershed area, and solute flux cal-
culations (i.e., using concentration-discharge relationships to inform
interpolation between sampling dates; Aulenbach & Hooper, 2006).
We determined the overall uncertainty in stream solute flux and also

quantified the individual sources of uncertainty in discharge and sol-
ute concentration to rank the sources of uncertainty in the

calculations.

2 | METHODS

21 | Studysite

The Hubbard Brook Experimental Forest is located in the White
Mountain National Forest in central New Hampshire, USA (43°56 'N,
71°45 'W). In this study we focused on Watershed 3 (W3), the hydro-
logic reference watershed, which has not been experimentally manip-
ulated. The watershed is 42 ha in area with an elevation range of
527-732 m. Vegetation consists mostly of northern hardwoods: sugar
maple (Acer saccharum Marsh.), American beech (Fagus grandifolia
Ehrh.), and yellow birch (Betula alleghaniensis Britt.), with red spruce
(Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.) in areas of
shallow soils and bedrock outcrops. Soils are derived from glacial drift
of sandy loam to loamy sand texture, with thickness varying up to
8 m. Soils are classified mostly as base-poor Spodosols spanning a
range of drainage classes (Bailey et al., 2014). The underlying bedrock
is sillimanite grade mica schist, quartz schist, and calc-silicate granulite
of the Silurian Rangeley formation (Barton et al., 1997).

2.2 | Stream solute flux calculations

At Hubbard Brook, solute fluxes are calculated as the product of sol-
ute concentration and discharge, normalized by watershed area. We
used data collected during the 2013-2018 water years (i.e., beginning
on 1 June 2013 and ending on 31 May 2019), because 2013 marked
the advent of digital stage-height recording and a change in the ana-
lytical laboratory. Streamflow at the outlet of W3 is measured using a
120-degree v-notch weir for stage heights up to 0.6 m (2 feet); above
that height, the rectangular area of the cement structure above the
v-notch is used. Stream stage height was recorded in a stilling basin
with a float-and-pulley system equipped with a shaft encoder
(Campbell Scientific, C5410) until October 2017, when it was replaced
with an optical encoder (AMASS Data Technologies, model PSE-SDI
\D\LiPO). Weekly grab samples for stream chemistry are collected
just upstream from the stilling basin to avoid sample contamination
from the cement structure. In most years, additional automated sam-
pling was done periodically during rainstorm and snowmelt events
(Table 1).

Chemical analyses were performed at the U.S. Forest Service Lab-
oratory in Durham, New Hampshire, except for pH, which was mea-
sured with a benchtop pH meter (Thermo Scientific, Orion 3-Star) at
the Hubbard Brook Experimental Forest laboratory on the same day
samples were collected. Samples were filtered with a pre-combusted
glass-fibre filter (0.7 um nominal pore size) and stored frozen prior to
analysis, except for Ca%", Mng Na*, K™ and Si, for which an aliquot

was poured off and refrigerated. Samples were analysed for SO42~,
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NO;~ and CI~ using ion chromatography (Metrohm 761); NH4* with
automated colorimetry (SmartChem AQ2 Discrete Analyser); Ca?t,
Mg?*, Na™, K*, and Si with inductively coupled plasma optical emis-
sion spectroscopy (Agilent 730); and DOC and TDN using high-
temperature catalytic oxidation with chemiluminescent N detection
(Shimadzu TOC-VCSH/TNM-1 analyser).

Some solutes are commonly below the method detection limit
(Table 2). In these cases, solute fluxes at Hubbard Brook have tradi-
tionally been calculated using half the detection limit (Buso
et al., 2000). For the purpose of quantifying uncertainty, however, we
used the actual values obtained from the instrument, even for those
below zero. We used this approach to avoid the bias that occurs with
other methods of handling values below detection, such as eliminating
them, setting them to zero, or using half the detection limit
(Helsel, 1990). Because we report uncertainty using the 2.5th and
97.5th percentile of Monte Carlo iterations, occasional negative

values in solute fluxes were not a problem for the analysis.

