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Abstract. Global trends of ocean warming, deoxygenation, and acidification are not easily extrapolated to
coastal environments. Local factors, including intricate hydrodynamics, high primary productivity, freshwater
inputs, and pollution, can exacerbate or attenuate global trends and produce complex mosaics of physiologically
stressful or favorable conditions for organisms. In the California Current System (CCS), coastal oceanographic
monitoring programs document some of this complexity; however, data fragmentation and limited data avail-
ability constrain our understanding of when and where intersecting stressful temperatures, carbonate system
conditions, and reduced oxygen availability manifest. Here, we undertake a large data synthesis to compile, for-
mat, and quality-control publicly available oceanographic data from the US West Coast to create an accessible
database for coastal CCS climate risk mapping, available from the National Centers for Environmental Informa-
tion (accession 0277984) at https://doi.org/10.25921/2vve-fh39 (Kennedy et al., 2023). With this synthesis, we
combine publicly available observations and data contributed by the author team from synoptic oceanographic
cruises, autonomous sensors, and shore samples with relevance to coastal ocean acidification and hypoxia (OAH)
risk. This large-scale compilation includes 13.7 million observations from 66 sources and spans 1949 to 2020.
Here, we discuss the quality and composition of the synthesized dataset, the spatial and temporal distribution
of available data, and examples of potential analyses. This dataset will provide a valuable tool for scientists
supporting policy- and management-relevant investigations including assessing regional and local climate risk,
evaluating the efficacy and completeness of CCS monitoring efforts, and elucidating spatiotemporal scales of
coastal oceanographic variability.
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1 Introduction

Anthropogenic carbon dioxide (CO2) emissions are caus-
ing dramatic ocean warming, acidification, and deoxygena-
tion (Caldeira and Wickett, 2003; Doney et al., 2009; Doney,
2010; Levitus et al., 2012). Interactions among these stres-
sors can compound the severity of each, often synergisti-
cally reducing growth, metabolism, and survival of marine
organisms across diverse taxa (e.g., Byrne and Przeslawski,
2013; Gobler and Baumann, 2016). Multiparameter extreme
events are increasingly common and destructive (Burger et
al., 2022; Breitburg et al., 2015). However, global ocean
trends may be masked, modified, or overshadowed in coastal
ecosystems by combinations of complex local oceanographic
processes, terrestrial runoff, freshwater sources, and high lo-
cal productivity (Borges and Gypens, 2010; Cai et al., 2011;
Fassbender et al., 2011; Frieder et al., 2012; Bauer et al.,
2013; Takeshita et al., 2015). Despite thorough documen-
tation of global ocean responses to anthropogenic forcing,
understanding more localized conditions in coastal environ-
ments, such as the California Current System (CCS), remains
an active area of research. Improved understanding of spa-
tiotemporal patterns of warming, deoxygenation, and acidi-
fication is key to informing climate resilience and adaptation
planning for and by the diverse peoples and ecological com-
munities that depend on the coastal CCS (Field and Fran-
cis, 2006; Hodgson et al., 2018; IPCC, 2019; Weisberg et al.,
2020; Ward et al., 2022).

The CCS is an upwelling system where seasonal winds
transport cold, low-oxygen, high-CO2 waters from depth
up to nearshore surface environments (e.g,. Hickey, 1979;
Huyer, 1983; Chavez and Messié, 2009). Upwelling intensity
varies across small spatial and temporal scales and is typi-
cally concentrated in the spring and early summer (Hickey,
1979; Marchesiello et al., 2003; Garciá-Reyes and Largier,
2012; Jacox et al., 2018; Cheresh and Fiechter, 2020). Dur-
ing upwelling, extreme values of seasonal dissolved oxygen
(DO) and carbonate chemistry parameters such as pH are
naturally close to biologically significant thresholds, mak-
ing organisms in the CCS particularly vulnerable to ocean
acidification and hypoxia (OAH) events (e.g., Chan et al.,
2008; Connolly et al., 2010; Feely et al., 2008; Gruber et al.,
2012; Low et al., 2021; Kekuewa et al., 2022). Local adap-
tation to high environmental variability may provide some
ecological resilience (e.g., Sanford and Kelly, 2011; Kelly
and Hofmann, 2013; Donham et al., 2023), but widespread
die-offs are already a feature of some OAH events (e.g.,
Grantham et al., 2004; Barton et al., 2015). The CCS is
also vulnerable to warming and heatwaves (Cavole et al.,
2016; Frölicher and Laufkötter, 2018; Rogers-Bennett and
Catton, 2019; Sanford et al., 2019; Fumo et al., 2020; Che-
ung and Frölicher, 2020; Free et al., 2023). When extreme
temperatures interact with low pH and low oxygen condi-

tions, they can compound the vulnerability of organisms to
environmental stressors (e.g., Kroeker et al., 2013; Swiney
et al., 2017; Bednaršek et al., 2019; Howard et al., 2020b;
Sunday et al., 2021). The balance between local upwelling
intensity, warming-induced stratification, and both oceanic
and terrestrial influences creates a spatiotemporal mosaic of
coastal ocean conditions which, while previously acknowl-
edged and documented (e.g., Feely et al., 2016a; Chan et al.,
2017; Cheresh and Fiechter, 2020), remains incompletely de-
scribed.

As a result of the connections between upwelling, low
oxygen, and acidification events, models predict the CCS’s
vulnerability to extreme events will increase as climate
change progresses (Gruber et al., 2012; Bakun et al., 2015).
Relative to a preindustrial baseline, anthropogenic forcing
has shallowed the depths of perennially corrosive and hy-
poxic conditions by more than 50 m (Bograd et al., 2008;
Feely et al., 2008; Chan et al., 2008; Gruber et al., 2012).
Modeled projections of the CCS suggest that pH levels are
declining sufficiently swiftly that by 2035, the range of
annual variability may no longer overlap with conditions
present in the 2010s, while the calcium carbonate mineral
aragonite could be perennially undersaturated at 100 m depth
by 2045 (Hauri et al., 2013; Marshall et al., 2017). Mean-
while, nearshore DO content is expected to decline by 10–
20 µmolkg−1 by the end of the century (Siedlecki et al.,
2021). Upwelling-favorable winds may intensify under fu-
ture warming (Sydeman et al., 2014; Bakun et al., 2015;
Wang et al., 2015), although this effect may be counteracted
in some locations by increased stratification of seawater lay-
ers (Howard et al., 2020a; Siedlecki et al., 2021) or in areas
where wind-driven upwelling is not the dominant process
(Garciá-Reyes and Largier, 2010). These competing forces
might enhance the disparities between climate hot spots and
refugia, underlining the importance of gathering and analyz-
ing climate data with high spatiotemporal resolution.

Despite recognition of the complexity of CCS coastal cli-
mate stress, successfully capturing mesoscale, sub-seasonal,
and very nearshore patterns of OAH and warming remains
challenging. One impediment to unraveling this complex-
ity is the decentralized and non-standardized nature of much
OAH monitoring in the CCS, undertaken by governmental,
non-profit, and academic centers with varying methodolo-
gies and approaches to data accessibility (Taylor-Burns et
al., 2020). Further, existing synthesis datasets are not opti-
mized for simultaneous analysis of nearshore warming, de-
oxygenation, and acidification risks (e.g., Hofmann et al.,
2011b; Sharp et al., 2022). For chemical oceanographers and
modelers, the Surface Ocean CO2 Atlas (SOCAT; Sabine et
al., 2013; Bakker et al., 2016) and Coastal Ocean Data Anal-
ysis Product in North America (CODAP-NA; Jiang et al.,
2021) are also valuable resources. However, the former in-
cludes only surface seawater observations of one principal
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parameter of the carbonate system, while the latter includes
only discrete bottle observations from oceanographic cruises
while excluding autonomous sensor observations and shore
samples. SOCAT and CODAP-NA are high-quality and ex-
tremely well-curated, but the cost of their selectivity is that
many available CCS OAH observations are not available
through those compilations. In addition, there are a suite of
nearshore ocean acidification, hypoxia, and temperature fo-
cused data collection efforts that use a variety of sensors and
sampling techniques and have not yet been standardized or
integrated. A deliberate synthesis of OAH-relevant datasets
with standardized formatting and quality control maximizes
our ability to explore, map, and resolve coastal climate stress
on subregional scales (Bushinsky et al., 2019; Chan et al.,
2019). By including both discrete and validated autonomous
sensor observations across depths and targeting all carbon-
ate system and OAH-relevant parameters, this synthesis can
complement the strengths of tightly focused compilations
such as SOCAT (Bakker et al., 2016) and CODAP-NA (Jiang
et al., 2021). Additionally, by applying uniform QC stan-
dards and formatting to data across the CCS, this compilation
builds on the usability, reliability, and spatiotemporal scale of
currently available public nearshore compilations (e.g., Ruhl
et al., 2021).

