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Reduced Order Characterization of Nonlinear Oscillations Using an Adaptive
Phase-Amplitude Coordinate Framework\ast 
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Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear
oscillations. By considering a continuous family of forced periodic orbits defined in relation to
a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we
arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from
arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to
those obtained from local linearization, i.e., that can be fully described using linear eigenmodes.
For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a
small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples
yielding results that are substantially better than those obtained using standard linearization-based
techniques.
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1. Introduction. We develop and investigate a general strategy for reduced order rep-
resentation of systems displaying highly nonlinear oscillations. This is in direct contrast
to linear oscillations which can be decomposed into a superposition of eigenmodes with
growth/decay/oscillation rates governed by their associated eigenvalues [9], [12]. While such
approaches can be used to approximate low amplitude oscillations for a nonlinear system,
alternative techniques must be used to accommodate large amplitude oscillations occurring
in nonlinear systems.

Early work on the subject of nonlinear oscillations considered the idea of a nonlinear
normal mode [36], [37] as a synchronous oscillation admitted by a nonlinear system which
provided a nonlinear extension to linear modes. Subsequent work [43], [40] viewed these non-
linear normal modes as two-dimensional invariant manifolds that are tangent to a related
linear eigenspace. Review articles [17] and [2] discuss more recent results and generalizations
of the use of nonlinear normal modes in the analysis of nonlinear oscillations. Further ex-
tensions were considered in [11], which introduced the notion of a spectral submanifold, the
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 471

smoothest invariant manifold that functions as a nonlinear extension of a linear modal sub-
space. Investigation of the dynamics on these spectral submanifolds can yield information
about nonlinear oscillations and extract associated backbone curves [35], [46].

From a broader perspective, reduced order modeling of nonlinear oscillations can be
thought of as a dynamical representation problem [29]. Koopman-based approaches, for in-
stance, attempt to represent the dynamics of a general nonlinear system using a linear but
possibly infinite dimensional operator [6], [27], [28]. In direct contrast to local linearization
techniques that consider the dynamics in a close neighborhood of some nominal solution,
Koopman-based approaches can be used to obtain linear representations for the fully nonlin-
ear dynamics of observables, subsequently allowing for the analysis of nonlinear oscillations
in terms of the superposition of Koopman eigenmodes. From a practical perspective, the key
challenge of implementing Koopman-based approaches is in the identification of a suitable
finite basis to represent the possibly infinite dimensional Koopman operator. In some cases,
this can be accomplished by finding a Koopman invariant subspace to yield an exact linear,
finite dimensional representation for a nonlinear system [47], [18], [5]. More commonly, data-
driven algorithms such as dynamic mode decomposition [41], [22], [51] are used to provide
finite dimensional, linear approximations for the action of the Koopman operator.

Rather than characterizing the full action of the Koopman operator, a number of authors
have suggested the use of a subset of Koopman eigenfunctions to establish a reduced order
coordinate system for representing the dynamics of a fully nonlinear system [26], [64], [15],
[23]. Among these is the isostable coordinate framework [26], which considers the level sets
of the slowest decaying Koopman eigenmodes to form a reduced order basis. Previous work
[54], [55], [53], [60] has considered this general coordinate system in the development of var-
ious model order reduction algorithms that are applicable to systems with fixed points and
periodic orbits. By retaining only the slow decaying components and truncating the rest,
high accuracy reduced order models can be obtained using only a handful of state variables.
In a similar spirit, related work considers the slowest decaying complex (resp., nontrivial
real) eigenfunctions of the backward Kolmogorov operator to define a stochastic phase (resp.,
isostable coordinate) for noisy limit cycle oscillators [48], [33], [16], [32].

In conjunction with the isostable coordinate basis, recent work [57], [59] proposed an
adaptive coordinate system that considers a family of either stable limit cycles or fixed points
that emerge when using different parameter sets. By adaptively selecting the nominal attractor
from within this family, provided the state remains close to the attractor (i.e., as gauged by
the magnitude of the isostable coordinates), truncation errors can be mitigated, resulting in
a very accurate but still substantially reduced order model. While initial results obtained
using this adaptive reduction strategy have been promising [56], [58], [49], many unanswered
questions remain regarding its implementation. For instance, there is usually no systematic
way of choosing the family of reference trajectories. Additionally, while some heuristics are
discussed in [56] for adaptively selecting the nominal attractor in order to limit truncation
errors, it is not always obvious how to accomplish this task.

Here, we consider a general strategy for characterizing nonlinear oscillations for systems
with stable fixed points using the aforementioned adaptive phase-amplitude reduction ap-
proach. As a primary contribution, this work proposes and investigates a systematic strat-
egy for defining reference trajectories used in conjunction with the adaptive phase-amplitude

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

7/
24

 to
 7

6.
23

4.
10

1.
43

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



472 DAN WILSON AND KAI SUN

reduction strategy. The resulting approach yields a reduced order model that can consider
large amplitude oscillations that result from arbitrary forcing far beyond the linear regime.
In the limit that oscillations are small, the system dynamics relax to those obtained from
local linearization. Additionally, the proposed approach can also be used to explicitly con-
sider the interactions between multiple nonlinear modes. The organization of this paper is
as follows. Section 2 provides necessary background on phase and phase-amplitude reduction
techniques that are used as a starting point for the proposed model order reduction strategy.
Section 3 gives a high-level overview of the proposed approach. Section 4 provides numerical
illustrations for three example systems: a simple pendulum, a coupled population of nonlinear
planar oscillators, and a power system model comprised of synchronous generators. Section 5
provides a description of the proposed approach and provides a detailed list of steps required
for implementation. In each example, the proposed strategy far exceeds others that leverage
techniques based on local linearization. Section 6 provides concluding remarks.

2. Background on phase-based reduction techniques for oscillatory systems. Consider
an ordinary differential equation of the form

(1) \.x= F (x,u),

where F sets the generally nonlinear dynamics, x \in \BbbR N is the state, and u \in \BbbR M is an input.
Here, we assume F (x,u) is at least C1 differentiable. Suppose that when u = 0, (1) has a
stable fixed point x0 for which F (x0,0) = 0. Letting \Delta x = x - x0, a standard linearization
yields a model of the form

(2) \Delta \.x=A\Delta x+Bu,

where A= \partial F
\partial x and B = \partial F

\partial u , both evaluated at x= x0 and u= 0. Assume that all eigenvalues
of A are simple, i.e., unique. In a close neighborhood of the fixed point, when u = 0, (2)
admits solutions of the form

(3) \Delta x(t) =

N\sum 
j=1

sjvj exp(\lambda jt),

where (\lambda j , vj) is an eigenvalue/eigenvector pair of the matrix A and sj is the associated
coefficient after projecting \Delta x onto the eigenspace. The decomposition (3) can be used to
analyze linear oscillations in (2) in terms of the eigenvectors associated with complex-valued
eigenvalues. The influence of nonzero input can also be readily considered with a variety of
linear control techniques [45], [12]. However, this linearization is only a valid approximation of
(1) in the limit that \Delta x and u are both small, precluding use in many practical applications. In
order to overcome this limitation, the strategy proposed in this work considers the application
of additional periodic forcing and the resulting periodic orbits to characterize the dynamics far
from the fixed point. This will be done using phase-amplitude-based reduced order modeling
approaches as a starting point, and these are briefly summarized below.

2.1. Phase reduction. Consider a general ordinary differential equation of the form

(4) \.y= F (y, p) + u(t),
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 473

where y \in \BbbR N is the state, F gives the dynamics, p \in \BbbR M is a parameter set, and u is an
additive input. Suppose that for a constant choice of p= q and when u= 0, (4) has a linearly
stable, isolated T (q)-periodic orbit y\gamma q . Isochrons [10], [65] can be used to define an oscillation
phase at all locations in the basin of attraction of this limit cycle. Letting \theta 1 \in [0,2\pi ) be the
phase corresponding to some initial condition a(0)\in y\gamma q , the \theta 1 isochron is given by the set of
all b(0) for which

(5) lim
t\rightarrow \infty 

| | a(t) - b(t)| | = 0,

where | | \cdot | | is some vector norm. Note that in (5), b(0) is not required to be on the periodic orbit.
Considering (5), initial conditions that share the same isochron share the same asymptotic
convergence to the periodic orbit. Typically, the phase \theta (y, q) is scaled so that

(6)
d\theta 

dt
=

2\pi 

T (q)
= \omega (q)

under the flow of (4). Note that the phase coordinate is unique to a constant shift and can be
disambiguated, for instance, by choosing the crossing of some Poincar\'e section to correspond
to a level set of phase for each limit cycle. With the definition of phase in mind, a standard
phase reduction [8], [19], [65] can be performed by restricting attention to a close neighborhood
of the periodic orbit and changing variables to phase coordinates

d\theta 

dt
=
\partial \theta 

\partial y
\cdot dy
dt

=
\partial \theta 

\partial y
\cdot 
\Bigl( 
F (y, q) + u(t)

\Bigr) 
= \omega (p) +Z\top (\theta , q)u(t) +O(| | y - y\gamma q (\theta )| | 2),(7)

where Z(\theta , q) = \partial \theta 
\partial y evaluated at y\gamma q (\theta ), the dot denotes the dot product, and \top denotes the

transpose. Above, \partial \theta 
\partial x \cdot F (y, q) = \omega because d\theta 

dt = \omega when u = 0. Typically, the higher
order terms are truncated to yield a closed form ordinary differential equation that can
be used to represent the behavior of the original N -dimensional system in terms of a one-
dimensional reduction. Phase reductions of the form (7) have been used extensively to analyze
and understand dynamics that emerge in weakly perturbed oscillatory systems [8], [3], [63],
[42], [34].

As a technical note, a periodic orbit can be viewed as a function of either time or phase.
In this manuscript, we will use the notation \^y\gamma q (t) and y

\gamma 
q (\theta ) to refer to a periodic orbit as a

function of time or phase, respectively. Considering the scaling mandated by (6), along the
periodic orbit evolving under the unperturbed flow, \theta = \omega (q)t+ \theta 0, where \theta 0 is an arbitrary
constant. We will take \theta 0 = 0 so that y\gamma q (\theta ) = \^y\gamma q (\theta /\omega (q)).

2.2. Phase-amplitude reduction. Equation (7) is valid only provided the state of the
forced system remains close to the periodic orbit. As such, it is often assumed that the mag-
nitude of forcing is small relative to the rate of convergence to the periodic orbit. When
considering larger magnitude inputs, information about amplitude coordinates must be con-
sidered which represents directions transverse to the periodic orbit. There are wide a variety
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474 DAN WILSON AND KAI SUN

of strategies that can be used to incorporate the influence of amplitude-based effects [64], [50],
[24], [61], [20], [7], [38]. Here, we will use Floquet coordinates for this task. To this end,
consider the periodic orbit of (4) and let \Delta y = y  - y\gamma q (\theta (t)). When u(t) = 0, d\theta /dt= \omega (q) so
that \theta (t) = \theta (y, q)+\omega (q)t. To a linear approximation one can write \Delta \.y= J\Delta y, where J is the
Jacobian evaluated at y\gamma q (\theta (t)). Defining \Phi to be the monodromy matrix of this T (q)-periodic
linear time varying system, provided \Phi is diagonalizable, near y\gamma q one can leverage Floquet
theory [14] to write

(8) y - y\gamma q (\theta ) =

N - 1\sum 
j=1

\psi jgj(\theta , q) +O(\psi 2
1) + \cdot \cdot \cdot +O(\psi 2

N - 1),

where gj(\theta , q) is a Floquet eigenfunction and \psi 1, . . . ,\psi N - 1 are associated Floquet coordinates.
Note that in (8), the contribution from the Nth Floquet eigenfunction is absorbed by the
phase coordinate. For the purposes of this work, the Floquet eigenfunctions will be scaled so
that | | gj(0, q)| | 2 = 1, where | | \cdot | | 2 is the 2-norm. Equation (8) can also be extended to nonlinear
orders of accuracy using the notion of isostable coordinates [54], [60] which can be defined in
the entire basin of attraction of the limit cycle. To linear order, the Floquet eigenfunctions
from (8) can be used to augment the phase reduction from (7) yielding a phase-amplitude
reduction [64], [44],

\.\theta = \omega (q) +Z\top (\theta , q)u(t),

\.\psi j = \kappa j(q)\psi j + I\top j (\theta , q)u(t),

j = 1, . . . ,N  - 1.(9)

Here Ij(\theta , q) =
\partial \psi j

\partial y evaluated at y\gamma q (\theta ) and \kappa j is the Floquet exponent corresponding to the jth
Floquet eigenfunction. Like the phase reduction from (7), equation (9) is only valid provided
the state y remains close to the underlying periodic orbit y\gamma q . Nonetheless, this additional
information can still be useful, for instance, in the context of control design [30], [64]. Note
that references such as [54] and [60] refer to \psi 1, . . . ,\psi N - 1 as isostable coordinates; because
isostable coordinates are identical to Floquet coordinates to linear order, and because this
work only considers the dynamics of these coordinates to linear order for a given periodic
orbit, we will refer to these amplitude coordinates as Floquet coordinates in this manuscript.

