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Transmon qubits experience open-system effects that manifest as noise at a broad range of frequen-
cies. We present a model of these effects using the Redfield master equation with a hybrid bath consisting
of low- and high-frequency components. We use two-level fluctuators to simulate 1/f -like noise behav-
ior, which is a dominant source of decoherence for superconducting qubits. By measuring quantum state
fidelity under free evolution with and without dynamical decoupling (DD), we can fit the low- and high-
frequency noise parameters in our model. We train and test our model using experiments on quantum
devices available through IBM quantum experience. Our model accurately predicts the fidelity decay of
random initial states, including the effect of DD pulse sequences. We compare our model with two simpler
models and confirm the importance of including both high frequency and 1/ noise in order to accurately

predict transmon behavior.
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I. INTRODUCTION

Quantum computing based on superconducting qubits
has made significant progress. Starting with the first imple-
mentations of superconducting qubits [1,2], the field has
developed several flavors of qubits, broadly classified as
charge, flux, and phase qubits [3]. However, the real
workhorse behind many of the recent critical developments
[4-13] in gate-based quantum computing is the transmon
qubit [14]. Transmons are designed by adding a large
shunting capacitor to charge qubits, the result being that
they are almost insensitive to charge noise. Transmon-
based cloud quantum computers (QCs) are now widely
available to the broad research community for proof-of-
principle quantum computing experiments [15-25].

Quantum computers in their current form have high
error rates. This includes coherent errors (originating from
imperfect gates), state preparation and measurement errors
(SPAM), and incoherent errors (environment-induced

*vinaytri@usc.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL.

2691-3399/24/5(1)/010320(19)

010320-1

noise) [26,27]. The latter, which results in dephasing
and relaxation errors, is a pernicious problem in quan-
tum information processing. Characterizing and modeling
these open quantum system effects is crucial for advanc-
ing the field and improving the prospects of fault-tolerant
quantum computation [28-30]. Various procedures for
modeling decoherence and control noise affecting ideal-
ized qubits have been discussed [31-33]. Still, modeling
noise effects from first principles, i.e., starting at the circuit
level of transmons and including 1/f noise, is relatively
unexplored [34,35].

In this work, we develop a framework to model
environment-induced noise effects on a transmon qubit
using the master-equation formalism. We use a hybrid
quantum bath with an Ohmic-like noise spectrum to model
dephasing and relaxation processes in multilevel trans-
mons. We also include classical fluctuators and use a
hybrid Redfield model [36] to account for both low- (1/f")
and high-frequency noise. We develop a simple noise
learning procedure relying on dynamical decoupling (DD)
[37-41] to obtain the noise parameters (see Ref. [42] for
early experimental work in this area). Our procedure relies
only on measurements of quantum state fidelity with and
without a single type of DD sequence, and so is quite
resource-efficient compared to protocols requiring full
quantum state tomography or DD-based spectral analysis.
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We test our noise model via fidelity preservation experi-
ments on IBMQE processors [43] for random initial states
and find that the model can correctly capture these experi-
ments. The model is, moreover, capable of reproducing the
effects of time-dependent dynamical decoupling pulses on
the main qubit. Finally, we compare the predictions based
on our model with two simpler models using ideal two-
level qubits, excluding the fluctuators and assuming ideal,
zero-width DD pulses. In contrast to our complete model,
these simpler models fail to capture noise simultaneously
in both the low- and high-frequency regimes. As a result,
whether with or without DD, they underperform in captur-
ing fidelity preservation experiments. Our model is tailored
to transmon qubits; however, our approach is extremely
general and can be adapted to any qubit experiencing the
ubiquitous combinations of high frequency and 1/f noise.

This paper is organized as follows. In Sec. II, we
develop our numerical method focusing on simulating
multilevel transmon qubit and single-qubit gates, which
form the DD sequences. Next, we discuss our open quan-
tum system in Sec. III and describe our noise learn-
ing method in Sec. IV. We then test our learned model
on Quito using DD experiments with random initial
single-qubit states in Sec. V. We extend our method to
Lima, which relies on a different calibration procedure, in
Sec. VI. We finally extend our method to two qubits in
Sec. VII and conclude in Sec. VIII. The Appendix pro-
vides additional details and calculations in support of the
main text.

II. NUMERICAL MODEL OF TRANSMONS

In this section, we focus on the circuit-level descrip-
tion of the transmon qubit that we use in our model. We
start with the transmon Hamiltonian and find an effec-
tive Hamiltonian to simulate single-qubit time-dependent
microwave gates. We include the derivative removal of
adiabatic gates (DRAG) [44] technique in our numeri-
cal model. By including DRAG—which is used in the
IBMQE devices—and considering the residual errors it
cannot suppress, we more accurately model the transmon
behavior.

A. Transmon Hamiltonian

The Hamiltonian of a fixed-frequency transmon qubit
is [14]:

A 2 N
Htrans = 4EC (}’l - I’lg) — Ej cos Q. (1)

We work in units where A= 1. Ec = €?/(2C) is the
charging energy (C is the capacitance, and e is the elec-
tron charge), E; = I¢/(2e) is the potential energy of the
Josephson junction (/¢ is the critical current of the junc-
tion) and n, represents the charge offset number, which
can result in charge noise. In the operating regime of a

transmon qubit, i.e., E;/Ec > 1, the lowest few energy
levels of the transmon are almost immune to charge noise,
in which case n, can be safely ignored. The two opera-
tors 7 and ¢ are a canonically conjugate pair analogous
to momentum and position. They satisfy the commutation
relation [ﬁ, @] = i; i is the number operator for the Cooper
pairs transferred between the superconducting islands of
the Josephson junction, and ¢ is the gauge invariant phase
difference across the Josephson junction, i.e., between the
islands. Note that this commutation relation is exact only
if we restrict ¢ to a single 27 range; this is a good approxi-
mation for the lower-energy states of transmons, which are
almost completely confined to a single well.

B. Time-dependent drives

To numerically simulate the time-dependent drive
pulses or gates, we start with Eq. (1) and write it in the
charge basis (the eigenbasis of 72) such that the number of
Cooper pairs takes values from —#nyax t0 #ax. Equation (1)
thus reduces to

Htrans = 4EC Z I’l2|l’l><n|

—HMmax

EJ Nmax

5 2 (It 1 +In+ 1D, @

—HMmax

where we have taken n, = 0. This is justified since we are
in the transmon regime: we have E;/Ec =~ 47, which, by

virtue of the charge dispersion €ny X € 8£//Ec means

that the eigenenergies of the transmon Hamiltonian have
essentially no dependence on n, [14, Fig. 2(d)]. We trun-
cate to ny.x (later we set ny,.x = 50) and diagonalize the
resulting Hamiltonian:

Hige' = SHuansS™ =) xlk) (k1 , (3)
k>0

where w; for £k =0,1,... represents the energy of the
k’th level in the transmon eigenbasis, and S is the uni-
tary similarity transformation. The eigenfrequencies are
wjj = w; — w;. The bare qubit frequency is w, = w;o and
the anharmonicity is n, = wip — wy1. Since w, and n, are
the two quantities accessible via experiments, we use these
values to obtain the fitting parameters £¢ and £; in Eq. (1),
which is the starting point of our transmon model [45].

Next, we add the coupling to the microwave drive,
which couples to the transmon charge operator. The total
system Hamiltonian can then be written as

Hys = HE% + £(0) cos (wal + pa) i (4)

where £(7) is the pulse envelope, wyq is the drive frequency,
and ¢ is the phase of the drive. We can simplify Eq. (4) by
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first writing the charge operator in the transmon eigenbasis
of Eq. (3), i.e., t = ), s (k| [K') |k) (K| and considering
the charge-coupling matrix elements. Only nearest-level
couplings (k|n|k=+ 1) are found to be non-negligible,
allowing us to ignore all higher-order terms:

fir Yy (klAlk+ 1) 1K) (k+ 1] + he.
k=0

)

Transforming into a frame rotating with the drive and
employing the rotating-wave approximation (RWA), we
obtain, for ¢4 = 0, the effective Hamiltonian

Ay =" (0 — ko) k) (k|
k>0
@

3

3 grar1 (K (k+ 1] + [k + D)(kD) . (6)
k>0

where gy i1 = (k| n |k + 1). By tuning ¢4, we can imple-
ment a rotation about any axis in the (x,y) plane of the
qubit subspace (after an additional projection). In par-
ticular, taking ¢q = 0 or 7/2 corresponds to a rotation
about the x or y axis, respectively. Appendix A provides
a derivation of Eq. (6) from Eq. (4).