Here, we present the Multistressor Observations of Coastal
Hypoxia and Acidification (MOCHA) synthesis, the high-
est resolution OAH-relevant US West Coast dataset to date.
MOCHA is a compilation of published nearshore temper-
ature, dissolved oxygen, and carbonate-chemistry-relevant
datasets for the CCS and is newly archived and available at
the National Centers for Environmental Information (NCEI;
https://doi.org/10.25921/2vve-fh39; Kennedy et al., 2023),
along with associated metadata and quality assurance in ad-
herence with the FAIR data management principles (Wilkin-
son et al., 2016). We source published data from within
US waters from oceanographic cruises, buoys, moorings, and
shore samples as well as previously unpublished observa-
tions contributed by the author team and present them in
a formatted, quality-controlled, downloadable database for
easy access and analysis by scientific teams across disci-
plines (Fig. 1). While this synthesis is not exhaustive, it
highlights real disparities in oceanographic monitoring in-
tensity and provides future investigators the opportunity to
compare and integrate their own datasets. This data compi-
lation includes 13.7 million observations from 66 sources
and spans 1949–2020. To illustrate some of the synthesis
product’s potential uses, we further include and discuss sev-
eral “case examples” that showcase the largest portion of the
MOCHA dataset and its complementary strengths to SOCAT
and CODAP-NA. However, we note that the compilation in-
cludes records at depth and those extending hundreds of kilo-
meters offshore. It is our hope that this synthesis product sup-
ports scientific investigations at a wide range of spatial and
temporal scales and allows investigators to link between shal-
low and nearshore or coastal and oceanic environments. We

anticipate that this synthesis product will be broadly useful to
OAH-focused investigative teams and particularly impactful
for coastal scientists investigating policy- and management-
relevant projects, such as investigating spatiotemporal vari-
ation in marine climate risk from OAH events and warm-
ing, evaluating the efficacy and completeness of CCS mon-
itoring efforts, linking oceanographic conditions to coastal
social or socio-economic considerations across large geo-
graphic ranges (e.g., Ward et al., 2022), evaluating spatial
management zones such as aquaculture sites (Clements and
Chopin, 2017) and marine protected areas (e.g., Hamilton et
al., 2023), and pursuing other questions of interest to coastal
communities.

2 Methods

2.1 Data sources and types

This project compiled published and publicly available data,
as well as previously unpublished data contributed by the
author team, including multiparameter OAH-relevant obser-
vations from shipboard discrete water samples, in situ au-
tonomous sensors, and shore-collected samples from along
the US West Coast. We primarily sourced multiparameter
data through existing public data portals, such as NCEI and
the Integrated Ocean Observing System (IOOS) portals, but
additionally contacted colleagues to request their assistance
in locating additional datasets, presented the project at con-
ferences and management meetings to collect community
feedback on included datasets, and scanned published liter-
ature that likely included relevant datasets. We prioritized
datasets that included carbonate system or dissolved oxy-
gen observations in addition to temperature. When available
alongside our target parameters, we also incorporated pub-
lished chlorophyll and nutrient contents. In all cases, we took
the published or publicly hosted data as our starting point,
rather than asking for unprocessed data from the original in-
vestigators, then applied additional quality-control measures
described in Sect. 2.4. We have limited this publication to
data collected before 2020 and within US waters, but we will
continue to incorporate new observations according to the
methods outlined below, where possible, and will periodi-
cally make updated versions of this synthesis dataset pub-
licly available at NCEI (https://doi.org/10.25921/2vve-fh39;
Kennedy et al., 2023) as support becomes available.

The data in this synthesis come from a wide array of ob-
servational methods and instruments. We screened carbon-
ate system datasets before incorporating them following the
discussions of method reliability summarized in Martz et
al. (2015). The carbonate system observational methods ad-
here to one of the following observation methods: (1) dis-
crete seawater samples, preserved at the time of collection
and analyzed in a lab with established standards and tech-
niques (e.g., Dickson, 2010), of pH, total alkalinity (TA),
and dissolved inorganic carbon (DIC); (2) pH measurements
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Figure 1. All individual locations for temperature (a), dissolved oxygen (b), and pH (c) observations included in this synthesis along the
US West Coast. The pH extent fully captures the extent of all other carbonate system parameters. These figures overstate the useful spatial
density of these data, as many individual locations have only been sampled once, but highlight the limited scale of available carbonate system
observations relative to more commonly assessed parameters like temperature and dissolved oxygen.

from ion-sensitive field-effect-transistor-based autonomous
sensors (e.g., Honeywell Durafet; Martz et al., 2010) or spec-
trophotometric sensors (e.g., SAMI-pH; Lai et al., 2018);
and (3) pCO2 measurements from autonomous equilibrium-
based infrared gas analyzers (e.g., MAPCO2; Sutton et
al., 2014) or spectrophotometric methods (e.g., SAMI-CO2;
Schar et al., 2009). We did not include pH measured on
glass electrode sensors, due to known issues with precision
and calibration (Martz et al., 2010). We discarded any dis-
solved oxygen and carbonate system datasets that lacked ac-
companying temperature data. While we preferred carbon-
ate system observations that also included salinity measure-
ments, we retained pH and pCO2 data without concurrent
salinity measurements if they passed all other QC checks
(e.g., Chan et al., 2017; Donham et al., 2023). Data collec-
tion methods are available for all parameters except temper-
ature and salinity and have been simplified into four groups:
(1) “discrete”, for bottle-collected samples analyzed in a lab-
oratory; (2) “CTD” (conductivity, temperature, and depth),
for observations from ship-side profiles with autonomous
sensor arrays; (3) “autonomous sensors”, for stationary in-
struments collecting data at pre-programmed intervals; and
(4) “handheld sensors”, for observations collected in the field
via a glass-electrode probe. The specific instruments associ-
ated with each data source are available in the dataset meta-
data table in the Supplement and archived at NCEI, acces-
sion 0277984 (MOCHA_metadata_table_v2.csv; Kennedy
et al., 2023).

2.2 Formatting

After identifying a dataset of interest, we downloaded all
available processed data and metadata, including descriptive
papers, primary investigator information, project and instru-
ment descriptions, and the original source of the data. Each
dataset was assigned a unique identifying number to ensure
that every data point could be quickly associated with its par-
ent data source and metadata (Table 1). For all datasets, we
retained a copy of the original published data. We manipu-

lated each original dataset into a comma-separated file with
minimal alterations – typically limited to eliminating extra
header rows and streamlining column names – before trans-
ferring datasets into R or Python for further formatting to
ensure that all manipulations were trackable.

This synthesis dataset is structured such that each row rep-
resents an oceanographic observation from a shared time,
depth, location, and data source which may include one or
more individual parameter measurements. Parameter mea-
surements are grouped with the parameter collection method,
such as “discrete” or “autonomous sensor”, and the data
quality flag in adjacent columns. Additionally, all obser-
vations are also accompanied by “sample scheme” and
“habitat” columns to facilitate easy data filtering. The sam-
ple scheme column classifies each dataset as one of four
types: “cruise” for ship-collected samples, “mooring” for
autonomous instruments attached to buoys, “intertidal/sub-
tidal autonomous sensor” for shore- or diver-accessed au-
tonomous sensors, and “intertidal/subtidal discrete collec-
tion” for water samples collected by hand from a dock or the
shore. The habitat column identifies observations as “estuar-
ine” if they were collected within semi-restricted lagoons and
bays (e.g., Humboldt Bay). All other observations are labeled
as “oceanic”. For a full description of included parameters,
refer to the submission metadata archived at NCEI (Submis-
sionForm_carbon_v1_428.csv; Kennedy et al., 2023) and the
dataset metadata table in the Supplement.