2.3. Adaptive phase-amplitude reduction. If it is necessary to consider inputs that drive
the system far beyond its reference periodic orbit, the adaptive phase-amplitude reduction can
be used [57], [56]. To implement this strategy, assume that for some allowable q \in \BbbR M , when q
is held constant the equation \.y = F (y, q) has a linearly stable, isolated periodic orbit y\gamma q . For
each of these orbits, one can define an extended phase \theta (y, q) and a set of extended Floquet
coordinates \psi 1(y, q), . . . ,\psi N - 1(y, q). As was the case for the phase coordinates from section 2.1,
the extended phase coordinates are unique to a constant shift and must be disambiguated,
for instance, by choosing the crossing of some Poincar\'e section to correspond to a level set of
phase for each limit cycle. Equation (4) can subsequently be rewritten as

(10) \.y= F (y, q) +Ue(y,u, p, q),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 475

where

(11) Ue(y,u, p, q) = F (y, p) - F (y, q) + u(t).

Rewriting in this manner, the dynamics can be considered relative to the reference orbit y\gamma q
with effective input Ue. As described in [57], allowing q to be nonstatic (i.e., allowing the
reference orbit to change), transforming to phase and Floquet coordinates and truncating all
O(| | y - y\gamma q (\theta )| | 2) terms yields

\.\theta = \omega (q) +Z\top (\theta , q)Ue +D\top (\theta , q) \.q,

\.\psi j = \kappa j(q)\psi j + I\top j (\theta , q)Ue +E\top 
j (\theta , q) \.q,

j = 1, . . . ,N  - 1,

\.q=Gq(q, \theta ,\psi 1, . . . ,\psi N - 1,Ue).(12)

Above, D(\theta , q) \in \BbbR M with the ith element capturing how changes to q yield changes in \theta ,
similarly, each Ej(\theta , q)\in \BbbC M characterizes how changes to q influence the Floquet coordinates.
More details about the computation of these terms are provided in [57]. The term Gq sets
the update rule for the parameter set q. Equation (12) is valid in the limit that | | y  - y\gamma q (\theta )| | 
remains small. Considering (8), provided that the Floquet coordinates \psi 1, . . . ,\psi N - 1 can be
kept small, y  - y\gamma q will remain small. As such, by designing Gq such that each Floquet
coordinate remains small, the adaptive reduction (12) can be used to accurately represent
dynamics of the underlying system (4), even when the inputs considered are large.

Note that (12) is actually higher dimensional than the original equation (4) (N + M
dimensions versus N dimensions). To obtain a reduced order equation, in many cases, a
large number of Floquet coordinates can be well approximated by zero if their corresponding
Floquet exponents are negative and large in magnitude so that they decay rapidly [64], [57].
In other cases, a coordinate \psi j can be neglected when the input Ue is orthogonal to Ij(\theta , p)
[62]. General heuristics for choosing Gp are discussed in [57].

In a similar vein as the adaptive phase-amplitude reduction, other authors have also
considered families of periodic orbits in order to circumvent the weak forcing limitation that
is usually placed on standard phase reduction (7) [39], [20], [31], [21]. However, because
these techniques do not consider the amplitude coordinates of the associated periodic orbits,
they typically require any large magnitude contributions to the forcing to vary sufficiently
slowly.

3. Overview of the proposed strategy. The overall goal is to characterize oscillations in
the model (1) in terms of an appropriate subset of nonlinear modes that are valid far beyond
the weakly perturbed limit. To accomplish this task, we leverage the adaptive phase-amplitude
reduction strategy described in section 2.3 and consider (1) with an additional additive input

(13) \.x= F (x,u) + \alpha (q, t).

Here, x, F , and u represent the state, dynamics, and input as defined in (1), q \in \BbbR M is a time-
varying parameter set, and \alpha (q, t) is an external periodic input with period T (q). Suppose

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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476 DAN WILSON AND KAI SUN

that when u = \alpha = 0, a linearly stable fixed point x0 exists. Letting s \in [0,2\pi ), (13) can be
rewritten as an autonomous system of equations:

\.x= F (x,u) + \alpha (q, s/\omega ),

\.s= \omega ,(14)

where \omega = 2\pi /T (q). Above, the \omega dependence on q has been suppressed for convenience of
notation. Letting y = [x\top s]\top \in \BbbR N \times S, suppose that when u= 0, for all allowable values of
q, (14) has an isolated periodic orbit

(15) \^y\gamma q (t) =

\biggl[ 
\^x\gamma q (t)

mod(\omega t,2\pi )

\biggr] 
.

Following the formulation from section 2.3, for each \^y\gamma q (t), an extended phase \theta (y, q) and set
of Floquet coordinates \psi 1(y, q), . . . ,\psi N (y, q) can be defined (note that there are N Floquet
coordinates because y \in \BbbR N \times S). Toward a formulation using the adaptive phase-amplitude
reduction, we will consider

\.x= F (x,0) + \alpha (q, s/\omega ) +Ue(x,u, q, s),

\.s= \omega + f\theta (x, q, s),(16)

where f\theta (x, q, s)\in \BbbR is a function with form that will be discussed momentarily and

(17) Ue(x,u, q, s) = F (x,u) - F (x,0) - \alpha (q, s/\omega ).

Above, the x dynamics in (16) are identical to those that govern (1). Additionally, (16) has
a stable periodic orbit when Ue = f\theta = 0 and can be written in the same general form as
(10). As such, we apply the adaptive phase-amplitude reduction strategy. First considering
the phase coordinates,

(18) \.\theta = \omega (q) +Z\top 
1 (\theta , q)Ue +Z2(\theta , q)f\theta +D\top (\theta , q) \.q,

where Z1(\theta , q)\in \BbbR N and Z2(\theta , q)\in \BbbR 1 comprise the first N elements and last element, respec-
tively, of Z(\theta , q) associated with the periodic orbit y\gamma q (\theta ) and \omega = 2\pi /T . To further simplify
(18), note that the periodic orbit from (14) is driven by the forcing \alpha (q, s/\omega ). Because this
periodic orbit emerges as the result of periodic forcing, when q is held constant, one can
show that \theta (q, s) = mod(\theta 0 + s,2\pi ) (cf. [52]), where \theta 0 is an arbitrary constant. As such,
Z2(\theta , q) = \partial \theta /\partial s = 1 and Z1(\theta , q) is an appropriately sized vector of zeros. Because \theta 0 is
arbitrary, it is most convenient to take \theta 0=0 for all q yielding D(\theta , q) = 0. With these sim-
plifications in mind, (18) becomes \.\theta = \omega (q) + f\theta . Considering the amplitude coordinates, the
full adaptive phase-amplitude reduction of the form (12) is

\.\theta = \omega (q) + f\theta ,

\.\psi j = \kappa j(q)\psi j + I\top j,1(\theta , q)Ue + Ij,2(\theta , q)f\theta +E\top 
j (\theta , q) \.q,

j = 1, . . . , \beta ,

\.q=Gq(q, \theta ,\psi 1, . . . ,\psi N ,Ue).(19)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 477

Above, each Ij,1(\theta , q) \in \BbbC N and Ij,2(\theta , q) \in \BbbC comprise the first N elements and last element,
respectively, of Ij(\theta , q) associated with the periodic orbit y\gamma q (\theta ). In (19), it is assumed that
the Floquet coordinates \psi \beta +1, . . . ,\psi N have large magnitude Floquet exponents so that they
decay rapidly and can be ignored.

As discussed in section 2.3, (19) remains accurate provided that the Floquet coordinates
\psi 1, . . . ,\psi \beta remain small. We emphasize here that the external forcing, \alpha (q, t), adaptive param-
eter set q, parameter update function, Gq, and phase correction function, f\theta , are all arbitrary.
The key challenge of implementing the proposed strategy is in choosing these terms effectively
so that the reduction (19) remains accurate. These questions were not considered in previous
work from [57]. As shown in section 5, with an appropriate choice of \alpha (q, t), (19) ultimately
yields a greatly simplified, reduced order set of ordinary differential equations where the peri-
odic orbits x\gamma q have a close connection with linear modes for small magnitude forcing but can
be extended far beyond the linear regime.

4. Illustration of the proposed methodology. Here, we provide illustrative examples of
the proposed model order reduction strategy. Recall that the effective implementation of this
strategy relies on determining an appropriate choice for the external forcing, \alpha (q, t), adaptive
parameter set, q, parameter update function, Gq, and phase correction function, f\theta , in (19).
Technical details about the choice of these terms are provided in section 5 with a list of
steps for implementation of the proposed approach given in section 5.5. As illustrated in
the examples below, in situations where the full order model has only one oscillatory mode
of interest, the proposed methodology allows the dynamics to be accurately captured with a
two-dimensional reduced order set of equations.

4.1. Simple pendulum. As a preliminary example meant to illustrate the implementation
of the proposed strategy, consider the dynamics of a simple pendulum with viscous damping:

\.x1 = x2,

\.x2 = - g

L
sin(x1) - 

b

mL2
x2 +

u(t)

mL2
.(20)

Here, x1 and x2 correspond to the angular position, \phi , and velocity, \.\phi , of anm= 0.104 Kg point
mass suspended by a rigid, massless rod of length L= 9.8 m, u is a torque input, g= 9.8m/s2

is the acceleration due to gravity, and b= 1Kg \cdot m2/s is a viscous damping coefficient. When
u= \alpha 1 = \alpha 2 = 0 the pendulum has a stable fixed point at x1 = x2 = 0; eigenvalues of linearized
fixed point are \lambda 1,2 = - 0.050\pm 0.999i. We emphasize that the equations (20) are already low
dimensional and have a relatively simple nonlinearity. This example is intended to provide
intuition about the implementation of the proposed strategy.

The proposed strategy summarized in section 5.5 considers

\.x1 = x2 + \alpha 1(q, t),

\.x2 = - g

L
sin(x1) - 

b

mL2
x2 +

u(t)

mL2
+ \alpha 2(q, t).(21)

Here, when u(t) = 0, the additive inputs \alpha 1(q, t) and \alpha 2(q, t) are used to define a reference set
of forced periodic orbits \^x\gamma q (t) that are subsequently used to yield a phase-amplitude model of
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478 DAN WILSON AND KAI SUN

Figure 1. Terms of the phase-amplitude representation of the form (61) are computed for the simple pendu-
lum from (21). The computed inputs are shown in panels A and B with resulting forced periodic orbits shown in
panel C for different values of the amplitude-like variable q. These orbits are reminiscent of (but not identical
to) level sets of total energy as shown in panel D as a function of the phase of oscillation. The effective natural
frequency as a function of q is shown in panel E.

the form (61). These inputs and associated periodic orbits are computed according to (30) for
q < 0.001 and are computed for larger values of q using the iteration from (56). Traces of the
inputs computed according to the proposed strategy are shown in panels A and B of Figure 1
with associated periodic orbits shown in panel C. Despite their similar appearance, these
orbits do not trace out level sets of total energy, i.e., E =mgL(1 - cos(\phi ))+ 1

2mL
2 \.\phi 2 as shown

in panel D as a function of the phase. The effective natural frequency computed according
to (62) is shown in panel E, which is consistent with a lengthening period of oscillation for
larger amplitude orbits. In this example, it is not possible to continue the orbits beyond
\phi \approx \pm \pi , which corresponds to a full revolution of the pendulum; near this point the resulting
Floquet multipliers transition from complex-conjugate to real-valued, rendering the iteration
(57) unusable beyond this point. Once the terms of the phase-amplitude-based representation
of the form (61) are computed, the resulting model can be used to predict the response of
(20) to an arbitrary input u(t).