The pulse envelope ¢(#) plays a vital role in the final
implementation of the gate. Since we are interested mainly
in applying 7 pulses, we choose

‘g
/ ehdt=m ,
0

where 7, is the pulse or gate duration. For our numeri-
cal simulations, we choose Gaussian-shaped pulses with
envelopes given by

)

8(1‘) =& [G(t, tg,a) - G(O, tgs 0)] (®(t) -0 (t_ tg)) ’
(8)

where

)

202

G(t,t4,0) = exp (—

Here ¢ is the maximum drive amplitude during the pulse,
© (?) is the step function, and o is the standard deviation of
the Gaussian pulse.

An essential aspect of gate design is that population
should not leak to higher levels of the transmon, i.e., the
drive pulses should be bandwidth limited (adiabatic). An
accurate measure of these off-resonant excitations is the
Fourier transform of the pulse envelope at the detuning fre-
quencies [46,47]. For example, consider a Gaussian pulse
with standard deviation o. Its Fourier transform has a stan-
dard deviation proportional to 1/o, which means that the
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FIG. 1. Gaussian pulse envelope (solid, orange) [see Eq. (8)]
and its Fourier transform (dashed, blue) with amplitude ¢ cho-
sen to keep both in the range [0, 1]. (a),(b) show the pulse with
gate time #, = 70 and 10 ns, respectively, and o = 1, /6. The bot-
tom horizontal axis represents time in ns, and the top horizontal
axis represents frequency in GHz. Shorter gate times result in a
larger frequency spread of the spectrum, with associated larger
leakage, as illustrated in (c), which shows the frequency spec-
trum corresponding to a #, = 10 ns gate (left), compared to the
energy levels (right) |0), |1), and |2) of the transmon. The energy
levels are shown in the rotating frame such that E)py = E};) and
Epy = —ny = —200 MHz. As indicated by the dashed horizon-
tal line, the spectrum overlaps with level |2), resulting in leakage
into this level from the {|0),|1)} qubit subspace. The sampling
frequency used to compute the Fourier transform is 10 GS/s,
which is state of the art in experiments; the pulses that control
the IBM processors used in this work have a sampling frequency
of approximately 5 GS/s.

drive pulse applied at the qubit frequency w, has a fre-
quency spread close to 1 /0 about w,. If 1 /o is of the order
of the anharmonicity of the transmon, the pulse spectral
width will overlap with some of the higher-level transi-
tions. Figure 1 shows the Gaussian pulse envelope and its
Fourier transform, and illustrates how choosing a shorter
gate time results in a larger frequency spread and vice
versa. The use of DRAG pulses mitigates this leakage, as
discussed further below.
In the two-state (qubit) subspace, Eq. (6) reduces to

Hy () = ? (0N 1] + 1) (0]) = 8;—%%

(10)
where gp; = g has been absorbed into £(¢) and o* is the
Pauli X matrix. When Hy (?) is evolved for a time #, such
that Eq. (7) is satisfied, the resulting unitary is an ideal X,
gate. To include the effect of higher levels, we first use
the full gate Hamiltonian from Eq. (6) and then project the
result to the qubit subspace.
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The gate fidelity averaged over all input states in the
qubit Hilbert space can be written as the average over the
six polar states (i.e., the six eigenstates of o*, 0”7, and o%)
[44,48]:

1
Fo=2 Y T[Uean/ 'UaTlo@1] . (1)
J=Ex,ty,+z

where pjlq is the single qubit density matrix, and Ulgea
represents the ideal unitary corresponding to the gate we
wish to study. I[p(#,)] is the projection of the full den-
sity matrix onto the single qubit subspace. F;, compares the
density matrix p after application of the gate (i.e., at f = #5)
with the expected density matrix in the qubit subspace.

To reduce phase errors caused by the presence of addi-
tional levels, a commonly used trick to implement single-
qubit gates such as X, is to break the gate into two halves
where each half performs a /2 rotation, accompanied by
some virtual Z rotations [49,50]. Numerically, we observe
that with four levels included in the transmon Hamiltonian
and a total gate duration ¢, = 70 ns, with o = 1,/6, the
average single-qubit gate error 1 — F, can be suppressed
by around 20% if we use two such pulses instead of a single
long pulse. The exact quantitative improvement depended
on other model parameters. We observed this error reduc-
tion in a closed system setting with no environmental
coupling, and so any fidelity improvement may be coun-
teracted by open-system effects. For a detailed numerical
study on the error of time-dependent gates with transmon
qubits in the open-system settings, see Ref. [51].

We also include DRAG [44,52] in our single-qubit
gates. DRAG is routinely used to improve the performance
of single-qubit gates by suppressing leakage and phase
errors. The former refers to a population exchange between
the qubit subspace and the noncomputational levels at the
end of a pulse, while the latter is a type of coherent error
that results from a nonzero amplitude of the noncomputa-
tional levels during the pulse: the admixture of such levels
leads to a phase shift of the computational levels, resulting
in a net phase error at the end of the pulse. For more details
see Appendix B.

III. OPEN QUANTUM SYSTEM SIMULATION

This section describes the noise model and discusses
the hybrid Redfield equation used for the open quantum
system simulations. For all simulations we truncate to the
lowest four levels of the transmon qubit.

A. Interaction Hamiltonian

The single-qubit system bath interaction Hamiltonian in
the lab frame can be written as

Hgsp = Z gidi ® B; , (12)

I=x,),z

where A; and B; represent the dimensionless system and
bath coupling operators, respectively, and the coupling
strengths g; have dimensions of energy. There are sev-
eral contributions to decoherence and noise for a multi-
level transmon circuit. With fixed-frequency architectures,
charge noise and fluctuations in the critical current con-
tribute most to decoherence. In the flux-tunable variants of
transmon qubits, flux noise becomes an additional noise
channel [14]. These considerations determine which cou-
pling operators are needed to describe the noise model for
a given architecture. We can define similar coupling oper-
ators for fluxonium qubits [53]. In the IBMQE processors
used here, the transmons are of the fixed-frequency type.
We choose the appropriate noise operators below.

We consider the following system-bath interaction
Hamiltonian:

Hyp =g A, @B, + 4. ® (ngz + Z bixr (1) IB) s
k
(13)

where the coupling operators 4, and A4, correspond to
the charge-coupling operator and to the Josephson energy
operator and are defined as

R (14a)

A, =crcos¢, (14b)
where ¢; and ¢, are fixed constants that depend on the
charge energy E¢ and the Josephson energy E; of the
transmon qubit, respectively. We expect, based on the dis-
cussion in Sec. Il B—and observe in our simulations—that
Ay and A4, act like 0* and 0% when projected into the qubit
subspace. We find numerically that Eq. (13) is an adequate
model accounting for the nearly equal decay of the |+) and
|i) states, which is why we do not include a separate o”
coupling term. Note, however, that a (dependent) ¢ com-
ponent appears when we transform Eq. (13) from the lab
frame into a frame rotating with the drive.

Previous studies have found that noise in the super-
conducting circuit can be separated into high- and low-
frequency components [54]. To account for this obser-
vation, we combine two noise models. We choose the
bath operators B, and B, in Eq. (13) to be bosonic bath
operators, which generally represent the high-frequency
component of the noise. However, this is not always the
case, as we argue in Sec. [V.

To account for the low-frequency noise component,
which is a dominant noise source for superconducting
qubits [55], we include a sum over classical fluctuators
in Eq. (13), via the term proportional to the bath iden-
tity operator /g. This semiclassical contribution, when
parameterized properly, can simulate the behavior of 1/f
noise. We model the fluctuators as having equal coupling
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strengths, i.e., we set by = b (with dimensions of energy)
for k=1,...,10. Each fluctuator can be characterized
by a stochastic process x;(f) that switches between =1
with a frequency y;, which is log uniformly distributed
between Yin and ymax [56]. We find ten fluctuators suffice
to reproduce the 1/f spectrum ubiquitous in these devices.

