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This paper presents a data-driven model identification strategy that characterizes the behavior of a general
dynamical system relative to a set of limit cycles that emerge in response to periodic forcing. Using time series
data to infer the phase-amplitude dynamics associated with the underlying forced limit cycles, a low-order
model can be obtained that accurately captures the dynamical behavior in response to arbitrary external inputs.
The proposed strategy can be readily implemented in situations where full state measurements are unavailable
and does not require any prior knowledge of the underlying model equations. This technique is applied to a
model of coupled planar oscillators and to a model that considers the spike rate in a population of coupled
conductance-based neurons where it outperforms two other commonly used data-driven model identification

1. Introduction

The equations governing the behavior of many complex, high-
dimensional dynamical systems are either unknown or not well-
understood. In these situations, data-driven model identification tech-
niques can be used to obtain an accurate dynamical model that captures
the salient system behaviors and accurately predicts the system re-
sponse to input. Dynamic mode decomposition (DMD) is one such
strategy [1-3] that is widely used due to its general applicability and
relative ease of implementation. This approach provides a linear, least-
squares mapping between pairs of data snapshots taken at a fixed time
interval. DMD shares a close connection with Koopman analysis, which
can be used to represent a general, nonlinear dynamical system as a
linear, but possibly infinite dimensional operator [4-6]. This connec-
tion provides a rigorous justification for strategies such as extended
DMD [7], Hankel DMD [8], and Koopman model predictive control [9],
where a lifted state vector is used to obtain a better approximation for
the system dynamics.

While DMD can be applied in a wide variety of situations and
yields a linear model for the dynamics, it generally only considers
the error between consecutive data snapshots in the fitting process.
As such, its efficacy is often diminished when long-term predictions
are required. Alternative strategies employ sparse fitting techniques to
learn model equations by selecting a small number of terms from a large
nonlinear function library to capture the relationship between snapshot
pairs [10-13]. By allowing for nonlinear terms in the function library
and selecting only a small subset to comprise the model dynamics, these
methods mitigate the risk of overfitting and provide a model that is
more interpretable in terms of the mechanisms that govern the model
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dynamics, especially if the function library is chosen judiciously with
some knowledge of the underlying dynamical system. In a similar vein,
physics-informed neural networks use machine learning techniques that
explicitly account for the governing physics during training [14-16].
Rather than learning the underlying model equations that give
rise to model behaviors observed in data, recent work has focused
on learning representations of data relative to an underlying fixed
point [17,18] or periodic orbit [19,20]. These techniques use reduced
order coordinate systems that provide a universal representation of the
system dynamics provided a suitable attractor can be identified. Most
of these techniques leverage the isostable coordinate framework [21],
which considers only the level sets of the slowest decaying eigenmodes
of the Koopman operator. Other works have also considered the use of
Koopman eigenfunctions to define intrinsic coordinate systems that can
be used to formulate Koopman-based control problems [22]. These ap-
proaches have motivated the development of highly accurate reduced
order modeling techniques that consider the dynamics in reference
to a continuous family of attractors [23,24]. Of particular relevance
to this work, [25] proposed a general strategy for understanding the
behavior of a dynamical system by characterizing it in terms of the
forced limit cycles that emerge when carefully designed periodic inputs
are applied. By considering the resulting forced periodic orbits that
emerge in response to the external forcing and subsequently using
an adaptive phase—amplitude-based reduced order modeling approach,
a low-order model can be obtained that accurately characterizes the
forced dynamics in complex, high-dimensional systems. The approach
from [25], however, explicitly requires knowledge of the underlying
dynamical equations and requires the ability to apply input additively
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to each of the state variables; these constraints make this strategy
infeasible for application in a data-driven setting.

This work extends the strategy considered in [25] by developing
a purely data-driven model identification strategy that considers the
dynamics in reference to a collection of periodic orbits that emerge
as a result of external forcing. This model identification strategy does
not require any a priori knowledge about the underlying system and
only requires the ability to measure time-series data. In two illustrative
examples, the proposed methodology yields a dynamical model that
is substantially more accurate than comparable strategies that employ
DMD and other isostable-coordinate-based reduction strategies. The
organization of this paper is as follows: Section 2 provides neces-
sary background information on phase and phase—amplitude reduction
techniques that serve as a theoretical underpinning for the proposed
model identification strategy. Section 3 gives a full description of the
proposed approach and also provides a detailed list of steps required for
implementation. Section 4 provides results where the proposed strategy
is applied to a simple model of coupled planar oscillators as well as a
more complicated model of a large population of synaptically coupled
neurons. Section 5 gives concluding remarks.

2. Background

Relevant background information on phase and phase-amplitude
reduction strategies for limit cycle oscillators is given below. These
reduced order modeling strategies provide a theoretical underpinning
for the proposed data-driven model identification strategy.

2.1. Phase reduction

Consider an ordinary differential equation of the form
x = F(x,u), @

where x € RY is the state, u € RM is an external input, and F sets the
dynamics. Suppose that when u is held constant at u = p, Eq. (1) admits
a stable T(p)-periodic orbit x}. In situations where timing of oscillations
is of interest, one can define a phase 0 € [0,2r) for all states x € x,’,
with 0 scaled so that ¢ = Tz—” = w(p) when u = p is held constant.
Isochrons [26,27] can be used to extend the notion of phase to the basin
of attraction of the limit cycle: letting 8, be the phase associated with

some a € x},, the 6; isochron is the defined as the set of all b for which
lim ||t @) — (1. b)I| = 0, (2)

where ¢(,x) denotes the flow of (1) subject to u = p and || - || can
be any vector norm. Phase reduction [27-31] can be implemented by
changing to variables to phase coordinates

do _ 90 dx
dt ~ ox dt
= & (Feum + 5= p)+ Ol = pIP)
= a(p) + Z(0. p)u = p) + O(llu = plI*) + O(llx = x4 D)), ©)

T
where Z(0,p) = 967 oF

5 o with all partial derivatives evaluated at x;(e),
the dot denotes the dot product, and 7 denotes the transpose. The
higher order terms from Eq. (3) are typically truncated to yield a 1-
dimensional reduction of the original N-dimensional ordinary differen-

tial equation that is valid in a close neighborhood of the periodic orbit.
2.2. Phase-amplitude reduction

Phase reduction of the form (3) can only be used to characterize the
timing of oscillations, but can be augmented with Floquet coordinates
to consider amplitude-based effects. To this end, letting Ax = x — x;(a),
to a linear approximation, Ax = JAx where J is the Jacobian of F
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evaluated at xZ(e(t)). Provided the monodromy matrix of this T(p)-
periodic linear time varying system is diagonalizable, near x) one can
employ Floquet theory [32] to write
N-1
x = x7(0) = v;8;(0,p), @
=1

J

where g;(6, p) is a Floquet eigenfunction associated with the Floquet
coordinate y;. Above, the contribution from the Floquet eigenfunction
gn Wwith Floquet multiplier 4y = 1 has been absorbed by the phase
coordinate yielding N — 1 total Floquet coordinates. To linear order of
accuracy, the Floquet coordinates can augment the phase reduction (3)
to yield a set of phase—amplitude reduced equations

6 = w(p) + Z(0, p)(u — p),
v; = x;(pw; + 1,0, p)u - p),

ow; T . . o
Above, 1;(0,p) = % % with all partial derivatives evaluated at

x7(6), and «; is the Floquet exponent associated with the jth Floquet
eigenfunction. Additionally, in order to yield a reduced order set of
equations, N — 1 — g fast decaying Floquet coordinates (as gauged
by the magnitude of their Floquet exponents) are ignored. Previous
work [33,34] considered an extension of (5) using isostable coordinates
to characterize amplitude-based effects which are valid in the basin of
attraction of the limit cycle. Numerical strategies for computation of

the necessary terms from (5) are discussed in [31,33].
2.3. Adaptive phase-amplitude reduction

Egs. (3) and (5) are only valid in a close neighborhood of the limit
cycle, i.e., when the Floquet coordinates are small. Consequently, they
are typically only used to consider the dynamics of systems in the
weakly perturbed limit. Adaptive phase-amplitude reduction [23,35]
can be used to consider systems with inputs that would otherwise
invalidate the weak perturbation assumption. This approach considers
a family of periodic orbits to limit truncation errors associated with
the phase—amplitude reduction from Eq. (5). To this end, for any p €
P C RM held constant, suppose that x = F(x, p) from Eq. (1) admits
a periodic orbit x7. Considering this family of periodic orbits, one can
define an extended phase 0(x, p) and a set of extended Floquet coor-
dinates y(x, p), ..., ws(x, p). For the definition of the extended phase,
the phase of each periodic orbit is unique to a constant shift; this issue
can be addressed by defining a level set of the phase for each limit
cycle to correspond to the crossing of some Poincaré section. For the
definition of the extended Floquet coordinates, it is still assumed that
the vy, ..., w; decay slowly relative to the remaining N — 1 — § Floquet
coordinates for all p € P as gauged by the magnitude of the associated
Floquet exponents.