We retained all directly measured chemical oceanographic
observations as we incorporated each dataset, converted ob-
servations to standard units if necessary, and mapped them
directly to our corresponding synthesis dataset columns. For-
tuitously, all pH observations ingested into this compilation
were already reported on the total pH scale. When necessary,
we converted discrete pH observations reported at 25 ◦C to
in situ conditions using accompanying temperature, salinity,
pressure, carbonate system, and nutrient contents using the R
package seacarb (Gattuso et al., 2023). We used the following
constants for these calculations: K1 and K2 from Lueker et
al. (2000), Kf from Perez and Fraga (1987), Ks from Dick-
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son (1990), and total boron concentrations from Uppström
(1974). We did not retain published data calculated from al-
gorithms or empirical relationships, such as TA calculated
from a TA–salinity relationship or pH derived from tempera-
ture, salinity, and DO measurements (e.g., Alin et al., 2012).
While we note that published data may have been summa-
rized or filtered by the initial investigators, we did not fur-
ther summarize or filter data before including it in this com-
pilation except for the Ocean Observatories Initiative (OOI)
moorings (dataset 66) discussed below.

2.3 Dataset 66: Ocean Observatories Initiative (OOI)
moorings

The Washington and Oregon OOI mooring data (dataset 66)
included millions of observations of temperature, salinity,
dissolved oxygen, pH, and pCO2 at sub-minute resolutions.
The size of these datasets required us to aggregate the data
to daily mean values before incorporation into the larger
synthesis dataset. Because many of these OOI data had
not been previously quality-controlled, we contacted OOI
staff for their guidance on initially filtering the raw data
before aggregation. They provided extensive code developed
by the sensor manufacturers and OOI staff to identify
erroneous pH and DO data from the raw publicly available
streams, available at https://github.com/oceanobservatories/
ooi-data-explorations/tree/master/python (last access:
12 January 2022), as well as significant protocol guidance
that has since been made public (Palevsky et al., 2022). OOI
staff also provided access to discrete sample analyses taken
at the sensor moorings to further ground-truth measure-
ments. We only retained data for aggregation if it (1) passed
through the provided OOI code’s automated checks, (2) had
discrete samples associated with the beginning and end of
that sensor’s deployment, (3) had daily mean sensor values
for DO and pH on the day of discrete sampling within
20 µmolkg−1 of the discrete sample dissolved oxygen and/or
0.05 pH units, and (4) displayed reasonable DO content
and pH values and variance over time, following OOI’s
suggested protocols for both automated and “human-in-
the-loop” quality-control practices (Palevsky et al., 2022).
We eliminated all DO data collected prior to 2018 based
on advice of OOI staff because the DO sensors prior did
not have adequate biofouling control. We then aggregated
these data into daily mean values before formatting and
quality-controlling them further following the practices
described for all other incorporated datasets and described
in Sect. 2.4.

2.4 Quality control

After formatting individual datasets, we checked all observa-
tions to standardize quality across datasets and to avoid using
questionable data in future analyses. This quality standard-
ization did not extend to raising all datasets to a “climate-

quality” standard (Newton et al., 2015). Users of these data
should be aware of the difference between climate-quality
and weather-quality data, as both types of data are included in
this synthesis and often coexist within the same datasets. Our
quality-assurance/quality- control (QA/QC) methods drew
from a combination of the publishing authors’ notes, plots of
the data, and expert knowledge of the CCS. The majority of
our incorporated datasets had been previously published and
subjected to at least automated QA/QC processes, but addi-
tional “human-in-the-loop” secondary QC was necessary for
almost all datasets, particularly those from autonomous sen-
sors (Pavlevsky et al., 2022). Incoming quality-control notes
associated with each data source ranged widely, though most
datasets that did include quality information followed the
Quality Assurance/Quality Control of Real-Time Oceano-
graphic Data (QARTOD) system, which assigns flags based
on internal instrument checks, data reasonableness, and col-
lection method (Bushnell, 2018). Given the variability in
flagging schemes that incorporated datasets used and the im-
possibility of accurately assigning detailed QARTOD-style
flags to datasets that did not include similarly detailed notes,
we opted to create a simpler, three-level quality scheme that
could be applied to all datasets. Using available existing
QA/QC information and our further quality-control investi-
gations, we categorized each individual parameter measure-
ment as one of three confidence levels: 1 for “plausible and
reasonable” data, 2 for data that we had not assessed, and 3
for “low-quality or unreliable” data. We flagged all data the
publishing authors had listed as unreliable or suspect with a
3. Regardless of published notes, we assigned all other ob-
servations a flag of 2 before further evaluation by our team.

Given the diversity of the datasets and projects this syn-
thesis draws from, we examined each dataset individually
using a combination of plots tailored to maximize our abil-
ity to identify and evaluate anomalies in that dataset’s spe-
cific oceanographic and spatiotemporal context. Given that
this synthesis primarily sourced published data, we erred
towards retaining data as “plausible”, rather than follow-
ing a more stringent flagging philosophy. We recommend
that investigators perform additional QC with the MOCHA
dataset targeted towards their project requirements. Com-
mon quality-control plotting techniques included property–
property plots of temperature, salinity, DO, pH, TA, and DIC
against one another; single-parameter time series from sen-
sor and long-running datasets; and map views and oceano-
graphic cross sections of synoptic cruise data. We examined
questionable data through as many different views as possi-
ble, such as examining apparent outliers in a temperature–
salinity property–property plot individually in their respec-
tive time series, to ensure that we were not flagging real
or plausible observations. When possible, we further evalu-
ated suspicious observations against other datasets collected
nearby. We discussed all data-flagging decisions with at least
three project members. After this focused quality control,
all observations not flagged as “low-quality or unreliable”
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Table 1. Overview of the data sources included in the MOCHA compilation. Potential measured parameters for each dataset include tem-
perature (T), salinity (S), pH, partial pressure of CO2 (pCO2), fugacity of CO2 (fCO2), dissolved inorganic carbon (DIC), total alkalinity
(TA), dissolved oxygen (DO), chlorophyll a (Chl), and nutrients (Nuts). Users need to be mindful of the difference between climate-quality
and weather-quality datasets and assess the suitability of these datasets for their needs (Newton et al., 2015). The origins of all the in-
cluded datasets in this compilation are further described in the dataset metadata table available in the Supplement and archived at NCEI
(https://dx.doi.org/10.25921/2vve-fh39, dataset_metadata_table_v2.csv, Kennedy et al., 2023). Additional, detailed discussions of the fol-
lowing datasets have been previously published: 5 (Feely et al., 2008), 21–24 and 26 (Feely et al., 2016a), 25 (Bograd et al., 2003), 26 (Davis
et al., 2018), 33 (Chan et al., 2017), 49 (Salop and Herrmann, 2019), 50 and 51 (Rosenau et al., 2021b), 56 (Donham et al., 2022b), 66
(Trowbridge et al., 2019), 67 (Bjorkstedt and Peterson, 2015), 68 (Risien et al., 2022a), 69 (Barth et al., 2021), 70 (Baptista et al., 2015), and
71 (Kekuewa et al., 2022).