B. Hybrid Redfield model

To simulate the reduced system dynamics of the inter-
action Hamiltonian in Eq. (13), we use a hybrid form of
the Redfield (or TCL2) master equation [36,58]. We first
define the standard bath correlation function

Cy () = Tr{Us () B;UL (1B, ps} , (15)

where Ug(f) = e /B’ is the unitary evolution operator
generated by the bath Hamiltonian Hg, and the reference
state pg is the Gibbs state of Hp:

pp = e P18 /Tr(e7P1), (16)

where 8 = 1/T is the inverse temperature. Assuming the
bath operators B, and B, are uncorrelated, i.e., Cy, () =
C,.(t) =0, we construct the following hybrid Redfield
equation:

10

= —i[Hys + 4z Y bixe(0, ps] + Lr(ps),  (17)
k=1

s
at

where Ly is the Redfield Liouville superoperator

Lr(ps) = = Y _[Ai, Ait)ps()] +hc.,  (18)

i=x,z

and
t
A = / Cilt = D Usys (6, DAUL (1, T, (19)
0

where C;(7) = Cj;(r) [from Eq. (15)] and Usy(?) is the
unitary evolution operator generated by the system Hamil-
tonian Hys. The reduced system dynamics are obtained by
averaging the solution of Eq. (17) over all the realizations
of p(t) fork=1,...,10.

The bath component correlation functions C; (7) are the
Fourier transforms of the bath component noise spectra

¥ (@) = / Ci(v)e dr . (20)

We choose the bath to be Ohmic, which means that the
component noise spectra have the form

- ¢
ol /o

- 2 @
Vj(a))—zﬂngjm, (21)

where w; is the cut-off frequency for bath operator B;, and
n is a positive constant with dimensions of time squared
arising in the specification of the Ohmic spectral function.

Lastly, the hybrid Redfield Eq. (17) can be transformed
into a frame rotating with the drive frequency wy (see
Appendix A for details) by replacing every operator with
the interaction-picture one [specifically, the A; operator
in Eq. (19) needs to be replaced by A4;(r)]. We simulate
the Redfield master equation in this rotating frame in the
methodology and results we discuss next.

IV. METHODOLOGY AND FITTING RESULTS

This section discusses our methodology for modeling a
transmon qubit’s open quantum system behavior in a mul-
tiqubit processor. We refer to the qubit of interest as the
main qubit and all the others as spectator qubits. The goal
is to extract the bath parameters in our open quantum sys-
tem model and then use this model to predict the outcomes
of experiments on the main qubit, including dynamical
decoupling sequences. We treat qubit 1 (Q1) of the Quito
processor as our main qubit. We are interested only in the
main qubit’s behavior here; hence, we measure only the
main qubit. Appendix D describes the procedure to extract
and analyze the experimental data.

A. Free and DD evolution experiments

Our procedure involves two types of experiments, as
shown in Fig. 2. The first type, which we call a free-
evolution experiment, consists of initializing all the qubits
in a given state by applying a particular unitary operation
U3(0,¢, 1) [59] (denoted as U in Fig. 2) to each of the
qubits and is given by

(5) —=(3)
cos | 5 —e%sin ( 3
U30,p,r) = o 5
é?sin| =) @M cos| =

2 2

We then apply a sequence of identity gates on the main
qubit, which we vary in number. Simultaneously we also
apply the XY4 DD sequence to all the other (spectator)
qubits (i.e., Xf; Yf: Xf. Yf;, where f; denotes free evolution
in the absence of pulses for a duration of t [41]) for the
same total duration as that of the identity gates on the
main qubit. As shown in Ref. [57], DD sequences applied
to spectator qubits suppress unwanted ZZ interactions,
i.e., ZZ crosstalk between the main qubit and the spec-
tator qubits. Without crosstalk suppression, we observe
oscillations in the probability decay as a function of time
[20,31]; see Appendix E. With the crosstalk suppression
scheme, i.e., DD applied to the spectator qubits, these
oscillations disappear, and the main qubit is now primar-
ily affected only by environment-induced noise. Finally,
we apply the inverse of U3(6,¢,)) and measure in the

(22)
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0/1)
Main : |0) (=T —T—1—1-)N -1
Free
Spectators : |0) (- X Y - X —-Y-)N -1
0/1)
Main : |0) (- X -Y —-X-Y-)N U1
DD
Spectators : |0) (=] —T—1—1-)2N -1

FIG. 2. The circuit schematics for the free-evolution and DD-evolution types of experiments. For the free-evolution case, we apply
N cycles of the XY4 DD sequence on all the spectator qubits and 2N cycles of the 14 sequence (here I, means four identity gates) on
the main qubit, which suppresses crosstalk errors [57]. Note that an X or Y gate is twice as long as an identity gate on the IBM cloud
quantum devices, hence the extra factor of 2. For the DD-evolution case, we apply the DD sequence only to the main qubit and apply
identity gates to all the spectator qubits. This suppresses both crosstalk and environment-induced noise. We measure only the main

qubit.

Z basis. The result is how we compute the initial states’
decay probability.

Everything remains the same in the second type of
experiment, which we call DD evolution, except that we
now apply the X4 sequence to the main qubit and identity
gates on the spectator qubits. As discussed in Ref. [57],
when we apply the XY4 sequence only to the main qubit,
we suppress the ZZ crosstalk between the latter and all the
spectator qubits and also decouple unwanted interactions
between the main qubit and the environment. We note that,
in contrast to experiments using DD to perform noise spec-
troscopy, here we use only a single type of DD sequence
and do not vary any of its parameters.

B. Fitting procedure

We perform the free-evolution and DD-evolution exper-
iments for the six Pauli states as initial states, i.e., we
choose U3(0, ¢, A) to prepare |0), |1), [+), |—), |i), and
|—i), and use the hybrid Redfield equation described in
Sec. III B to simulate the dynamics of these experiments.
We sweep over different values of the bath parameters and
obtain the simulated probability decay as a function of
time. To identify the simulation parameters that optimally
match the experimental results, we define a cost function C
for a given initial state |1/) as the /;-norm distance between

the experimental probabilities P‘ef))fs (;) and the simulation
m

probabilities Plsli//m(ti) for every instant ¢;:

N-1
1 . ) 2
Civys = > (Pf},“;,s(fi) - Pﬁ;ﬁ’,s(ti)) ,

=

23)

where s € {free, DD} and N is the total number of instants.
Note that we compensate for state preparation and mea-
surement (SPAM) errors by shifting the experimental
results such that in all cases, PT,Z?L,(O) =1.

We limit the number of free parameters requiring fitting
to six: the coupling strengths gy, g., and by = b [Eq. (13)],
and the cut-off frequencies ymax (for 1/f noise), w¢, and
¢ [Eq. (21)]. We set the bath temperature 7= 20 mK
(approximately the fridge temperature), ymin = 10~* GHz,
and n = 10~* GHz2; these values are the same as in
our previous work [57], which showed strong agreement
between open-system simulations and experiments using
other IBMQE devices, and remain fixed throughout our
fitting procedure. This procedure consists of three steps,
which we detail next.

1. Step I: free evolution for |1)

We first focus on the free-evolution experiment for the
initial state |1), the first excited state in the transmon eigen-
basis. Since the free evolution for this state is only affected
by charge noise, i.e., noise along the x axis, the only contri-
bution to the decay of |1) should come from the g, 4, ® By
term in Eq. (13). Thus, we consider only this term in our
numerical simulations for this initial state. For a given set
of values of the coupling strength g, and bath cut-off fre-
quency wg, we compute the cost function Cjjyfree USINg
Eq. (23), and obtain the contour plot shown in Fig. 3(a).

In our simulations, we vary o /(2m) from 0.5 to 3 GHz
and g, from 0 to 1072 GHz, each with 20 equidistant points
so that the contour plot has a total of 400 data points.
We take the position of the global minimum of the cost
function on this grid as the optimal set of bath parameter
values. To reduce the resulting discretization uncertainty,
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FIG. 3. Top: results for the Quito processor. Bottom: results for the Lima processor. Left: the cost function defined as the /,-norm

distance between the experimental and simulation results [Eq. (23)], averaged over N = 70 time instants, as a function of the bath
parameters w¢ and g, for free evolution of the |1) initial state. Middle: the average of the cost function over the six Pauli states for DD
evolution as a function of w{ and g.. Right: the cost function for free evolution of the |4) initial state, as a function of ym,x and b. The
green circles indicate the positions of the global minima in all the panels.

we interpolate the contour plot and use the Nelder-Mead
optimization method to locate the minima. We numeri-
cally find the global minimum at w¢/(27) = 1.948 GHz
and g,/(2) = 0.573 x 1072 GHz, denoted by the green
circle in Fig. 3(a). With this, we have two out of the six
bath parameters, and we use these learned parameters in
the subsequent steps.

