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A B S T R A C T

This paper presents a data-driven model identification strategy that characterizes the behavior of a general
dynamical system relative to a set of limit cycles that emerge in response to periodic forcing. Using time series
data to infer the phase–amplitude dynamics associated with the underlying forced limit cycles, a low-order
model can be obtained that accurately captures the dynamical behavior in response to arbitrary external inputs.
The proposed strategy can be readily implemented in situations where full state measurements are unavailable
and does not require any prior knowledge of the underlying model equations. This technique is applied to a
model of coupled planar oscillators and to a model that considers the spike rate in a population of coupled
conductance-based neurons where it outperforms two other commonly used data-driven model identification
techniques.

1. Introduction

The equations governing the behavior of many complex, high-
dimensional dynamical systems are either unknown or not well-
understood. In these situations, data-driven model identification tech-
niques can be used to obtain an accurate dynamical model that captures
the salient system behaviors and accurately predicts the system re-
sponse to input. Dynamic mode decomposition (DMD) is one such
strategy [1–3] that is widely used due to its general applicability and
relative ease of implementation. This approach provides a linear, least-
squares mapping between pairs of data snapshots taken at a fixed time
interval. DMD shares a close connection with Koopman analysis, which
can be used to represent a general, nonlinear dynamical system as a
linear, but possibly infinite dimensional operator [4–6]. This connec-
tion provides a rigorous justification for strategies such as extended
DMD [7], Hankel DMD [8], and Koopman model predictive control [9],
where a lifted state vector is used to obtain a better approximation for
the system dynamics.

While DMD can be applied in a wide variety of situations and
yields a linear model for the dynamics, it generally only considers
the error between consecutive data snapshots in the fitting process.
As such, its efficacy is often diminished when long-term predictions
are required. Alternative strategies employ sparse fitting techniques to
learn model equations by selecting a small number of terms from a large
nonlinear function library to capture the relationship between snapshot
pairs [10–13]. By allowing for nonlinear terms in the function library
and selecting only a small subset to comprise the model dynamics, these
methods mitigate the risk of overfitting and provide a model that is
more interpretable in terms of the mechanisms that govern the model
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dynamics, especially if the function library is chosen judiciously with
some knowledge of the underlying dynamical system. In a similar vein,
physics-informed neural networks use machine learning techniques that
explicitly account for the governing physics during training [14–16].

Rather than learning the underlying model equations that give
rise to model behaviors observed in data, recent work has focused
on learning representations of data relative to an underlying fixed
point [17,18] or periodic orbit [19,20]. These techniques use reduced
order coordinate systems that provide a universal representation of the
system dynamics provided a suitable attractor can be identified. Most
of these techniques leverage the isostable coordinate framework [21],
which considers only the level sets of the slowest decaying eigenmodes
of the Koopman operator. Other works have also considered the use of
Koopman eigenfunctions to define intrinsic coordinate systems that can
be used to formulate Koopman-based control problems [22]. These ap-
proaches have motivated the development of highly accurate reduced
order modeling techniques that consider the dynamics in reference
to a continuous family of attractors [23,24]. Of particular relevance
to this work, [25] proposed a general strategy for understanding the
behavior of a dynamical system by characterizing it in terms of the
forced limit cycles that emerge when carefully designed periodic inputs
are applied. By considering the resulting forced periodic orbits that
emerge in response to the external forcing and subsequently using
an adaptive phase–amplitude-based reduced order modeling approach,
a low-order model can be obtained that accurately characterizes the
forced dynamics in complex, high-dimensional systems. The approach
from [25], however, explicitly requires knowledge of the underlying
dynamical equations and requires the ability to apply input additively
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to each of the state variables; these constraints make this strategy
infeasible for application in a data-driven setting.

This work extends the strategy considered in [25] by developing
a purely data-driven model identification strategy that considers the
dynamics in reference to a collection of periodic orbits that emerge
as a result of external forcing. This model identification strategy does
not require any a priori knowledge about the underlying system and
only requires the ability to measure time-series data. In two illustrative
examples, the proposed methodology yields a dynamical model that
is substantially more accurate than comparable strategies that employ
DMD and other isostable-coordinate-based reduction strategies. The
organization of this paper is as follows: Section 2 provides neces-
sary background information on phase and phase–amplitude reduction
techniques that serve as a theoretical underpinning for the proposed
model identification strategy. Section 3 gives a full description of the
proposed approach and also provides a detailed list of steps required for
implementation. Section 4 provides results where the proposed strategy
is applied to a simple model of coupled planar oscillators as well as a
more complicated model of a large population of synaptically coupled
neurons. Section 5 gives concluding remarks.