ID Dataset Primary loca-
tion

Sampling
scheme

Habitat Parameters Citation

1 Sea-surface water tem-
perature, Santa Barbara
Harbor

Santa Barbara
LTER, CA

Intertidal/subtidal
discrete collec-
tion

Oceanic T Carter et al. (2021)

2 National Data Buoy
Center Station BDXC1

Bodega Head,
CA

Mooring Oceanic T, S, Chl National Data Buoy
Center (2023)

3 Mid-water SeaFET and
CO2 system chemistry
at Alegria (ALE)

Santa Barbara
LTER, CA

Mooring Oceanic T, S, pH, TA Santa Barbara Coastal
LTER et al. (2018)

5 West Coast Ocean
Acidification Cruise
2016

US West Coast Cruise Oceanic T, S, pH, DIC,
TA, DO, Chl,
Nuts

Alin et al. (2017)

6 National Data Buoy
Center Station 46025

Channel Is-
lands, CA

Mooring Oceanic T, S National Data Buoy
Center (2023)

7 National Data Buoy
Center Station 46217

Channel Is-
lands, CA

Mooring Oceanic T National Data Buoy
Center (2023)

8 National Data Buoy
Center Station 46053

Channel Is-
lands, CA

Mooring Oceanic T, S National Data Buoy
Center (2023)

9 National Data Buoy
Center Station TDPC1

Eureka, CA Mooring Oceanic T, S, DO, Chl National Data Buoy
Center (2023)

10 National Data Buoy
Center Station FPXC1

Fort Point, San
Francisco Bay,
CA

Mooring Estuarine T, S Chl National Data Buoy
Center (2023)

11 National Data Buoy
Center Station 46221

Santa Monica
Bay, CA

Mooring Oceanic T National Data Buoy
Center (2023)

12 National Data Buoy
Center Station 46235

Imperial
Beach, CA

Mooring Oceanic T National Data Buoy
Center (2023)

14 National Data Buoy
Center Station 46251

Santa Cruz
Basin, CA

Mooring Oceanic T National Data Buoy
Center (2023)

15 National Data Buoy
Center Station ICAC1

Santa Monica,
CA

Mooring Oceanic T National Data Buoy
Center (2023)

16 National Data Buoy
Center Station PRYC1

Point Reyes,
CA

Mooring Oceanic T National Data Buoy
Center (2023)

17 National Data Buoy
Center Station HBXC1

Humboldt Bay,
CA

Intertidal/subtidal
sensor deploy-
ment

Estuarine T, S, DO, Chl National Data Buoy
Center (2023)

18 National Data Buoy
Center Station MBXC1

Morro Bay, CA Mooring Estuarine T, S, DO, Chl National Data Buoy
Center (2023)
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Table 1. Continued.

ID Dataset Primary loca-
tion

Sampling
scheme

Habitat Parameters Citation

19 National Data Buoy
Center Station MLSC1

Moss Landing,
CA

Mooring Oceanic T, S, DO National Data Buoy
Center (2023)

20 National Data Buoy
Center Station MTYC1

Monterey, CA Mooring Oceanic T, S, DO, Chl National Data Buoy
Center (2023)

21 West Coast Ocean
Acidification Cruise
2013

US West Coast Cruise Oceanic T, S, pH, DIC,
TA, DO, Chl,
Nuts

Feely et al. (2015a)

22 West Coast Ocean
Acidification Cruise
2012

US West Coast Cruise Oceanic T, S, DIC, TA,
DO, Chl, Nuts

Feely et al. (2016b)

23 West Coast Ocean
Acidification Cruise
2011

US West Coast Cruise Oceanic T, S, pH, DIC,
TA, DO, Chl,
Nuts

Feely et al. (2015b)

24 West Coast Ocean
Acidification Cruise
2007

US West Coast Cruise Oceanic T, S, DIC, TA,
DO, Nuts

Feely and Sabine
(2013)

25 California Cooperative
Oceanic Fisheries In-
vestigations (CalCOFI)
bottle database (1949–
2019)

California Cruise Oceanic T, S, DIC, TA,
DO, Chl, Nuts

California Cooperative
Oceanic Fisheries In-
vestigations (CalCOFI)
(2020)

26 Applied California Cur-
rent Ecosystem Studies
Partnership cruise ob-
servations (2013–2019)

Central Califor-
nia

Cruise Oceanic T, S, pH, TA,
DO

Davis et al. (2018)∗

27 UC Davis Coastal dis-
crete ocean acidifica-
tion dataset

West Coast Intertidal/subtidal
discrete collec-
tion

Oceanic T, S, pH, DIC,
TA, DO

Feely et al. (2016a)∗

28 Bodega Marine Labora-
tory Weekly Horseshoe
Cove discrete shore
samples

Bodega Marine
Laboratory, CA

Intertidal/subtidal
discrete collec-
tion

Oceanic T, S, pH, DIC,
TA, DO

∗

30 Mid-water SeaFET pH
and CO2 system chem-
istry at Arroyo Que-
mado Reef (ARQ)

Santa Barbara
LTER, CA

Mooring Oceanic T, S, pH, TA,
DO

Santa Barbara Coastal
LTER et al. (2020a)

31 Mid-water SeaFET pH
and CO2 system chem-
istry with surface at
Mohawk Reef (MKO)

Santa Barbara
LTER, CA

Mooring Oceanic T, S, pH, TA,
DO

Santa Barbara Coastal
LTER et al. (2020b)

32 Mid-water SeaFET pH
and CO2 system chem-
istry at Santa Barbara
Harbor/Stearns Wharf

Santa Barbara
LTER, CA

Mooring Oceanic T, S, pH, TA,
DO

Santa Barbara Coastal
LTER et al. (2020c)
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Table 1. Continued.

ID Dataset Primary loca-
tion

Sampling
scheme

Habitat Parameters Citation

33 Ocean Margin Ecosys-
tems Group for Acid-
ification Studies
(OMEGAS)

West Coast Intertidal/subtidal
sensor deploy-
ment

Oceanic T, pH Menge et al. (2015)

34 EAGER Project:
pH/pCO2-sensing
mooring platform on
the Oregon coast

Oregon Mooring Oceanic T, pCO2 Chan et al. (2012)

35 NH10 mooring SAMI-
CO2 time series

Oregon Mooring Oceanic T, S, pH, pCO2 DeGrandpre (2016)

36 SB LTER calibration
water-sample pH and
CO2 system chemistry

Santa Barbara
LTER, CA

Cruise Oceanic T, S, pH, DIC,
TA

Santa Barbara Coastal
LTER et al. (2022)

37 Bodega Marine Re-
serve monthly shore
samples

Bodega Marine
Reserve, CA

Intertidal/subtidal
discrete collec-
tion

Oceanic T, S, pH, DIC,
TA, DO

∗

39 California Coastal sea-
grass project

California Intertidal/subtidal
sensor deploy-
ment

Varies by site T, S, pH, TA,
DO

Ricart et al. (2021)

40 California kelp forest
tidal FET sites

California Intertidal/subtidal
sensor deploy-
ment

Oceanic T, pH, DO Kroeker et al. (2023)

41 NOAA Northwest
Pacific harmful algal
bloom program cruise
SH1709

Washington
and Oregon

Cruise Oceanic T, S, DIC, TA,
DO, Nuts

Alin et al. (2019)

42 Oceanographic cruise
calibration and val-
idation samples of
California Current
Ecosystem

Southern Cali-
fornia Bight

Cruise Oceanic T, S, DIC, TA,
DO, Chl, Nuts

Send et al. (2016)

43 CCE1 mooring pCO2
time series

Point Concep-
tion, CA

Mooring Oceanic T, S, pH, pCO2,
fCO2, DO

Sutton et al. (2016b)

44 CCE2 mooring pCO2
time series

Point Concep-
tion, CA

Mooring Oceanic T, S, pH, pCO2,
fCO2, DO

Sutton et al. (2012)

45 CeNCOOS in situ wa-
ter monitoring data at
Trinidad Head, Califor-
nia

Trinidad, CA Intertidal/subtidal
sensor deploy-
ment

Oceanic T, S, DO, Chl Shaughnessy (2023)

46 SFSU Estuary and
Ocean Science Depart-
ment YSI

Tiburon Penin-
sula, CA

Intertidal/subtidal
sensor

Estuarine T, S, Chl Dewitt (2022)
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Table 1. Continued.