2. Step I1: DD evolution for all six Pauli states

The second step involves the DD-evolution experiment
for all six Pauli states. This requires including the term
g.A: ® B, in Eq. (13), along with the first term whose
bath parameters we already obtained. We do not include
the semiclassical term in Eq. (13) consisting of fluctuators
since it is expected to be strongly suppressed when DD
is applied to the main qubit. We simulate time-dependent
gates with DRAG corrections to model the DD pulses,
as discussed in Sec. II. We are again left with just two
bath parameters to optimize: w¢ and g.. Figure 3(b) shows
the average of the cost function [Eq. (23)] over the six
Pauli states. The global minimum is found at w{/(27) =
0.569 x 1072 GHz and g./(27) = 0.441 x 1072 GHz.

3. Step I1I: free evolution for |+)

The final step requires optimizing the two remaining
free parameters associated with the fluctuators: ym.x and
b. Here we focus on the free-evolution experiment for
initial state |+). We now employ the full system-bath

Hamiltonian in Eq. (13) with the optimal parameters found
in steps I and II. Figure 3(c) shows the contour plot for the
cost function [Eq. (23)], where, as in step I, we again use
20 different values of yu,x and b each. The global mini-
mum is found at ym./(27) = 0.051 GHz and b/(27) =
0.598 x 10~° GHz.

C. Methodology wrap up

Let us briefly summarize our methodology and add a
few technical details. As explained above, we extract the
bath parameters by performing free-evolution experiments
for two initial states (| 1) and |+)) and DD-evolution exper-
iments for up to six initial states (the Pauli states). Our
optimization procedure is iterative and is thus not guar-
anteed to yield the globally optimal values of all the bath
parameters, but this is by design: we choose initial states
that allow us to isolate the bath parameters one pair at a
time, which renders the optimization problem tractable.

This methodology is quite general and can be used to
characterize all the transmon qubits on a given transmon
processor or, much more broadly, to characterize single
qubits on any quantum information processing platform
capable of supporting individual qubit gates and mea-
surements, provided a sufficiently accurate and descriptive
model of the qubits and the system-bath interaction is
available. Our procedure inherently suppresses the effects
of crosstalk due to the neighboring qubits via DD applied
either to the spectator qubits (free-evolution experiments)
or the main qubit (DD-evolution experiment), which
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reduces the number of free parameters of the noise model
by eliminating the need to model crosstalk.

To obtain the contour plots shown in Fig. 3, we solve
the Redfield master equation (Sec. III B) for each point
(i.e., each set of model parameters), requiring a total of
400 simulation runs for each optimization. In the final step,
including classical fluctuators to obtain Fig. 3(c), we use
the trajectory version of the Redfield model introduced in
Sec. III B to simulate a total of 600 trajectories at each
point. This is large enough to yield negligible error bars
(< 2 x 1072). The experimental results are obtained using
the standard bootstrap method (see Appendix D). In defin-
ing the cost function [Eq. (23)], we use the mean value of
the experimental fidelity obtained after bootstrapping (see
Appendix E) and ignore the associated tiny error bars (<
6 x 1073). These error bars are much smaller than the error
induced by the discrete nature of our 40 x 40 parameter
grid, and so we can safely ignore them. We confirmed that
varying the probabilities to the extremes of the error bars
does not affect the values of the bath parameters we have
extracted to the least significant digit we report. Table I
summarizes the extracted values and the parameters we
have fixed.

The accuracy of our results depends on the number of
points in the contour plots in Fig. 3 (we used a 20 x 20 grid
for each panel). Even though we interpolate the otherwise
discrete contour plots and find the minima over the result-
ing smooth surface, the limited number of points affects the
precision of the learned bath parameters. Increasing this
precision requires more sophisticated optimization tech-
niques to speed up the process of obtaining the bath param-
eters. This becomes especially acute when extending the
model to learning a multiqubit system-bath Hamiltonian
with correlated noise, as in this case, the number of bath
parameters increases significantly. Here, we aim to demon-
strate the model and methodology and illustrate both via
the example of a single transmon qubit, and so we per-
form a simple brute-force search of the parameter space.
Note that our methods for extracting the bath parameters
also work with density matrices (from state tomography)
instead of just probabilities. In that case, the /;-norm dis-
tance in the cost function of Eq. (23) can be replaced
by the trace-norm distance between the density matrices
obtained from the simulation and the experiment. How-
ever, quantum state tomography imposes a much higher
cost in terms of the number of required experiments and
is thus less practical to scale up with a larger number of
qubits. Our protocol requires only fidelity measurements
and so is more resource efficient.

V. MODEL PREDICTION RESULTS
A. Full model

We now test our model for different initial states of
the main qubit of the Quito processor. Since we always

apply the DD sequence to the spectator qubits during the
free-evolution experiments, the initial states of the latter
do not matter due to the suppressed ZZ coupling. This
section considers a total of 16 initial states, consisting
of the six Pauli states and ten Haar-random states. We
model the experimental results using the bath parameters
we extracted in the previous section (Table I). This serves
as a stringent test of the model: we now use the previ-
ously fitted model to predict the outcome of experiments
not included in steps [-II of Sec. IV B, i.e., the results
with different initial states. The data for all the experiments
(both fitting and testing) was obtained in one batch. We
used only the data for the six Pauli initial states needed for
steps I-11I to perform the fitting. We used the data for all
16 initial states in the testing phase.

We consider the same two kinds of experiments: free
evolution and DD evolution. Figure 4 (top row) shows our
model’s prediction accuracy for the ten random and six
Pauli states. The top left panel [Fig. 4(a)] corresponds to
the free-evolution case, where we present the relative error
in the prediction of our model as a function of time com-
pared with the experimental results. The relative error is
defined as [meancy, — meangy |/meancyy;, Where meaney,
is the bootstrapped average over 8192 experimental rep-
etition and meang;, is the average over 600 trajectory
simulations of the hybrid Redfield model for any given
time instant. The box plot contains the spread in the rela-
tive error over all 16 states, showing that the relative error
of the model is always below 8% over the total time con-
sidered here. The median and the mean over the 16 states
are confined well below 3% for every instant.

The performance of our model for the DD-evolution
experiments is shown in the top right panel [Fig. 4(b)].
Here the relative error is always below 2%. The median
and the mean are below 1%. The closer agreement of
the model with the DD-evolution experiments is expected,
given that in contrast to the free-evolution experiments,
DD suppresses the low-frequency noise affecting the main
qubit, and the limitations of our fluctuator model of this
noise is a likely source of modeling error.

The first and fourth columns of Fig. 5 show the relative
error of our model over the 16 states and all 70 instants of
the free and DD-evolution experiments, respectively. The
results of the latter are better, as expected from Fig. 4.
In both cases, however, we observe that the model has a
relative prediction error of just a few percent.

B. Simplified models

As discussed in Sec. II, our numerical simulations use
the circuit model Hamiltonian of a transmon qubit trun-
cated to the four lowest transmon eigenstates. The gates are
applied with time-dependent pulses of nonzero duration.
To test the robustness of our detailed model and learn-
ing procedure, we compare it with two simpler models,
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FIG. 4. Results for the Quito (top row) and Lima (bottom row) processors. Left: box plots showing the relative error of our model
for the free-evolution experiments as a function of time for 16 different initial states containing six Pauli states and ten Haar-random
states. Right: the same as on the left, but for the DD-evolution experiments. We measured a total of 70 time instants, up to a total
evolution time of 19.6 s, but display only every other instant to avoid overcrowding. Green triangles indicate the mean over the 16
initial states, black horizontal lines are the median, gray boxes represent the [25, 75] percentiles, the whiskers (black lines extending
outside the boxes) represent the [0,25] and [75, 100] percentiles, and circles are outliers.