2.3 | Monte Carlo uncertainty analysis
We used Monte Carlo simulation to generate many estimates of
stream loads by randomly sampling from possible values for each vari-
able used in the calculations, (Figure 1), as described below, resulting
in a probability distribution of the estimates (Press et al., 1986). The
analyses were performed in the statistical computing language R
(v3.5.2), and the documented computer code is included in the
archived supplemental material. Confidence intervals were deter-
mined from the 2.5 and 97.5 percentiles of the distribution of the esti-
mates, indicating with 95% certainty that the true value falls within
this range. With this method, the distribution need not be normally
distributed, and the error bars may be asymmetrical.

We conducted the Monte Carlo analysis with all the sources of

uncertainty combined and then one source of uncertainty at a time, to

TABLE 2
W3 stream concentrations (mg/L)

Analyte 5 50 95

Ca%* 0.48 0.64 0.98
Mg?+ 0.14 0.19 0.31
K* 0.07 0.12 0.51
Na*™ 0.57 0.82 1.56
NH4 =N 0.00006 0.004 0.01
S04%-S 0.59 0.85 1.19
NO3;~-N 0.0021 0.041 0.31
cl- 0.32 0.44 0.70
DOC 1.68 2.46 5.14
TDN 0.08 0.14 0.38
Si 1.74 247 3.96

evaluate the relative importance of each source of uncertainty. We
ran three sets of iterations for each combination of sources, increasing
the number of iterations (500, 1000, 2000, or 4000) as needed for the
three flux estimates to agree within 1%. In the case of NH4*, many
more iterations (18000) were required to achieve this target, because
concentrations were so low. A target agreement in units of concentra-
tion would have been attained more easily. The following is an expla-
nation of how each source of uncertainty was estimated, including the

determination of input distributions for the Monte Carlo analysis.

2.4 | Chemical analysis

To characterize uncertainty in the chemical analysis of stream sam-
ples, we used measured values of check standards run during routine
sample analysis (Table 2). The uncertainty in each sample was repre-
sented by randomly sampling an error term from the comparison of
the expected and measured concentrations of the check standard
with the concentration closest to the stream sample in question. The
number of different concentrations of check standards ranged from
8 to 12, depending on the element, across the range of stream water
concentrations in our data set. The number of observations per con-
centration of check standards averaged from 2 to 1367, depending on
the element and the concentration of the check standard. In the case
of pH, we sampled a set of measured pH deviations from two check
standards (pH 4 and 7) and used those as the analytical errors, before
transforming the data from pH into H" concentration for calculation

of fluxes.

2.5 | Stage height-discharge relationship

Uncertainty in the relationship between stream stage height and dis-

charge was determined at Watershed 2, the weir adjacent to our

Distribution of solute concentrations in W3 for 2013-2018 (5th, 50th, and 95th percentiles).

Method detection limit (mg/L) Samples below MDL (%)
0.028 0
0.003 0
0.011 0
0.010 0
0.003 63
0.050 1
0.013 21
0.088

0.340

0.099 18
0.045 3

Note: The method detection limits and the proportion of samples below detection are also shown.
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Flowchart of the steps in the Monte Carlo calculation of uncertainty in solute flux. Bold and underscore type indicates random

sampling from data. Processes between the dotted lines showing the “Monte Carlo Iteration” and “Time series Iteration” involve selecting

parameters that are held constant during each time series loop.

focus watershed; such measurements have not been made at W3.
The control structures for W3 and W2 are similar sizes and designs,
and both are tied into bedrock. Discharge was measured by timing the
capture of stream water in a large container at flows up to 4 L/s and
by salt-dilution gauging (Moore, 2005) at flows up to 33L/s
(Figure 2). There are 49 observations in the data set, collected on
26 dates between April and December 2017. Although stream dis-
charge in W3 was within the range of these manual measurements
93% of the time (i.e., <32 L/s), higher flows accounted for 50% of the
streamflow. The observations were compared to the theoretical weir
equation, Q = 2302 x H***? where H is in m and Q is in L/s (Lindell
et al,, 2018) and the deviation of the observations from the discharge
predicted by the theoretical curve was described with an equation of
form AQ = a x H/(b + H), where a and b are parameters. Rather than
randomly selecting 49 values, we randomly selected 26 dates, with
replacement, because measurements within a date were clearly not

independent, and we randomly selected one observation from each

date. We fit this relationship 10 000 times (using the minpack.Im non-
linear solver implemented in R; Elzhov et al., 2016) (Figure 3). To esti-
mate uncertainty in the stage height-discharge relationship, we
randomly selected one of these 10 000 relationships for each iteration
of the Monte Carlo. Measurement uncertainty in stage-height and dis-
charge are reflected in the model fit and were not additionally sam-
pled in the Monte Carlo. Uncertainty in stage-height measurement
can be characterized by comparing continuous measurements with

manual measurements made with a hook gauge (Yanai et al., 2013).