ID Dataset Primary loca-
tion

Sampling
scheme

Habitat Parameters Citation

47 CeNCOOS water mon-
itoring data at the Santa
Cruz municipal wharf

Santa Cruz, CA Intertidal/subtidal
sensor deploy-
ment

Oceanic T, S, DO, Chl Kudela (2020)

49 San Francisco Estu-
ary Institute and the
Aquatic Science Center
Regional Monitoring
Program

San Francisco
Bay, CA

Cruise Estuarine T, S, DO, CHl Bezalel et al. (2021)

50 West Coast Estuary
Data: Santa Monica
Bay

Santa Monica Mooring Oceanic T, S, pH, pCO2,
DO

Rosenau et al. (2021a)

51 West Coast Estuary
Data: San Francisco
Bay

SF Bay Mooring Estuarine T, S, pH, DO,
Chl

Rosenau et al. (2021a)

52 Validation discrete ob-
servations for the Cha
Ba mooring

La Push, WA Cruise Oceanic T, S, DIC, TA,
Nuts

Alin et al. (2016)

53 Morro Bay BM1 T-
Pier (NOAA Station
MBXC1)

Morro Bay, CA Mooring Estuarine T, S, pH, DO,
Chl

Walter (2023)

54 Morro Bay BS1 Station Morro Bay, CA Mooring Estuarine T, S, pH, DO,
Chl

California Polytechnic
State University (2023)

55 Cape Elizabeth moor-
ing MAPCO2 time se-
ries

Cape Elizabeth,
WA

Mooring Oceanic T, S, pH, pCO2,
fCO2, DO

Sutton et al. (2013)

56 Stillwater Cove
TidalFET

Carmel, CA Intertidal/subtidal
sensor deploy-
ment

Oceanic T, S, pH, DO Donham et al. (2022a)

57 National Data Buoy
Center Station 46211

Grays Harbor,
WA

Mooring Oceanic T National Data Buoy
Center (2023)

58 National Data Buoy
Center Station NEAW1

Neah Bay, WA Mooring Estuarine T National Data Buoy
Center (2023)

59 National Data Buoy
Center Station CECC1
– 9419750

Crescent City,
CA

Intertidal/subtidal
sensor deploy-
ment

Oceanic T National Data Buoy
Center (2023)

60 National Data Buoy
Center Station 46237

San Francisco,
CA

Mooring Oceanic T National Data Buoy
Center (2023)

61 National Data Buoy
Center Station 46240

Monterey Bay,
CA

Mooring Oceanic T National Data Buoy
Center (2023)

62 National Data Buoy
Center Station PORO3

Port Orford,
OR

Mooring Oceanic T National Data Buoy
Center (2023)

63 National Data Buoy
Center Station CHAO3

Charleston, OR Mooring Estuarine T National Data Buoy
Center (2023)

64 CB-06 mooring
MAPCO2 time se-
ries

Coos Bay, OR Mooring Oceanic T, S, pH, pCO2,
fCO2, DO, Chl

Sutton et al. (2019)
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Table 1. Continued.

ID Dataset Primary loca-
tion

Sampling
scheme

Habitat Parameters Citation

65 NH10 mooring
MAPCO2 time se-
ries

Newport, OR Mooring Oceanic T, S, pH, pCO2,
fCO2, DO, Chl

Sutton et al. (2016a)

66 Ocean Observatories
Initiative (OOI) Wash-
ington and Oregon
inshore and shelf
moorings

Washington
and Oregon

Mooring Oceanic T, pH, DO NSF Ocean Observato-
ries Initiative (2022)

67 Trinidad Head Line
CTD Hydrography

Northern Cali-
fornia

Cruise Oceanic T, S, pH, DO Bjorkstedt (2023)

68 Newport Hydrographic
Line CTD casts 1997–
2021

Central Oregon Cruise Oceanic T, S, DO Risien et al. (2022b)

69 Oregon’s Marine Re-
serve mooring

Oregon Mooring Oceanic T, DO Aylesworth et
al. (2022)

70 CMOP Saturn-02
mooring

Columbia River
Estuary, OR

Mooring Estuarine T, S, DO Columbia River Inter-
tribal Fish Commission
Center for Coastal
Margin Observation
and Prediction (2023)

71 Monthly cross-shore
transects of biogeo-
chemical properties in
La Jolla, CA

Southern CA Cruise Oceanic T, S, pH, DIC,
TA, DO, Nuts

Kekuewa and Anders-
son (2022)

∗ Previously unpublished data contributed by the authors.

(3) were upgraded to our “plausible and reliable” flag (1)
with the exception of 300 surf zone DO measurements taken
from the shore, which were left as “unevaluated” (2) since
they do not reflect oceanic conditions. All subsequent map-
ping and analysis with the observed oceanographic values
used only “plausible and reliable” data. For a full example
of our formatting and flagging practices, please refer to the
Supplement.

2.5 Example subset: daily data

High-resolution (sub-daily observations) autonomous sen-
sors are an important component of this synthesis dataset, but
the data they produce come with significant computational
costs. Furthermore, variability on the scales of hours or min-
utes captured by such high-resolution records is less com-
parable to lower-resolution datasets such as those collected
over quarterly or annual synoptic oceanographic cruises. To
evaluate the spatiotemporal extent of our data coverage, sea-
sonal patterns, and relationships between observed param-
eters, we created an aggregated summary dataset of daily
mean values for each location, depth, and data source. We

dropped all questionable individual parameter measurements
(i.e., data flagged with a “3” QA/QC code) before creating
this summary dataset to ensure that unreliable data did not
influence averages. The daily averaging reduced the num-
ber of observations (rows) from 13.7 million to 1.2 mil-
lion as high-resolution sensor datasets, some of which in-
cluded multiple observations per hour, were each collapsed
into a single row per day. We used this summary dataset
in all following example cases that do not explicitly cite
“original data”. This aggregated summary dataset is avail-
able alongside the full MOCHA compilation at NCEI (ag-
gregated_daily_dataset.csv, Kennedy et al., 2023), and we
have included the code necessary to recreate it in our public
code repository (https://doi.org/10.5281/zenodo.10408321,
Kennedy, 2023).

3 Results and discussion

3.1 Overall data totals

This synthesis dataset includes observations from 66 indi-
vidual data sources organized across 13.7 million rows (“ob-

Earth Syst. Sci. Data, 16, 219–243, 2024 https://doi.org/10.5194/essd-16-219-2024

https://doi.org/10.5281/zenodo.10408321


E. G. Kennedy et al.: A high-resolution synthesis dataset for multistressor analyses along the US West Coast 229

servations”) and 41 columns and spans 1949–2020. This in-
cludes 24.1 million individual parameter measurements, with
13.2 million temperature, 3.6 million salinity, 3.3 million
DO, 2.1 million pH, 1.2 million chlorophyll, 561 000 nutri-
ent, 113 000 pCO2, 9300 TA, and 8300 DIC measurements.
While we prioritized multiparameter datasets for this effort,
our synthesis also includes several temperature-only, high-
resolution records to fill specific project needs. The full suite
of carbonate system parameters can be directly calculated
from 48 000 observations with two reliable carbonate sys-
tem parameter observations and co-occurring reliable tem-
perature and salinity measurements.

Across sampling schemes, moorings contribute the bulk
of the MOCHA observations with 8.9 million rows, followed
by intertidal or subtidal autonomous sensors with 3.8 mil-
lion, oceanographic cruise observations (which include CTD
profiles) with 98 000, and finally intertidal and subtidal dis-
crete collections with 24 000. By measurement method, au-
tonomous sensors are the most common, contributing 5 mil-
lion individual measurements, versus 224 000 individual dis-
crete measurements, 193 000 CTD measurements, and 828
handheld field sensor measurements.