SM1 and SM2, derived from our detailed model. The sim-
pler models use a more straightforward qubit description
where we truncate the transmon Hamiltonian to only two
levels. The time-dependent gates are replaced with instan-
taneous (zero-duration), ideal gates. Moreover, we focus
only on the Ohmic bath terms in Eq. (13), thus simplifying
the noise model by removing the classical fluctuators. To
test these simpler models’ predictive power, we follow the
same procedure as in Sec. IV, but using only steps I and
II. The difference between SM1 and SM2 lies in step II,
where SM1 uses the DD-evolution experiments for the six
Pauli states, whereas SM2 uses the free-evolution exper-
iments for the same states. In both cases, we extract the
model parameters and then use the resulting learned mod-
els to predict the outcomes of both the free-evolution and
the DD-evolution experiment.

Figure 5 shows the comparison between our detailed
model and the simpler models SM1 and SM2. We
observe that SM1 has the largest relative error for the
free-evolution experiments, whereas SM2 has the largest

relative error for the DD-evolution case. Our full model
has the smallest relative error among the three models
considered here for both the free and DD-evolution exper-
iments. However, the performance of SM1 and SM2 is
essentially indistinguishable from the full model results
in the DD- and free-evolution cases, respectively. This is
not unexpected, given that SM1 (SM2) is trained on the
DD (free) evolution experiments and predicts these well.
In other words, SM1 (SM2) captures the high- (low-) fre-
quency noise well, as expected since for SM1, the use
of DD suppresses most of the low-frequency noise, while
for SM2, the use of free evolution means that the low-
frequency noise remains a dominant source of decoher-
ence. The added value of the detailed model and the use of
step I1I is that this provides enough information to capture
both the low- and high-frequency components of the noise,
which yields a more complete model with better predic-
tive power. We do note that taking the qubit approximation
and treating DD pulses as instantaneous does not seem to
appreciably worsen the performance of the simple models
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FIG. 5. Relative error results for the Quito processor. We dis-
play a comparison of the relative errors between the full model
(which uses a three-step learning procedure and consists of four
energy levels per transmon and realistic pulses) with the sim-
plified models SM1 and SM2 (which are based on a two-step
learning procedure and use just two energy levels and instanta-
neous pulses) for free-evolution and DD-evolution experiments.
SM1 (SM2) is trained on the DD- (free) evolution experiments.
Each box contains a total of 16 initial states and all 70 time
instants varying from 0 to 19.6 p.s.

in their regime of accuracy, as SM1 (SM2) are roughly as
accurate as the full model in the DD- (free) evolution case.
This suggests that an intermediate model, taking the qubit
and instantaneous-pulse approximations but retaining the
fluctuators, may be accurate and computationally efficient.

It is reasonable to ask whether our detailed simulation
models are necessary, in the sense that perhaps a sim-
ple Markovian model might suffice. We address this in
Appendix C, where we discuss results from using the Lind-
blad master equation with the backend-reported 7 and T,
values for the Quito processor. We simulate the free and
DD evolutions for all 16 initial states and compute the rel-
ative error with respect to the experimental results. The
Lindblad results (see Fig. 7) have significantly larger rel-
ative error than our detailed simulation model [Figs. 4(a),
4(b)] for the Quito processor, highlighting the need for the
latter methodology.

TABLE 1. System-bath parameter values extracted using the
fitting procedure of Sec. IV B, and corresponding to the minima
indicated by the green circles in Fig. 3 for Quito (top row) and
Lima (bottom row).

Params/(27) Quito Lima
g, [MHz] 5.734 4.782
g, [MHz] 4413 9.393
s [GHz] 1.948 2.340
¢ [MHz] 5.690 5.979
b [MHz] 0.598 0.323
Ymax |GHZ] 0.051 0.083

VI. CALIBRATION-INDEPENDENT LEARNING

For multiqubit superconducting processors, calibrating
single-qubit drive frequencies is crucial for gate opera-
tions. In the presence of ZZ coupling, the state of the
spectator qubits modifies the eigenfrequency of the main
qubit. This results in different choices of calibration fre-
quencies depending on the spectator qubits’ state [57]. So
far, we have focused on one particular device (Quito),
which is calibrated while keeping the spectator qubits in
the |+) state (see Appendix E and Ref. [57]). The all |+)
or all |0) are usually the two preferred choices for the spec-
tators’ state while calibrating a given qubit in a multiqubit
processor. When we perform state protection experiments
on the main qubit initialized in the |+) state while keep-
ing all the spectator qubits in |0), there exists a frequency
mismatch, which results in ZZ-crosstalk oscillations (see
Appendix E); to remove these oscillations, we applied DD
to the spectator qubits before starting our noise-learning
procedure. When device calibration is performed while
keeping the spectators in the |0) state, a similar state-
protection experiment does not result in any oscillations,
as evidenced by our Lima results (see Appendix E).

Therefore, we extend our noise-learning method to Lima
in this section. Following our procedure from Sec. IV,
we again perform free-evolution (no DD is applied to any
qubit) and DD-evolution (XY4 is applied just to the main
qubit) experiments. The only difference from the Quito
case is that, for the reasons explained above, the free-
evolution experiment does not require the application of
DD to the spectator qubits to suppress crosstalk oscilla-
tions. Figure 3 (bottom row) shows the contour plots for
each of the three steps involved in our learning methodol-
ogy as described in Sec. IV B. We find the global minima
at the parameter values given in Table I. Comparing the
Quito and Lima parameters in Table I, we observe that the
coupling strength g, of the Ohmic bath along the z axis
is roughly double for Lima, whereas the strength of the
fluctuators is roughly double for Quito. This indicates that
Quito is more prone to low-frequency (1/f") noise.

Figure 4 (bottom row) shows the Lima prediction results
for the 16 different initial states described above, using the
learned noise parameters. The bottom left panel [Fig. 4(c)]
shows the relative error in the prediction of our model
of the free-evolution experiments as a function of time
compared to the experimental results for all 16 states.
The bottom-right panel [Fig. 4(d)] shows the same for the
DD-evolution experiments. The relative error is always
below 17% and 4% for free evolution and DD evolution,
respectively. Similar to the Quito case, the relative error
is significantly lower for the DD-evolution experiments.
For longer evolution times (2 14 Ls), the agreement wors-
ens for the free-evolution experiments. As for the Quito
results, the closer agreement of the model with the DD-
evolution experiments is likely because DD suppresses
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FIG. 6. Integrated relative error results for the Lima processor.

We compare the relative errors between the free-evolution and
DD-evolution experiments. Each box contains 16 initial states
and all 70 time instants varying from 0 to 19.6 ps. The color
bar indicates the time evolved for the outliers. All the outliers
correspond to times longer than 11 ps.

the low-frequency noise affecting the main qubit, which
dominates the free-evolution case’s simulation error.

Figure 6 shows the time-integrated version of the Lima
results of Figs. 4(c), 4(d), where we have combined all 16
states and 70 time instants into one box each for the free-
evolution and DD-evolution experiments. Except for a few
outliers, almost all the data points for the free-evolution
case have relative errors below 9%. The outliers all corre-
spond to evolution times longer than 11 ps, as indicated by
the color bar. Similarly, for DD evolution, all data points
have relative errors below 3%, except for a few outliers.
There are two main reasons for the larger errors at longer
evolution times. First, the Redfield equation is based on the
weak coupling approximation, and its accuracy degrades
as we increase the simulation time (for rigorous error
bounds, see Ref. [60]). Second, as time increases, the effect
of distant fluctuators is increasingly felt, thus reducing the
accuracy of our fluctuator model, which relies on a fixed
number of fluctuators. Adding more fluctuators and explor-
ing a distribution of fluctuator strengths, as opposed to our
assumption of a fixed fluctuator strength b, is expected to
improve the predictive power of our model.

Finally, as another test of our learning procedure, we
computed 77 from the learned models, using the values we
report in Table II. We did this by simulating the fidelity
decay of the |1) state for 19.6 ws and fitting exp(—¢/7;) to
estimate 7. We find 77 = 92.5 s for Quito and 86.5 s
for Lima, compared to the reported 73 = 98.6 ws and
105 ws, respectively. Our result gives the correct order
of magnitude and is particularly reasonable for Quito.
The discrepancy may be in part due to the relatively

short simulation time of 19.6 ps (larger times become
prohibitively expensive). In addition, the discrepancy for
Quito is smaller because we use three rounds of exper-
iments within the same calibration to model the noise,
which removes short-time fluctuations via bootstrap aver-
aging, whereas for Lima, we used only one repetition. As
T, often drifts significantly over hour-long time scales, we
would not expect the Lima prediction to line up exactly
with the reported 77.