2. Background

Relevant background information on phase and phase–amplitude
reduction strategies for limit cycle oscillators is given below. These
reduced order modeling strategies provide a theoretical underpinning
for the proposed data-driven model identification strategy.

2.1. Phase reduction

Consider an ordinary differential equation of the form

𝑥̇ = 𝐹 (𝑥, 𝑢), (1)

where 𝑥 ∈ R𝑁 is the state, 𝑢 ∈ R𝑀 is an external input, and 𝐹 sets the
dynamics. Suppose that when 𝑢 is held constant at 𝑢 = 𝑝, Eq. (1) admits
a stable 𝑇 (𝑝)-periodic orbit 𝑥𝛾𝑝. In situations where timing of oscillations
is of interest, one can define a phase 𝜃 ∈ [0, 2𝜋) for all states 𝑥 ∈ 𝑥

𝛾
𝑝

with 𝜃 scaled so that 𝑑𝜃

𝑑𝑡
=

2𝜋

𝑇 (𝑝)
= 𝜔(𝑝) when 𝑢 = 𝑝 is held constant.

Isochrons [26,27] can be used to extend the notion of phase to the basin
of attraction of the limit cycle: letting 𝜃1 be the phase associated with
some 𝑎 ∈ 𝑥

𝛾
𝑝, the 𝜃1 isochron is the defined as the set of all 𝑏 for which

lim
𝑡→0

‖𝜙(𝑡, 𝑎) − 𝜙(𝑡, 𝑏)‖ = 0, (2)

where 𝜙(𝑡, 𝑥) denotes the flow of (1) subject to 𝑢 = 𝑝 and ‖ ⋅ ‖ can
be any vector norm. Phase reduction [27–31] can be implemented by
changing to variables to phase coordinates

𝑑𝜃

𝑑𝑡
=
𝜕𝜃

𝜕𝑥
⋅
𝑑𝑥

𝑑𝑡

=
𝜕𝜃

𝜕𝑥
⋅
(
𝐹 (𝑥, 𝑝) +

𝜕𝐹

𝜕𝑢
(𝑢 − 𝑝) + 𝑂(‖𝑢 − 𝑝‖2))

= 𝜔(𝑝) +𝑍(𝜃, 𝑝)(𝑢 − 𝑝) + 𝑂(‖𝑢 − 𝑝‖2) + 𝑂(‖𝑥 − 𝑥𝛾𝑝(𝜃)‖2), (3)

where 𝑍(𝜃, 𝑝) =
𝜕𝜃

𝜕𝑥

𝑇 𝜕𝐹

𝜕𝑢
with all partial derivatives evaluated at 𝑥𝛾𝑝(𝜃),

the dot denotes the dot product, and 𝑇 denotes the transpose. The
higher order terms from Eq. (3) are typically truncated to yield a 1-
dimensional reduction of the original 𝑁-dimensional ordinary differen-
tial equation that is valid in a close neighborhood of the periodic orbit.

2.2. Phase-amplitude reduction

Phase reduction of the form (3) can only be used to characterize the
timing of oscillations, but can be augmented with Floquet coordinates
to consider amplitude-based effects. To this end, letting 𝛥𝑥 = 𝑥− 𝑥

𝛾
𝑝(𝜃),

to a linear approximation, 𝛥𝑥̇ = 𝐽𝛥𝑥 where 𝐽 is the Jacobian of 𝐹

evaluated at 𝑥𝛾𝑝(𝜃(𝑡)). Provided the monodromy matrix of this 𝑇 (𝑝)-
periodic linear time varying system is diagonalizable, near 𝑥𝛾𝑝 one can
employ Floquet theory [32] to write