3.2 Aggregated daily data totals

Summarizing the data by day for each dataset, location, and
depth provides a clearer picture of the availability of multipa-
rameter data by diminishing the outsized influence of high-
resolution temperature sensors. Of the 1.2 million daily av-
eraged observations, just 104 000 are temperature-only. In-
dividual parameter totals are shown in Table 2. Full carbon-
ate system calculations could be performed on 12 000 of the
daily observations with measurements of temperature, salin-
ity, and two of the principal carbonate system parameters. As
with the disaggregated, full dataset, data totals varied sub-
stantially by measurement method and autonomous sensors
are still the most common, contributing 643 000 individual
daily averaged parameter measurements versus 223 000 dis-
crete, 192 000 CTD, and 816 handheld sensor measurements.

3.3 Flagging and reliability

The amount of original data flagged as unreliable varied sub-
stantially by dataset, parameter, and observation method but
was typically low (Fig. 2). As the bulk of the data in this
synthesis product were previously published and had under-
gone some preliminary QA/QC prior to our incorporation,
high reliability rates were expected. Of the dozens of datasets
contributing temperature and salinity observations, only one
dataset had a parameter flag rate above 5 %. Flag rates above
10 % were uncommon for all parameters across all datasets
and completely absent for TA and DIC observations. For pH
and DO, flag rates within datasets were above 10 % for three
and eight datasets, respectively. In each case, high rates of
“unreliable” data were caused by (1) clear periods of au-

Figure 2. The rate of unreliable (“flagged”) observations varied by
dataset and parameter measured between temperature (T), salinity
(S), dissolved oxygen (DO), pH, total alkalinity (TA), and dissolved
inorganic carbon (DIC). Maximum unreliable flag rates were gener-
ally low, especially for T and S. All datasets that included measure-
ments with > 30 % flag rates used measurement methods described
by the original publishers as “not quantitative”. Flag rates between
10 % and 30 % were uncommon but reflected occasional periods of
fouling or equipment malfunction in high-resolution autonomous
sensor datasets or, in rare cases, more stringent standards applied to
datasets that had not been previously published and initially quality-
controlled.

tonomous sensor malfunction, (2) observational methods de-
scribed by the publishing authors as unreliable, or (3), more
rarely, intentionally higher QA/QC standards applied to data
which had not been previously screened and published. The
vulnerability of autonomous sensors to periods of biofouling
or sensor malfunction contributed to higher flag rates relative
to other methods, but all four methods were largely reliable
(Table 2). Across the entire MOCHA compilation, 99.8 %
of temperature, 96.8 % of salinity, 93.1 % of DO, 89.1 % of
pH, 99.1 % of DIC, and 98.2 % of TA measurements were
considered “reliable or plausible”. Across all individual mea-
surements, 97.3 % are classified as reliable.

3.4 Spatiotemporal data distribution

This dataset spans the US West Coast and reflects the spa-
tiotemporal bias of observational records. Observations are
more common in nearshore, near-surface environments and
exhibit greater sampling effort in recent years. A total of
56 % of daily observations were collected within 50 km of
shore and 27 % within 25 m of the surface. Of all daily ob-
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Table 2. Overview of dissolved oxygen (DO), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) observation methods; number
of daily observations (grouped by data source, location, and depth); and the overall reliability rates. Autonomous sensors are associated with
slightly lower reliability rates due to periods of sensor biofouling or malfunction.

Parameter Collection method Daily total observations Overall reliability rate

DO discrete 199 816 99.7 %
autonomous sensor 563 885 92.4 %
CTD 128 562 99.9 %
handheld sensor 382 93.2 %

pH discrete 4068 99.6 %
autonomous sensor 78 894 88.7 %
CTD 63 404 100 %

DIC discrete 8211 99.1 %

TA discrete 8858 98.2 %

servations, 86 % were collected after 1990. Carbonate system
observations are especially skewed toward recent years, with
no measurements of pH, TA, DIC, or pCO2 in this compila-
tion prior to 2006. By contrast, temperature, salinity, and DO
records are common after 1980.

The spatiotemporal coverage of our dataset is highly vari-
able, though it generally improves through time. Mapping
the density of observations within 50 km of the coastline and
25 m of the surface through time highlights the influence
of dense coastal human populations and major research in-
stitutions (Fig. 3). By contrast, the region between 38 and
44◦ N is much less densely observed and loses considerable
oceanographic monitoring capacity between 2015 and 2020.
Temperature and DO measurements have the most exten-
sive coverage but are sparse outside of southern California
before 2000. Salinity measurement density hews closely to
the DO distribution and, as such, is not shown here. After
2015, carbonate system observations are limited to a few lo-
cations with sporadic coverage north of 39◦ N which corre-
spond to pH and pCO2 moorings. Overall, this data compila-
tion demonstrates large spatial and temporal data gaps, which
limit our ability to resolve rapid changes in ocean acidifi-
cation, hypoxia, or warming risk or to contextualize current
oceanographic conditions with respect to the recent past.

The intra-annual distribution of the daily data is more
complex than the interannual distribution (Fig. 4). Temper-
ature, salinity, and DO records are common throughout the
year but have distinct peaks in abundance in April, May,
and July through September. Carbonate system records are
patchier temporally. Nearly 50 % of all TA and DIC obser-
vations were taken in May or August, with an additional
19 % of observations from September, reflecting the sam-
pling months of the NOAA West Coast Ocean Acidification
cruises (Feely et al., 2016a). Between October and April,
no single month includes more than 8 % of DIC observa-
tions or 5 % of TA observations. pH observations are more
evenly distributed throughout the year, with each month host-

ing 6 %–10.5 % of the observations except August, which
hosts 16 %. The concentration of carbonate system observa-
tions between May and September is particularly concerning,
as the upwelling season in central and southern California
starts in earnest in April (García-Reyes and Largier, 2012;
Jacox et al., 2018). At least two principal carbonate system
parameters must be measured to fully constrain the carbon-
ate system (Dickson, 2010), so the observational record may
be missing significant low pH, low DO events from the early
upwelling season.

3.5 Oceanographic analysis case examples

3.5.1 Monthly climatology

This synthesis dataset supports several avenues of investi-
gation of the relationships between OAH parameters. For
example, evaluating the variations in monthly climatology
across OAH parameters in waters shoreward of the 100 m
depth contour shows intriguing differences between regions
(Fig. 5). Temperatures rise in all regions during the spring
and summer months, peaking between July and Septem-
ber. In Washington and Oregon, peak upwelling occurs be-
tween June and August (Bograd et al., 2009; Jacox et al.,
2016), which coincides with the period of highest variabil-
ity and lowest minima for pH and DO observations cap-
tured in this synthesis. In both California regions, separated
at Point Conception (34.5◦ N), seasonal surface data are less
consistent with the expected upwelling patterns. There, peak
upwelling occurs between April and June and is weakest
in southern California (Bograd et al., 2009; García-Reyes
and Largier, 2012; Jacox et al., 2016). Somewhat unexpect-
edly, the lowest median DO and pH observations occur be-
tween July and September in both California regions rather
than during the months of expected peak upwelling. This
trend may reflect intermittent upwelling into the warmer
summer months or could be capturing high surface respi-
ration as waters warm; conclusive evidence of either phe-
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Figure 3. The number of measurements within 50 km of the shore
and 25 m of the surface for temperature (a), dissolved oxygen (b),
and any carbonate system measurements (c) using 2-month, 0.5◦

latitude spatiotemporal blocks. Salinity (not shown) hews closely to
the dissolved oxygen distribution. From north to south, stars mark
the Washington–Oregon border, the Oregon–California border, and
Point Conception (34.5◦ N). Spatial data coverage was best across
all parameters between 2010 and 2015, whereas overall observa-
tion quantity was highest between 2015 and 2020. Since 2015, dis-
solved oxygen and carbonate system measurements have become
more concentrated into fewer locations along the coast despite in-
creasing awareness of the risks of nearshore acidification and hy-
poxia events.

nomenon requires further investigation. Conditions from Oc-
tober through March across all West Coast regions are more
sparsely sampled but have less variability, cooler mean tem-
peratures, and higher dissolved oxygen content and pH.