VII. EXTENSION TO TWO QUBITS

Building upon the preceding analysis and validation of
our model for characterizing the interaction of individ-
ual qubits with a bath, we now extend our methodology
to the two-qubit case. For simpler models relying on
Lindblad equations based on measured 77 and 7, data,
noise modeling for two-qubit systems has been studied
in Ref. [61]. Learning higher-order couplings, i.e., terms
involving three or more qubits coupled to the bath, is
unnecessary unless a circuit directly involves such higher-
order interactions [62].

For a system comprising two qubits, we can write
the system-bath interaction as H = Hl, + HZ, + HZJ,
where Hgy represents the single-qubit system-bath inter-
action for the ith qubit as described by Eq. (13). The
two-qubit system-bath interaction term can be expressed as

HS2](31 = Z gaﬂAot ®Aﬂ ® Baﬁ (243)
o,felx,z}
+4. 04, ® Z b2 xk(DIs . (24b)

k

Recall that A, and A4, correspond to o* and o, respectively,
when reduced to two-level systems. As in the single-qubit
case, our model assumes a combination of an Ohmic bath
[Eq. (24a)] and a fluctuator bath [Eq. (24b)].

As with the single-qubit noise learning method, we
can conduct both free-evolution and DD-evolution experi-
ments, this time with selected two-qubit initial states. The
free-evolution experiments still necessitate the application
of DD sequences to spectator qubits, in case one or both
of the primary qubits are coupled to spectators. This is
done to suppress ZZ crosstalk [57]. For the DD-evolution
experiments on the primary qubits, we utilize the ZZ-
crosstalk robust variant of the XY4 sequences, represented
as XIf IXf, YIf IYf XIf  IXf, YIf IYf; [63], where f; denotes
free evolution in the absence of pulses for a duration of 7.
This sequence aims to suppress the ZZ crosstalk between
the main qubits as well as between the main and spectator
qubits. Additionally, it suppresses the low-frequency noise
resulting from the fluctuator term in the two-qubit system-
bath interaction Hamiltonian, as described by Eq. (24b).
It is worth noting that the ZZ crosstalk occurring between
the two transmons can be measured directly. Consequently,
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this should be incorporated into the closed-system Hamil-
tonian.

There are four distinct system-bath couplings in Eq. (24)
that necessitate learning. Specifically, these encompass the
following:

(1) Assuming that g,, = g, and B,, = B,,, there are
three coupling strengths associated with the Ohmic
bath, given by g.., g, and g... These have corre-
sponding cut-off frequencies w¢,, wg,, and wg,.

(2) A coupling strength related to the fluctuators, given
by by 12. For simplificity, we assume that by ,q =
byq Yk, with a high-frequency cut-off 1%,

To learn this set of four coupling strengths and the associ-
ated set of four cut-off frequencies, we propose a sequence
of four steps. Each step is tailored to determine a subset
of these unknown parameters. The methodology involves
leveraging specific initial states, combined with either free
or DD evolution, ensuring that each term is distinctly
accentuated.

A. Step I: free evolution to determine g;, and w,

We commence with the free-evolution experiment for
the initial state 1 /«/§(|OO) 4+ |11)). This state is invari-
ant under 4, ® A, and A, ® A.. Therefore, the only noise
contribution is due to 4, ® A, + 4, ® 4., with coupling
strength g., under an Ohmic bath with a cut-off frequency
.. By comparing the corresponding Redfield simula-
tions to the experiment, and using the cost function from
Eq. (23), we can deduce the two unknown parameters
g and w¢,. Note that for evolution times of the order of
Ty ~ 100 ws, the 4, ® A, error term generates a decay of
the form o0~ ® o~ in the Markovian limit, under which
1/+/2(]00) + [11)) is not invariant. However, as long we
limit the free evolution to times much shorter than 7 (e.g.,
20 ps as in our experiments), we can safely ignore this
effect.

B. Step II: free evolution to determine g, and @g,

We now initialize the system in the |11) state and include
the A, ® 4, in the Redfield dynamics simulation of free
evolution. The |11) state remains invariant under 4, ® A4..
Having learned the 4, ® 4, + A, ® A, term in the previous
step, we can now isolate and extract the coupling strength
gw and the corresponding cut-off frequency ¢, by com-
paring the simulation results to the experimental data for
the same initial state.

C. Step III: DD evolution to determine g;; and ;,

In this step, we wish to isolate the Ohmic 4, ® A4,
term and learn g., and ¢, . Toward this end, we employ
crosstalk-robust DD, as explained above, which suppresses
the low-frequency A4, ® A, term, Eq. (24b). The Ohmic

contributions, in contrast, are not strongly suppressed, so
we include all of them in our simulations, but not the
fluctuator term. As in the single-qubit case, we use an over-
complete set of initial states (the nine computational states
[¥:) 1Y), where [;) € {|0),[1),[+)}) to determine g. and
w¢,, ensuring that state-dependent effects are averaged out.
However, it may not be necessary to use all nine states to
achieve a reliable estimate of g.. and w, thus further sav-

ing in terms of the required number of experiments and
simulations.

D. Step IV: free evolution to determine byq and y2'**

As the final step, we isolate the fluctuator term and
learn byq and y7**. We do this by simulating free evolu-

zZZ
tion under the complete Hszg of Eq. (24), after initializing
in the [+) |+) state. Given that we have already learned
all the terms other than the fluctuator term, comparison
between the simulations and the experimental data suffices
to extract byq and y7®* using the cost function approach.

VIII. SUMMARY AND CONCLUSIONS

This work presents a detailed noise model for trans-
mon qubits consisting of both low- (1/f -like) and high-
frequency noise components based on a hybrid Redfield
master equation. We designed an iterative three-step pro-
cedure to extract the unknown system-bath and bath
parameters from a few simple “free-evolution” and “DD-
evolution” experiments, as illustrated in Fig. 2, using the
six Pauli matrix eigenstates. In both cases, we used DD
to suppress diagonal (ZZ) qubit crosstalk [57] so that the
remaining dominant noise effect on the main qubit (the
qubit of interest) is decoherence. Our model treats the
transmon qubit as a four-level system based on the circuit-
model description of transmons (Sec. 1) and treats the DD
pulses as realistic time-dependent gates subject to quantum
control (DRAG).

Once the unknown system-bath and bath parameters are
extracted, we compare the model predictions with new
experiments and a larger set of initial states and demon-
strate that the model predicts the experimental results of
free evolution and DD evolution with a relative error
below 8% and 2% for Quito, and below 9% and 3% for
Lima, respectively. This is based on a test with the six
Pauli matrix eigenstates and ten random states for a total
duration of up to 19.6 ws. The relative errors are higher
for larger times (see Fig. 4), as expected because the
Redfield model is based on the weak-coupling approxima-
tion, and its accuracy degrades as the simulation time is
increased [60].

To test the robustness of our model, we performed
a comparison with two simpler, two-level models with
instantaneous pulses; while these models capture either the
low- or the high-frequency noise, the full model captures
both types of noise. Furthermore, our method is applicable

010320-12



MODELING LOW- AND HIGH-FREQUENCY...

PRX QUANTUM 5, 010320 (2024)

independently of the particular device-calibration proce-
dure followed, as witnessed by the agreement we find
for both Quito and Lima—devices with different drive-
frequency calibrations.

The low relative error we find in the case of DD-
evolution experiments (< 2% and < 3% for Quito and
Lima, respectively) suggests that our full noise model
helps model gate dynamics under the influence of decoher-
ence. The model can also be used to study several qubits
in parallel as long as there is no direct crosstalk between
these qubits.

Finally, we proposed a simple extension of our method-
ology to learn the two-qubit couplings to the bath by
performing simple to implement free-evolution and DD-
evolution experiments. We leave the experimental imple-
mentation of this extension as a future direction.

We hope this work will benefit experimental groups
working with superconducting qubits by helping them
understand and learn experimental noise using a first-
principles approach, which requires only a set of straight-
forward experiments. Extending our noise model beyond
weak coupling and using it to analyze and improve entan-
gling gates are additional promising future directions.