𝑥 − 𝑥𝛾 (𝜃) =

𝑁−1∑
𝑗=1

𝜓𝑗𝑔𝑗 (𝜃, 𝑝), (4)

where 𝑔𝑗 (𝜃, 𝑝) is a Floquet eigenfunction associated with the Floquet
coordinate 𝜓𝑗 . Above, the contribution from the Floquet eigenfunction
𝑔𝑁 with Floquet multiplier 𝜆𝑁 = 1 has been absorbed by the phase
coordinate yielding 𝑁 − 1 total Floquet coordinates. To linear order of
accuracy, the Floquet coordinates can augment the phase reduction (3)
to yield a set of phase–amplitude reduced equations

𝜃̇ = 𝜔(𝑝) +𝑍(𝜃, 𝑝)(𝑢 − 𝑝),

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗 (𝜃, 𝑝)(𝑢 − 𝑝),

𝑗 = 1,… , 𝛽. (5)

Above, 𝐼𝑗 (𝜃, 𝑝) =
𝜕𝜓𝑗

𝜕𝑥

𝑇
𝜕𝐹

𝜕𝑢
with all partial derivatives evaluated at

𝑥
𝛾
𝑝(𝜃), and 𝜅𝑗 is the Floquet exponent associated with the 𝑗th Floquet
eigenfunction. Additionally, in order to yield a reduced order set of
equations, 𝑁 − 1 − 𝛽 fast decaying Floquet coordinates (as gauged
by the magnitude of their Floquet exponents) are ignored. Previous
work [33,34] considered an extension of (5) using isostable coordinates
to characterize amplitude-based effects which are valid in the basin of
attraction of the limit cycle. Numerical strategies for computation of
the necessary terms from (5) are discussed in [31,33].

2.3. Adaptive phase-amplitude reduction

Eqs. (3) and (5) are only valid in a close neighborhood of the limit
cycle, i.e., when the Floquet coordinates are small. Consequently, they
are typically only used to consider the dynamics of systems in the
weakly perturbed limit. Adaptive phase–amplitude reduction [23,35]
can be used to consider systems with inputs that would otherwise
invalidate the weak perturbation assumption. This approach considers
a family of periodic orbits to limit truncation errors associated with
the phase–amplitude reduction from Eq. (5). To this end, for any 𝑝 ∈

𝑃 ⊆ R𝑀 held constant, suppose that 𝑥̇ = 𝐹 (𝑥, 𝑝) from Eq. (1) admits
a periodic orbit 𝑥𝛾𝑝. Considering this family of periodic orbits, one can
define an extended phase 𝜃(𝑥, 𝑝) and a set of extended Floquet coor-
dinates 𝜓1(𝑥, 𝑝),… , 𝜓𝛽 (𝑥, 𝑝). For the definition of the extended phase,
the phase of each periodic orbit is unique to a constant shift; this issue
can be addressed by defining a level set of the phase for each limit
cycle to correspond to the crossing of some Poincaré section. For the
definition of the extended Floquet coordinates, it is still assumed that
the 𝜓1,… , 𝜓𝛽 decay slowly relative to the remaining 𝑁 − 1− 𝛽 Floquet
coordinates for all 𝑝 ∈ 𝑃 as gauged by the magnitude of the associated
Floquet exponents.

Intuitively, if 𝑝 can be updated appropriately to limit the magnitude
of the Floquet coordinates, then the associated truncation errors can be
mitigated yielding a reduced order model that can accommodate large
magnitude inputs. To this end, proceeding as described in [23], one can
rewrite Eq. (1) according to

𝑥̇ = 𝐹 (𝑥, 𝑝) + 𝑈𝑒(𝑥, 𝑢, 𝑝), (6)

where

𝑈𝑒(𝑥, 𝑢, 𝑝) = 𝐹 (𝑥, 𝑢) − 𝐹 (𝑥, 𝑝)

=
𝜕𝐹

𝜕𝑢
(𝑢 − 𝑝) + 𝑂(‖𝑢 − 𝑝‖2), (7)

where all partial derivatives are evaluated at 𝑥 and 𝑢 = 𝑝. Considering
𝑈𝑒 as the effective input, one can consider the system dynamics in ref-
erence to any periodic orbit 𝑥𝛾𝑝 for 𝑝 ∈ 𝑃 . As described in [23], allowing
𝑝 to be nonstatic, transforming to phase and Floquet coordinates, and
truncating higher order terms ultimately yields