The accuracy of the phase-amplitude model of the form (61) for replicating the forced
response of (20) is demonstrated in Figure 2. Panel A shows the output in response to the
input u(t) = 0.2t sin(2\pi t12 ) for the phase-amplitude model (black line) compared to the output
of a model obtained through linearization about the fixed point (red line). The true model
output is shown as a dashed line. The phase-amplitude model agrees perfectly with the full
model output until the crossing of the outermost orbit, at which point the model no longer
displays predictable oscillations. Note that the phase-amplitude model cannot be used beyond
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 479

Figure 2. Input of the form u(t) = 0.2t sin( 2\pi t
12

) is applied to the pendulum model from (20) starting with
an initial condition near steady state. Black, red, and dashed lines show the output of the proposed phase-
amplitude-based model, linearized model, and true model output in response to the input. For reference, the
colored lines show the forced periodic orbits that are used to define the phase-amplitude model. Panel B gives
a trace of the angular position for each model in response to the input plotted in panel C. In this example,
the phase-amplitude model cannot be simulated beyond t = 45 because the state travels beyond the extent of
the forced periodic orbits. Nonetheless the timing and location of this traversal are nearly identical to the true
model simulations.

this point because the state falls outside the family of forced periodic orbits; nonetheless, it
pinpoints the exact moment that regular oscillations cease. By contrast, the linear model
matches the full model output for small amplitude oscillations but does not replicate the
same sudden deviation from regular oscillations. Panel B of Figure 2 shows traces of \phi and
panel C shows the applied input. These results are qualitatively similar when considering
other inputs that drive the state past the regime that displays regular oscillations.

4.2. Coupled population of planar oscillators. Consider a model for a heterogeneous
population of N coupled planar oscillators

\.xj = \sigma xj(\mu j  - r2j ) - yj(1 + \rho j(r
2
j  - \mu j)) +

K

N

\sum 
i \not =j

xi + u(t),

\.yj = \sigma yj(\mu j  - r2j ) + xj(1 + \rho j(r
2
j  - \mu j)),(22)

for j = 1, . . . ,N , where x and y represent Cartesian coordinates, r2j = (x2j + y2j ), N = 10,
K = 1.2 is the coupling strength, and u(t) is an input common to each oscillator. Additional
model parameters are \sigma = 0.1, \mu j = - 4 + 2j/9, and \rho j = 0.4 - j/30. The individual elements
in the model are similar to the radial isochron clock from [65]; in the absence of coupling a
stable limit cycle results from a Hopf bifurcation when \mu j > 0. Here \mu j < 0 for all oscillators
so that a stable fixed point results in this model at xj = yj = 0 for all j when u(t) is held at 0.

Linearizing (22) about its fixed point gives 10 pairs of complex-conjugate eigenvalues. The
associated oscillatory modes have natural frequencies ranging between 1.23 and 2.57 rad/s.
Of particular interest is the eigenvalue pair \lambda 1,2 = - 0.01\pm 1.49i which has a slow decay rate
relative to the next slowest decaying eigenvalue pair \lambda 3,4 = - 0.25\pm 1.23i. This eigenvalue pair
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480 DAN WILSON AND KAI SUN

Figure 3. Forced response for the coupled oscillator model from (22) in response to sinusoidal input with
frequency \omega = 1.6 (panels A, B, and C) and \omega = 1.0 (panels D, E, and F). Panels A and D show traces of xi
in response to the forcing in panels B and E, respectively, starting from steady state. Panels C and F show the
steady state response with different colors indicating the forced steady state orbit for each oscillator and dots
give each oscillator's location at a snapshot in time.

\lambda 1,2 causes a resonant peak for input frequencies near 1.5 rad/s; Figure 3 shows the forced
response (panels A and D) resulting from two different sinusoidal inputs (panels B and E).
Panels C and F give a representation for the steady state dynamics in response to periodic
input 0.07 sin(\omega t) taking \omega = 1.6 and 1.0, respectively. Orbits of different colors trace out the
steady state solution for each oscillator and the dots provide a snapshot of each oscillator's
relative position at a moment in time.

Ultimately, the forced response peak is not well captured by linear systems theory as
illustrated in the results to follow. Taking the output of the system (22) to be \=x= 1

N

\sum N
1 xi,

the system (22) is linearized about its stable fixed point, and the resulting transfer function
is used to predict the steady state response to sinusoidal inputs of various magnitude. Here,
the amplitude is defined as max(\=x) - min(\=x) over one period in steady state in response to
sinusoidal forcing u(t) = a sin(\omega t). As shown in panel B of Figure 4, the linearized model does
not accurately capture the forced response near resonance. Indeed, taking a = 0.10 predicts
a peak height that is more than 10 times larger than the true forced response (dashed lines).
Additionally, as the amplitude of forcing increases, the resonant peak shifts toward faster
frequencies, a feature that cannot be captured by any linear model.

As an alternative approach, the reduced order modeling strategy described in section 5.5
considers

\.xj = \sigma xj(\mu j  - r2j ) - yj(1 + \rho j(r
2
j  - \mu j)) +

K

N

\sum 
i \not =j

xi + u(t) + \alpha x,j(q, t),

\.yj = \sigma yj(\mu j  - r2j ) + xj(1 + \rho j(r
2
j  - \mu j)) + \alpha y,j(q, t).(23)

Here, when u(t) = 0, the additive inputs \alpha x,j(q, t) \alpha y,j(q, t) for j = 1, . . . ,N are used to define
a reference set of forced periodic orbits \^x\gamma q (t) that are ultimately used to yield a reduced order
model of the form (61). These inputs and associated periodic orbits are computed according
to (30) for q < 0.001 and are computed for larger values of q using the iteration from (56).
The resulting model truncates all Floquet coordinates \psi 3, . . . ,\psi N associated with the faster
decaying modes; as such, the resulting nonlinear model is two-dimensional. Once the terms of
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 481

Figure 4. The steady state response to sinusoidal forcing u(t) = a sin(\omega t) is considered for the coupled
oscillator model from (22). Amplitude is defined as the difference between the maximum and minimum values
of \=x= 1

N

\sum N
1 xi in steady state. Accuracy of the proposed reduced order model of the form (61) is compared to a

linear model obtained by linearizing (22) about its fixed point with results shown in panels A and B, respectively.
The reduced order model truncates all Floquet coordinates \psi 3, . . . ,\psi N so that there are only two dimensions.
The dashed lines show the true steady state response of the full model obtained from simulations of (22).

the phase-amplitude-based representation of the form (61) are computed, the resulting model
can be used to predict the response of (22) to an arbitrary input u(t). Panel A of Figure 4
shows the steady state response of the forced reduced order model, providing a much more
accurate match than the linear model. For the nonlinear reduced order model, the curves are
obtained by identifying periodic solutions of (61) in response to the indicated input.

Figure 5 provides additional information about the resulting reduced order model of the
form (61). For different values of q, panel A shows traces of the orbit of each oscillator for the
forced periodic orbit x\gamma q associated with the input \alpha (q, t). Panel B shows the associated input
\alpha (q, t). In panel A, different colors correspond to the forced periodic orbit of a given oscillator.
In panel B, different colors correspond to the periodic forcing applied to a given oscillator,
i.e., with \alpha x and \alpha y representing the input applied to the x and y coordinates, respectively,
that yields the periodic solution. Note that while the input u(t) from (22) only appears in
the x-coordinate dynamics of each oscillator, the input \alpha (q, t) is applied to both the x and y
coordinates for each oscillator. Black dots in panels A and B provide snapshots of the state
and applied inputs at a given moment in time. The periodic solutions for each oscillator in
panel A of Figure 5 are similar, but not identical, to the orbits that emerge in response to
sinusoidal input as shown in panel C of Figure 3. Large amplitude oscillations are accurately
captured by this single mode for inputs that are near the resonant frequency. Intuitively, this
is possible because the proposed reduction strategy assumes that the contribution from the
nonresonant modes is negligible, which is reasonable here due to the spectral gap between
the slowest decaying eigenvalues (recall the separation between the eigenvalue pair associated
with the slowest decaying linear eigenmode \lambda 1,2 =  - 0.01 \pm 1.49i and the next slowest with
\lambda 3,4 =  - 0.25\pm 1.23i). Panel C of Figure 5 gives the effective unforced oscillation frequency
for the reduced order model of the form (61) for different values of q computed according to
(62). For this model the effective natural frequency grows as the amplitude of the oscillation
increases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

7/
24

 to
 7

6.
23

4.
10

1.
43

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



482 DAN WILSON AND KAI SUN

Figure 5. The coupled oscillator model from (22) is represented in the form (61). Forced periodic orbits for
different values of the amplitude-like variable q are shown in panel A with different colors corresponding to the
orbits of different oscillators. The applied input \alpha (q, t) is represented in panel B for different values of q. The
different colored traces correspond to the input applied to each oscillator over a single oscillation. Black dots
provide snapshots of the state and applied input at a single moment in time for the periodic orbit. Panel C
illustrates that the effective natural frequency computed according to (62) increases with oscillation amplitude.

4.3. Power system model. Finally, we consider a mathematical model of a power system
comprised of ordinary differential equations for synchronous generators, controllers, and other
dynamic devices and algebraic equations on the power network. The classical m-generator
system model (24) is used here, in which the ith generator is represented by its swing equations
including two first-order differential equations respectively on its rotor angle \delta i (in radians)
and rotor speed \omega i (in radians per second), and an additional equation that couples its electric
power output Pe,i with the rotor angles of all other networked generators:

\.\omega i =
\omega 0

2Hi

\biggl( 
Pm,i  - Di

\omega i  - \omega 0

\omega 0
 - Pe,i

\biggr) 
,

\.\delta i = \omega i  - \omega 0,(24)

Pe,i =E2
iGii +

m\sum 
j=1,j \not =i

EiEj(Gij cos(\delta i  - \delta j) +Bij sin(\delta i  - \delta j)), 1\leq i\leq m.

Above, \omega 0 is the system's synchronous speed. Other parameters on the ith generator include
its mechanical power input Pm,i from the turbine, which is considered constant, inertial time
constant Hi, damping coefficient Di, and electromotive force Ei treated as a constant under
the excitation control. All branches and loads of the power network are equivalenced by
constant admittances such as Gij + jBij between two generators and conductances to the
ground such as Gii. Further details about the model and its parameters are given in [1]. Here
we consider the 3-generator power system model with m = 3 in [1], which is the so-called
IEEE 3-generator 9-bus test system.

As a preliminary step in the analysis, the dynamics of (24) are considered in reference to
angle \delta 1 defining \phi 12 = \delta 1  - \delta 2 and \phi 13 = \delta 1  - \delta 2. The dynamics of the phase differences are
given by

(25) \.\phi 1j = \omega 1  - \omega j
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 483

for j = 2,3. The rotor speed equations can be written as a function of \phi 12 and \phi 13,
yielding a five-dimensional model with a stable fixed point at

\bigl[ 
\phi 12 \phi 13 \omega 1 \omega 2 \omega 3

\bigr] 
=\bigl[ 

 - 0.30  - 0.19 0 0 0
\bigr] 
. In steady state, the rotors are phase cohesive with identical fre-

quencies and slight differences between their phases. The eigenvalues associated with this fixed
point are \lambda 1,2 = - 0.25\pm 8.69i, \lambda 3,4 = - 0.25\pm 13.36i, and \lambda 5 = - 0.5. The first four eigenvalues
correspond to oscillatory eigenmodes with frequencies of 1.38 and 2.12Hz. The slow and fast
oscillatory modes will be referred to as mode 1 and mode 2, respectively. Individually, these
modes are used to obtain two different reduced order models of the form (61) following the
proposed strategy summarized in section 5.5. In each case, the additive inputs and reference
orbits are computed using (30) for small values of the amplitude-like parameter q; for larger
values of q the iteration from (56) is used.