ACKNOWLEDGMENTS

We thank Mostafa Khezri, Ka-Wa Yip, and Humberto
Munoz Bauza for several helpful discussions. This mate-
rial is based upon work supported by the National Science
Foundation, the Quantum Leap Big Idea under Grant No.
OMA-1936388, the ARO MURI grant W911NF-22-S-
0007, the Defense Advanced Research Projects Agency
under Agreement HR00112230006, and the Office of
Naval Research under Grant No. N00014-21-1-2688. We
acknowledge the use of IBM Quantum services for this
work. The views expressed are those of the authors and
do not reflect the official policy or position of IBM or the
IBM Quantum team.

APPENDIX A: DERIVATION OF
TIME-DEPENDENT DRIVES

We start with Eq. (4) from the main text, and to obtain
Eq. (5), we focus on the charge-coupling matrix ele-
ments for transmon qubits. The selection rules of the
transmon qubit due to its cosine potential dictate that
Zrji+2 = 0 Vk [14]. The next order coupling terms, g x+3,
are proportional to the ratio of the anharmonicity and the
qubit frequency: n,/w, [64]. Therefore, gir+1 (the cou-
pling between nearest levels) is dominant, and all other
couplings can be ignored, giving Eq. (5).

We can write the approximated charge operator p =
Y i=o (kI 1k + 1) |k)(k + 1| + h.c. of Eq. (5) in terms of

effective creation and annihilation operators for the eigen-
states of the transmon, i.e., p = i(a" — a), where

a=iy gnlkk+11=i) avk+ 1k)k+1],

k>0 k>0
(A1)
with
R klnlk+1
Ski+1 = (klnlk+ 1) =g<||A—> (A2a)
(0[n|1)
= zvk+ 1, (A2b)

and g=go; =(0|n|l) =g. We note that gy =
8 s+1» Which follows from the fact that n is the number
operator for Cooper pairs. We note further that to first order

inny/w, [64]
kn
Gr~oll—=-2L).
8k g( 2wq>

We defined gi(= g;) in Eq. (A2b) to include all higher-
order perturbative corrections and do not use the approx-
imation Eq. (A3) in our numerical calculations. However,
we note that the leading-order correction to g is of the
same order as g x+3, i.€., proportional to n,/w,.

Equation (4) becomes

(A3)

eigen
Hsys = H, + Hrive,

trans

(Ada)

Harive = ie(f) cos (wgt + ¢q) (@' —a) . (A4b)

For simplicity, we consider the case when ¢4 = 0 in
Eq. (A4b), and transform the Hamiltonian Hseyifen into a
frame rotating with Uy = e@aVt Here N = > im0 kIk) (Kl is
the transmon number operator. In this frame, rotating with
the drive frequency, the effective Hamiltonian is given by

Hyys = UgHyy Ut + iU, UL (A5a)
— HOE™ 4 UgHave U + iUU} (ASb)
=Y (@ — ko) (k) (k| + UsHarie Uy, (ASc)

k>0

where in going from Eq. (ASa) to Eq. (ASb), we used the
fact that N’ commutes with Hooo" [Eq. (3)].
Note that a and a' should not be confused with the

harmonic oscillator raising and lowering operators since

[a.a") =) ((k+ D)g — k&_,) k) (k| + &10)(0|
k>1

#1.

For the harmonic oscillator case, gz = 1 for all £ and we
obtain the usual commutation relation [a, aT] = [. Despite

(A6)
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this, we have, as for the harmonic oscillator:

[, N]=1[i ) gk + 1k (k+ 11, Y KKK 1]

k>0 k>0

=iy &+ DV + 1)k (k+ 1 (A7a)
k>0

— iy akVk+ 1k (k+ 1] (A7b)
k>0

=iy avk+ 1k (k+1], (A7¢)
k>0

so that

[a,N]=a, [a',N]=—d. (A8)

Let us write the last term in Eq. (A5c) as

UsHarneUy = i fs;—t) (! + e7at) Uy (af — a) US. (A9)

Using Eq. (A8), we then have

Uy (a' — a) UZ = lwalgt — giwaly, (A10)
Making the rotating-wave approximation, we ignore the
fast-oscillating terms with frequencies +2wq, and Eq. (A9)
reduces to

t
UgHarive U & i? (@' —a). (Al1)

Combining this with Egs. (A1) and (AS), the effective
Hamiltonian for a drive that results in a rotation about the
x axis (in the qubit subspace) is given by

I:Isys = Z (wr — kaq) |k) (k|
k>0
@

3

3" @k + LRk + 1] + [k + 1) (KD,

k>0
(A12)

which is Eq. (6) of the main text. By tuning ¢q4, we can
implement a rotation about any axis in the (x,y) plane in
the qubit subspace.

APPENDIX B: DRAG

DRAG [44,52] is a useful technique to reduce both the
leakage and the phase errors, which accumulate during the
operation of single-qubit gates. The most standard DRAG
technique is to add the derivative of the pulse envelope to

the quadrature component such that the final form of the
pulse envelope £(¢) is given by
- . E(0)
ey =¢) +ic—,
ur

(B1)

where 7, is the transmon anharmonicity and « is a con-
stant that can have different values depending on which
errors need to be suppressed, e.g., « = 1 to suppress leak-
age and o = 1/2 to suppress coherent phase errors [65].
Equation (B1) implies that if we need to apply a single X
gate whose pulse envelope is given by &(¢), then aé(¢)/n,
needs to be applied along the y axis.

IBMQE devices use DRAG, but the exact pulse param-
eters are not available to users. Instead, the value of « in
our simulations can be optimized numerically to match the
experimentally reported gate fidelity. This is the approach
we take here, with the goal being to model experiments
on IBMQE devices with single-qubit gate errors of the
order of 1073, This is the value reported using random-
ized benchmarking [66], which equals the average gate
infidelity (1 — Fz) when the gate set has gate-independent
errors [67,68], an assumption we make here to justify the
use of 10~ as our target gate infidelity.

We perform closed-system simulations and find that
without DRAG, the gate infidelity (due to leakage and
phase errors) is in the range 107>—~1073. With DRAG, we

TABLEII. Specifications of the Quito (top row) and Lima (bot-
tom row) devices accessed on September 1, 2021, and January
1, 2023, respectively. The sx (+/o*) gate forms the basis of all
the single qubit gates, and any single-qubit gate of the form
U3(6, ¢, 1) is composed of two sx and three rz(X) = exp(—i%oz)
gates (which are error free and take zero time, as they correspond
to frame updates).

Quito Q0 Ql Q2 Q3 Q4
Qubit freq. (GHz) 5.3006 5.0806 5.3220 5.1637 5.0524
ny (MHz) 331.5 319.2 3323 3351 3193
T1 (us) 86.7 98.6 61.5 111.5 85.7
T, (us) 132.5 149.0 789 22.7 136.7
SX gate error 0.0302 0.0243 0.1042 0.0629 0.0884
[1072]
sx gate length (ns) 35.556 35.556 35.556 35.556 35.556
readout error 391 2.10 6.42 2.28 2.00
[1072]
Lima Q0 Ql Q2 Q3 Q4
Qubit freq. (GHz) 5.0297 5.1277 5.2474 5.3026 5.0920
ny (MHz) 3357 3183 333.6 331.2 3345
T1 (us) 1252 105.7 88.1 59.9 23.2
T, (jus) 1943 1362 123.3 16.8 21.1
SX gate error 0.0230 0.0189 0.0308 0.0251 0.0578
[1072]
sx gate length (ns) 35.556 35.556 35.556 35.556 35.556
readout error 1.73 1.40 1.69 242  4.820
[1072]
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Lindblad equation simulation results for the Quito processor. Left: box plots showing the relative error of the Lindblad

simulations for the free-evolution experiments as a function of time for 16 different initial states containing six Pauli states and ten
Haar-random states. Right: the same as on the left, but for the DD-evolution experiments. We measured a total of 70 time instants,
up to a total evolution time of 19.6 s, but display only every other instant to avoid overcrowding. Green triangles indicate the mean
over the 16 initial states, black horizontal lines are the median, gray boxes represent the [25, 75] percentiles, the whiskers (black lines
extending outside the boxes) represent the [0, 25] and [75, 100] percentiles, and circles are outliers.

find that varying o from 1/2 to 1 increases the gate infi-
delity from approximately 107 to 1073, respectively. We
thus choose o = 1 to match the reported fidelity. This sug-
gests, as described in Ref. [65], that the remaining errors
are mostly phase error. Indeed, we find that even with-
out DRAG, single-qubit X and Y gates (both implemented
using two /2 pulses as explained in the main text) have
leakage errors well below 107>, This is unsurprising, as
these long gates are quite narrowband compared to the
transmon anharmonicity. We note that this attributes all
errors to coherent closed-system effects rather than deco-
herence. We expect incoherent errors to be of the order
of t,/T> ~ 5 x 107*, suggesting that this choice is defen-
sible (see Table II). Note that the above expression for
incoherent errors comes from the short-time expansion of
e /T2 which is how we would expect decoherence to
manifest, and hence the error term can be approximated
as | — e/ = 1, /T, 4+ O((tg/T>)?). Furthermore, given
that both gate fidelity and coherence times drift over hour-
long timescales, we focus only on matching the correct
order of magnitude for fidelity with our coherent error
model.