2.6 | Gaps in stream streamflow measurements

We simulated uncertainty due to gaps in the streamflow record during
the study period in W3. The most common causes of gaps at Hubbard
Brook, in descending frequency, are debris in the v-notch, malfunc-

tioning sensors, ice in the v-notch, weir maintenance and repairs, and
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FIGURE 2 Relationship between stage height and discharge at
the outlet of Watershed 2, which is adjacent to our focus watershed.

technician error (Campbell et al., 2016). Gaps were filled using an
ensemble of regressions built with data from 1955 to 2012, which
relate discharge at each stream to the five other streams on the
south-facing slope (See et al., 2020). Predicted values at the beginning
and end of a gap were forced to match the measured values at the
beginning and end of each gap. Uncertainty associated with filling
gaps was characterized by comparing observed streamflow to stream-
flow estimated by this approach for a population of 1 000 000 artifi-
cial gaps produced for Wé, a nearby reference watershed at Hubbard
Brook (See et al., 2020). To account for uncertainty in filling gaps in
the streamflow record for W3, we randomly selected a value from this
population of errors (in quantiles of 1000, each with 1000 possible

values) based on streamflow during each gap in the record for W3.

2.7 | Watershed area

To allow comparisons to precipitation inputs and to watersheds of dif-
ferent areas, stream discharge is divided by the area of each water-
shed. The measured area of the watershed is thus a source of
uncertainty in stream flux estimates. We used areas delineated from
two independent LiDAR-derived 1-m digital elevation models (DEMs)
resampled to 3-m resolution with a low-pass smoothing filter, which
gave areas of 41.8 and 42.1 ha (Gillin et al., 2015). The area of the
original chain-and-compass survey of the topographic divides, con-
ducted on the ground in the 1950s, produced a similar estimate
(42.3 ha) but was not used in our analysis because the method is infe-
rior to the DEM delineations. To characterize uncertainty in the best
estimate of the watershed area, we randomly selected (with replace-
ment) two values from our two estimates and used the mean value at
each iteration of the Monte Carlo simulation (this is the simplest pos-

sible instance of bootstrapping).

n
o

N
[6)]
1

o
[4)]
|

o
1

Theoretical minus observed discharge (L/s)
o

Stage Height (m)

FIGURE 3 The deviation of the observed from the theoretical
discharge as a function of stage height (H). There are 49 observations
in the data set, collected on 26 dates between April and December
2017 at Watershed 2, which is adjacent to our focus watershed. The
10 000 lines show best-fit curves of the form a x H/(b + H), based on
bootstrap resampling of data from the 26 dates.

2.8 | Temporal interpolation of stream chemistry
While stream discharge is measured nearly continuously, stream
chemistry is measured at specific points in time; thus temporal inter-
polation of chemical concentrations is needed (Swistock et al., 1997;
Ullrich & Volk, 2010), and the interpolation process is a source of
uncertainty. Traditionally, solute fluxes at Hubbard Brook were calcu-
lated on a daily basis using daily streamflow and the chemical concen-
tration measured on that day, if it was measured, and for the
intervening days, using the average of the previous and subsequent
samples (Buso et al., 2000). A better estimate of concentration
between sampling dates can be obtained using the concentration-
discharge relationship (Figure 4), if one exists (Aulenbach et al., 2016).
We used this approach for Ca%*, Mg?*, Na*, H*, SO,2~, DOC, and Si,
which had a coefficient of determination (r?) of at least 0.3 between
concentration and streamflow (Aulenbach et al., 2016). For K*, NH, ",
Cl7, NO3 ™, and TDN, the concentration-discharge relationships were
not strong (r? < 0.3), and concentrations were linearly interpolated
between sampling dates. The uncertainty associated with linear inter-
polation of streamwater concentrations was not estimated.