The first (resp., second) model can accommodate large amplitude, nonlinear mode 1 (resp.,
mode 2) oscillations. Two-dimensional projections of the associated periodic orbits for dif-
ferent values of the amplitude-like parameter q are shown in panel A (resp., C) of Figure 6
with effective frequencies shown in panel B (resp., D) computed according to (62). It is not
possible to continue the periodic orbits beyond the limits shown in panels A and C of Figure 6;
beyond this point their Floquet multipliers transition from complex-conjugate to real-valued
so that the iteration from (57) (which is implemented as part of step 7 of the procedure from
section 5.5) cannot be continued. Note that much like for the simple pendulum example from
section 4.1, this limit coincides with a qualitative change in the collective behavior of the
model (24) transitioning to regions of phase space that do not yield oscillatory dynamics.

Each of the models described in Figure 6 can accommodate large oscillations associated
with a single nonlinear mode. The variables \theta and q in (61) capture oscillations of the dominant
mode. Oscillations associated with the other mode are captured using complex-conjugate Flo-
quet coordinates \psi 3 and \psi 4 which are assumed to be of small magnitude. Figure 7 illustrates
the accuracy of the resulting reduced order models in relation to this assumption. Panels A, B,
and C show nonlinear mode 1 oscillations with varying contributions from mode 2 (quantified
by the value of \psi 3 at t = 0). When \psi 3 = 0, the reduced order simulation of the model (61)
(blue line) gives results that are indistinguishable from those from the full order simulation of
(24) (dashed line). As the contribution from mode 2 (and hence the magnitude of the initial
value of \psi 3) increases, the error between the full order and reduced order models increases.
For comparison, simulation results are also provided for a model obtained by linearizing the
dynamics about the stable fixed point (red lines); the oscillations considered here are clearly
beyond the regime for which linearization provides an accurate representation for the system
dynamics. Panel D shows the 2-norm of the error associated with the variables \phi 12 and \phi 23
for the phase-amplitude model for different initial values of \psi 3. Panels E, F, and G, provide
analogous results to panels A, B, and C, except when considering nonlinear mode 2 oscilla-
tions and requiring the mode 1 oscillations to be small. Likewise, panel H shows the resulting
error between the phase-amplitude and full order models for differing contributions from the
nondominant mode.

The method from section 5.6 is also applied to simultaneously consider two nonlinear
oscillation modes. Here, mode 1 (i.e., the slow oscillation mode stemming from the eigen-
values \lambda 1,2 =  - 0.25\pm 8.69i) is used to define periodic orbits x\gamma q1,0,0(t) with associated inputs
\alpha (q1,0,0) as described in section 5.6. A 3-parameter family of orbits is defined iteratively using
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484 DAN WILSON AND KAI SUN

Figure 6. Two-dimensional projections of the forced periodic orbits associated with slower and faster non-
linear oscillations (mode 1 and mode 2, respectively) are shown in panels A and C. For small values of the
amplitude-like parameter q, these are nearly identical to linear oscillations governed by their respective ei-
genvalues and eigenvectors. Larger amplitude modes associated with larger values of q cannot be accurately
represented as linear oscillations. Panels B and D show the effective frequencies computed according to (62)
for each oscillation mode as a function of q. For each mode, the effective frequency decreases as the oscillation
magnitude increases.

(67)--(70). For the implementation of this strategy, g3 corresponds to the Floquet eigenfunc-
tion associated with mode 2 (i.e., the fast oscillation mode stemming from the eigenvalues
\lambda 3,4 =  - 0.25 \pm 13.36i). This information is used to define a model of the form (75) that
contains one phase coordinate and three amplitude-like coordinates q1, q2, and q3, and no
additional Floquet coordinates for a total of four dimensions. This model can consider oscil-
lations with large contributions from both mode 1 and mode 2. By contrast, models of the
form (61) that were used to obtain results in Figure 7 can only accurately consider nonlinear
oscillations with large magnitude contributions from either mode 1 or mode 2, but not both.
Results in Figure 8 highlight this distinction. The two-nonlinear-mode model is simulated
using an initial condition

\bigl[ 
\theta p1 p2 p3

\bigr] 
=

\bigl[ 
0 5.1 2.1  - 2.1

\bigr] 
that corresponds to a state

that yields oscillations with moderate contributions from both mode 1 and mode 2. In panel
A of Figure 8, output from the two-nonlinear-mode model (blue line) is compared to the
output from the true model (dashed line) with results that are nearly indistinguishable. A
comparable initial condition is used in a simulation of the one-nonlinear-mode model (i.e., the
same model from panels A--D of Figure 7 with results shown in green; this model is not able to
accurately accommodate the contribution from both modes. For reference, simulation results
when using a model obtained from linearization of the stable fixed point, which performs
worse than the other two models, are shown in red. Panel E shows the 2-norm of the error
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 485

Figure 7. Panels A, B, and C (resp., E, F, and G) show dominant nonlinear oscillations from mode 1
(resp., mode 2) with varying contributions from the nondominant mode. The magnitude of q correlates with
the amplitude of the dominant nonlinear mode and the magnitude of \psi 3 correlates with amplitude of the non-
dominant mode. Initial conditions indicated on each panel are chosen to highlight the effect of increasing the
nondominant mode, i.e., by taking \psi 3 to be larger. Simulation results from a linear model are also provided,
obtained by linearizing about the stable fixed point, to demonstrate that this state is beyond the regime for
which linearization is accurate. Panels D and H show the 2-norm of the error between the phase differences for
the proposed phase-amplitude model (61) and the true model (24) for different initial values of \psi 3. When the
nondominant mode is small, the prediction accuracy is nearly flawless. As the nondominant mode grows, the
accuracy suffers.

between the phase differences for each of the models considered. The results presented here
are qualitatively similar when considering other initial conditions.

5. Technical details underlying implementation of the proposed technique for defining
nonlinear oscillatory modes. The implementation of the proposed model order reduction
approach requires the determination of an appropriate choice for the external forcing, \alpha (q, t),
adaptive parameter set, q, parameter update function, Gq, and phase correction, f\theta , in (19).
Here we present technical details underlying the implementation of this strategy.

5.1. Construction of appropriate trajectories for a single nonlinear oscillation mode
near the fixed point. The analysis and derivations to follow in sections 5.1--5.3 consider a
1-parameter family of periodic orbits, i.e., taking q \in \BbbR 1, in the consideration of a single
nonlinear oscillation mode. If additional nonlinear modes are considered, an M -parameter
family of solutions must be considered with M > 1. This situation is discussed in section 5.6.

To begin, suppose that when u= \alpha = 0 in (13), a fixed point x0 exists for which F (x0,0) = 0
with solutions given by the eigendecomposition from (3). Let (\lambda 1, v1) and (\lambda 2, v2) be a simple
complex-conjugate eigenvalue/eigenvector pair associated with a single oscillatory linear mode.
For simplicity, it will be assumed the eigenvalues are chosen so that Imag(\lambda 1) > 0. The
associated eigenvectors will be normalized so that | | v1| | 2 = | | v2| | 2 = 1, where | | \cdot | | 2 is the
2-norm. Note that this still leaves one additional degree of freedom since v1 exp(i\phi ), where
i=

\surd 
 - 1 is still an eigenvector for any \phi \in \BbbR . To fully specify v1 we will require arg(e

\top 
j v1) = - \pi ,
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486 DAN WILSON AND KAI SUN

Figure 8. Reduced order simulations of (24) considering two nonlinear oscillatory modes. For an initial
condition asssociated with moderate contributions from both mode 1 and mode 2, a trace of \phi 13 is shown in
panel A for the two-nonlinear-mode model (75) and compared to outputs from the true model (blue line and
dashed line, respectively). Comparable simulations of a one-nonlinear-mode model of the form (61) and a model
obtained through local linearization of (24) about its fixed point are shown with green and red lines, respectively.
Panel E shows the 2-norm of the error between the phase differences for each of the models considered.

where ej is the jth element of the standard unit basis, arg(\cdot ) is the argument of the complex
number, and j can be chosen arbitrarily. Note that other normalizations are also possible.

To proceed, let w1 and w2 be left eigenvectors associated with right eigenvectors v1 and
v2, normalized so that w\top 

1 v1 = w\top 
2 v2 = 1. Defining \mu i(t) = w\top 

i (x(t)  - x0) in a hyperplane
orthogonal to the eigenvectors v3, . . . , vN , solutions take the form

(26) x(t) = x0 +

2\sum 
j=1

\mu j(0)vj exp(\lambda jt).

For simplicity, here it will be assumed that \mu j(0)\in \BbbR . To implement the proposed approach,
when u = 0 and in the limit that \alpha (q, t) is small, we will seek external forcing \alpha (q, t) that
traces out level sets of \mu 1, i.e., with periodic solutions of (13) taking the form

(27) x(t) = x0 +

2\sum 
j=1

\mu j(0)vj exp(i[Imag(\lambda j) +\Delta \omega sign(Imag(\lambda j))]t).

In the implementation of the proposed strategy, the period of this orbit can be chosen
freely within specified limits. Here, one can choose the parameter \Delta \omega \not = 0 in the range
 - Imag(\lambda 1)/3<\Delta \omega < Imag(\lambda 1). The reason for this limitation is discussed at the end of this
subsection. Next, considering (13) taking u = 0 but \alpha (t) \not = 0, solutions of the form (27) can
be obtained by solving
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 487

F (x0,0)+
\partial F

\partial x
(x(t) - x0) + \alpha (t) +O(| | x - x0| | 2) =

dx

dt

=

2\sum 
j=1

\mu j(0)vji[Imag(\lambda j)+\Delta \omega sign(Imag(\lambda j))] exp(i[Imag(\lambda j)+\Delta \omega sign(Imag(\lambda j))]t),(28)

where the left-hand side is an approximation of (13) for small values of x - x0 and the right-
hand side is obtained from direct differentiation of (27). Solving (28) for \alpha (t) and simplifying
yields

\alpha (t) = - 2\mu 1(0)Real(\lambda 1)
\Bigl[ 
Real(v1) cos((Imag(\lambda 1) +\Delta \omega )t)

 - Imag(v1) sin((Imag(\lambda 1) +\Delta \omega )t)
\Bigr] 

 - 2\Delta \omega \mu 1(0)
\Bigl[ 
Imag(v1) cos((Imag(\lambda 1) +\Delta \omega )t)

+Real(v1) sin((Imag(\lambda 1) +\Delta \omega )t)
\Bigr] 
+O(| | x - x0| | 2).(29)

These forced periodic orbits can be used to define a family of periodic orbits for use with the
adaptive phase-amplitude reduction from (19) in the weak forcing limit. To this end letting
q= \mu 1(0) =O(\epsilon ) where 0< \epsilon \ll 1, take

\^x\gamma q (t) = x0 +

2\sum 
j=1

qvj exp(i[Imag(\lambda j) +\Delta \omega sign(Imag(\lambda j))]t)

= x0 + 2q
\Bigl[ 
Real(v1) cos((Imag(\lambda 1) +\Delta \omega )t) - Imag(v1) sin((Imag(\lambda 1) +\Delta \omega )t)

\Bigr] 
,

\alpha (q, t) =

2\sum 
j=1

q
\Bigl[ 
 - Real(\lambda j) + isign(Imag(\lambda j))\Delta \omega 

\Bigr] 
vj exp(i(Imag(\lambda j) + sign(Imag(\lambda j)))t)

= - 2qReal(\lambda 1)
\Bigl[ 
Real(v1) cos((Imag(\lambda 1) +\Delta \omega )t) - Imag(v1) sin((Imag(\lambda 1) +\Delta \omega )t)

\Bigr] 
 - 2\Delta \omega q

\Bigl[ 
Imag(v1) cos((Imag(\lambda 1) +\Delta \omega )t) +Real(v1) sin((Imag(\lambda 1) +\Delta \omega )t)

\Bigr] 
.(30)

The application of the input \alpha (q, t) mandated by (30) yields a periodic orbit \^x\gamma q (t) with period
T = 2\pi /(Imag(\lambda 1)+\Delta \omega ). This orbit can be written in the form (15) and subsequently analyzed
according to a greatly simplified version of the phase-amplitude reduction (19). To illustrate
this, consider that the Jacobian associated with the periodic orbit (15) can be written as

J(t) =

\biggl[ 
J0

\partial \alpha 
\partial s

0 0

\biggr] 
+ \epsilon P (t) +O(\epsilon 2),(31)

where J0 is the Jacobian of F evaluated at x= x0 and u= 0, the zeros in (31) are appropri-
ately sized vectors, \partial \alpha 

\partial s is evaluated at s = \omega t, and P (t) is comprised of second order partial
derivatives of F . With (31) in mind, considering the periodic orbit of the form (15), letting
\Delta y= y - \^y\gamma q (t), nearby solutions evolve to leading order according to

(32) \Delta \.y=

\biggl[ 
J0

\partial \alpha 
\partial s

0 0

\biggr] 
\Delta y+ \epsilon P (t)\Delta y.
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488 DAN WILSON AND KAI SUN

Solutions of (32) can be used to obtain Floquet eigenfunctions and Floquet eigenvalues as-
sociated with the periodic orbit \^y\gamma q (t). Note that (32) is a linear time varying system with
period T = 2\pi /(Imag(\lambda 1) +\Delta \omega ). The monodromy matrix \Phi , i.e., that yields the relationship
\Delta y(T ) =\Phi \Delta y(0), can be approximated to leading order \epsilon as

\Phi =

\biggl[ 
exp(J0T ) X

0 1

\biggr] 
+O(\epsilon )

=\Phi 0 +O(\epsilon ),(33)

where exp(\cdot ) denotes the matrix exponential, X \in \BbbR N , and \Phi 0 is comprised of the O(1) terms
of \Phi . Above, the first line is obtained by exploiting the block triangular structure of the O(1)
terms.