𝜃̇ = 𝜔(𝑝) +𝑍(𝜃, 𝑝)(𝑢 − 𝑝) +𝐷(𝜃, 𝑝) ⋅ 𝑝̇,
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𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗 (𝜃, 𝑝)(𝑢 − 𝑝) + 𝐸𝑗 (𝜃, 𝑝) ⋅ 𝑝̇,

𝑗 = 1,… , 𝛽,

𝑝̇ = 𝐺𝑝(𝑝, 𝜃, 𝜓1,… , 𝜓𝛽 ). (8)

Above, 𝐷(𝜃, 𝑝) ∈ R𝑀 and 𝐸𝑗 (𝜃, 𝑝) ∈ C𝑀 characterize how changes in
the parameter set 𝑝 influence 𝜃 and 𝜓𝑗 , respectively, and 𝐺𝑝 can be
chosen arbitrarily to set the dynamics of 𝑝. As explained in [23], the
𝑖th element of 𝐷(𝜃, 𝑝) can be computed according to −

𝜕𝑥𝛾

𝜕𝑝𝑖
⋅
𝜕𝜃

𝜕𝑥
where

𝜕𝑥𝛾

𝜕𝑝𝑖
|𝜃0 ,𝑝 ≡ lim𝑎→0(𝑥

𝛾
𝑝+𝑒𝑖𝑎

(𝜃0) − 𝑥
𝛾
𝑝(𝜃0))∕𝑎,

𝜕𝜃

𝜕𝑥
is evaluated in reference to

𝑥
𝛾
𝑝, and 𝑒𝑖 is the 𝑖th component of the standard unit basis. Likewise

the 𝑖th element of 𝐸𝑗 is given by −
𝜕𝑥𝛾

𝜕𝑝𝑖
⋅
𝜕𝜓𝑗

𝜕𝑥
where

𝜕𝜓𝑗

𝜕𝑥
is evaluated in

reference to 𝑥𝛾𝑝.
Recalling that the primary source of error in the phase–amplitude

reduction from (5) results from large deviations of the state from the
nominal limit cycle (and hence large values of 𝜓1,… , 𝜓𝛽), the variable
𝑝 introduced in Eq. (8) adds additional degrees of freedom with the goal
of mitigating these errors by keeping the amplitude coordinates small.
General heuristics for choosing 𝐺𝑝 are discussed in [23]. Provided that
each 𝜓1,… , 𝜓𝛽 remains an order 𝜖 term for all time where 0 < 𝜖 ≪ 1,
the relationship

𝑥(𝑡) = 𝑥𝛾𝑝(𝜃) +

𝛽∑
𝑗=1

𝜓𝑗𝑔𝑗 (𝜃, 𝑝) (9)

remains accurate to leading order 𝜖. The adaptive reduction (8) is
used as a starting point for the proposed model identification strategy.
Specific details of the proposed strategy are given in Section 3.

3. Data-driven model identification for forced nonlinear oscilla-
tions

3.1. Overview of the proposed approach

The goal of this work is to identify a reduced order, data-driven
model to capture forced nonlinear oscillations in a general system of
the form

𝑥̇ = 𝐹𝑥(𝑥, 𝑢),

𝑦 = 𝐶(𝑥), (10)

where 𝑥 ∈ R𝑁 is the state, 𝐹𝑥 sets the dynamics of 𝑥, 𝑢 ∈ R𝑀 is
an input, 𝑦 ∈ R𝐾 is the output, and 𝐶 maps the state to the output.
The model will be analyzed relative to an assumed stable equilibrium,
𝑥eq for which 𝐹𝑥(𝑥eq, 0) = 0. Furthermore, it will be assumed that the
model displays forced oscillations resulting from at least one pair of
complex-conjugate eigenvalues associated with the Jacobian evaluated
at the equilibrium, however, the proposed strategy could be modified
to consider situations where all eigenvalues are purely real. As distinct
from standard linearization techniques, the proposed approach captures
dynamics far beyond the weakly perturbed regime that would result
from standard linearization of (10). Additionally, the proposed strategy
is applicable even in situations where 𝑥 is not observable and when
both 𝐹𝑥 and 𝐶 are unknown.