Intuitively, if p can be updated appropriately to limit the magnitude
of the Floquet coordinates, then the associated truncation errors can be
mitigated yielding a reduced order model that can accommodate large
magnitude inputs. To this end, proceeding as described in [23], one can
rewrite Eq. (1) according to

x = F(x,p) + U,(x,u, p), 6)
where
U,(x,u,p) = F(x,u) — F(x, p)
oF P
= 0—(u—p)+0(||u—p|| ), (7)
u

where all partial derivatives are evaluated at x and u = p. Considering
U, as the effective input, one can consider the system dynamics in ref-
erence to any periodic orbit x,’, for p € P. As described in [23], allowing
p to be nonstatic, transforming to phase and Floquet coordinates, and
truncating higher order terms ultimately yields

0 = w(p) + Z(6, p)(u—p)+ DO, p) - p,
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W/ = K/(P)Wj + Ij(‘gap)(” -p)+ E,-(b’,p) - D,
Jj=1L...p
p=G,p,0,y,....wp). (8

Above, D(9,p) € RM and E;(0,p) € CM characterize how changes in

the parameter set p influence ¢ and y;, respectively, and G, can be

chosen arbitrarily to set the dynamics of p. As explained in [23], the
ox! 00

ith element of D(6, p) can be computed according to ~% where
oax’ !

gbo » = limaao(x; +e.a(B0) — x5 (6p))/a, % is evaluated in reference to
i k i

xy, and ¢; is the ith component of the standard unit basis. Likewise
the ith element of E; is given by —% . % where % is evaluated in
reference to x}. '

Recalling that the primary source of error in the phase-amplitude
reduction from (5) results from large deviations of the state from the
nominal limit cycle (and hence large values of y, ... W), the variable
p introduced in Eq. (8) adds additional degrees of freedom with the goal
of mitigating these errors by keeping the amplitude coordinates small.
General heuristics for choosing G, are discussed in [23]. Provided that
each y, ... , ¥, Temains an order ¢ term for all time where 0 < ¢ < 1,

the relationship

B
x(1) = x)(0)+ ) v;8,(6.p) ©
j=1
remains accurate to leading order e¢. The adaptive reduction (8) is
used as a starting point for the proposed model identification strategy.
Specific details of the proposed strategy are given in Section 3.

3. Data-driven model identification for forced nonlinear oscilla-
tions

3.1. Overview of the proposed approach

The goal of this work is to identify a reduced order, data-driven
model to capture forced nonlinear oscillations in a general system of
the form

x = F.(x,u),
y=CX), (10)

where x € RY is the state, F, sets the dynamics of x, u € RM is
an input, y € RX is the output, and C maps the state to the output.
The model will be analyzed relative to an assumed stable equilibrium,
Xeq for which F,(x¢q,0) = 0. Furthermore, it will be assumed that the
model displays forced oscillations resulting from at least one pair of
complex-conjugate eigenvalues associated with the Jacobian evaluated
at the equilibrium, however, the proposed strategy could be modified
to consider situations where all eigenvalues are purely real. As distinct
from standard linearization techniques, the proposed approach captures
dynamics far beyond the weakly perturbed regime that would result
from standard linearization of (10). Additionally, the proposed strategy
is applicable even in situations where x is not observable and when
both F, and C are unknown.

The adaptive phase-amplitude reduction summarized in Section 2.3
will be used in the development of the proposed data-driven model
identification technique. To this end, consider the state dynamics from
(10) with the addition of an arbitrary, periodic input

i=F, <x,pf<%>+u(t)). an

Here, f(-) is assumed to be 2z-periodic in its argument (7'(p)-periodic
in time) and p > 0 determines the magnitude of the input. The
period is allowed to explicitly depend on p. Towards implementation
of the adaptive phase—amplitude reduction framework described in
Section 2.3, Eq. (11) will be rewritten in an autonomous form:

X = Fo(x,pf(s) + u(),
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s =aw(p)+ fo(x,s,p,u), 12)

where w = 2z /T, s € [0,27) is a time-like variable, and f, € R is an
arbitrary term that can be used to modulate the time-like variable s.
The exact choice of f, will be discussed momentarily, but note that
when f, =0, the dynamics specified by Eq. (11) are identical to those
of Eq. (12). Suppose that for all allowable values of p, when taking
u(t) = 0, Eq. (11) has a stable T'(p)-periodic orbit xly,(t) in response to
the periodic forcing. Letting X = [x” s]7 and taking f, = 0, Eq. (12)
has a corresponding periodic orbit
xh(®) ]

mod(wt, 27) as

X5 = [
Note that x} has the same period as the forcing. The orbit x” can be
obtained directly in the limit that p is small provided F, is C* dif-
ferentiable according to a series expansion obtained using perturbation
theory. Periodic solutions typically extend beyond the small p limit and
can be obtained numerically. Eq. (12) can be manipulated to be written
in a similar form to (6):

d [x] _ [Fx(x, O [Fx(x,u)—Fx(x,pf(s»]
dt |s|

C()(p) fg(x’ S, D, u)
. [Fx(x.pﬂs» NERGZONN .
o(p) fo(x.s,p,u)
——— ———
FXp) Uo(Xup)

Above, the first term on the right hand side of (14) sets the nominal
dynamics that yield the periodic orbit from (13) and the second term
acts as the effective input. Notice that the x dynamics of Eq. (14)
are equivalent to those of the underlying Eq. (10) when f, = 0.
Transforming to phase and Floquet coordinates applying the adaptive
phase—amplitude reduction framework to (14), the phase dynamics are

6 = w(p) + Z,0, p)u — pf () + Z,(6,p) fo + D" (6, p)p. (15)

Above, the terms Z,(0,p) € RM and Z,(9,p) € R are the first M
entries and last entry, respectively, of Z(, p), i.e., the phase response
associated with the periodic orbit X; (1). As discussed in [36], because
the periodic orbit results from periodic forcing, 6(p, s) = mod(6, + s, 27)
where 6, is an arbitrary constant. For simplicity, one can take 6, = 0 for
all p so that = s with the phase dynamics simplifying to § = w(p) + f,.
Applying this simplification, the adaptive phase-amplitude reduction
of the form (8) becomes

6 = w(p) + fo(p.u 0.y, ... S Wp),
v; =k +1; 10, p)u—pf(0)+1;,06,p)fy + E;O, p)p,
J=1....p
P=Gyp,u,0,wy,...,wp), (16)

op. T oy, .
where [;,(9,p) = % % e M and I;, = % € C. The associated

ou
output is given by

y(@) = C(x(®)

B
=C (x;@ +Y gj(e,p>u/j<z)>

=l

B
R V(0) + 2‘1 2,0.py;(1). a7
P

where y},(8) = C(x(9)) and &,(8,p) = 3—5 g;(0, p) with partial derivatives
evaluated at x;(e). In the above equation, (9) is used to obtain the sec-
ond line and the third line is valid first order accuracy in the Floquet co-
ordinates. Provided G, can be chosen so that each v, ...,y remain or-
der ¢ terms for all time, the approximation (17) remains valid to leading
order ¢. Note that in Eq. (16), the terms f, and G, are constrained to be
functions of the state variables and input in order to yield a closed set
of equations. An appropriate choice for f, and G, is considered below.
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As in [25], it will be assumed that x| and «, are complex-conjugate
pairs with Real(x;) < 0. Such Floquet exponents generally occur when
the linearized fixed point of the underlying system (10) has a complex-
conjugate pair eigenvalues that can lead to a large resonant peak. In
the context of the adaptive phase—amplitude reduction from (16), the
focus is on keeping y, and y, small. With this goal in mind, taking

[Gp] A0, [Real(ll,l(e,p»(u(z) - pf(0))] a8

Jo Imag(1, (0, p)(u(®) — pf(6))
where
Real(E((0,p)) Real(]; 2(9,17))]
A6,p) = ’ s 19
0D [lmag(Elw,p)) mag(1, (0, p) 19
the dynamics of the y, Floquet coordinate from Eq. (16) become
v = k(P (20)

Here, y,(t) approaches O in the limit that ¢ approaches infinity since
Real(k;) < 0 for all p € P. Of course, implementation of Eq. (18)
requires that the inverse exists — this point will be discussed further
in Section 3.5 for the case that f(0) is purely sinusoidal. Provided that
the inverse does exist, taking G, and f, as defined in Eq. (18), y; and
its complex-conjugate y, can be ignored yielding

0 = w(p) + fo(p,u,6)
W, = KW, + 1,10, p)u = pf(0) + 1,50, ) fo(p,u, 0)
+ E;(0.p)G,(p.u,0),
J=3,....0
p=G,(p,u,0). 21

Eq. (21) can be used to accurately capture large amplitude, nonlinear
forced oscillations, i.e., beyond the regime for which techniques based
on local linearization is valid. Intuitively, the variable 6 in Eq. (21)
encodes for the timing of oscillations relative to the timing on the
forced periodic orbit. The variable p is an amplitude-like parameter,
giving a sense of the magnitude of oscillations — larger values of
p correspond to reference periodic orbits x/ that are more strongly
forced and hence yield larger amplitude oscillations. The isostable
coordinates ys, ...,y, capture the behavior of Floquet eigenfunctions
that are typically more rapidly decaying than those associated with y,
and y,; in practice, it is not always necessary to explicitly consider
these additional isostable coordinates.

3.2. Relationship to prior work and primary contribution

Prior work [25] considered the characterization of forced, nonlinear
oscillations using the adaptive phase—amplitude reduction strategy with
the explicit assumption that the underlying model equations are known
(so that the terms that comprise Eq. (16) can be computed numerically).
Additionally, results from [25] assumed that direct input could be
applied to each state variable in order to yield carefully designed
periodic orbits XJ. The present manuscript extends on these prior
results in two important ways:

(1) This work develops and investigates purely data-driven strate-
gies for obtaining reduced order models of the form (16) in
situations where only y can be measured and where F, is un-
known.