Eigenvalues and corresponding left and right eigenvectors of \Phi (denoted by \lambda \Phi j , w
\Phi 
j , and

v\Phi j , respectively) determine the Floquet multipliers and Floquet eigenfunctions, respectively,

associated with the periodic orbit from (15). Note here that the notation (\lambda \Phi j , v
\Phi 
j ) is used

to denote the eigenvalue and eigenvector pair of the monondromy matrix \Phi ; this is different
from an eigenvalue and eigenvector pair of J0 which is denoted by (\lambda j , vj). As discussed
in Appendix B, provided \lambda \Phi 0

j is simple, O(\epsilon ) perturbations to \Phi 0 will yield O(\epsilon ) shifts to
the resulting eigenvalues and eigenvectors. Thus, to leading order \epsilon , Floquet multipliers and
Floquet eigenfunctions can be obtained by considering the eigenvalues and eigenvectors of \Phi 0.
For any eigenvalue, right eigenvector, and left eigenvector triple (\lambda j , vj ,wj) of J0

(34) v\Phi 0

j =

\biggl[ 
vj
0

\biggr] 
,

is a right eigenvector of \Phi 0 with eigenvalue \lambda \Phi 0

j = exp(\lambda jT ). One can also verify that

(35) w\Phi 0

j =

\biggl[ 
wj

X\top wj/(exp(\lambda jT ) - 1)

\biggr] 
is an eigenvector of \Phi \top 

0 with eigenvalue \lambda \Phi 0

j = exp(\lambda jT ) and, hence, is the corresponding left
eigenvector of \Phi 0. With this in mind, the corresponding Floquet exponent associated with
the periodic orbit from (15) is

\kappa j =
log(exp(\lambda jT ))

T
+O(\epsilon )

=
log | exp(\lambda jT )| 

T
+ i

arg(exp(\lambda jT ))

T
+O(\epsilon )

=Real(\lambda j) + i
arg(exp(iImag(\lambda j)T ))

T
+O(\epsilon )

=Real(\lambda j) + iImag(\lambda j) - 
2\pi im

T
+O(\epsilon ).(36)

Above, note that exp(a+ bi) = exp(a+ bi+ 2k\pi i) for any integer value of k. As such, (36)
mandates that the imaginary component of log(exp(\lambda jT )) is always in the interval ( - \pi ,\pi ]. As
such the value of m must be chosen appropriately in the final line for each Floquet exponent.
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 489

Also notice that because of the constraints on \Delta \omega given below (27), m= 1 when considering
\kappa 1; this point will become important momentarily. Associated Floquet eigenfunctions can be
obtained by finding periodic solutions of (A3). Toward this end, considering the Jacobian
from (31) to leading order \epsilon (A3) becomes

(37) \.\^gj =

\biggl( \biggl[ 
J0

\partial \alpha 
\partial s

0 0

\biggr] 
 - \kappa jId

\biggr) 
\^gj +O(\epsilon ).

To leading order \epsilon , initial conditions that produce periodic solutions to (37) are given by
the right eigenvectors of \Phi which were given in (34). With this in mind, notice that for any

\^gj \propto 
\bigl[ 
v\top j 0

\bigr] \top 
, (37) simplifies to

\.\^gj = \^gj(\lambda j  - \kappa j) +O(\epsilon )

= \^gj(Imag(\lambda j) - Imag(\kappa j))i+O(\epsilon )

= \^gj2\pi im/T +O(\epsilon )

= \^gj(Imag(\lambda 1) +\Delta \omega )im+O(\epsilon ),(38)

where m is an integer. Above, the third line is obtained by substituting the final line of (36)
and the fourth line is obtained by noting that T = 2\pi /(Imag(\lambda 1) + \Delta \omega ). Considering (38),

to leading order \epsilon , if gj is proportional to
\bigl[ 
v\top j 0

\bigr] \top 
at time t = 0, it remains proportional

on timescales of order 1/\epsilon . As such, integrating (38) over one period ultimately yields the
solution

(39) \^gj(t) =

\biggl[ 
vj
0

\biggr] 
exp((Imag(\lambda 1) +\Delta \omega )imt) +O(\epsilon ).

The gradient of the Floquet coordinates can be obtained by finding solutions of (A2). To
leading order \epsilon , this equation is given by

(40)
\.\^Ij = - 

\biggl( \Biggl[ 
J\top 
0 0

\partial \alpha 
\partial s

\top 
0

\Biggr] 
 - \kappa jId

\biggr) 
\^Ij +O(\epsilon ).

Similar to how solutions \^gj were obtained, using the left eigenvector obtained from (35) as an
initial condition one can show that (40) along solutions can be written as

(41)
\.\^Ij =

\Biggl[ 
 - \^Ij,1(Imag(\lambda 1) +\Delta \omega )im

 - (\partial \alpha \partial s
\top \^Ij,1  - \kappa j \^Ij,2)

\Biggr] 
+O(\epsilon ),

where \^Ij,1(t) \in \BbbC N are the first N elements of \^Ij(t) and \^Ij,2(t) \in \BbbC is the last element. As
such, solutions of (40) have the following form:

(42) \^Ij(t) =

\biggl[ 
wj exp( - (Imag(\lambda 1) +\Delta \omega )imt)

\rho j(t)

\biggr] 
+O(\epsilon ),

where \rho j(t)\in \BbbC is periodic. Further simplification for \rho 1(t) from (42) is possible by considering
the constraint (A5) from Appendix A. With a change of variables \theta = \omega t, this constraint
becomes

(43) \^I\top 1 (t)
\partial \^y\gamma q
\partial t

= 0.
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490 DAN WILSON AND KAI SUN

The term \partial y\gamma q /\partial t can be obtained from direct differentiation of (30); substituting into (43)
one finds

0 = \^I\top 1 (t)
\partial y\gamma 

\partial t
=
\bigl[ 
w\top 
1 exp( - (Imag(\lambda 1) +\Delta \omega )it) \rho 1(t)

\bigr] 
\times 
\biggl[ \sum 2

j=1 qi(Imag(\lambda j) + sign(Imag(\lambda j))\Delta \omega )vj exp((Imag(\lambda j) + sign(Imag(\lambda j))\Delta \omega )it)

\omega 

\biggr] 

= qi(Imag(\lambda 1) +\Delta \omega ) + \omega \rho 1(t).
(44)

In the second line above, m= 1 for \^I1 as mentioned directly below (36), yielding the simplifi-
cation in the final line. Recalling that \omega = Imag(\lambda 1) +\Delta \omega , ultimately, one finds \rho 1(t) =  - qi
so that

(45) \^I1(t) =

\biggl[ 
w1 exp( - (Imag(\lambda 1) +\Delta \omega )it)

 - qi

\biggr] 
+O(\epsilon ).

In the context of the preceding analysis, to further explain the term \Delta \omega as introduced
in (27), recall that the results (36), (39), and (42) require the associated eigenvalues of
\Phi 0 to be simple. In particular, to analyze nonlinear oscillations stemming from the eigen-
value/eigenvector pair (\lambda 1, v1), we will use (36), (39), and (42), making it necessary for \lambda \Phi 0

1

to be simple. From below (34), one finds that \lambda \Phi 0

1 = exp(\lambda 1T ) where T = 2\pi /(imag(\lambda 1)+\Delta \omega )
with \lambda \Phi 0

2 being its complex-conjugate. These eigenvalues are not identical provided that
imag(\lambda 1T ) is not an integer multiple of \pi . Furthermore, (45) takes m= 1 as defined in (36),
necessitating the upper and lower bounds on \Delta \omega .

5.2. Adaptive phase-amplitude reduction for an oscillatory mode near a fixed point.
Considering the derivations for the input \alpha (q, t) and the gradient of the Floquet coordinates
\^Ij(t) from section 5.1, the adaptive reduction from (19) admits substantial simplifications.
Note that in (30), (39), and (45), \theta = 2\pi 

T t = \omega t along trajectories. As such, one can use the
substitution t= \theta /\omega when considering phase coordinates. For the purposes of this subsection,
it will be assumed that the adaptive parameter, q, is an O(\epsilon ) term. The dynamics of \psi 1 as
mandated by (19) are

\.\psi 1 = \kappa 1(q)\psi 1 + I\top 1,1(\theta , q)Ue + I1,2(\theta , q)f\theta +E1(\theta , q) \.q

= \kappa 1(q)\psi 1 + exp( - i\theta )w\top 
1 Ue  - qif\theta +E1(\theta , q) \.q,(46)

where I1,1(\theta , q) and I1,2(\theta , q) are the first and last components of I1(\theta , q). In the second line,
the relation from (45) is used, and the terms are written as functions of \theta using the coordinate
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 491

transformation \theta = \omega t where \omega = (Imag(\lambda 1) + \Delta \omega ). Recall that Ue was defined in (17). As
discussed in Appendix A, E1(\theta , q) can be computed according to

E1(\theta , q) = - I\top 1 (\theta , q)
\partial y\gamma 

\partial q

= - 
\biggl[ 
w1 exp( - i\theta )

 - qi

\biggr] \top \biggl[ \sum 2
j=1 vj exp(( - 1)j+1i\theta )

0

\biggr] 
= - 1,(47)

where the second line is obtained using I1(\theta , q) = \^I1(\theta /\omega , q) with \^I1 obtained from (45) and
using (30) to obtain \partial y\gamma /\partial q as defined in Appendix A. Recall that s = \theta on the limit cycle;
here, since s does not depend on q, the last element of \partial y

\gamma 

\partial q is equal to zero. In (46), \.q and f\theta 
can be chosen arbitrarily. Specifically taking these terms to be

\.q=Real(exp( - i\theta )w\top 
1 )Ue,

f\theta =
Imag(exp( - i\theta )w\top 

1 )Ue
q

(48)

yields

(49) \.\psi 1 = \kappa 1(q)\psi 1.

Recalling from (36) that Real(\kappa j(q)) =Real(\lambda j)+O(\epsilon ) when q is an order \epsilon term, Real(\kappa j(q))<
0 for q small enough so that limt\rightarrow \infty \psi 1 = 0 and the dynamics of both \psi 1 and \psi 2 =\psi \ast 

1 can be
ignored. Taken together, the adaptive reduction from (19) becomes

\.\theta = \omega (q) +
Imag(exp( - i\theta )w\top 

1 )Ue
q

,

\.q=Real(exp( - i\theta )w\top 
1 )Ue,

\.\psi j = \kappa j(q)\psi j + I\top j,1(\theta , q)Ue + Ij,2(\theta , q)f\theta +Ej(\theta , q) \.q,

j = 3, . . . , \beta .(50)

Once again, Floquet coordinates \psi j are ignored if the corresponding value of Real(\kappa j(q)) is
negative and large in magnitude so that transients decay rapidly.