The uncertainty in the concentration-discharge relationship was
characterized by randomly selecting observations with replacement
and fitting a log-log relationship for each solute for each iteration of
the Monte Carlo. We did not add analytical uncertainty to these data,
because uncertainty in measurement contributes to the model error
and should not be counted twice. The solute concentration was pre-
dicted using this concentration-discharge relationship, but forcing the
curve through the observed concentrations (including uncertainty in
chemical analysis) by adding in the linearly interpolated residual
(Figure 5; Aulenbach & Hooper, 2006). For elements that have lower
correlations, we used linear interpolation, and uncertainty was esti-

mated only from the uncertainty in chemical analysis (described
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FIGURE 4 Concentration-discharge relationships. For solutes with r? > 0.03, we used these relationships for interpolating concentration
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FIGURE 5 Example of interpolation of solute concentration using SO42~ from March through April 2019 showing: (a) discharge, (b) linear
interpolation (in black) between observations (red dots), (c) modelled concentration based on discharge (Figure 4), (d) interpolation based on
modelled concentration.
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above). In both approaches, we predicted concentrations at 5-min

time intervals, consistent with the resolution of the streamflow

Figure 7 shows the distribution of all gap durations against their corre-

sponding simulated cumulative streamflow. Half of the gaps fell

record. between 10 and 20 min (interquartile range), and cumulative
5_

3 | RESULTS I - g & 0 |
0

3.1 | Streamflow

Uncertainty in annual streamflow from W3 at Hubbard Brook varied
somewhat from year to year (Table 1; Figure 6). In most years, the
most important source of uncertainty in streamflow, represented as
the 95% CI of Monte Carlo iterations, was the stage height-discharge
relationship, which accounted for uncertainties of 1.9%-2.2%,
depending on the year. Median values of the parameters for the rela-
tionship between the Q residual and stage height were a = 1.32 and
b = 0.13, resulting in a range of bootstrapped curves used in the
Monte Carlo analysis (Figure 3).

In 2 years, the most important source of uncertainty in stream-
flow was the filling of gaps in the record of stage heights (Figure 6a).
Overall, there were 1100 gaps of at least 5 min duration in the
streamflow record from W3 during the 6 years of this study.

The average gap duration was 0.3 days; the longest gap was 20 days.

5e-01

1e-02

Cumulative Streamflow During the Gap (mm)

1e-04

Gap Duration (h)

FIGURE 7 The distribution of all gap durations against their
corresponding simulated cumulative runoff.
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FIGURE 6 Uncertainty (95% Cl relative to the median) in (a) annual streamflow, (b) annual volume-weighted average concentration, and
(c) annual solute flux for each solute, for each year and for the 6-year study period.
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TABLE 3 Routine check standards were used to characterize uncertainty in solute chemistry.
Analyte Check standard (mg/L)  Number of replicates  Accuracy (mg/L)  Bias (mg/L) Precision (mg/L)  Number of stream samples
CaZ* 0.5 148 0.024 0.015 0.033 229
1 1307 0.031 —0.001 0.050 104
Mg+ 0.1 1367 0.004 0.002 0.005 46
0.25 148 0.009 0.005 0.012 281
0.5 148 0.017 0.001 0.025 6
K+ 0.005 150 0.006 0.006 0.012 1
0.05 161 0.006 0.000 0.009 20
0.1 1347 0.007 0.001 0.010 228
0.25 148 0.014 0.002 0.023 52
0.5 148 0.024 0.000 0.036 23
1 1306 0.044 —0.009 0.072 9
Na™ 0.5 148 0.031 0.000 0.058 60
1 1307 0.048 —0.018 0.069 264
NH**-N  0.005 396 0.002 0.001 0.003 229
0.01 313 0.002 0.002 0.003 90
0.025 476 0.003 0.002 0.003 14
0.05 226 0.003 0.003 0.003 1
S0,2-S 1.5 30 0.019 —0.003 0.025 16
25 785 0.020 —0.002 0.029 306
5 798 0.031 0.010 0.045 12
NO*-N  0.05 775 0.005 —0.001 0.006 75
0.1 837 0.004 0.000 0.006 107
0.5 889 0.006 —0.003 0.007 58
1 820 0.006 —0.002 0.012 80
25 795 0.010 0.003 0.015 13
3.07 23 0.021 —0.009 0.028 1
ClI~ 0.3 30 0.017 0.011 0.019 90
0.5 843 0.023 —0.008 0.029 234
1 743 0.032 —0.003 0.041 10
DOC 1 431 0.053 0.004 0.072 47
25 451 0.060 —0.007 0.079 243
5 521 0.089 —0.007 0.120 39
7.5 430 0.122 —0.001 0.163 4
TDN 0.05 291 0.002 0.001 0.011 61
0.1 523 0.028 —0.006 0.033 124
0.25 582 0.014 —0.001 0.018 115
0.5 431 0.020 —0.010 0.024 30
0.75 448 0.027 —-0.018 0.029 4
Si 0.01 172 0.038 0.038 0.019 10
1 1242 0.033 —0.008 0.048 4
25 114 0.162 0.156 0.211 296
5 113 0.155 0.075 0.206 26
H* 0.0001 44 1.91 x 107¢ -1.27 x 107 237 x 107 286
0.1 44 2.50 x 10° 576 x 10°*  3.20 x 10°° 47