(2) This work considers the use of general periodic inputs u(f) to
define the family of periodic orbits X} that consequently set the
terms of the adaptive reduction from (16). This is in contrast to
the carefully designed additive inputs considered in [25].

Below, Section 3.3 considers the data-driven model identification of the
necessary terms of the adaptive reduction. Sections 3.4 and 3.5 consider
the applicability of the proposed approach in the limit that the orbits
X} are obtained using small magnitude, periodic inputs. Section 3.6
provides a list of steps for implementing the proposed approach.
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3.3. Data-driven inference of the terms of the adaptive reduction

Considering the individual terms of the reduced order Eq. (16), w is
set by the external forcing, and both f, and G, can be chosen arbitrar-
ily. As such, the only unknown terms are «;(p), I; (0, p), I;,(6, p), and
E;(6, p) which must be determined for j = 1,..., . Once these terms
have been obtained, Eq. (21) can be used to represent the behavior
of the underlying model (10). A high level overview describing the
necessary information required by the proposed approach is provided
in Fig. 1. Specific details about the implementation of this model
identification strategy are discussed in Sections 3.3.1-3.3.3 with a
step-by-step description given in Section 3.6.

3.3.1. Inferring each x;(p) and I, (0, p) from data

Consider a single periodic orbit X;(t) that results when the input
u = pf(wt) is applied. Assume that a reasonable approximation for
each x(p), ..., k4(p) is already known, for instance, using the relation
(B.4) which is valid in the limit that p is small or with knowledge of
k1(p = 4p), ..., x5(p — 4Ap), i.e., that has already been obtained from a
nearby input induced orbit. For the moment, suppose that f, = 0 so
that 6 = wr. Additionally taking G, =0, i.e., so that p = 0, the reduced
order equations for the dynamics of the Floquet coordinates from (21)
simplify to

Wj = Kj([’)‘l/j + Ij_l(WtaP)(u —pf(wt)), (22)

for j = 1,..., 5. Applying an input u(t) = pf(wt) + ¢;a(t) where a(?) is a
small, arbitrary signal and e; is an appropriately sized element of the
standard unit basis, Eq. (22) becomes

v =Kk, + I]’:’l(wt,p)a(t), 23)

where the term I’ , denotes the ith element of I, ;. An explicit solution
to (23) can be obtained using the variation of constants formula [37],

t

w; (1) = w(ty) exp(k;(t — 1y)) + / exp(ic; (t — s))IJ’.’l(ws)a(s)ds. 24)
fo

According to Eq. (24), provided ¢ is sufficiently larger than 7, so that

the influence of the initial condition is forgotten, w;(¥) is directly

recoverable given knowledge of I/ (wr). Next considering the output

equation from (17), for ¢ large enoﬁgh one finds

1, B
NORSACES / < g*,(wt,p)exp(x,(r—s))l,'i’l(wsm(s))ds. 25)
o \j=1

J

Recalling that §;(0, p) = ‘;—i g;(0, p) where g;(6, p) is a Floquet eigenfunc-
tion, it is possible to scale each g (0, p) so that e;g (0,p) =1 provided
that e;g (0, p) # 0. Here, e, is an arbitrary element of the standard unit
basis. Using such a scaling, multiplying Eq. (25) by el on both sides
yields

oT B

eZ(y(O'T) - y;(O'T)) = / <Z exp(x; (6T — s))]}’.,l(ws)a(s)>ds. (26)
Tp j=1

Above, ¢ must be an integer chosen large enough so that the initial

conditions are forgotten and T is the period of the applied input (note

here that § = 0 when t = ¢T). Recalling that each I j‘ (©) is 2z-periodic,

one can represent each I j’ |(@s) from Eq. (26) with a Fourier series

]

I;,l (ws) = 6‘1” + Z a{(’l" sin(kws) + b:("“ cos(kws), 27)
k=1

where u sets the number of terms of the Fourier series that are retained.

Noticing that the coefficients of the Fourier series expansion do not

depend on s, they can be pulled out of the integral from Eq. (26) to

yield

en(eT) = yi(eT) = I'" (eT)Y, (28)

where Y € CP@#+D is a vector containing the nontruncated Fourier
series coefficients of each I 1(aJs),...,I;'“(ws) and I' € CPeutD jg



D. Wilson

Identify Stable Fixed Point

Physica D: Nonlinear Phenomena 459 (2024) 134013

Record Forced Periodic Orbits
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Fig. 1. The figure above represents a high level overview of the necessary information required by the proposed model identification strategy for a general dynamical system.
(Top panels) In the absence of input, the model identification strategy requires a stable fixed point x; the corresponding model output approaches the constant y, in the absence
of external forcing. (Middle panels) Forced limit cycles X emerge in response to the periodic forcing u(r) = pf(wrt); the corresponding steady state output y, is recorded. The
colors here represent different periodic orbits and associated periodic inputs for different values of p. (Bottom panels) For each forced limit cycle, additional perturbations are
applied and the resulting output y(t) is compared to y, to infer the terms of the phase-isostable reduction of the form (16) yielding a low-order model. Here for instance, inputs

and outputs are considered relative to the p = 1 periodic orbit.

comprised of the remaining terms and is arranged so that Eq. (28)
is identical to Eq. (26). Note that the computation of the terms that
comprise I requires knowledge of each x4, ..., Kg (which are known to a
good approximation) and «a(#) (the input applied to the system). As such
all terms of I'(cT) can be computed leaving Y as the only unknowns.
With enough measurements, one can ultimately obtain a least-squares

estimate of Y according to

I'"(sT) ey (oT) = yy(aT))

(e + D7) | |eL¥e + DT) = yy((o + DT))

Y = , (29)

(e +mT '

(@D e (5o +mT) = (o +mT)
where n corresponds to the number of periods the stimulus u(?) is
applied after the influence of initial conditions has been forgotten and

is the pseudoinverse. Once an estimate for Y has been obtained, refined
. T . .
estimates for K = [« K'ﬁ] can be obtained using a Newton

iteration. To this end, defining

T (6T) ! (Y(oT) - y(aT))

I'"((c + DT) y— el (v((o + DT) = yy((c + DT))

E(K) = (30)

(e +nT '

CHmD] el (o +mT) - yi((o +mT))
as the error associated with the estimate from Eq. (29), a Newton
iteration can be performed to update the estimate of the Floquet
exponents by solving

0= E(K + 4K)
OE

~ E(K) + — 4K, 31
(K)+ -2 (31

where AK is a small refinement to the Floquet exponents. A least
squares solution for Eq. (31) can be obtained according to

OE T
AK =~ 52 E(K). (32)
Above, the elements of dE/dK can be estimated via numerical differ-
entiation. For instance, by changing the value of «; to k| + ¢ for some
small value of ¢, reevaluating Y after the shift in the Floquet exponent,
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and subsequently computing E(K + e;¢), the first column of dE/0K
can be approximated according to (E(K + e¢) — E(K))/e. Refinements
can be implemented iteratively by computing AK multiple times until
convergence. Recall that strategy described above only yields estimates
of the ith element of each I, (), ..., I;,(0) by applying inputs of the
form u(r) = pf(wt) + ¢;a(?). The remaining elements can be repeated by
applying additional inputs u(f) = pf(wt) + e;a(t) for i = 1,...,M and
estimating the associated terms according to Eq. (29).

3.3.2. Inferring each I, ,(6, p) from data

Consider a single periodic orbit X} (¢) that results when the input u =
pf(wt) is applied. Assume that an approximation for each x(p), ..., k5(p)
has already been obtained using the strategy described in Section 3.3.1.
Let u(r) = pf(0), this time removing the requirement that f,(r) = 0 for
all 7. Also, take G, = 0 so that p = 0. In this case, the reduced order
equations for the dynamics of the phase and Floquet coordinates from
(21) simplify to

0 = w(p) + fo(t),

Wy = k(0w + 1200, ) f(0), 33)

for j =1,..., . The phase dynamics are obtained according to

o) = mod<90 + / (o + fo())dt, 2;:) =0, (34)
0

where 6, is the initial condition and is taken to be zero for convenience.
Notice that the Floquet coordinate dynamics of (33) are similar to those
from (23) with f,(¢) taking the place of a(r). Repeating the analysis that
starts with Eq. (23) and culminates in Eq. (25), one finds

t, B
MOESAGES / (Z gNj(é(S),P) exp(k; (t — S))Ij,z(é(s))f9(5)>ds, (35)
o \j=1

for any ¢ large enough for the influence of initial conditions to be forgot-
ten. With the same scaling on each g (0, p) described under Eq. (25) it
will once again be assumed that e;g~ ;(0,p) = 1. With this in mind, letting
#; correspond to the kth time that 6 crosses 0, multiplying Eq. (35) on
both sides by e? admits the simplification

B
(Z exp(x; (1% — s))f,-,2<é<s>)fg(s>>ds, (36)

J=1

-
) — Y1) = / ’

To
for any 7} large enough so that the influence from initial conditions is
forgotten. 1 i2(0) for j =1,..., g are the only unknown term in the above
equation. As before, representing these 2z-periodic functions using a
truncated Fourier series