It is worthwhile to consider the dynamics of (50) in the unperturbed setting, i.e., when u=
0. In this case, Ue = - \alpha (q, \theta /\omega ), which can be obtained from (30) after substituting \theta = \omega t=
(Imag(\lambda 1)+\Delta \omega )t. Directly multiplying these terms together and simplifying (with help from
the fact that w\top 

1 v1 = 1 and w\top 
1 v

\ast 
1 = 0 so that Real(w\top 

1 )Real(v1) = 0.5, Imag(w\top 
1 )Imag(v1) =

 - 0.5, Real(w\top 
1 )Imag(v1) = 0, and Imag(w\top 

1 )Real(v1) = 0) one finds that when u = 0, the \theta 
and q dynamics of (50) simplify to

\.\theta = Imag(\lambda 1),

\.q= qReal(\lambda 1).(51)

Note that the representation from (51) gives dynamics that are identical to those of an action-
angle coordinate system (see, for instance, [26]) that are valid for a linear system with a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

7/
24

 to
 7

6.
23

4.
10

1.
43

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



492 DAN WILSON AND KAI SUN

complex eigenvalue. Note that the results from sections 5.1 and 5.2 are valid when q =O(\epsilon ),
i.e., when the state is close enough to the underlying fixed point so that the dynamics can
be represented according to a local linearization. As illustrated in the following sections,
however, it is possible to extend this strategy to consider nonlinear oscillations far beyond a
close neighborhood of the stable fixed point.

5.3. Extension for nonlinear oscillations far beyond the stable fixed point. Sections 5.1
and 5.2 consider the construction of appropriate trajectories for the adaptive reduction for
locations close to the fixed point. This strategy can be readily extended to consider trajectories
far beyond the fixed point. To do so, first consider a general periodic orbit \^y\gamma q0(t) of (14) that
results when u = 0 with q0 \in \BbbR being an O(\epsilon ) term. Recall that this is a forced periodic
orbit with \alpha (q0, t) of the form given in (30). As in section (5.1), we let \^g1(t) and \^g2(t) be
Floquet eigenmodes associated with the Floquet exponents \kappa 1 and \kappa 2 as given in (39) and
(36), respectively. One can define an adjacent periodic orbit

\^y\gamma q0+\Delta q(t) = \^y\gamma q0(t) +

2\sum 
j=1

\Delta q\^gj(t)

= \^y\gamma q0(t) + 2\Delta qReal(\^g1(t)),(52)

where \Delta q is also an O(\epsilon ) term and the simplification in the second line results from the fact
that \^g1(t) = \^g\ast 2(t). Next, we seek external forcing \alpha (q0 + \Delta q, t) = \alpha (q0, t) + \Delta \alpha (q0, t) that
admits the periodic orbit mandated by (52). To proceed, taking the time derivative of (52)
yields

(53) \.\^y\gamma q0+\Delta q(t) =
d

dt

\biggl[ 
\^x\gamma q0+\Delta q(t)

mod(\omega t,2\pi )

\biggr] 
= \.\^y\gamma q0(t) +

2\sum 
j=1

\Delta q \.\^gj(t).

Likewise, along this new periodic orbit, by considering the x dynamics of the underlying model
(14) one also finds

\.\^x\gamma q0+\Delta q(t) = F (\^x\gamma q0+\Delta q(t),0) + \alpha (q0, t) +\Delta \alpha (q0, t)

= F (\^x\gamma q0(t),0) +
\partial F

\partial x

\left(  2\sum 
j=1

\Delta q\^gj,1(t)

\right)  + \alpha (q0, t) +\Delta \alpha (q0, t) +O(\epsilon 2).(54)

In the above equation, the partial derivatives are evaluated at \^x\gamma q0(t), and \^gj,1(t) \in \BbbC N corre-
sponds to the first N elements of gj . Combining equations (54) and the first N terms of (53),
noting that \.\^x\gamma q0(t) = F (\^x\gamma q0(t),0) + \alpha (q0, t) one finds

\Delta \alpha (q0, t) =

2\sum 
j=1

\Delta q \.\^gj,1(t) - 
\partial F

\partial x

\left(  2\sum 
j=1

\Delta q\^gj,1(t)

\right)  +O(\epsilon 2)

= 2\Delta qReal( \.\^g1,1(t)) - 2\Delta q
\partial F

\partial x
Real(\^g1,1(t)) +O(\epsilon 2),(55)

where the second line can be obtained by noting that \^g1(t) = \^g\ast 1(t). As such, choosing
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 493

(56) \alpha (q0 +\Delta q, t) = \alpha (q0, t) + 2\Delta qReal( \.\^g1,1(t)) - 2\Delta q
\partial F

\partial x
Real(\^g1,1(t))

yields the periodic orbit mandated by (52) to leading order \epsilon .
One can verify that to leading order \epsilon , (55) and (56) yield the same results as given in

(30) (recalling that q0 and \Delta q are both O(\epsilon ) terms). Nonetheless, these definitions provide a
strategy for extending the proposed method beyond the linear regime. To this end, suppose
that an orbit \^x\gamma q0+k\Delta q has already been obtained with associated input \alpha (q0 + k\Delta q, t) where

k \in \BbbN . Both of the terms \^Ij(t, q0+k\Delta q) and \^gj(t, q0+k\Delta q) can be obtained from (A2) and (A3),
respectively. Here, we note that q0+ k\Delta q is no longer constrained to be an O(\epsilon ) term so that
\^gj and \^Ij are now functions of both t and q. Each \^gj(t, q) must be normalized appropriately so
that \^g(t, q) is continuous; recall that the eigenvectors v1 and v2 defined above (26) are scaled
so that | | v1| | 2 = | | v2| | 2 = 1, v1 = v\ast 2, and arg(e\top j v1) =  - \pi , where ej is the jth element of an
appropriately sized standard unit basis and j can be chosen arbitrarily. In order to match the
scaling on \^g1(t, q) and \^g2(t, q) resulting from (39), we require that | | \^g1(0, q)| | 2 = | | \^g2(0, q)| | 2 = 1,
\^g1(0, q) = \^g\ast 2(0, q), and arg(e\top j \^g1(0, q)) = - \pi for all q. Subsequently, a new periodic orbit and
associated external input can be defined according to

\^x\gamma q0+(k+1)\Delta q(t) = \^x\gamma q0+k\Delta q(t) +\Delta q

2\sum 
j=1

\^gj,1(t, q0 + k\Delta q),

\alpha (q0 + (k+ 1)\Delta q, t) = \alpha (q0 + k\Delta q, t) + 2\Delta qReal( \.\^g1,1(t, q0 + k\Delta q))

 - 2\Delta q
\partial F

\partial x
Real(\^g1,1(t, q0 + k\Delta q)).(57)

Note that the periodic orbit defined by (57) is accurate to leading order in \Delta q. For the
purposes of practical implementation, in order to avoid compounding these errors at each
iteration it is generally necessary to find the nearby, truly periodic solution, which can be
accomplished, for instance, using a Newton iteration. This process can be repeated to define
a family of periodic orbits that extend beyond the linear regime where a local linearization
would be valid. For this family of periodic orbits, considering the adaptive reduction from
(19), the dynamics of the \psi 1 Floquet coordinate are

(58) \.\psi 1 = \kappa 1(q)\psi 1 + I\top 1,1(\theta , q)Ue + I1,2(\theta , q)f\theta +E1(\theta , q) \.q.

As in section 5.2, considering E1(\theta , q) as discussed in Appendix A, E1(\theta , q) can be computed
according to

E1(\theta , q) = - I\top 1 (\theta , q)
\partial y\gamma 

\partial q

= - I\top 1 (\theta , q)

\biggl( 2\sum 
j=1

gj(\theta , q0 + k\Delta q)

\biggr) 
= - 1,(59)

where the second line is obtained by taking the partial of \partial y\gamma /\partial q from (57); the third line
follows using the relation (A4). Once again, we recall that f\theta and \.q from the adaptive reduction
(19) can be chosen arbitrarily. When taking
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494 DAN WILSON AND KAI SUN

\biggl[ 
\.q
f\theta 

\biggr] 
=

\biggl[ 
1  - Real(I1,2(\theta , q))
0  - Imag(I1,2(\theta , q))

\biggr]  - 1 \biggl[ 
Real(I\top 1,1(\theta , q))Ue
Imag(I\top 1,1(\theta , q))Ue

\biggr] 
,(60)

(58) becomes \.\psi 1 = \kappa 1(q)\psi 1, which tends to zero in the limit as t approaches infinity provided
Real(\kappa j(q)) < 0 for all allowable q. Using (60) to determine \.q and f\theta , the dynamics of
both \psi 1 and \psi 2 = \psi \ast 

1 can be ignored. For the inverse in (60) to exist, it is necessary that
Imag(I1,2(\theta , q)) \not = 0; recall that this is guaranteed in the limit that q is small, as discussed in
section 5.1.

Similar to the result from section 5.2, taking \.q and f\theta as mandated by (60) the adaptive
reduction from (19) becomes

\.\theta = \omega (q) + f\theta ,

\.q=Gq(q, \theta ,Ue),

\.\psi j = \kappa j(q)\psi j + I\top j,1(\theta , q)Ue + Ij,2(\theta , q)f\theta +Ej(\theta , q) \.q,

j = 3, . . . ,N,(61)

where Gq(q, \theta ,Ue) =Real(I\top 1,1(\theta , q))Ue - Real(I1,2(\theta , q))Imag(I\top 1,1(\theta , q))Ue/Imag(I1,2(\theta , q)) and

f\theta =  - Imag(I\top 1,1(\theta , q))Ue/Imag(I1,2(\theta , q)). Recall that Ue was defined in (17). In the limit
that q is small, (61) reduces to (50). The family of periodic orbits defined iteratively by (57)
can be extended to regimes where simple linearization techniques are no longer valid.

In the results to follow, the effective unforced natural frequency, i.e., with \alpha (q, t) = u(t) = 0,
will also be considered. In this case, Ue = - \alpha (q, \theta /\omega (q)) so that

\=\omega (q) =
1

2\pi 

\int 2\pi 

0
[\omega (q) + f\theta ]d\theta 

= \omega (q) +
1

2\pi 

\int 2\pi 

0

\biggl[ 
Imag(I\top 1,1(\theta , q))\alpha (q, \theta /\omega (q))

Imag(I1,2(\theta , q))

\biggr] 
d\theta ,(62)

where f\theta is taken as mandated by (60). We emphasize that when Ue = 0, i.e., when \alpha (q, t)
is applied and u(t) = 0, the frequency is not a function of \theta . Equation (62), however, gives
a representation for the unforced frequency for the full system defined by (1) when \alpha (q, t)
is not applied. Considering the definition from (62) and the result from (51) which is valid
when q=O(\epsilon ) (i.e., when the state is close to the underlying fixed point), \=\omega (q) = Imag(\lambda 1) to
leading order \epsilon when q is an order \epsilon term.

5.4. Considering external forcing with a nonstatic period. The family of periodic orbits
constructed iteratively by (57) all have the same period. In some cases, it may be desirable
to change the natural frequency of a given periodic orbit. To this end, consider the trajectory
\^x\gamma q (t) that provides a T -periodic solution to (13) when applying the T -periodic input \alpha (q, t)
and taking u= 0. Recalling that \omega = 2\pi /T , the periodic orbit \^x\gamma q (

\omega +\Delta \omega 
\omega t), i.e., a periodic orbit

with the same shape but natural frequency \omega +\Delta \omega , can be obtained instead by making an
appropriate change to \alpha (q, t). Toward this goal, substituting the desired periodic orbit into
(13) yields

\.\^x\gamma q

\biggl( 
\omega +\Delta \omega 

\omega 
t

\biggr) \biggl( 
1 +

\Delta \omega 

\omega 

\biggr) 
= F

\biggl( 
\^x\gamma q

\biggl( 
\omega +\Delta \omega 

\omega 
t

\biggr) 
,0

\biggr) 
+ \~\alpha (q, t),(63)
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 495

where \~\alpha is the input which provides a solution to (63). Noting that \.\^x\gamma q = F (\^x\gamma q (t), u)+\alpha (q, t),
taking

(64) \~\alpha (q, t) = \alpha 

\biggl( 
q,

\biggl( 
\omega +\Delta \omega 

\omega 

\biggr) 
t

\biggr) 
+

\Delta \omega 

\omega 
\.\^x\gamma q

\biggl( 
\omega +\Delta \omega 

\omega 
t

\biggr) 
provides a solution for (63) and yields the desired periodic orbit. This shift in the externally
applied forcing can be implemented in conjunction with the iteratively defined periodic orbits
given in (57). Noting that \partial x\gamma /\partial q remains unchanged when the period of a given orbit is
shifted, when considering nonstatic periods the general structure of the adaptive reduction
from (61) remains unchanged.