The adaptive phase–amplitude reduction summarized in Section 2.3
will be used in the development of the proposed data-driven model
identification technique. To this end, consider the state dynamics from
(10) with the addition of an arbitrary, periodic input

𝑥̇ = 𝐹𝑥

(
𝑥, 𝑝𝑓

(
2𝜋𝑡

𝑇 (𝑝)

)
+ 𝑢(𝑡)

)
. (11)

Here, 𝑓 (⋅) is assumed to be 2𝜋-periodic in its argument (𝑇 (𝑝)-periodic
in time) and 𝑝 > 0 determines the magnitude of the input. The
period is allowed to explicitly depend on 𝑝. Towards implementation
of the adaptive phase–amplitude reduction framework described in
Section 2.3, Eq. (11) will be rewritten in an autonomous form:

𝑥̇ = 𝐹𝑥(𝑥, 𝑝𝑓 (𝑠) + 𝑢(𝑡)),

𝑠̇ = 𝜔(𝑝) + 𝑓𝜃(𝑥, 𝑠, 𝑝, 𝑢), (12)

where 𝜔 = 2𝜋∕𝑇 , 𝑠 ∈ [0, 2𝜋) is a time-like variable, and 𝑓𝜃 ∈ R is an
arbitrary term that can be used to modulate the time-like variable 𝑠.
The exact choice of 𝑓𝜃 will be discussed momentarily, but note that
when 𝑓𝜃 = 0, the dynamics specified by Eq. (11) are identical to those
of Eq. (12). Suppose that for all allowable values of 𝑝, when taking
𝑢(𝑡) = 0, Eq. (11) has a stable 𝑇 (𝑝)-periodic orbit 𝑥𝛾𝑝(𝑡) in response to
the periodic forcing. Letting 𝑋 = [𝑥𝑇 𝑠]𝑇 and taking 𝑓𝜃 = 0, Eq. (12)
has a corresponding periodic orbit

𝑋𝛾
𝑝 (𝑡) =

[
𝑥
𝛾
𝑝(𝑡)

mod(𝜔𝑡, 2𝜋)

]
. (13)

Note that 𝑥𝛾𝑝 has the same period as the forcing. The orbit 𝑥
𝛾 can be

obtained directly in the limit that 𝑝 is small provided 𝐹𝑥 is 𝐶
∞ dif-

ferentiable according to a series expansion obtained using perturbation
theory. Periodic solutions typically extend beyond the small 𝑝 limit and
can be obtained numerically. Eq. (12) can be manipulated to be written
in a similar form to (6):

𝑑

𝑑𝑡

[
𝑥

𝑠

]
=

[
𝐹𝑥(𝑥, 𝑝𝑓 (𝑠))

𝜔(𝑝)

]
+

[
𝐹𝑥(𝑥, 𝑢) − 𝐹𝑥(𝑥, 𝑝𝑓 (𝑠))

𝑓𝜃(𝑥, 𝑠, 𝑝, 𝑢)

]

≈

[
𝐹𝑥(𝑥, 𝑝𝑓 (𝑠))

𝜔(𝑝)

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐹 (𝑋,𝑝)

+

[
𝜕𝐹𝑥
𝜕𝑢

(𝑢 − 𝑝𝑓 (𝑠))

𝑓𝜃(𝑥, 𝑠, 𝑝, 𝑢)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈𝑒(𝑋,𝑢,𝑝)

. (14)

Above, the first term on the right hand side of (14) sets the nominal
dynamics that yield the periodic orbit from (13) and the second term
acts as the effective input. Notice that the 𝑥 dynamics of Eq. (14)
are equivalent to those of the underlying Eq. (10) when 𝑓𝜃 = 0.
Transforming to phase and Floquet coordinates applying the adaptive
phase–amplitude reduction framework to (14), the phase dynamics are

𝜃̇ = 𝜔(𝑝) +𝑍1(𝜃, 𝑝)(𝑢 − 𝑝𝑓 (𝜃)) +𝑍2(𝜃, 𝑝)𝑓𝜃 +𝐷
𝑇 (𝜃, 𝑝)𝑝̇. (15)

Above, the terms 𝑍1(𝜃, 𝑝) ∈ R𝑀 and 𝑍2(𝜃, 𝑝) ∈ R are the first 𝑀
entries and last entry, respectively, of 𝑍(𝜃, 𝑝), i.e., the phase response
associated with the periodic orbit 𝑋𝛾