H
120) = b + Y a sin(ko) + b cos(k0), (37)
k=1

the Fourier coefficients can be pulled out of the integral from (36)
allowing it to be written as

en () = i@y =TT @)Y, (38)

where Y € CP#+D) is a vector containing the Fourier series coefficients
of each I, ,(6), ..., I;,(0) and I' € CP@#+D is comprised of the remain-
ing terms. Similar to Eq. (29), one can use (38) to obtain a least-squares
estimate for the unknown Fourier coefficients

rrany T elou - via)

_ rT(’k+1) e;(y(’iﬂ)’ AU . (39)

rT(rk+n> AR AUNN)

where n corresponds to the number of crossings of § = 0 that are used
in the fitting.
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3.3.3. Inferring each E;(8, p) from data
Ref. [19] established direct relationships between the gradients of
the Floquet coordinates and the associated terms E;(6, p). Of particular

use here, let £;(0,p) = a x ‘;—5

evaluated on the periodic orbit X If . Note that while ¢;(6, p) is similar
to 1;(0, p) as defined below Eq. (5), these two terms are not identical.
As illustrated in Section 3.2 of [19] E;(6, p) is directly related to ¢;(8, p)
according to

E;©0.p) = —+Z[

bl me sin(me)

€ C! where all partial derivatives are

a, K; sin(m@) a,’;,mwcos(me)

K + w?m? Kj? + w?m?

b{,,Kj cos(m@)

(40)
K? + w?m? K? + w?m?
where ai and b;c are Fourier coefficients of ¢ (0, p), i.e.,
£0.p)=b)+ Y [al, sin(md) + b, cos(mo)] . (41)

m=1
Ultimately, the relation (40) allows for the inference of each E (0, D)
for j = 1,...,p without the need for additional data beyond what is
required to implement the strategies from Sections 3.3.1 and 3.3.2.
Indeed, considering the specific model (12) used here

;" oF
(0,p)= — —
¢j0.p) == ap
_ [aij au/j] z)u f('g)
ox s L2}
ap
=1 I do 42
=1;,00,p)f(O)+ j,2(97p)$~ (42)
Supposing that I; (6, p) and I;,(6, p) have already been obtained using

the strategy described in Sections 3.3.1 and 3.3.2, respectively, {;(9, p)
can be computed according to (42) and subsequently used to infer
E;(8,p) according to Eq. (40).

3.4. Terms of the adaptive reduction in the limit of weak forcing

Here, the terms of the adaptive reduction are considered for periodic
orbits of (12) that are valid in the weakly perturbed limit, i.e., using
small values of p to yield the resulting periodic orbit. To begin, consider
the underlying system (10) using the T-periodic input u(t) = pf(wt)
where w = 2x/T. Also suppose that p = O(e) where 0 < ¢ <« 1
so that local linearization techniques are applicable. For simplicity of
exposition, assume that Xeq = 0. To linear order, the state dynamics
of Eq. (10) becomes

x = Ax + Bpf(ot), (43)

where A = a % and B = 0 , both evaluated at the stable fixed point.
The variation of constants formula [37] can be used to write the state
as a function of time

1

x(1) = eAUT0x (1) + / M) Bpf(wr)dr, (44)
fo

where e4 denotes the matrix exponential of A and ¢, is the initial time.

In the limit that ¢ approaches infinity, Eq. (44) approaches a forced

periodic orbit given by

t
xy(t) = p(e X +/ eA(t_T)Bf(UJT)d‘L'), (45)
0
where
e
Xp = [Id - eAT]_ / A B f(wr)dr, (46)
0

with Id being an appropriately sized identity matrix. Note that the
inverse in Eq. (46) is guaranteed to exist because A is a stable matrix
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so that the eigenvalues of eA” have magnitude less than 1. With this in
mind, to leading order, the measured periodic orbit is

vy = 92X, “7)

Towards computation of the terms of the adaptive phase—amplitude
reduction from Eq. (16), once again considering the autonomous form
of the ordinary differential equation with state X = [x” s]T, the
corresponding periodic orbit of (12), X ;(t), is given by Eq. (13). Turning
attention towards the Floquet exponents and gradients of the Flo-
quet coordinates, the Jacobian evaluated on this periodic orbit can be
written as

A 0
J@) = [ o ol tO©. (48)
To obtain the above equation, recall that p = O(e); consequently

from Eq. (45), xly,(t) = O(e) so that % = A + O(¢). To leading order
€, solutions nearby X} evolve according to

A 0

AX = [O 0] AX + O(e), (49)
where AX = X — X]. While Eq. (49) is linear time varying (owing to
the O(e) terms), it is linear time invariant to leadding order. Considering
(49), Appendix B provides approximations for % in Eq. (B.10). This
approximation can be used to determine I;; and I;, to leading order.

In particular

dlI’j T oF,
0x du
= w] Bexp(—0im). (50)

I;1(0,p) = (

where (w;, 4;) is a left eigenvector/eigenvalue pair of A associated with
the jth Floquet exponent. Above, the first line comes from the definition
given after Eq. (16) and the second line is obtained by substituting the
first N elements of % and using the coordinate transformation 6 = wr.

Additionally,

oy,
I;,0,p) = S

= pn;(0/w). 1)

where the first line comes from the definition given after Eq. (16)
and the second line is obtained by substituting (B.12) keeping in mind
that bis from (B.12) is identical to dy,/ds and using the coordinate
transformation 6 = wt. Considering the above analysis, both y/, from
(47) and I 2 from (51) are proportional to p (to leading order) in
the limit of small forcing. Conversely, I i from Eq. (50) does not
depend on p. Likewise from (B.4), to leading order the Floquet exponent
k; depends directly on the period of forcing and the corresponding
eigenvalues of A denoted by 4.

3.5. Implementation using purely sinusoidal forcing

In order to implement Eq. (21), the matrix inverse from Eq. (18)
used to determine the terms G, and f, must exist. Here, letting L € RM
it is shown that when taking pf(2zt/T) = pLsin(2zt/T) to yield the
periodic orbits that comprise the adaptive phase-amplitude reduction
from (16), provided the periodic input excites the mode associated with
the y, Floquet coordinate, the transformation to (21) is always possible
in the limit that p is small.

To this end, consider the underlying system (10) taking u(r) =
pL sin(wt) where @ = 2z /T. When p is small, the linearized dynamics
are identical to those from (43). Let 4, and A, be a simple, complex-
conjugate pair of eigenvalues of A that give rise to resonant oscillations
with Imag(4,) > 0. It is assumed that wlTBL # 0 where w, is the left
eigenvector associated with the A, eigenvalue; this ensures that the
input excites the mode associated with A,. To proceed, let D = Q~1AQ
be the Jordan normal form of A where Q is an appropriately defined
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invertible matrix. Considering the linearized dynamics (43) with a
change of variables x; = Q~!x yields dynamics

%; = Dx; + Q"' BLpsin(wt). (52)

Because 4, is simple, it will have a Jordan block of size 1 with
eigenvalue 4,. Letting (efD)k = A, where ¢; is the ith element of the
standard unit basis, one can write

x'; = Alxlj + pé sin(wt), (53)

where x/, denotes the ith element of x;. Notice that § = ] O™'BL =
wlTBL # 0. In response to sinusoidal forcing, Eq. (53) has a stable
steady state response

k= -—2 5 (h sin(@n) + o cos(n). (54)

@? + 47

Transforming back to the original coordinates taking x = Qx,, the
stable forced periodic orbit x;(t) can be written as

_ Kk J
Xy =xh g+ Y %) (g
J#k

1) . .
S ,,+ (4 sin(er) + @ cos(@n)g, + Y, %y (g, (55)

2 2
A 7k

where g; is the jth column of Q.

Ultimately, the goal here is to show that the matrix inverse from
Eq. (18) exists when p is small. To do so, it is necessary to consider
E(6,p) and I,,(9, p) as defined below Egs. (8) and (16), respectively.

Towards this goal, recalling that I,,(0,p) = % and considering

Eq. (A.5) which is valid in the limit that p is small,

0 TdX}’
() %

0X dt
_[.r e owy
= [wl exp(—wimt) P ]

y [_ péw (4, cos(wt) — w sin(wt))g; + Z#k % (xjj',m(t)> q]]

w2+/1%

. (56)

@

where the second line is obtained by substituting (B.10) for dy,/0X
(noting that b 2 from (B.10) is identical to dy, /0s), recalling that X; =
[x[y,T mod(wt, 27)]", and substituting Eq. (55) for x. Recalling that 4, is
a simple eigenvalue, v, (the eigenvector associated with A,) is identical
to g, and the corresponding left eigenvector w; is orthogonal to g; for
Jj # k. With this in mind, Eq. (56) simplifies to

W _ P s pmwimt)(hy cos@f) — o sin(@r)

ds @+ /l%

(cos(mwt) — i sin(mwt))(4; cos(wt) — @ sin(wt)). (57)
®? + i%
With the coordinate transformation 6 = ¢ and recalling from the

definition given after Eq. (16) that % = I} ,, one finds

pé
? + A%

1,,00,p) = (cos(m0) — i sin(mf))(4, cos(0) — w sin(H)). (58)

Next, focusing attention on E, (6, p), per the definition given under
Eq. (8)

0 T
E\(0(), p) = — (a_y;(') ad_;;y

= — |wT exp(—wi W
= [w] exp(—wimt) s ]

y ~ 2 (g sin(on) + ocos@N)y + i (x]},m(t)) 9
1
0
=— J 3 exp(—wimt)(4; sin(wt) + @ cos(wt)). (59)
w* + /11
Above, the second line is obtained by substituting (B.10) for oy, /dX,
recalling that X, = [x;T mod(wt, 27)]", and substituting Eq. (55) for x5
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The third line is obtained by exploiting the relationships between w;,
and q; as described below Eq. (56). With the coordinate transformation
0 = wt, Eq. (59) simplifies to

E\(0,p) =

(cos(mB) — i sin(m))(4, sin(f) + w cos(H)). (60)
? + A%
Finally, considering both I, ,(6, p) and E, (8, p) from Egs. (58) and (60),
the determinant of A,(0, p) from Eq. (19) simplifies to

Im(A) )wp|5|?

det(A,(0,p)) = 3
|w? + A?l

(61)
where |a| denotes the magnitude of a € C. In particular, det(A,(0, p)) #
0. As such, A,(6,p)"! always exists allowing for the implementation
of Eq. (21). Note that this conclusion is only valid in the limit that p is
small, i.e., in the linear regime. Nonetheless, as seen in the examples
from Section 4, Eq. (21) can typically be used to implement the pro-
posed approach far beyond the linear regime to yield a low-dimensional
model that accurately captures the response to general inputs.