Changing the period of oscillation according to the strategy above has the general effect of
changing the Floquet exponents associated with the underlying periodic orbit. For instance,
when q=O(\epsilon ), consider a shift in the natural period from T to T +\Delta T that results from the
modification to the external forcing mandated by (64). Despite the shift in period, because the
underlying orbit remains unchanged, comparing to (33), the monodromy matrix associated
with the resulting periodic orbit can be obtained according to

\Phi =

\biggl[ 
exp(J0T ) \~X

0 1

\biggr] 
+O(\epsilon )

= \~\Phi 0 +O(\epsilon ),(65)

where the term \~X above differs fromX in (33) because of the difference in \partial \alpha /\partial s. Nonetheless,
the right eigenvector from (34) is also a right eigenvector of \~\Phi with eigenvalue exp(\lambda j(T+\Delta T )).
Considering the relationship from (36), the corresponding Floquet exponent is

\~\kappa j =
log(exp(\lambda j(T +\Delta T )))

T +\Delta T
+O(\epsilon )

=
log | exp(\lambda j(T +\Delta T ))| 

T +\Delta T
+ i

arg(exp(\lambda j(T +\Delta T )))

T +\Delta T
+O(\epsilon )

=Real(\lambda j) + i
arg(exp(iImag(\lambda j)(T +\Delta T )))

T +\Delta T
+O(\epsilon )

=Real(\lambda j) + i
Imag(\lambda j)(T +\Delta T ) - 2\pi m

T +\Delta T
+O(\epsilon )

= \kappa j +
2\pi mi\Delta T

T 2
+O(\Delta T 2) +O(\epsilon ).(66)

Above, the final line is obtained with a Taylor expansion centered at \Delta T = 0. Note that the
relation (66) is valid only in the limit that q is an O(\epsilon ) term.

5.5. List of steps to implement the proposed model order reduction approach. A list
of steps required to implement the proposed reduced order modeling strategy detailed in
sections 3--5.4 are summarized below:

1. Identify an appropriate fixed point x\mathrm{s}\mathrm{s} of the model (1), i.e., for which F (x\mathrm{s}\mathrm{s},0) = 0.
Identify a complex-conjugate pair of simple eigenvalues and eigenvectors (\lambda 1, v1) and
(\lambda 2, v2) associated with a single oscillatory linear mode. Order the eigenvalues so that
Imag(\lambda 1)> 0.
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496 DAN WILSON AND KAI SUN

2. Normalize v1 and v2 appropriately so that | | v1| | 2 = | | v2| | 2 = 1, v1 = v\ast and arg(e\top j v1) =
 - \pi . Note that alternative normalizations could be used as long as they are used
consistently in the implementation of this strategy.

3. Let T = 2\pi /(Imag(\lambda 1) + \Delta \omega ), where \Delta \omega is a nonzero constant defined below (27).
Also let q0 be a small positive constant. Obtain the T -periodic orbit \^x\gamma q0(t) that
results when applying \alpha (q0, t), both found according to (30). For this initial orbit, q0
must be chosen small enough so the underlying dynamical system is well approximated
by linearization.

4. Considering the autonomous system represented according to (14), compute the terms
g1(\theta , q0) and I1(\theta , q0) for the forced periodic orbit \^y\gamma q0(t) with terms that are com-
puted in the previous step. This can be accomplished by first finding the eigenvalue
\lambda \Phi 0

1 \approx exp(\lambda 1T ) of the monodromy matrix with the associated Floquet exponent \kappa 1(q0)
defined in (36). The term g1(\theta , q0) can be found by finding the periodic solution to
(A3) and normalizing so that | | g1(0, q0)| | 2 = 1, and arg(e\top j g1(0, q0)) =  - \pi for all q
(which matches the normalization given in step 2 above). Subsequently, one can com-
pute I1(\theta , q0) by finding the periodic solution to (A2), normalized as mandated by
(A4).

5. For a small positive constant \Delta q, define an adjacent periodic orbit \^x\gamma q0+\Delta q(t) with
associated input \alpha (q0 +\Delta q, t), both computed according to (57).

6. Use the periodic orbit obtained in step 5 to define the periodic orbit y\gamma q0+\Delta q(t) for the
autonomous system (14). Compute g1(\theta , q0 +\Delta q) and I1(\theta , q0 +\Delta q) for this periodic
orbit with appropriate scaling.

7. Continue to iteratively define adjacent periodic orbits and associated inputs according
to (57). For each newly identified orbit, compute the terms g1(\theta , q) and I1(\theta , q) for
the associated periodic orbits. Note that the Floquet exponent \kappa 1(q) will generally
change slowly as the periodic orbits become farther from the fixed point. The resulting
information is used to define the dynamics governing \theta and q from (61).

We also emphasize a few general notes about the implementation of the proposed strategy
below:

\bullet The dynamics of a Floquet coordinate \psi j for j \geq 3 can generally be ignored if the
associated Floquet exponent \kappa j(q) is negative and large in magnitude for all relevant
q. If a given Floquet coordinate \psi j cannot be ignored, the terms Ij(\theta , q) and gj(\theta , q)
can be computed for each periodic orbit. Note that \kappa j(q) = log(\lambda \Phi j )/T , where \lambda 

\Phi 
j is

an appropriate eigenvalue of the monodromy matrix.
\bullet As mentioned in the main text, when determining \alpha (q + \Delta q, t) that yields the pe-

riodic orbit \^x\gamma q+\Delta q(t), (57) is valid only up to order \Delta q2. In order to prevent these
errors from compounding over multiple iterations (and hence yielding nonperiodic
solutions) it is generally necessary to view each \^x\gamma q+\Delta q(t) computed according to
(57) as a close guess and numerically identify the periodic solution using a Newton
iteration.

\bullet As the value of q increases, it is possible for \lambda \Phi 1 to become a repeated eigenvalue
if Imag(\lambda 1)T becomes a multiple of 2\pi . If this occurs, it is not guaranteed that
the Floquet eigenfunction g1(\theta , q) will remain continuous with respect to q, thereby
precluding the use of the adaptive phase-amplitude reduction. Slight modifications
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 497

to the period using the strategy discussed in section 5.4 can be useful to prevent this
issue. Once \alpha (q, t) and \^x\gamma q+\Delta q(t) are computed for a given value of q, it is possible to
adjust the period of oscillation by adjusting the external input according to (64).

5.6. Considering multiple adaptive parameters for multiple nonlinear oscillation modes.
The analysis provided in sections 5.1--5.3 yields a single adaptive parameter associated with
oscillations of a single nonlinear mode. Multiple oscillatory modes can also be considered
with this formulation, but it is necessary for the magnitudes of associated Floquet coordi-
nates \psi 3, . . . ,\psi N to remain small, i.e., the amplitudes of the other oscillatory modes must be
small. It is relatively straightforward to consider the influence of multiple nonlinear modes
by considering additional adaptive parameters that ultimately yield an n-dimensional family
of periodic orbits with n> 1.

To this end, suppose that a 1-parameter family of periodic orbits \^x\gamma q1(t) and associated
input \alpha (q1, t) valid for q1 \in [0, q1,\mathrm{m}\mathrm{a}\mathrm{x}] has been obtained iteratively according to (57). In order
to accommodate an additional nonlinear mode, one can use this initial set of periodic orbits
to define a 3-parameter family of orbits \^x\gamma q1,q2,q3(t) with an associated 3-parameter family of
inputs \alpha (q1, q2, q3, t). Similar to the strategy discussed in section 5.3, let \^g3(t, q1, q2, q3) and
\^g4(t, q1, q2, q3) be Floquet eigenfunctions that correspond to complex-conjugate Floquet coordi-
nates \psi 3 =\psi \ast 

4, i.e., corresponding to the second oscillatory mode (note that \^g1(t, q1, q2, q3) and
\^g2(t, q1, q2, q3) are still the Floquet eigenfunctions associated with the first oscillatory mode).
Similar to the scaling on \^g1 and \^g2, we require | | \^g3(0, q1, q2, q3)| | 2 = | | \^g4(0, q1, q2, q3)| | 2 = 1,
\^g3(0, q1, q2, q3) = \^g\ast 4(0, q1, q2, q3), and arg(e\top k \^g3(0, q1, q2, q3)) =  - \pi for all q1, q2, q3 where ek is
an appropriately sized element of the standard unit basis with k chosen arbitrarily.

Starting by taking \^x\gamma q1,0,0(t) and \alpha (q1,0,0, t) to be identical to the periodic orbits and
inputs obtained from the iteration defined by (57), for a given value of q1, a second dimension
can be added as follows:

\^x\gamma q1,q2+\Delta q2,0
(t) = \^x\gamma q1,q2,0(t) +\Delta q2

4\sum 
j=3

\^gj,1(t, q1, q2,0),(67)

with corresponding input

\alpha (q1, q2 +\Delta q2,0, t) = \alpha (q1, q2,0, t) +\Delta q2

4\sum 
j=3

\.\^gj,1(t, q1, q2,0) - 
\partial F

\partial x

\left(  4\sum 
j=3

\Delta q2\^gj,1(t, q1, q2,0)

\right)  ,

(68)

for q2 \in [q2,\mathrm{m}\mathrm{i}\mathrm{n}, q2,\mathrm{m}\mathrm{a}\mathrm{x}]. Subsequently, a third dimension can be added taking

(69) \^x\gamma q1,q2,q3+\Delta q3
(t) = \^x\gamma q1,q2,q3(t) + i\Delta q3

4\sum 
j=3

\^gj,1(t, q1, q2, q3),

with corresponding input

\alpha (q1, q2, q3 +\Delta q3, t)=\alpha (q1, q2, q3, t)+i\Delta q3

4\sum 
j=3

\.\^gj,1(t, q1, q2, q3) - 
\partial F

\partial x

\left(  4\sum 
j=3

i\Delta q3\^gj,1(t, q1, q2, q3)

\right)  ,
(70)
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498 DAN WILSON AND KAI SUN

for q3 \in [q3,\mathrm{m}\mathrm{i}\mathrm{n}, q3,\mathrm{m}\mathrm{a}\mathrm{x}]. Note that similar to the periodic orbits and inputs defined iteratively
according to (57), the periodic orbits defined by (67) and (69) are accurate to leading order
in \Delta q. We emphasize that orbits defined iteratively by (67) and (69) are unique even though
the linear modes themselves may have incommensurate frequencies. At each step, the Floquet
eigenfunctions \^gj for j = 1, . . . ,4 always have the same frequency even though they capture
the response of different modes. For computational purposes, in order to avoid compounding
these errors at each iteration it is generally necessary to find the nearby, truly periodic solution
which can be done, for instance, by using a Newton iteration.