3.5.2 Shallow OAH events

Nearshore OAH vulnerability information can be particularly
important for effective coastal management (Ekstrom et al.,

Figure 4. The distribution of daily observations by month varies
substantially by parameter relative to an equal split (dashed lines).
Temperature (T), salinity (S), and dissolved oxygen (DO) obser-
vations are fairly evenly distributed across seasons, with notable
observational peaks in April, May, July, August, and September.
Carbonate system parameters (pH, total alkalinity or TA, and dis-
solved inorganic carbon or DIC) are more concentrated in the sum-
mer months, with nearly all TA and DIC observations occurring in
May, August, or September. Of the carbonate system parameters,
only pH observations are nearly equitably distributed throughout
the year.

2015; Woodson et al., 2019). Within state waters (< 5 km
from the shore) in the surface 50 m, there are thousands of
co-occurring observations of pH below 7.8 and DO below
commonly applied hypoxia thresholds (Fig. 6; e.g., Vaquer-
Sunyer and Duarte, 2008; Hoffman et al., 2011). pH condi-
tions below 7.8 can be stressful for many marine organisms
(e.g., Byrne and Przeslawski, 2013; Gobler and Baumann,
2016; Bednaršek et al., 2021; Kroeker et al., 2023) and have
been observed 8665 times within 5 km of shore and 50 m
of the surface in this data compilation. Of these instances,
65 observations are accompanied by DO contents below the
“coastal hypoxia” threshold of 61 µmolkg−1, and 400 obser-
vations have DO contents below the “mild hypoxia” thresh-
old of 107 µmolkg−1 (Hofmann et al., 2011a). An additional
220 of these near-surface observations of DO contents be-
low 61 µmol kg−1 in state waters have been recorded without
accompanying pH information. No simultaneous surface ob-
servations of DO and pH record coastal hypoxic conditions
with pH levels above 7.8. The low pH, low oxygen observa-
tions are most common off the Oregon coast and are typi-
cally associated with low temperature upwelling events, but
simultaneous mild to moderately hypoxic and low pH con-
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Figure 5. Measurements shoreward of the 100 m bathymetric contour of temperature (a), dissolved oxygen (DO) (b), and pH (c) capture
intra-annual and regional variation. The lowest median DO and pH conditions are found with the highest temperatures in late summer, rather
than during peak upwelling periods (April–June). Here, California is split into two regions: NorCen CA, spanning the northern border to
Point Conception (34.5◦ N), and southern California (So. CA), from Point Conception to the southern border. A total of 99 % of the data fall
within 30 km of shore, and 65 % fall within 10 km of shore.

ditions are also found occasionally throughout the coast and
at a range of temperatures, especially during late summer in
semi-restricted estuaries. The few simultaneous observations
of DO content and pH suggest that fewer than 1 % of obser-
vations of low pH (pH < 7.8) in state waters are accompa-
nied by hypoxic water, whereas shallow hypoxic state waters
might always be accompanied by low pH conditions. These
relationships underscore the importance of multiparameter
OAH observations, the clear need for pH monitoring efforts
to catch up with DO monitoring efforts, and the potential for
even shallow waters to experience extreme conditions.

3.5.3 Total alkalinity–salinity relationships

As a final example usage, we used the MOCHA synthesis
to explore surface (< 25 m depth) TA–salinity relationships
along the coast. Developing robust TA–salinity relationships
for near-surface, nearshore waters has produced intense in-
terest. Because salinity observations are more readily avail-
able in the historical record and relatively cheap to reliably
collect, robust TA–salinity relationship or algorithms allow
the full carbonate system to be calculated while only directly
measuring one principal parameter; however, these relation-
ships and algorithms can be hampered by nearshore variabil-
ity (e.g., Fassbender et al., 2017; Davis et al., 2018). We ex-
amined surface (< 25 m depth) discrete TA and salinity ob-
servations from within 100 km of the shore along the Wash-
ington, Oregon, and California coasts and compared the data
collected within 2 km of shore to those collected between
2 and 100 km from the shore (Fig. 7). Our TA–salinity re-
lationships were very similar when using a 50 and 100 km
cutoff distance, and we show the more extensive data here
for closer comparisons with previous investigators. Our TA–
salinity slopes were not significantly different between any

Figure 6. Low dissolved oxygen (DO) and pH conditions are fre-
quently present in state waters (within 5 km of the shore) and 50 m
of the surface. pH measurements below 7.8 (dashed horizontal grey
line) are common but are more rarely accompanied by mildly hy-
poxic (< 107 µmolkg−1 or 3.5 mg L−1 DO, dashed vertical grey
line) or hypoxic (< 61 µmolkg−1 or 2 mg L−1 DO, dashed vertical
red line) conditions. Simultaneous low pH, low DO events are typi-
cally associated with low temperatures, whereas low pH conditions
alone are present across a wide range of temperatures.

Washington and Oregon regions, though we note that in our
compilation, Washington and Oregon both have very limited
discrete TA data within 2 km of shore, which produced large
standard errors in the slope terms (4.5 and 3 µmolkg−1, re-
spectively). Our observed offshore Washington TA–salinity
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relationship of TA= 42.2±1.2×S+823 is more comparable
to the Wootton and Pfister (2012) regression, which centered
off the Strait of Juan de Fuca, than to that from Fassbender et
al. (2017). However, we did not correct for seasonal or wa-
tershed biases in this example and focus on a more limited
stretch of nearshore waters, which may account for the dif-
ferences between our calculated relationships and those of
Fassbender et al. (2017).

Each of the two California regions, split at Point Concep-
tion (34.5◦ N), have TA–salinity regressions that are statisti-
cally distinct from each other and from both Pacific North-
west regions. The offshore California slope terms are much
larger than in the Pacific Northwest region and significantly
larger than the Cullison Gray et al. (2011) salinity coef-
ficient of 50.8, particularly our slope for the northern and
central region (57.4± 0.9 µmol kg−1). At a salinity of 33.5,
these differences produce an increase in estimated TA of
94.3 µmolkg−1 between our calculated northern and central
California relationship and the Cullison Gray et al. (2011) re-
lationship, which translates to an increase in estimated arag-
onite saturation of 0.1 at 12 ◦C and pH= 8.1. The Cullison
Gray et al. (2011) relationship was derived from unpublished
pCO2 and DIC observations, all taken prior to 2007, so there
is limited temporal overlap between our sample sets, and any
spatial differences in sample area cannot be assessed. The
California nearshore region is well-sampled relative to the
Pacific Northwest and displays significant variability, poten-
tially reflecting local differences in bedrock or organic alka-
linity contributions. The variability in nearshore TA–salinity
relationships will continue to present a challenge for coastal
communities and state agencies, underscoring the impor-
tance of monitoring multiple parameters of the carbonate sys-
tem in highly nearshore environments.

3.6 Dataset limitations

This data compilation reflects reliable, publicly available
data and directly contributes to our ability to map coastal
temperature, DO, and carbonate system variation; however,
this synthesis also encodes the limitations of the current ob-
servational record and the differences in data availability,
data scales, and data quality. High-resolution autonomous
sensors provide excellent temporal resolution for a specific
location but are vulnerable to sensor drift, are not often pub-
lished with clear calibration records, and are rarely deployed
in arrays that fully capture the carbonate system as well as
temperature and DO variability. Conversely, discrete samples
and CTD profiles from synoptic cruises provide extremely
high-precision, multiparameter observations with broad spa-
tial resolution but are less relatable to high-resolution sen-
sors or hand-collected observations from the surf zone. Car-
bonate system observation availability has a strong seasonal
and spatial bias, with data concentrated in summer months
and along coastal population centers. The MOCHA synthesis
pulls these distinct data sources into a single synthesis prod-

uct, but we do not claim to have fully resolved the inherent
difficulties of combining data of differing quantity, resolu-
tion, and quality into a unified picture of the nearshore CCS.