3.6. List of steps required to implement the proposed model identification
strategy

The proposed model identification strategy discussed in Sections 3.1
-3.3 can be implemented using the steps summarized below. Implemen-
tation of this strategy yields a low order model of the form (21) that
can be used to the general input-output dynamics in a general model
of the form (10).

(1) Identify a fixed point of the model (10) for which F,(x,,0) =0
with steady state output y,, = C(x,,). The linearized version of
(10) is assumed to have a complex-conjugate pair of eigenvalues
A1, = Real(4)) + ilmag(4;) that give rise to resonant oscillations.
A coarse estimate of these eigenvalues can be obtained, for
instance, by identifying the resonant frequency and observing
the associated decay of oscillations back to the fixed point.
Determine how many (if any) additional Floquet coordinates
to include in the fitting; Floquet coordinates ys, ...y, can be
used to capture the behavior of additional eigenmodes that have
relatively small contributions to the dynamics.

(2) Define a periodic input u(f) = pf(wt) which will be used to
determine periodic orbits X.

(3) Initially taking p = p, to be small enough so that the system can
be well approximated by local linearization, record the output
y;o associated with the resulting periodic orbit.

(4) For i = 1,...,m, apply an input u(t) = p,f(wt) + ¢;a(t) to (10)

where a(r) as defined below Eq. (22) and ¢; is the ith element of

the standard unit basis. Record the output y(¢). Use Eq. (29) to
estimate the Fourier series coefficients of I' f‘ 10.pg), ..., 1 "’ 10, py)
for some arbitrary choice of k € {1, ..., m}. Subsequently update
the estimate for the Floquet exponents by applying Eq. (32) and
iterate until the estimate for the Floquet exponents converges.

For the remaining i # k, use Eq. (29) to estimate the Fourier

series coefficients of 15,1(9’%)’ e 15,1(9”0)'

Let 0(t) = mod( /Ot(w+ fo())dt,2x) as defined in Eq. (34) for some

prespecified f,(r). Apply the input u(t) = pyf (6) and record the

output y(r). Use this information to estimate the Fourier series

coefficients of I ,(6, pp). ... A 5,(0, py) according to Eq. (39).

5

=

(6

%

Use Eq. (40) to compute the terms of each E;(0,p,) for j =
1,..., . The terms of the right hand side of (40) can be computed
using Egs. (41) and (42) which in turn use information that is
obtained in Steps 4 and 5.

Steps 3 through 5 must be repeated taking p = p, + idp for i = 1,2, ....
As part of Step 4, an initial guess for x;(py + idp) can be taken as
k;(po + (i — 1)4p), i.e., the Floquet exponent inferred for the prior orbit.
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Upon completion of Steps 1-6 for each p-limit cycle, I, (0, p), 1;,(8, p),
E;(,p) and «;(p) for j = 1,...,f can be computed for any p in the
allowable range using linear interpolation. The terms f, and G, in the
implementation of the reduced order model can be computed according
to (18). In response to an arbitrary input u(f), provided the Floquet
coordinates s, ... .y, remain O(e) terms, the approximation for the
output y(f) » yZ(H(t)) is accurate to leading order e.

A few general notes about the implementation of the proposed
model identification strategy are highlighted below:

Note (1) In practice, it often works well to take w(p) near, but not iden-

tical to the resonant frequency associated with the y, Floquet
coordinate. As discussed in [25], in the limit that p is small
and the frequency is exactly identical to the resonant frequency
(i.e., when w = Imag(4,), the Floquet exponent kx; becomes iden-
tical to k,, thereby precluding implementation of the reduced
order modeling strategy. As p increases, the resonant frequency
may drift making it necessary to update w(p). In simulations con-
sidered here, it worked well to target Imag(k,) ~ 7 /2, increasing
or decreasing w(p) as necessary in order to achieve this target.

Note (1) If f(wt) = sin(wt) is used to define the periodic orbits X;,

when both p is small and w is chosen to be close to the natural
frequency so that m = 1, all Fourier modes of I, ,(6, p) are zero
beyond second order in the Fourier series, as can be inferred
from Eq. (58). It is straightforward to show that this property
holds for all 1, ,(6.p), ..., 1, 52(0. D). Coupled with the fact that the
Fourier series coefficients for each [; (9, p) are zero beyond first
order, the Fourier series basis from (27) and (37) only requires
u=1and u =2, respectively, when p is small. In practice, even
when p is larger it is often useful to take y to be small to mitigate
the risk of overfitting.

Note (1) When noise is present in the system, a(¢) and f,, from Steps 4 and

5 must be large enough to obtain a strong signal relative to the
noise strength but must be small enough so that the inputs do
not drive the system too far from the underlying limit cycle. In
numerical results presented below, it often worked well to use a
continuous signal for a(r) and to use a series of short pulses for

So (0.
4. Results
4.1. Coupled planar oscillators

As a preliminary example, the proposed model identification strat-
egy is applied to a population of N = 10 heterogeneous planar
oscillators:

. K
a; =oa;(y; —rjz.) -b;(1 +pj(r12. —u))+ N Zaj + u(1),
J#i

o 2 2
bj —O'bj(ﬂj_r/)+aj(1+l’j(rj_ﬂj))s (62)

fori =1,...,N. Here, a ; and b; are Cartesian coordinates of the jth
oscillator with 12 = a? + b2, K = 0.62 is the coupling strength, and
u(t) is a common input to each oscillator. System parameters are taken
tobe y; = -3+ ( - 1/9, 6 = 0.1, and p; = 02— (j — 1)/9. The
output for this model is taken to be identical to the state, i.e.,, y =
[01 by ay b N]T.

For the individual elements of (62), without coupling a Hopf bifur-
cation occurs when yu; = 0. Here y; < 0 for all j so that a stable fixed
point results at a; = b; = 0 when u(r) = 0. Linearizing about this fixed
point yields 10 pairs of complex-conjugate eigenvalues. The oscillatory
modes associated with these eigenvalues have natural frequencies be-
tween 1.21 and 1.59 rad/s. In particular, the eigenvalues associated
with the slowest decaying mode are 4, , = —0.015+1.32i with a resonant
peak near 1.32 rad/s; the eigenvalues associated with the next slowest
decaying mode are A; 4 = —0.23+1.21. Panel A of Fig. 2 shows the forced
response of this model to the input u(¢) = 0.8 sin(1.47) from panel B. In
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Fig. 2. For the model (62), Panel A shows individual traces of g; in response to the sinusoidal input u(f) = 0.8sin(1.47) from panel B. In response to continuous application of
the sinusoidal forcing, the dynamics settle to a forced periodic orbit. Traces of the individual oscillators on this orbit are shown in panel C with dots indicating the location at
0 = 0. For a collection of orbits described in the text, the proposed data-driven model identification strategy is applied to the model. Panels D-G provide a representative sample of
the information inferred from this procedure (solid lines). These terms are also compared to the ground truth which is computed directly with knowledge of the model equations
(dashed lines). Panel D shows the Floquet exponent as a function of p. Panels E, F, and G, show I, (0), I,,(0), and E,(0), respectively, obtained for the p = 0.8 orbit.

response to this input, the system settles to a stable, forced periodic
orbit. Traces of the individual oscillators on this orbit are shown in
panel C. The proposed data-driven model identification strategy from
Section 3.3 is applied to the model (62) to obtain a reduced order
model. The steps from Section 3.6 are followed as described below:
Step (1) The steady state for this model is a; = b =0 for all j
when u(r) = 0. The resonant frequency is 1.32 rad/s which can be seen
from 4, but could also be approximated by applying sinusoidal input
at various frequencies and measuring the maximal response. Only two
Floquet coordinates are considered here so that g = 2. Step (2) Inputs
u(t) = pgsin(wyt) for k = 1,...,10 are used for model identification.
Here, p, = 0.1k is the magnitude of the input. The frequency w, =
1.06 is chosen to be slightly slower than the resonant frequency. On
subsequent iterations, w;,; = w; + 0.1(zx/2 — Imag(x|)T) where «; is
the Floquet exponent inferred from kth limit cycle considered in the
model identification process. Further discussion of this choice for the
frequencies appears in Note 1 from Section 3.6. Step 3) inputs from
Step 2 are applied over multiple cycles until all transients decay in
order to infer the output )} associated with the limit cycle. Step (4)
For each p-limit cycle, the input u(r) = p;sin(w,t) + a(t) is applied
where a(¢) is chosen as follows: random numbers between —0.05 and
0.05 are chosen from a uniform distribution and held constant over
a 0.2 unit time interval and the resulting signal is smoothed using
spline interpolation. Simulations are performed for 500 time units and
the resulting data is used to estimate Fourier series coefficients up to
order y =2 for I 11 ,(6,p) and Izl, (6, p) along with the associated Floquet
exponents using the iteration described in Section 3.3.1. Results are not
sensitive the initial guess for x| ,. Step (5) For each p-limit cycle, the
input fy(1) is chosen as follows: random numbers between —0.15 and
0.15 are chosen from a uniform distribution and held constant over a
2 time unit interval and the resulting signal is smoothed using spline
interpolation. This is used to calculate d(r) from Eq. (34) and the input
u(t) = psin(0(p)) is applied to the full system (62) in order to estimate
the Fourier coefficients of ;,(0, p) up to order u = 2. Step (6) Results
from Steps 4 and 5 are used to determine E, (6, p) for each p-limit cycle
according to Eq. (40).