Note: Each stream water sample was assigned a random error term taken from the population of check standards closest to it in concentration. Accuracy is
the difference between the observed and target concentration, reported as the average of the absolute values of the errors. Bias is the average of the

positive and negative errors. Precision is the standard deviation of the difference between the laboratory check standard and measured concentration. The
number of stream samples from this study associated with each check standard is also shown.
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streamflow during the gaps had an interquartile range of 0.008-
0.04 mm. The uncertainty in streamflow due to filling gaps in the
record averaged 1.8% (17.3 mm) and ranged from 0.6% to 3.0%,
depending on the year. The years with highest uncertainty due to
gaps were those with the most streamflow during the gap, which ran-
ged from 18 to 107 mm.

The other source of uncertainty in streamflow was the watershed
area (Figure 6a). This was only 0.7% of annual streamflow, as the two
independent LiDAR-derived 1-m digital elevation models gave similar
results. The uncertainties were the same every year because the
inputs to the calculation did not vary.

With all sources combined, uncertainty in annual streamflow for
water years 2013-2018 ranged from 20 to 35 mm, depending on the
year. Uncertainties were consistent as a percentage of annual stream-
flow (2.3%-3.6%, Figure 6), with no relationship to wet or dry years
(Table 1).

3.2 | Solute concentrations

For most solutes, the greatest source of uncertainty in stream fluxes
was the determination of concentrations in the laboratory. Based on
variation in concentrations of quality control standards (Table 3),
NH,*", which was the most dilute solute in our dataset (Table 1) had
the highest uncertainty—18%-35%, depending on the year. Nitrate
had similar uncertainties in units of concentration, but smaller uncer-
tainties as a percentage of concentration—3%-10%—because NO3~
concentrations were higher than NH," concentrations (Table 1). Total
dissolved N had higher uncertainties in units of concentration, but con-
centrations were higher, so percentage uncertainties ranged from 4%
to 9%. Base cations are analysed by ICP, and they had similar uncer-
tainties in laboratory determination of concentration: the average
annual volume-weighted uncertainties were 2.8% for Mg?*, 2.9% for
Ca?*, 3.1% for ClI~, 3.7% for Si, 3.8% for Na™, and 5.1% for K*. Uncer-
tainties were lowest for DOC (1.3%), H* (1.4%), and SO42~ (1.6%).

The concentration-discharge relationships used to interpolate
concentration between observations (where these relationships had
r?>0.3) produced uncertainties of 0.1% for S0,2~ and Si, 0.4% for
Ca?*, Mg?*, and H*, 0.5% for DOC, and 0.6% for Na™.