Additional data streams that provide both spatial and tem-
poral resolution could help bridge some of the divides be-
tween quality, quantity, and spatial extent in this synthesis,
and we acknowledge a few such potential data streams here.
The temperature and dissolved oxygen records do not include
CTD casts from most annual fishery-independent surveys,
which could improve spatial resolution at all depths (e.g.,
Sakuma, 2022). This compilation also excludes some valu-
able carbonate system data streams, particularly those fo-
cused on pCO2 measurements currently available through
SOCAT (Sabine et al., 2013; Bakker et al., 2016). Additional
potential carbonate system data sources include pH or pCO2
records from autonomous gliders (e.g., Chavez et al., 2017)
and pCO2 and DIC records from shore-based monitoring sys-
tems (e.g., Burke-o-Lators; Hales et al., 2004; Bandstra et
al., 2006). The first would significantly improve the spatial
coverage of surface pCO2 and could improve seasonal bias
but would not have a significant impact on our ability to re-
solve the full carbonate system or to consider deeper water.
Glider datasets would similarly improve our spatial coverage
while providing additional information about water column
structure. These could represent a valuable expansion to this
synthesis, provided calibration records are also available, and
will likely be included in updates to this synthesis product
(Bushinsky et al., 2019). Shore-based monitoring systems re-
cently deployed by the West Coast OOIs would be valuable
expansions to this synthesis and will also likely be included
in an updated product.

4 Data availability

The full Multistressor Observations of Coastal Hypoxia and
Acidification dataset, parameter metadata, and dataset meta-
data tables are publicly available for download at NCEI
as accession 0277984 at https://doi.org/10.25921/2vve-fh39
(Kennedy et al., 2023). The downloadable content in-
cludes the full MOCHA dataset available as a text file,
the daily summarized dataset discussed extensively above
available as a text file (aggregated_daily_dataset.csv), stan-
dard NCEI accession parameter metadata which pro-
vide an overview for each variable included in the text
files (“SubmissionForm_carbon_v1_428.xlsx”), and a be-
spoke dataset metadata table describing each included
dataset with citations and links to reference papers
(MOCHA_dataset_metadata_table_v2.csv). This data pack-
age is discoverable via the NOAA Ocean Acidification Por-
tal, NCEI Geoportal (https://www.ncei.noaa.gov/metadata/
geoportal/#searchPanel, last access: 30 April 2023) and other
online discovery tools. The dataset metadata table is also
available in the Supplement.
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Figure 7. Regional near-surface (< 25 m) total alkalinity (TA)–salinity relationships from 0–2 km from the shore and 2–100 km offshore in
along the US West Coast. As with Fig. 5, the break between northern and southern CA is Point Conception, at 34.5◦ N. These relationships
only reflect direct measurements of salinity and TA on discrete samples with salinity > 28.

5 Fair use data statement

We request that all users of the MOCHA compilation also
fully credit the constituent datasets supporting their work.
This helps ensure that the ocean monitoring systems that
this and other compilations depend on receive trackable ci-
tations and continued funding. We also recommend contact-
ing the original principal investigators to discuss collabo-
ration opportunities and to enthusiastically look for oppor-
tunities to further include or credit these data providers.
Full citation information, dataset DOIs, and reference pa-
pers (where available) for each individual dataset in the
MOCHA compilation can be found in the References as
well as in the MOCHA_dataset_metadata_table.csv avail-
able at NCEI (https://www.ncei.noaa.gov/data/oceans/ncei/
ocads/data/0277984/, last access: 15 December 2023).

6 Code availability

Code for performing carbonate system calculations with
the formatted dataset, creating a summarized dataset ag-
gregated by day and making all included figures, is avail-
able on GitHub at https://doi.org/10.5281/zenodo.10408321
(Kennedy, 2023).

7 Conclusions

The CCS is one of the most intensively monitored marine
systems in the world, but our ability to accurately resolve
the true complexity of coastal climate stress remains lim-
ited by data fragmentation, availability, and quality. As in-
terest has shifted from documentation of the global patterns
of acidification and hypoxia to more complex coastal envi-
ronments, the CCS has seen an explosion in monitoring ef-
forts within 50 km of shore in the last 15 years. This expan-
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sion has included an increase in both surface and subsurface
monitoring efforts, though within 2 km of shore, monitoring
efforts below 5 m depth are still much less common than
surface observations. While this situation is improving, the
continued relative paucity of subsurface nearshore measure-
ments is of particular concern given that mildly hypoxic (DO
< 107 µmolkg−1) and corrosive conditions have been docu-
mented at depths as shallow as 10 m (Kekuewa et al., 2022).

Surprisingly, the US West Coast had especially continu-
ous spatial and temporal coverage of OAH-relevant param-
eters between 2012 and the beginning of 2015, before a re-
duction in coverage that lasted through 2020 (Fig. 5). By co-
incidence, the reduction in DO and carbonate system moni-
toring in 2015 coincided with the second half of the marine
heatwave known as “the Blob”, which stretched from 2014
through 2016 and was associated with higher surface DO
and pH (Bond et al., 2015; Siedlecki et al., 2016; Gentemann
et al., 2017). Assessing the interactions of an unprecedented
marine heatwave with DO and carbonate system conditions
lies at the heart of multistressor risk management; however,
our ability to resolve both Blob impacts and its recovery was
very limited in northern California and Oregon by the con-
current contraction in oceanographic monitoring. Although
the CCS is well monitored compared to many other parts
of the world’s oceans, our synthesis here highlights that the
patchiness of monitoring projects, often driven by inconsis-
tent funding, has an outsized impact on our ability to utilize
those data to operationally monitor for climate change.

While increasing interest in coastal OAH monitoring and
the availability of autonomous sensors has markedly en-
hanced CCS data availability, the frequency and footprints of
synoptic oceanographic cruises have decreased in the region.
Oceanographic cruises provide highly accurate and spatially
broad water column measurements that can bridge the gap
between the coastal and open-ocean domains and provide
regional contexts for local observations. They also provide
some of our only observations near remote portions of the
coast. However, nearly all routine oceanographic cruises in
the CCS have cut back their footprint, sampling frequency,
and depth resolution. The southern-California-based Cal-
COFI cruises extended throughout the CCS during the 1960s,
contracted to southern and central California by the 1980s,
and now only cover the Southern California Bight while
also sampling at significantly fewer depths (Bograd et al.,
2003). The loss of CalCOFI cruises in central California
has been offset in part by triannual Applied California Cur-
rent Ecosystem Studies (ACCESS) cruises near San Fran-
cisco Bay, though these cruises are limited to the continen-
tal shelf between 37.3 and 38.4◦ N. The NOAA West Coast
Ocean Acidification (WCOA) cruises took place along the
entire CCS five times from 2007 to 2016 but did not occur
again until 2021 (Feely et al., 2016a, 2022). The shift to-
wards high-resolution, nearshore monitoring is a significant
improvement over a wholesale reduction in oceanographic
monitoring, but the concurrent erosion of consistent oceano-

graphic cruises means the ability to resolve large-scale re-
gional patterns is being traded for highly specific understand-
ing of a few select locations.

This synthesis dataset provides one of the largest com-
pilations to date of West Coast nearshore acidification- and
deoxygenation-related data. This dataset highlights monitor-
ing gaps but equally provides opportunities for insight into
coastal conditions. With the updated spatiotemporal resolu-
tion our effort affords, this dataset offers a wealth of op-
portunities to investigate questions about coastal oceanogra-
phy and evaluate localized patterns of marine climate stress.
We expect the MOCHA synthesis to also be of use for
new projects combining temperature and DO records into
species metabolic indices (e.g., Howard et al., 2020b), for in-
vestigating the frequency and interaction of individual and
overlapping ocean acidification and hypoxic events (e.g.,
Burger et al., 2022), and for developing updated carbon-
ate system algorithms more suited to coastal environments
(e.g., Alin et al., 2012; Davis et al., 2018). By archiving
this dataset at the National Centers for Environmental Infor-
mation (https://doi.org/10.25921/2vve-fh39; Kennedy et al.,
2023) in an easily manipulated, consistent format that in-
cludes relevant metadata and quality assurance, we provide
an important tool for scientists across ecological, oceano-
graphic, and social disciplines as well as coastal decision-
makers to address the environmental, economic, and cultural
needs of coastal communities.
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