Panels D-G of Fig. 2 provide a representative sample of the infor-
mation inferred from the proposed data-driven model identification
procedure. The model is simple enough so that the associated terms can
also be computed numerically with knowledge of the model equations
themselves, i.e., by computing the monodromy matrix associated with
the periodic orbit, computing the associated Floquet exponents, find-
ing periodic solutions of (A.3) to identify I 1141(0, p) and 121’1(0, p), and
computing E (0, p) directly as defined below Eq. (8). Panel D shows
the Floquet exponents as a function of p with panels E, F, and G,
showing I, ;(8), I, ,(P), and E;(9), respectively, obtained when p = 0.8.
While not yielding a perfect match, the true values of these functions
obtained through direct computation (dashed lines) are reasonably well
approximated by their corresponding terms obtained from the proposed
data-driven model identification strategy (solid lines).

Once the fitting is completed, the resulting reduced order model
takes the form (21). The full model has 20 states. The reduced order
model considers only two Floquet coordinates, ultimately requiring
only two variables to describe the 6 and p dynamics. Comparisons are
provided with two additional data-driven model identification strate-
gies. The first uses a Koopman model predictive control (MPC) [9]
which is closely related to the extended dynamic mode decomposition
algorithm [7]. Details of the general implementation of this algorithm
are given in Appendix C. Here, the time step is taken to be 0.1
units with a time-delay embedding of 24 units. The functions L, =
Wicts - YioalT € R¥ and L, = [u;_y, ..., u;_»y]7 € R** are used to
lift to a higher dimensional state, defining A; from Eq. (C.2). The same
data used to obtain the model of the form (21) is used to build the
matrices H and H* defined below Eq. (C.2) and the A and B matrices
are fit according to Eq. (C.3). The length of the delay embedding for
the Koopman MPC strategy is chosen with a trial-and-error process; the
Koopman MPC algorithm is applied for various embedding lengths and
increased until there are no discernible improvements in the accuracy
of the resulting model. The second model identification strategy used
for comparison was presented in [18]. Here, sinusoidal inputs of vary-
ing frequencies are applied and the resulting steady state outputs are
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Proposed Adaptive Model ——— Koopman MPC ——— First Order Isostable
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Fig. 3. The different inputs from panels C, F, I, and L are applied to the full order model (62) along with the proposed adaptive data-driven model identification strategy and
two other data-driven models. Corresponding traces of b = L Z,Nzl b; are shown in panels A, D, G, and J with associated errors shown in panels B, E, H, and K. The proposed

N

model identification strategy outperforms the other strategies for all inputs shown here.

used to infer a model of the form

@i = A9 + cu(®),

i=1..r,

YO =yo+ ) by

k=1

(63)

where ¢ € C is an isostable coordinate, 4, € C is an associated
unperturbed decay rate, ¢; € C captures the response to input, and
¥o € R is the steady state when u(r) = 0. Isostable coordinates can
be formally defined as level sets of the slowest decaying eigenmodes
of the Koopman operator [5]. The model (63) represents a reduced
order model taken to first order accuracy in the expansion of a subset of
the slowest decaying isostable coordinates. A more detailed description
of this model identification strategy is given in [18] which explains
how the model (63) can be inferred with knowledge of the steady state
response to various sinusoidal inputs. Inputs of the form u(r) = sin(wr)
with w = {0.1,0.2,...,2.0} are used for the fitting with r = 10 isostable
coordinates. The decay rates A, = —0.2k are used to implement the
fitting procedure. Other choices were also used that gave similar results
to those presented here.

Simulations for the various reduced order models are compared to
those obtained from full model simulations of (62) for different inputs
with results shown in Fig. 3. A purely sinusoidal input u(r) = 1.5 sin(0.5¢)
is shown in panel C, a positively shifted sinusoid u(f) = 1 + 0.4 sin(1.27)
is shown in panel F, pulses applied every 8 time units of magnitude 0.6
are shown in panel I, and the sum of three sinusoids u() = 0.15 sin(1.37)+
0.2sin(0.4¢) + 0.5sin(1.5¢) is shown in panel L. The resulting value of
b= % ZJN: | b; from each input is given in panels A, D, G, and J with
the respective error between the full and reduced order models shown
in panels B, E, H, and K. The mean absolute error, llm fltw |Error(¢)|dt
over 100 time units after the inputs are applied is given below: for
the purely sinusoidal input from panel C, the shifted sine wave in
panel F, pulse input from panel I, and mixed sinusoidal input from
panel L the average error is (0.06, 0.41, 0.14), (0.20, 0.25, 0.61),
(0.11, 0.25, 0.35), and (0.03, 0.50, 0.30) for the proposed adaptive
method, Koopman MPC, and first order isostable method respectively.
The proposed model identification strategy gives a better match than
the other two model identification strategies. Note that none of the
testing inputs were seen during training; the purely sinusoidal input has
a substantially slower natural frequency and higher magnitude than the
inputs used for training.
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4.2. Spike rate of a coupled neural population

Neural rhythms result from the complex interplay between in-
dividual neural dynamics, synaptic coupling between neurons, and
inputs from upstream neural populations. Due to the inherent com-
plexity of these systems, rather than examining individual neurons,
it can be more useful to examine the aggregate behavior, for in-
stance, capturing the dynamics of the firing rate, mean membrane
potential, or other population characteristics [38-41]. Phase-based re-
duction techniques have been considered population-level analysis of
neural populations [35,42-45], but it is generally unclear how to apply
phase-based approaches when the underlying model does not produce
aggregate oscillations in the absence of other external input. With these
considerations in mind, the proposed data-driven model identification
strategy is illustrated for a population of N = 1000 synaptically
coupled, tonically firing, conductance-based neurons taken from [46].
Model equations are of the form

CV; = =IL(V) = IngV; hy) = I Vi, ) = I3 (V)

8syn

N
N 5;(V; = Ega) + V2D,(0) + u(t),

=1

hy = (heo (V) = h)) /7, (V).

i = (e (V) = r) /7. (V)),

o a(l —s) _
" L+ exp(—(V; - Vp)/or)

b
+IP - =

bs

i (64)

fori = 1,..., N. Above, V; is the transmembrane voltage of neuron i,
h;, and r; are associated gating variables, and s; is a synaptic variable
used to set the synaptic current. The synaptic conductance is g, =
0.4 mS/cm? and the neurons are coupled in an all-to-all manner.
Ey, = 0 mV so that the synaptic connections are excitatory with
additional parameters a = 3, V; = =20 mV, o7 = 0.8 mV, and b = 1
determining the dynamics of the synaptic variable. u(r) is an applied
current that is identical for each neuron, and C = 1 pF/cm? is the
membrane capacitance. The term \/2Dn;(7) represents an independent
and identically distributed zero-mean white noise process with intensity
D = 1. The baseline current I ,” is drawn from a normal distribution with
mean 5 and variance 1 pA/cm?. Additional ionic currents I, Iy,, Ik,
and I, and auxiliary functions A, r, 7, and 7, are identical to those
from [46].



D. Wilson

Physica D: Nonlinear Phenomena 459 (2024) 134013

30 40 70 0 10 20

t (ms)

0 10 20 50 60

30

t (ms)

30 40 60

t (ms)

40 50 60 700 10 20 50 70

Fig. 4. The collective behavior of the neuron population from (64) is shown in response to inputs. The inputs are shown in panels A, D, and G. Panels B, E, and H, respectively,
show a representative sampling of transmembrane voltages of individual neurons from the population in response to these inputs. Panels C, F, and I, respectively, show the firing
rate computed according to Eq. (65). When u(r) = 0, y(#) tends towards a firing rate of about 144 Hz. The goal in this example is to identify a model that captures the firing rate

(1) in response to general inputs u(r) using the method described in Section 3.1.