𝑝 (𝑡). As discussed in [36], because
the periodic orbit results from periodic forcing, 𝜃(𝑝, 𝑠) = mod(𝜃0 + 𝑠, 2𝜋)

where 𝜃0 is an arbitrary constant. For simplicity, one can take 𝜃0 = 0 for
all 𝑝 so that 𝜃 = 𝑠 with the phase dynamics simplifying to 𝜃̇ = 𝜔(𝑝)+𝑓𝜃 .
Applying this simplification, the adaptive phase–amplitude reduction
of the form (8) becomes

𝜃̇ = 𝜔(𝑝) + 𝑓𝜃(𝑝, 𝑢, 𝜃, 𝜓1,… , 𝜓𝛽 ),

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗,1(𝜃, 𝑝)(𝑢 − 𝑝𝑓 (𝜃)) + 𝐼𝑗,2(𝜃, 𝑝)𝑓𝜃 + 𝐸𝑗 (𝜃, 𝑝)𝑝̇,

𝑗 = 1,… , 𝛽,

𝑝̇ = 𝐺𝑝(𝑝, 𝑢, 𝜃, 𝜓1,… , 𝜓𝛽 ), (16)

where 𝐼𝑗,1(𝜃, 𝑝) =
𝜕𝜓𝑗

𝜕𝑥

𝑇 𝜕𝐹𝑥
𝜕𝑢

∈ C𝑀 and 𝐼𝑗,2 =
𝜕𝜓𝑗

𝜕𝑠
∈ C. The associated

output is given by

𝑦(𝑡) = 𝐶(𝑥(𝑡))

= 𝐶

(
𝑥𝛾𝑝(𝜃) +

𝛽∑
𝑗=1

𝑔𝑗 (𝜃, 𝑝)𝜓𝑗 (𝑡)

)

≈ 𝑦𝛾𝑝(𝜃) +

𝛽∑
𝑗=1

𝑔̃𝑗 (𝜃, 𝑝)𝜓𝑗 (𝑡), (17)

where 𝑦𝛾𝑝(𝜃) ≡ 𝐶(𝑥
𝛾
𝑝(𝜃)) and 𝑔̃𝑗 (𝜃, 𝑝) =

𝜕𝐶

𝜕𝑥
𝑔𝑗 (𝜃, 𝑝) with partial derivatives

evaluated at 𝑥𝛾𝑝(𝜃). In the above equation, (9) is used to obtain the sec-
ond line and the third line is valid first order accuracy in the Floquet co-
ordinates. Provided 𝐺𝑝 can be chosen so that each 𝜓1,… , 𝜓𝛽 remain or-
der 𝜖 terms for all time, the approximation (17) remains valid to leading
order 𝜖. Note that in Eq. (16), the terms 𝑓𝜃 and 𝐺𝑝 are constrained to be
functions of the state variables and input in order to yield a closed set
of equations. An appropriate choice for 𝑓𝜃 and 𝐺𝑝 is considered below.
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As in [25], it will be assumed that 𝜅1 and 𝜅2 are complex-conjugate
pairs with Real(𝜅1) < 0. Such Floquet exponents generally occur when
the linearized fixed point of the underlying system (10) has a complex-
conjugate pair eigenvalues that can lead to a large resonant peak. In
the context of the adaptive phase–amplitude reduction from (16), the
focus is on keeping 𝜓1 and 𝜓2 small. With this goal in mind, taking[
𝐺𝑝
𝑓𝜃

]
= −𝐴1(𝜃, 𝑝)

−1

[
Real(𝐼1,1(𝜃, 𝑝))(𝑢(𝑡) − 𝑝𝑓 (𝜃))

Imag(𝐼1,1(𝜃, 𝑝))(𝑢(𝑡) − 𝑝𝑓 (𝜃))

]
, (18)

where

𝐴1(𝜃, 𝑝) =

[
Real(𝐸1(𝜃, 𝑝)) Real(𝐼1,2(𝜃, 𝑝))

Imag(𝐸1(𝜃, 𝑝)) Imag(𝐼1,2(𝜃, 𝑝))

]
, (19)

the dynamics of the 𝜓1 Floquet coordinate from Eq. (16) become

𝜓̇1 = 𝜅1(𝑝)𝜓1. (20)