The combined effect of uncertainty from both laboratory analyses
and the concentration-discharge relationship produced average
uncertainties in annual volume-weighted concentrations ranging from
1.6% to 29%, with DOC having the lowest and NH4 ' the highest
uncertainty (Figure 6b). In units of concentration, the solutes with
high uncertainty (Si, $O42~, Na*, DOC, Ca®*, in descending order)
were the ones with greatest concentrations (Table 1) (Si, DOC, SO42’,
Na™, Ca?*); uncertainties varied less across solutes as a percentage of
the mean (Figure 6b).

3.3 | Solute fluxes

Uncertainties in solute fluxes (Figure 6c) were dominated by uncer-
tainty in concentration (Figure 6b), which exceeded uncertainty in

streamflow (Figure 6a) for all solutes with the exception of DOC,
which had the lowest concentration uncertainty. Combining stream-
flow with solute concentrations resulted in uncertainties in annual
stream fluxes ranging from 3.7% for DOC in water year 2017 to 34%
for NH," in water year 2013 (Figure 6c). Excluding NH,", for which
uncertainties are high in units of % but low in kg/ha/year, the highest
solute flux uncertainty was 9% for TDN. In units of flux, uncertainties
were highest for Si (1.4 kg/ha/year), DOC (1.1 kg/ha/year), SO42~
(0.9 kg/ha/year), and Na™ (0.5 kg/ha/year) and lowest for H*
(0.00003 kg/ha/year) and NH,4 " (0.02 kg/ha/year), reflecting the mag-
nitudes of the fluxes.

4 | DISCUSSION

Overall, uncertainty in streamflow (Figure 6a), solute concentrations
(Figure 6b), and solute fluxes (Figure 6c) were low, generally <10%.
Uncertainty in streamflow or river discharge would obviously be much
higher if measured in a natural channel with an empirical rating curve
instead of a weir where hydraulic conditions are better controlled.
Uncertainty in solute concentrations in units of concentration are
likely similar across sites if analytical methods are similar, but differ-
ences in stream water solute concentrations across sites will result in
differences in uncertainty as a percentage of solute flux. For this anal-
ysis, we selected a period of consistent methods for laboratory ana-
lyses and stream discharge measurements. Thus our analysis does not
reflect changes in methods over time. Earlier methods included chart
recorders, hook gage readings, and different analytical methods (Yanai
et al., 2015). It is not common to collect and retain all the information
necessary to conduct a complete uncertainty analysis; we hope that
this paper helps increase awareness of the value of full uncertainty
accounting.

The uncertainties we report differ slightly from those in our previ-
ous analysis of Ca?" flux in a nearby watershed at Hubbard Brook
(Campbell et al., 2016). The uncertainty in the stage height-discharge
relationship was the smallest source of uncertainty in the earlier anal-
ysis. The current study quantified uncertainty in the stage height-
discharge relationship at flows up to 33 L/s; the previous rating
curves applied to flows up to 1.3 or 2.5 L/s. Gaps were a more promi-
nent source of uncertainty compared to this analysis, because the cur-
rent study used a better method for interpolating streamflow
between collection dates (See et al., 2020). The previous method
(Campbell et al., 2016), like this one, filled gaps with a regression
model but did not force the predictions through the observations, as
illustrated in this paper for concentration interpolation (Figure 5). The
current study also used a better method for interpolating stream
chemistry.

Some sources of uncertainty are widely reported and some are
generally overlooked. Sampling error, characterized by replicate mea-
surements, is the source most commonly reported in the ecological lit-
erature (Yanai et al., 2021). At Hubbard Brook, there are six similar
south-facing headwater watersheds and three larger north-facing
watersheds that can be considered replicates (Yanai et al., 2015).
However, replication is not an option when characterizing streamflow
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at a single point or solute export from a particular watershed. This is
why propagating the sources of error involved in the calculation
is often the best way to evaluate the uncertainty in watershed
studies.

For all solutes except for DOC, the greatest source of uncertainty
was the measurement of solute concentrations. This source of uncer-
tainty is generally easy to characterize, when the chemical analysis of
solutes is conducted in laboratories that follow standard procedures
for quality assurance and quality control (e.g., APHA, 2017). Since
stream water is so dilute at Hubbard Brook (Likens & Buso, 2012), the
uncertainty in lab analysis (Table 3) constitutes a larger fraction of
the total uncertainty than at sites with higher solute concentrations.
Although uncertainty in solute concentrations is easily determined, it
is not always reported; only 16 of 45 papers reporting solute concen-
trations reported on uncertainty of chemical analyses in a random
sample of the literature (Yanai et al., 2021).