The firing rate for the model (64) is taken as the single model
observable, defined as

N

1
y=1; Z}, At W), (65)
where A; = 1 if neuron i has fired an action potential in the window
[t,t — W] and O otherwise. Here, neuron i is defined to fire an action
potential when V; crosses a threshold of —25 mV with a positive slope
and W = 1.5 ms. Fig. 4 shows the general behavior of the model (64)
in response to various inputs. When u(¢) = 0, the model tends towards a
constant firing rate y(f) ~ 144 Hz. The inputs shown in panels A, D, and
G yield the outputs shown in panels C, F, and I, respectively. In panels
B, E, and H, a representative subset of the transmembrane voltages of
neurons in the population is shown giving a sense of the aggregate
behavior in response to the inputs. Notice the strong resonance with
the periodic input in panel A, which is characteristic of systems with a
complex-conjugate eigenvalue.

The proposed data-driven model identification methodology from
Section 3.3 is applied to the model (64) in order to provide a low
order representation that can accurately predict the dynamics that map
the input to the output. The steps from Section 3.6 are followed as
described below: Step (1) The steady state for this model is taken to
be y 144 Hz which results in the limit that u(r) = 0. Note that
due to noise, the model does not asymptote its steady state value.
The resonant frequency is estimated to be approximately 0.8 rad/s by
applying a sinusoidal input at various frequencies and measuring the
maximal response. Only two total Floquet coordinates are considered,
i.e., taking p = 2. Step (2) An input u(¢) = psin(0.7¢) is applied where
p=1{0.5,1.0,...,6.0} to define a collection of 12 periodic orbits used for
the reduction. Other frequencies could also be chosen provided they
are near the resonant frequency. Further discussion of the choice in the
frequency of the applied input is provided in Note 1 from Section 3.6.
Step (3) The input from Step 2 is applied over multiple cycles and
the output is averaged to obtain an approximation of each output y;
associated with the limit cycle. Step (4) For each p-limit cycle, an input
u(t) = psin(0.7t)+ «(?) is applied where a(7) is chosen as follows: random
numbers between —0.6 and 0.6 are chosen from a uniform distribution
and held constant over a 2 ms time interval and the resulting signal
is smoothed using spline interpolation. Simulations are performed for
t € [0,3000] ms. The resulting data is used to estimate the Fourier
series coefficients up to order u = 2 for If’l(e,p) and 121’1(0, p) along
with the associated Floquet exponents using the iteration described in
Section 3.3.1. Initial guesses for the Floquet exponents taken to be
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k1, = —0.06 + 0.8i. The results are not sensitive to this initial guess
provided Imag(x;) for the guess is close to the resonant frequency for
this system. Step (5) For each p-limit cycle, pulses are chosen for f,(t)
of the form

f(t)—{s’
o\l) = 0.

Considering the associated #(r) phase dynamics from Eq. (34), this
corresponds to rapid shifts in 4(r) by 0.375 radians occurring every
16.5 ms. The input u(r) = psin(d(t)) is applied to the full system (64)
and the resulting outputs are used to estimate the Fourier coefficients of
1;,(0,p) up to order y = 2. Step (6) Results from Steps 4 and 5 are used
to determine E, (6, p) for each p-limit cycle according to Eq. (40). Fig. 5
shows the functions that are obtained from this process. Panel A shows
the resulting periodic orbits for different values of p. The associated
Floquet exponents are shown in panel B. The real component of the
Floquet exponent decreases as the magnitude of the input increases
indicating that the orbit becomes more strongly attracting. Panels C and
D show the real and imaginary components of E, (6, p) inferred from the
fitting procedure.

Once the fitting is completed, the resulting reduced order model
takes the form (21). In this case, only two Floquet coordinates are
considered so that the reduced order model only requires two variables
to describe the 6 and p dynamics. This is a significant reduction from
the 4000 variables contained in the full order model (64). Compar-
isons are provided with two additional data-driven model identification
strategies. The first uses Koopman model predictive control (MPC) [9].
Details of the general implementation of this algorithm are given in
Appendix C; here the time step is taken to be 0.15 ms with a time-delay
embedding of 49 units. The functions L, = [y,_;, ...,y _4]" € R* and
L, = [u_1, ... u;_go]" € R* are used to lift to a higher dimensional
state by defining A; from Eq. (C.2). The same data used to obtain the
model of the form (21) is used to build the matrices H and H* defined
below Eq. (C.2) and the associated A and B matrices are fit according
to Eq. (C.3). The length of the delay embedding for the Koopman MPC
strategy is chosen with a trial-and-error process; the Koopman MPC
algorithm is applied for various embedding lengths and increased until
there are no discernible improvements in the accuracy of the resulting
model. The second model identification strategy used for comparison
was presented in [18]. Here, sinusoidal inputs of varying frequencies
are applied and the resulting steady state outputs are used to infer
a model of the form (63) which was explained in further detail in
Section 4.1. For this comparison model identification strategy, inputs

if mod(z, 16.5) < 0.075,

. (66)
otherwise.
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Fig. 5. A sampling of the curves obtained from the proposed model-identification procedure. Panel A shows y,(6), i.e., the observable on the p-limit cycle for different values of
p. The inferred Floquet multipliers are shown in Panel B. Panels C and D show E,(6,p) as obtained from the fitting procedure for different values of p. This term captures how

the Floquet coordinates change in response to shifts in the parameter p.

of the form u(r) = sin(wt) with = {0.3,04,...,1.2} are used for the
fitting with r = 10 isostable coordinates having decay rates 4, = —0.2k.
Other choices were also used that gave similar results to those shown
here.

Simulations for the various reduced order models are compared to
those obtained from full model simulations of (64) for different inputs
with results shown in Fig. 6. A sinusoidal input u(¢) = sin(0.83¢r) which
is close to the resonant frequency shown in Panel C, a u = —5 pA/cm?
pulse applied for 30 ms is shown in panel F, pulses of amplitude u =
5 pA/cm? applied every 15 ms are shown in panel I, and the input
u(t) = 1.53sin(0.6¢) + 1.19 cos(0.7¢) + 2.21 cos(0.3r) pA/cm? is shown in
panel L. Corresponding outputs from each input are shown in panels
A, D, G, and J with the respective error between full and reduced
order simulations given in panels B, E, H, and K. The mean absolute
error, 1]E le)zo |Error(r)|dt, is also provided for each model giving a
quantitative measure of the error for each model for the first 100 ms
after input is first applied. For the purely sinusoidal input in panel C,
single pulse in panel F, multiple pulse input from panel I, and mixed
sinusoidal input from panel L the average error is (19.2, 45.0, 31.9)
Hz, (24.0, 63.3, 54.3) Hz, (30.3, 82.4, 71.9) Hz, and (21.7, 50.0, 67.0)
Hz for the proposed adaptive method, Koopman MPC, and first order
isostable model, respectively. For each input, the proposed adaptive
method gives between 40 and 60 percent less error than the next best
model. Additionally, the proposed model identification strategy always
provides results that are qualitatively similar to the full order model
while the other reduced order models often provide results that are
substantially different.

5. Conclusion

In this work, a data-driven model identification strategy is presented
that considers the dynamics of a general nonlinear system in reference
to a collection of externally forced periodic orbits. By inferring infor-
mation about the phase-amplitude dynamics of the individual periodic
orbits, a low-order model can be obtained that accurately captures the
dynamics of the underlying model in response to arbitrary external
inputs. This work provides an extension for the strategy presented
in [25] which required explicit knowledge of the underlying model
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equations. By contrast, the model identification procedure summarized
in Section 3.6 only requires the ability to apply inputs and measure
the resulting time-series data. In examples considered in Section 4, the
proposed technique outperforms both Koopman model predictive con-
trol [9] and an isostable-coordinate-based model identification strategy
from [18].

As compared to DMD [1-3] and its variants [7-9], the proposed
model identification strategy places some structure on the underlying
equations, learning a representation of the system based on the dy-
namics of the underlying periodic orbits. Specifying the underlying
structure likely mitigates the risk of overfitting to data and provides
a better representation of the overall system dynamics. As compared to
other data-driven model identification strategies that attempt to learn
the model equations that generate snapshot data, [10-13], the pro-
posed model identification strategy provides a universal representation
based on the phase and amplitude dynamics of the underlying forced
periodic orbits. The resulting model does not require a specification
of a function library and can be implemented without the need for
machine learning. Nonetheless, it may be of interest to consider more
sophisticated fitting strategies in the model identification procedure in
order to yield better approximations of the phase-amplitude reduced
order dynamics.

While the preliminary results presented here are promising, this
strategy still has a number of limitations. Foremost, it is explicitly
assumed that the dynamics of the underlying system (10) approach a
stable periodic orbit in response to the applied input u(¢). This is guar-
anteed in the limit of weak forcing for systems with a stable fixed point,
even when the associated eigenvalues of the linearized fixed point are
purely real. However, as the magnitude of the periodic forcing in-
creases, periodic orbits may not persist as the magnitude of the forcing
becomes larger. This limitation would likely preclude implementation
for systems displaying chaotic dynamics where stable periodic orbits
would not be observed, but potentially could be overcome by incor-
porating chaos control strategies [47-49] to stabilize the resulting
unstable orbits so that the necessary data can be collected for model
fitting. Additionally, in the implementation of the proposed strategy,
the extended phase and extended isostable coordinates from Eq. (16)
associated with the periodic orbit X; must be continuous with respect
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Fig. 6. The inputs from panels C, F, I, and L are applied to the full order model (64), the proposed adaptive data-driven model identification strategy, and two other data-driven
models. Corresponding output traces are shown in panels A, D, G and J with associated errors shown in panels B, E, H, and K. In addition to giving the correct qualitative behavior,
the proposed adaptive reduction strategy yields a model with approximately half as much error as the other two comparison data-driven strategies. Note that the proposed method
was not trained on any of the test inputs from Fig. 6; the pure sine wave in panel C has different frequency than the sinusoidal inputs used for training.

to p (the amplitude of the periodic forcing). This precludes critical
points of p for which a bifurcation occurs from the allowable parameter
set. In order to consider forced vibration problems, for instance, with
a system having regions of phase space with qualitatively different
dynamics separated by homoclinic orbits [50], further extensions to the
proposed model identification strategy would be necessary.