Here, 𝜓1(𝑡) approaches 0 in the limit that 𝑡 approaches infinity since
Real(𝜅1) < 0 for all 𝑝 ∈ 𝑃 . Of course, implementation of Eq. (18)
requires that the inverse exists — this point will be discussed further
in Section 3.5 for the case that 𝑓 (𝜃) is purely sinusoidal. Provided that
the inverse does exist, taking 𝐺𝑝 and 𝑓𝜃 as defined in Eq. (18), 𝜓1 and
its complex-conjugate 𝜓2 can be ignored yielding

𝜃̇ = 𝜔(𝑝) + 𝑓𝜃(𝑝, 𝑢, 𝜃)

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗,1(𝜃, 𝑝)(𝑢 − 𝑝𝑓 (𝜃)) + 𝐼𝑗,2(𝜃, 𝑝)𝑓𝜃(𝑝, 𝑢, 𝜃)

+ 𝐸𝑗 (𝜃, 𝑝)𝐺𝑝(𝑝, 𝑢, 𝜃),

𝑗 = 3,… , 𝛽,

𝑝̇ = 𝐺𝑝(𝑝, 𝑢, 𝜃). (21)

Eq. (21) can be used to accurately capture large amplitude, nonlinear
forced oscillations, i.e., beyond the regime for which techniques based
on local linearization is valid. Intuitively, the variable 𝜃 in Eq. (21)
encodes for the timing of oscillations relative to the timing on the
forced periodic orbit. The variable 𝑝 is an amplitude-like parameter,
giving a sense of the magnitude of oscillations — larger values of
𝑝 correspond to reference periodic orbits 𝑥𝛾𝑝 that are more strongly
forced and hence yield larger amplitude oscillations. The isostable
coordinates 𝜓3,… , 𝜓𝛽 capture the behavior of Floquet eigenfunctions
that are typically more rapidly decaying than those associated with 𝜓1

and 𝜓2; in practice, it is not always necessary to explicitly consider
these additional isostable coordinates.

3.2. Relationship to prior work and primary contribution

Prior work [25] considered the characterization of forced, nonlinear
oscillations using the adaptive phase–amplitude reduction strategy with
the explicit assumption that the underlying model equations are known
(so that the terms that comprise Eq. (16) can be computed numerically).
Additionally, results from [25] assumed that direct input could be
applied to each state variable in order to yield carefully designed
periodic orbits 𝑋𝛾

𝑝 . The present manuscript extends on these prior
results in two important ways:

(1) This work develops and investigates purely data-driven strate-
gies for obtaining reduced order models of the form (16) in
situations where only 𝑦 can be measured and where 𝐹𝑥 is un-
known.

(2) This work considers the use of general periodic inputs 𝑢(𝑡) to
define the family of periodic orbits 𝑋𝛾

𝑝 that consequently set the
terms of the adaptive reduction from (16). This is in contrast to
the carefully designed additive inputs considered in [25].

Below, Section 3.3 considers the data-driven model identification of the
necessary terms of the adaptive reduction. Sections 3.4 and 3.5 consider
the applicability of the proposed approach in the limit that the orbits
𝑋
𝛾
𝑝 are obtained using small magnitude, periodic inputs. Section 3.6

provides a list of steps for implementing the proposed approach.

3.3. Data-driven inference of the terms of the adaptive reduction

Considering the individual terms of the reduced order Eq. (16), 𝜔 is
set by the external forcing, and both 𝑓𝜃 and 𝐺𝑝 can be chosen arbitrar-
ily. As such, the only unknown terms are 𝜅𝑗 (𝑝), 𝐼𝑗,1(𝜃, 𝑝), 𝐼𝑗,2(𝜃, 𝑝), and
𝐸𝑗 (𝜃, 𝑝) which must be determined for 𝑗 = 1,… , 𝛽. Once these terms
have been obtained, Eq. (21) can be used to represent the behavior
of the underlying model (10). A high level overview describing the
necessary information required by the proposed approach is provided
in Fig. 1. Specific details about the implementation of this model
identification strategy are discussed in Sections 3.3.1–3.3.3 with a
step-by-step description given in Section 3.6.