Watershed area is a source of uncertainty in annual streamflow
that is rarely addressed. Although there have been eight DEM-based
estimates of the area of Watershed 3, they were based on only two
independent DEMs, each processed four different ways (Gillin
et al., 2015). We used only the best estimate based on each DEM for
our Monte Carlo, rather than sample from eight observations as if
they were independent estimates. Obviously, with only two indepen-
dent DEMs, we cannot be confident that they characterize the true
uncertainty in watershed area at our site. A potentially more impor-
tant source of uncertainty is whether the topographic divide describes
the watershed, due to subsurface drainage patterns that may not fol-
low surface topography. Consistently low evapotranspiration calcu-
lated for the watershed adjacent to our study site, using mean annual
precipitation minus streamflow (Bailey, 2003), suggests that the mag-
nitude of this effect may be on the order of 11% of streamflow. The
hydrologic divide could even change with the hydrologic conditions,
depending on the difference between the topography of the imper-
meable layer and the land surface. This possible discrepancy between
the topographic and hydrologic watershed area is not addressed in
our approach to quantifying uncertainty.

Uncertainty in annual streamflow is difficult to evaluate due to
the challenge of estimating uncertainty at high flows. Measuring dis-
charge is relatively easy at low flow but difficult at high flow
(Hornbeck, 1965). In this case study, we have good data at low
flow measured with a bucket and stopwatch, but few measurements
of high flows with salt dilution (Moore, 2005); high flows are hard to
capture because they occur infrequently. Unfortunately, they are also
important: half of the streamflow volume occurred at flows higher
than we had data for the relationship of stage height to discharge,
although these high flows took place in just 7% of the record, in units
of time. We hope to improve our knowledge of this relationship at
Hubbard Brook with additional measurements, as our uncertainty in
this uncertainty source is high.

Our Monte Carlo estimate of uncertainty does not account for
bias, which is important to acknowledge. Bias is more difficult to

quantify than precision. In the case of laboratory analyses, precision

can be calculated based on replicate measurements of the same sam-
ple, but evaluating bias depends on an external standard of known
concentration. Based on external reference samples, the median bias
in Hubbard Brook solute concentrations for the time period of our
study was —0.1% for NH,*, —2.0% for NO3;~, 2.9% for Cl, and —5.0%
for TDN (Table 3). The stage height-discharge relationship has a theo-
retical basis, but can be affected by factors such as the sharpness of
the weir blade and the velocity of the water as it approaches the
v-notch (Hornbeck, 1965); calibrating this relationship is a means of
describing bias. Errors in quantifying watershed area could be a source
of bias in estimates of streamflow and stream fluxes. Specifically, if
watershed area is underestimated, streamflow per unit area is overes-
timated, and vice versa. This bias would be constant over time, unless
the contributing area changes with hydrologic condition, as described
above. The solute sampling regime can also be a source of bias for
concentration and flux estimation, insofar as the samples do not rep-
resent the true distribution of concentrations. One way to address
this a priori could be to leverage basic understanding of solute sources
and their travel time distributions to determine how to time stream
water sampling across flow conditions and seasons. Scrutinizing the
assumptions of an uncertainty analysis can help to identify potential
sources of bias. Even though they may not be included in the analysis,
it is now more likely that we will conduct quality assurance measure-
ments that help identify them.

Uncertainty analyses are useful in setting priorities for making
improvements in environmental monitoring. In this case study, the
greatest source of uncertainty was in measurement of chemical con-
centrations, especially as a percentage of concentration or flux when
these were very low. If quantifying these low values is important,
rather than simply knowing that they are low (uncertainties were low
in units of fluxes), then other methods would be needed for measuring
them. More independent measurements of discharge at high flows are
needed to better characterize the uncertainty in annual streamflow at
Hubbard Brook, which is challenging because these events are rare
and difficult to capture. When data such as these are not available,
providing an estimate of uncertainty and the methods used to quan-

tify it makes it possible to evaluate confidence in the values.
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