Considering the additional dimensions for the family of periodic orbits defined by (67) and
(69), letting \vec{}q\equiv [q1, q2, q3]

\top , the dynamics of the \psi 1 and \psi 3 Floquet coordinates are

\.\psi 1 = \kappa 1(\vec{}q )\psi 1 + I\top 1,1(\theta , \vec{}q )Ue + I1,2(\theta , \vec{}q )f\theta +E\top 
1 (\theta , \vec{}q )

\.\vec{}q,

\.\psi 3 = \kappa 3(\vec{}q )\psi 3 + I\top 3,1(\theta , \vec{}q )Ue + I3,2(\theta , \vec{}q )f\theta +E\top 
3 (\theta , \vec{}q )

\.\vec{}q.(71)

Note that because of the consideration of 3 adaptive parameters in the above equations, E1

and E3 are both vectors of dimension 3. Once again, \.\vec{}q and f\theta can be chosen arbitrarily.
Similar to the structure of (60), let

(72)

\left[    
\.q1
f\theta 
\.q2
\.q3

\right]    = - A(\theta , \vec{}q ) - 1

\left[    
Real(I\top 1,1(\theta , \vec{}q )Ue)

Imag(I\top 1,1(\theta , \vec{}q )Ue)

Real(I\top 3,1(\theta , \vec{}q )Ue)

Imag(I\top 3,1(\theta , \vec{}q )Ue)

\right]    ,
with

(73) A(\theta , \vec{}q ) =

\left[    
Real(E1,1(\theta , \vec{}q )) Real(I1,2(\theta , \vec{}q )) Real(E1,2(\theta , \vec{}q )) Real(E1,3(\theta , \vec{}q ))
Imag(E1,1(\theta , \vec{}q )) Imag(I1,2(\theta , \vec{}q )) Imag(E1,2(\theta , \vec{}q )) Imag(E1,3(\theta , \vec{}q ))
Real(E3,1(\theta , \vec{}q )) Real(I3,2(\theta , \vec{}q )) Real(E3,2(\theta , \vec{}q )) Real(E3,3(\theta , \vec{}q ))
Imag(E3,1(\theta , \vec{}q )) Imag(I3,2(\theta , \vec{}q )) Imag(E3,2(\theta , \vec{}q )) Imag(E3,3(\theta , \vec{}q ))

\right]    ,
where E1,j and E3,j correspond to the jth entries of E1 and E3, respectively. With this
choice for the parameter update values, (71) becomes \.\psi j = \kappa j(\vec{}q )\psi j for j = 1,3. Provided
Real(\kappa j(\vec{}q ))< 0 for j = 1,3, both Floquet coordinates tend to zero in the limit as t approaches
infinity and their dynamics can be ignored. Or course, for (72) to be valid, A(\theta , \vec{}q ) - 1 must
exist for all \vec{}q and \theta . When | | \vec{}q| | =O(\epsilon ), it is possible to compute some of these terms directly
by finding direct solutions to (37) and (40) to compute terms of the Floquet eigenfunctions
and gradients of the Floquet coordinates, respectively, yielding the result

(74) A(\theta , \vec{}q )\approx 

\left[    
 - 1 0 0 0
0  - q1 0 0
0 Real(I3,2(\theta , \vec{}q ))  - 1 0
0 Imag(I3,2(\theta , \vec{}q )) 0  - 1

\right]    .
Noting the diagonal structure of (74) invertibility is guaranteed when | | \vec{}q | | =O(\epsilon ).
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PHASE-AMPLITUDE REDUCED NONLINEAR OSCILLATIONS 499

Taking \.\vec{}q and f\theta as mandated by (72), the adaptive reduction from (19) becomes

\.\theta = \omega (q) + f\theta ,

\.\vec{}q=Gq(\vec{}q, \theta ,Ue),

\.\psi j = \kappa j(\vec{}q )\psi j + I\top j,1(\theta , \vec{}q )Ue + Ij,2(\theta , \vec{}q )f\theta +E\top 
j (\theta , \vec{}q )

\.\vec{}q,

j = 5, . . . , \beta .(75)

As compared to (61), equation (75) simultaneously considers two nonlinear oscillatory modes
but requires three total adaptive parameters. The frequencies of these individual modes are
not required to be commensurate. As with the previous formulations, if \kappa j(\vec{}q ) for any j \geq 5
is negative and large in magnitude for all allowable \vec{}q it is generally possible to ignore the
associated Floquet coordinate \psi j , thereby yielding a reduced order model.

As a final note, it is straightforward to generalize the above strategy to consider more than
two nonlinear modes. However, this can become computationally prohibitive as each added
nonlinear mode requires two additional adaptive parameters, leading to an exponentially in-
creasing amount of work required to compute the necessary family of periodic orbits and their
associated Floquet eigenfunctions.

6. Discussion and conclusion. This work leverages recently developed adaptive phase-
amplitude reduction techniques [57] to yield a general approach for reduced order characteri-
zation of systems with highly nonlinear oscillations. By carefully defining a family of periodic
orbits associated with a particular mode of oscillation, a reduced order model of the form (61)
can be obtained that accurately replicates large amplitude nonlinear oscillations that emerge
in response to arbitrary external forcing; in the limit that the oscillation amplitude is small,
the resulting modes of the proposed strategy become functionally identical to linear modes.
This approach can also be used to consider interactions between multiple nonlinear modes as
discussed in section 5.6. In the examples considered in section 4, the proposed reduced order
modeling strategy provides substantially improved results as compared to nonreduced order
models obtained using local linearization.

It would be of general interest to more carefully investigate the relationship between
the proposed approach and other nonlinear model representation techniques. The proposed
approach shares similarities with the notion of spectral submanifolds described in detail in [11].
In the limit as the state relaxes to the fixed point, both methods yield models that behave
similarly to those obtained from linear approximation. Furthermore, both techniques can
exploit differences in spectral gaps between the slowest decaying eigenvalues to obtain reduced
order models. In contrast, however, while spectral submanifolds are invariant under the flow,
the family of periodic orbits used to construct the reduced order models (and ultimately used
to define the nonlinear modes) is not an invariant set. Additionally, spectral submanifolds
are defined in relation to the unforced dynamics of the underlying system, whereas external
forcing is inherent to the implementation of the proposed approach. As far as other approaches,
while the proposed strategy does not explicitly consider the notion of isostable coordinates
associated with a fixed point [26], [25] (i.e., level sets of the slowest decaying modes of the
Koopman operator), there is also a possible connection with the amplitude coordinates used
in the proposed strategy from (61) as the dynamics are identical in the limit that the state
approaches the fixed point.
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While the results of this work are promising, there are a number of limitations left to
address. It is necessary to know the underlying equations in order to implement the proposed
approach, for example, in order to obtain solutions of (A2) and (A3) in the computation of the
Floquet eigenfunctions and the gradients of the Floquet coordinates. Additional modifications
would be necessary to implement this approach in a data-driven setting. Additionally, while in
principle this approach can be used to consider the interactions between an arbitrary number of
nonlinear modes, the computational expense associated with computing the required periodic
orbits grows quickly with the number of modes considered. Indeed, the iterations associated
with the two-mode reduction from (67)--(70) must be performed in three dimensions instead
of the single dimension required when considering only one mode. When considering a system
with many nonlinear modes, it would likely be necessary to consider multiple separate models
that characterize the interactions between smaller subsets of nonlinear modes of interest.
Finally, in the examples considered in this work, we were not able to consider orbits that
extended beyond the basin of attraction of the fixed point. Particularly for both the simple
pendulum (20) and the power system model (24), as the states approach the boundary of
the basin of attraction of the fixed point, the Floquet multipliers associated with the periodic
orbits become real-valued, precluding the continuation of the iteration used for defining the
family of periodic orbits. It would be useful to develop a workaround for this issue in order
to extend the applicability of this approach.

Appendix A. Computation of the terms comprising the phase and phase-amplitude
reduced order equations. The gradient of the phase from the phase reduction (7) must
generally be computed numerically. This problem has been studied widely [4], [8], [13]; holding
q constant, solutions of Z(\theta , q) can be obtained by finding periodic solutions of the adjoint
equation

(A1)
\.\^Z = - J\top \^Z,

where J is the Jacobian evaluated at \^y\gamma q (t). Once the periodic solution is obtained, Z(\theta , q) =
\^Z(\theta /\omega , q). Equation (A1) always has a single Floquet exponent equal to zero. As such,
periodic solutions must be normalized so that 2\pi 

T (q) = F\top (y\gamma q (\theta ), q)Z(\theta , q). As detailed in [64],

Ij(\theta , q) as defined in the phase-amplitude transformed equations (9) (i.e., the gradient of the
jth Floquet coordinate with respect to the state) can also be obtained by finding periodic
solutions of

(A2)
\.\^Ij = - (J\top  - \kappa jId)\^Ij ,

where \kappa j is the Floquet exponent associated with \psi j and Id is the identity matrix of appro-
priate size. Once the periodic solution is obtained, Ij(\theta , q) = \^Ij(\theta /\omega , q). Likewise, the Floquet
eigenfunctions gj(\theta , q) can be obtained by finding periodic solutions of

(A3) \.\^gj = (J  - \kappa jId)\^gj .

Once the periodic solution is obtained, gj(\theta , q) = \^gj(\theta /\omega , q). Note that above, the notation
\^X(t, q) and X(\theta , q) is used to distinguish between periodic solutions of either time or phase,
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respectively, for X = \{ Z, Ij , and gj\} . As discussed in [54], gj and Ij are normalized according
to

(A4) g\top k (\theta , q)Ij(\theta , q) =

\Biggl\{ 
1 if k= j,

0 otherwise.

Additionally,

(A5) I\top j (\theta , q)
\partial y\gamma q
\partial \theta 

= 0 for all j.

When considering the adaptive phase-amplitude reduced order equations from (12), [57] es-
tablished direct relationships between Z(\theta , q) (resp., Ij(\theta , q)) and the term D(\theta , q) (resp.,

Ej(\theta , q)). Specifically, letting \partial y\gamma 

\partial qj
| \theta 0,q \equiv lima\rightarrow 0(y

\gamma 
q+eja(\theta 0)  - y\gamma q (\theta 0))/a where ej is the jth

component of the standard unit basis, one can show that

(A6) e\top kD(\theta , q) = - Z\top (\theta , q)
\partial y\gamma q
\partial qk

and

(A7) e\top k Ej(\theta , q) = - I\top j (\theta , q)
\partial y\gamma q
\partial qk

.

Appendix B. First order perturbations of simple eigenvalues and corresponding eigen-
vectors. Let A \in \BbbR N\times N have a simple (i.e., unique) eigenvalue \lambda with corresponding left
and right eigenvectors w and v, respectively, normalized so that w\ast v = 1, v\ast v = 1, and
arg(e\top j v1) = - \pi . Here, ej is the jth element of the standard unit basis, arg(\cdot ) is the argument
of the complex number, j can be chosen arbitrarily, and \ast denotes the conjugate transpose.
By definition, \lambda and v solve

(B1) f(A,v,\lambda ) = 0=Av - \lambda v.

The goal is to characterize the change in the eigenvalue \lambda + d\lambda and eigenvector v + dv that
result when the matrix A is shifted incrementally to A+ dA. Taking the total differential of
(B1) yields

(B2) df = 0= dAv - d\lambda v+Adv - \lambda dv,

which must be satisfied for the perturbed eigenvalue/eigenvector pair (\lambda + d\lambda , v + dv). Mul-
tiplying on the left by w\ast and rearranging (B2) yields

(B3) w\ast d\lambda v=w\ast dAv+w\ast Adv - w\ast \lambda dv.

Using the fact that w\ast v= 1 and w\ast A=w\ast \lambda , the above equation simplifies to

(B4) d\lambda =w\ast dAv.

Again considering (B2), the perturbation in the eigenvector can be obtained by solving

(B5) (A - \lambda Id)dv= d\lambda v - dAv,
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502 DAN WILSON AND KAI SUN

where Id is an appropriately sized identity matrix. Equation (B5) above is obtained through
manipulation of (B2). Noting that v is in the null space of A - \lambda Id, (B5) only has solutions
if w is orthogonal to d\lambda v - dAv. One can verify this is the case directly:

w\ast (d\lambda v - dAv) =w\ast v(w\ast dAv) - w\ast dAv

= 0,(B6)

where the right-hand side of the first line is obtained by substituting (B4) and the second line
is obtained by changing the order of multiplication noticing that w\ast dAv \in \BbbC and recalling
that w\ast v= 1. Thus all solutions of (B5) are given by

(B7) dv= (A - \lambda Id)\dagger (d\lambda v - dAv) + v\alpha 

for any \alpha \in \BbbC , where \dagger denotes the Moore--Penrose pseudoinverse. Here, \alpha must be chosen
appropriately so that v+ dv satisfies the required normalization.
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