The proposed model identification strategy exploits rapid conver-
gence of some of the Floquet coordinates in order to arrive at a
low-order representation for the model dynamics. In principle, it can
accommodate the influence of an arbitrary number of low amplitude,
slowly decaying modes, but in practice it may be difficult to distinguish
the influence from each of these modes using data, especially for Flo-
quet exponents that are close to each other. Additionally, adding more
low amplitude modes will not necessarily guarantee a more accurate
model. With this in mind, it would be worthwhile to extend this data-
driven procedure to accommodate additional pairs of large amplitude
oscillatory modes. In this work, the influence of noise and measurement
error is not explicitly considered here which may decrease the accuracy
of the proposed model identification strategy. Some of these concerns
are at least partially alleviated by the results for the neural system
from Eq. (64); even for a large scale and noisy model, the two-mode re-
duced order model performs well in this example, especially compared
to the other data-driven model identification strategies considered.
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Appendix A. Numerical computation of terms comprising the
adaptive phase-amplitude reduced order equations

Consider a general equation of the form (12) with a forced periodic
orbit of the form (13) that results for a constant choice of p when
taking u(r) = 0. If the underlying equations are known, the terms
comprising the adaptive phase-amplitude reduced order equations can
be computed numerically. For instance, the gradient of the phase
a(@,p) = % evaluated on the periodic orbit X} can be obtained by
computing periodic solutions of the adjoint equation [28,51],

a=-J"a, (A.1)
where J is the Jacobian evaluated at X; normalized so that
¥
2r _ |:Fx(xp(0)7pf(0)):| - (0, p), (A.2)
T(p) @

where the dot (;ienotes the dot product. Likewise, as discussed in [33,
341, b;(0,p) = ()—V; evaluated on the periodic orbit x,’, can be computed
by finding periodic solutions of

i T
by =—(J" —x;1d)b;, (A.3)

where «; is the Floquet exponent associated with the Floquet coordinate
w; and 1d is an appropriately sized identity matrix. Corresponding
Floquet eigenfunctions g;(6,p) can be computed by finding periodic
solutions of

& = —x;ld)g;. (A4

Additionally, the resulting g;(0,p) and b;(9, p) must be scaled so that
g[(e,p)bj(ﬁ, p) = 1 if k = j and 0 otherwise. As discussed in [34], the
relationship

4

dX
T 0, p)—L = A.
j 0. —F =0, (A5)

must also be satisfied for all states on the periodic orbit for all ;.

Appendix B. Reduced order terms comprising the adaptive reduc-
tion in the limit of weak forcing

Ref. [25] derived explicit representations for the terms of an adap-
tive reduction of the form (16) for oscillations that result from a
carefully designed input added directly to the state equation. By con-
trast, in the current work, general periodic inputs are considered to
yield forced periodic orbits used in the adaptive reduction. Nonetheless,
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in the limit of weak forcing, the terms of the adaptive reduction have
a shared structure. This point is illustrated below following a similar
derivation to the one given in Section 3.2 of [25].

To begin, consider the T-periodic linear time varying Eq. (49) that
characterizes solutions near the periodic orbit of (12) that results from
the periodic input pf () when taking u(r) = 0. Note that while (49) is
linear time varying, this equation becomes linear time invariant when
truncating the O(e) terms. As such, the monodromy matrix @ that solves
AX(T) = ®X(0) can be approximated to leading order as

( A 0 T)
b= 00 + O(e)
AT
= [ 0 1] + O(e)
= @, +0(e), (B.1)

where @, contains the O(1) terms of the monodromy matrix. Above, the
structure in the second line follows directly from the diagonal structure
of the O(1) terms.

Eigenvalues /17’ and associated left and right eigenvalues w}b and
v?’, respectively, of @ can be used to determine the Floquet multipliers
and Floquet eigenfunctions of the periodic orbit defined in (13). As
discussed in Appendix B of [25], the eigenvalues and eigenvectors of
@, (/lf“, wf”, and uj)o) will be O(e) approximations of 17’, w;?), and vjq?
provided 170 is simple. With this in mind and considering Eq. (B.1), for
any eigenvalue, right eigenvector, and left eigenvector triple (4;,v;, w;)
of A

Dy _ Uj
1

is a right eigenvector of @, with eigenvalue /1?0 = exp(4;T). It is also
straightforward to verify that

(B.2)

(B.3)
is a right eigenvector of (Dg with corresponding eigenvalue /17.)0 and
hence is a left eigenvector of @,. The Floquet exponent for the periodic
orbit (13) corresponding to /1:’_150 is

I AT
K; = w + O(e)
_ log |exp(4;T)|  arg(exp(4;T))
= - +i - +0(e)

2zim

= Real(4;) + ilmag(4;) — - + O(e). (B.4)

Above, because exp(a+ bi) = exp(a+ bi+2kxi) for any integer value of k,
the additional term 2zim/T is chosen appropriately with the mandate
that Tmag(log(exp(4,T))) € (-x,z]. The Floquet eigenfunction g;(0, p)
associated with the Floquet multiplier x; can be obtained by finding
periodic solutions to Eq. (A.4); to leading order ¢, substituting Eq. (48)
for the Jacobian this equation becomes

. A 0
&= <[0 0] - Kjld>gj + O(e). (B.5)
T
For any g; « [UIT O] , Eq. (B.5) simplifies to
g =8;(4; — k) +0(e)
= gj2m'm/T + O(e). (B.6)

Above, the first line is obtained by recalling that v; is an eigenvalue

of A and the second line is obtained by substituting (B.4). Integrating
Eq. (B.5) over one period ultimately yields the solution

g = [lg] exp (wimt) + O(e), (B.7)
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with the substitution w = 2z /T. Likewise, the gradient of the Floquet
coordinates with respect to the state can be computed by finding
periodic solutions of (A.3). Substituting the relevant terms, to leading
order this equation is

; AT 0
b= —([ o 0] - Kj1d>bj +0(e). (B.8)
T
For any b; « [wJT O] , Eq. (B.8) simplifies to
bj = —bj(lj - K'j) + O0(e)
= —bj27zrim/T + O(e). (B.9)

Noting that w® from (B.3) provides an initial condition that solves
(B.8) to leading order e, integrating (B.9) over one period ultimately

yields solutions of the form (recall that a_u)/(, =bh j)
w; exp(—wimt) + O(e)]
bt)y=1|"/ N B.10
(1) [ b,2(1) ( )

where b;,(1) is a T-periodic O(e) term. The term b;,(7) can be deter-
mined by considering (A.5), specifically

dx,
0=25"(0,p—2L
j O-P)—
= [w] exp(-wimn) + 0(e) ;5]

d 1 AG—
y p (eAer_,_/O eAlt T)Bf(a)T)dT> ’ (B.11)

@

where terms O(e2) and higher are truncated and the second line is
obtained by substituting (B.10) for b ! and (45) for x; to leading order
e. Solving (B.11) for b;,(t) ultimately yields

b;2(1) = pn; (), (B.12)
where

1 o od (A A=)
n;(t) = —;w/. exp(—a)tmt)E e'xg+ A e Bf(wt)dt |. (B.13)

oy . . .
Note that b;, = % Of particular importance, note that b;,(t) is
directly proportional to p.

Appendix C. Koopman model predictive control algorithm

The proposed model identification algorithm is compared to the
Koopman model predictive control algorithm from [9] (cf., [52]). Con-
sidering the general model of the form (10), Koopman model predictive
control considers a series of data snapshots

5= yow), (Cc.1)

where y; = y(x(t,)) € RX, y¥ = y(x(t; + 4)) € RX, and u; = u(1;) € RM,
with Ar being a constant timestep. A lifted state vector is generally
considered

Yi
hi = Ly(yis Yicys Vieos -
L,(u_y,u;_5,...)

e (C.2)

where L, and L, are vectors comprised of the current and previous
outputs and previous inputs, respectively. The augmentation of the
current state with additional information about the time history is
often referred to as time-delay embedding [8]. Note that the time-
delay embedding is not explicitly required to implement the Koopman
model predictive control algorithm. The goal of the Koopman model
predictive control approach is to obtain an approximation for the linear
relationship hf = Ah; + Bu;. Letting H = [h, ... h,|, H* = [} - h}],
and U = [u, ...u,] where d is the total number of pairs of lifted state
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coordinates, a least squares fit for A and B can be obtained according

to

[A

+
—
ﬂ_H[A, (€3)

where T denotes the pseudoinverse. At each step, predictions for the
observable can be obtained from the first K entries of 4;. The Koop-
man model predictive control algorithm is closely related to extended
dynamic mode decomposition [7] and other techniques involving dy-
namic mode decomposition [53]. This approach is distinct from stan-
dard linearization around a reference point or trajectory; because of its
close connection to the Koopman operator, it can be thought of as a
global linearization of the underlying dynamical system.
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