APPENDIX C: COMPARISON WITH THE
LINDBLAD MASTER EQUATION

As a sanity check, we also conducted a simple test for
the Quito processor using the backend-reported 77 and 7,
values (see Table II). Using the Lindblad equation in the
standard form

Pl
5 = —i[H, (L L.‘——{LTLZ-, } , (Cl
p = —il p]+2i:3/( pLi=5 {LiLisp (ChH

we consider two Lindblad operators corresponding to
relaxation (Lyelax =0~ = |0) (1]) and dephasing (Lgephase =
07/2). We take the corresponding rates to be 27 /7T, and
2m/T,, respectively. Here 7 is the relaxation time and
T, is the dephasing time obtained via a Hahn-echo-based
Ramsey experiment. We treat the transmons as two-level
systems and assume the DD pulses to be instantaneous.
We then simulate both the free- and DD-evolution dynam-
ics starting with all 16 states considered in the main text
in the single-qubit case. The results, given in terms of the
relative error as a function of time, are presented in Fig. 7.

We observe that the relative error of both the free-
and DD-evolution cases is substantially larger than for
our detailed simulation model results [see Figs. 4(a),
4(b)]. Qualitatively, the relative error using the Lindblad
equation is as high as 20% and 14% for the free and DD
evolutions, respectively, compared to our detailed model

FIG. 8. Schematic layout of the Quito and Lima processors.
The main qubit in our work is 1; we refer to the rest as spectators.
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results, which always have corresponding relative errors
below 8% and 2% for the Quito processor. This obser-
vation underscores the need for a methodology that goes
beyond a simple Markovian model to capture noise in
transmon qubits.

APPENDIX D: DATA COLLECTION AND
ANALYSIS METHODOLOGY

We used the IBMQE processor ibmq_quito (Quito) and
ibmq_lima (Lima), whose layout is shown schematically
in Fig. 8. For both Quito and Lima, we use qubit 1 (Q1) as
the main qubit. These are five-qubit processors consisting
of superconducting transmon qubits. Various calibration
details and hardware specifications relevant to the qubits
and gates used in this work are provided in Table II.

For each initial state, we selected 70 equidistant
time instants (19.6 ws/70), with each such instant

corresponding to an integer number of cycles of the XY4
DD sequences. We generated a circuit according to the
scheme given in Fig. 2 for each such initial state and
each such instant. We sent all 70 such circuits in one job
(the maximum allowed number of circuits per job is 75),
and each job was repeated 8192 times. We ensured that
all the jobs were sent consecutively within the same cali-
bration cycle to avoid charge-noise-dependent fluctuations
and variations in critical features over different calibration
cycles.

We measured only the main qubit in the Z basis, each
measurement yielding either 0 or 1. We computed the
empirical fidelity F© as the number of favorable outcomes
(0) to the total number of experiments (8192 per initial
state and per measurement time instant). This is a proxy
for the Flyy = Tr[U~'E (U]0)(0]U") U], where U rep-
resents U3(0, ¢, A) and & represents the quantum map of
the main qubit corresponding to any of the three types of

0.5

[1] (0.0, 0.0, 0.0)

0.0

2] (5.89, 132.88, 38.35)

\VAVYE

3] (19.52, 131.69, -50.24) [4] (51.95,-83.84, 244.53)

1.0
~ 0.5

[5] (53.01,-165.21, -186.79)
0.0

6] (67.6, -316.36, 3.4)

7] (76.44, 119.73, 58.95) (8] (86.03, 31.32, 23.58)

ol 1 )

= 0.51

[9] (90.0, 790.0, 90.0)

[10] (90.0, 0.0, 0.0)

D | —1)

[11] (90.0, 90.0, -90.0)

[12] (90.0, 180.0, -180.0)

0.0 ! !

-

(13] (94.47,133.1, -116.54)

[14] (116.65, -0.53, 138.38)

1)

[15] (142.29, -47.45, -86.98)

[16] (180.0, 90.0, -90.0)

10 20 0 10
Time (us) Time (us)

—4— NoDD

DD on Spec: free evo

T T

20 0 10 20 0 10 20

Time (pus) Time (ps)

—}— DD on Main: DD evo

FIG. 9. Fidelity results for the Quito processor, for the 16 different initial states of the main qubit. The caption of each of the panels
gives (0, ¢, 1) in degrees, parametrizing the initial state |y) = U3(6, ¢, 1) |0) (panels are arranged in increasing order of 6, the polar
angle with the z axis). These are the six Pauli states (panels 1,9-12,16) and the ten Haar-random states. Blue curves (squares): no DD is
applied, resulting in coherent oscillations due to crosstalk. Orange curves (diamonds): DD (X714) is applied just to the spectator qubits;
the resulting suppression of crosstalk between the main qubit and the spectator qubits removes the oscillations. These are what we call
the free-evolution experiments in the main text. Green curves (circles): DD (X14) is applied just to the main qubit, suppressing both
crosstalk and errors due to environment-induced noise. Results are averaged over three different runs of experiments. All of the data
was acquired on September 1, 2021. Error bars are smaller than the markers.
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experiments described in the main text and in Appendix E
below.

Error bars were then generated using the standard boot-
strapping procedure, where we resample (with replace-
ment) counts out of the experimental counts’ dictionary
(i.e., the list of 0/1 measurement outcomes per state and
instant) and create several new dictionaries. The final
fidelity and error bars are obtained by calculating the mean
and standard deviations over the fidelities of these newly
resampled dictionaries. Using ten such resampled dictio-
naries of the counts sufficed to give small error bars. We
report the final fidelity with 2o error bars, corresponding
to 95% confidence intervals.

APPENDIX E: EXPERIMENTAL FIDELITY
RESULTS

For the Quito device, Fig. 9 shows the results of three
different types of experiments for the 16 states consisting
of six Pauli states and ten Haar-random states. In the first

type of experiment, we apply a series of identity gates sep-
arated by barriers on all the qubits (main qubits and the
spectator qubits). All the qubits always start in the |0) state.
The second and third types are the experiments discussed
in the main text: free evolution, where we apply an XY4
DD sequence to the spectator qubits and identity gates on
the main qubit, and DD evolution, where we apply the XY4
DD sequences to the main qubit and identity gates to the
spectator qubits (see Fig. 2).

For Lima, we show only two types of experiments in
Fig. 10. The first is the free-evolution experiment, where
we prepare some initial state of the main qubit, apply
a series of identity gates, and measure in the computa-
tional basis. The second type is the usual DD experiment,
where we apply a series of XY4 sequences to the main
qubit and the identity operation to all the spectator qubits.
In both types of experiments, the spectator qubits are
always initialized in the ground state |0). In the Lima
case, applying a DD sequence to the spectator qubits is
unnecessary.

=
05
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FIG. 10. Fidelity results for the Lima processor, for the 16 different initial states of the main qubit. The caption of each of the panels
gives (0, ¢, 1) in degrees, parametrizing the initial state [) = U3(0, ¢, A) |0) (panels are arranged in increasing order of 6, the polar
angle with the z axis). These are the six Pauli states (panels 1,9-12,16) and the ten Haar-random states. Blue curves (squares): no DD
is applied. In contrast to Fig. 9, there are no crosstalk oscillations. This is because all the spectator qubits are kept in the ground state
|0), and calibration for Lima is done in the same spectators’ state. These are what we call the free-evolution experiments for Lima in
the main text. Green curves (circles): DD (X14) is applied just to the main qubit, suppressing errors due to environment-induced noise.
All of the data was acquired on January 1, 2023. Error bars are smaller than the markers.
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