3.3.1. Inferring each 𝜅𝑗 (𝑝) and 𝐼𝑗,1(𝜃, 𝑝) from data
Consider a single periodic orbit 𝑋𝛾

𝑝 (𝑡) that results when the input
𝑢 = 𝑝𝑓 (𝜔𝑡) is applied. Assume that a reasonable approximation for
each 𝜅1(𝑝),… , 𝜅𝛽 (𝑝) is already known, for instance, using the relation
(B.4) which is valid in the limit that 𝑝 is small or with knowledge of
𝜅1(𝑝 − 𝛥𝑝),… , 𝜅𝛽 (𝑝 − 𝛥𝑝), i.e., that has already been obtained from a
nearby input induced orbit. For the moment, suppose that 𝑓𝜃 = 0 so
that 𝜃 = 𝜔𝑡. Additionally taking 𝐺𝑝 = 0, i.e., so that 𝑝̇ = 0, the reduced
order equations for the dynamics of the Floquet coordinates from (21)
simplify to

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗,1(𝜔𝑡, 𝑝)(𝑢 − 𝑝𝑓 (𝜔𝑡)), (22)

for 𝑗 = 1,… , 𝛽. Applying an input 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡) + 𝑒𝑖𝛼(𝑡) where 𝛼(𝑡) is a
small, arbitrary signal and 𝑒𝑖 is an appropriately sized element of the
standard unit basis, Eq. (22) becomes

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼
𝑖
𝑗,1
(𝜔𝑡, 𝑝)𝛼(𝑡), (23)

where the term 𝐼 𝑖
𝑗,1
denotes the 𝑖th element of 𝐼𝑗,1. An explicit solution

to (23) can be obtained using the variation of constants formula [37],

𝜓𝑗 (𝑡) = 𝜓(𝑡0) exp(𝜅𝑗 (𝑡 − 𝑡0)) + ∫
𝑡

𝑡0

exp(𝜅𝑗 (𝑡 − 𝑠))𝐼
𝑖
𝑗,1
(𝜔𝑠)𝛼(𝑠)𝑑𝑠. (24)

According to Eq. (24), provided 𝑡 is sufficiently larger than 𝑡0 so that
the influence of the initial condition is forgotten, 𝜓𝑗 (𝑡) is directly
recoverable given knowledge of 𝐼 𝑖

𝑗,1
(𝜔𝑡). Next considering the output

equation from (17), for 𝑡 large enough one finds

𝑦(𝑡) − 𝑦𝛾𝑝(𝑡) = ∫
𝑡

𝑡0

( 𝛽∑
𝑗=1

𝑔̃𝑗 (𝜔𝑡, 𝑝) exp(𝜅𝑗 (𝑡 − 𝑠))𝐼
𝑖
𝑗,1
(𝜔𝑠)𝛼(𝑠)

)
𝑑𝑠. (25)

Recalling that 𝑔̃𝑗 (𝜃, 𝑝) =
𝜕𝐶

𝜕𝑥
𝑔𝑗 (𝜃, 𝑝) where 𝑔𝑗 (𝜃, 𝑝) is a Floquet eigenfunc-

tion, it is possible to scale each 𝑔̃𝑗 (𝜃, 𝑝) so that 𝑒
𝑇
𝑚𝑔̃𝑗 (0, 𝑝) = 1 provided

that 𝑒𝑇𝑚𝑔̃𝑗 (0, 𝑝) ≠ 0. Here, 𝑒𝑚 is an arbitrary element of the standard unit
basis. Using such a scaling, multiplying Eq. (25) by 𝑒𝑇𝑚 on both sides
yields

𝑒𝑇𝑚(𝑦(𝜎𝑇 ) − 𝑦
𝛾
𝑝(𝜎𝑇 )) = ∫

𝜎𝑇

𝑡0

( 𝛽∑
𝑗=1

exp(𝜅𝑗 (𝜎𝑇 − 𝑠))𝐼 𝑖
𝑗,1
(𝜔𝑠)𝛼(𝑠)

)
𝑑𝑠. (26)

Above, 𝜎 must be an integer chosen large enough so that the initial
conditions are forgotten and 𝑇 is the period of the applied input (note
here that 𝜃 = 0 when 𝑡 = 𝜎𝑇 ). Recalling that each 𝐼 𝑖

𝑗,1
(𝜃) is 2𝜋-periodic,

one can represent each 𝐼 𝑖
𝑗,1
(𝜔𝑠) from Eq. (26) with a Fourier series

𝐼 𝑖
𝑗,1
(𝜔𝑠) = 𝑏

𝑗,1,𝑖

0
+

𝜇∑
𝑘=1

𝑎
𝑗,1,𝑖

𝑘
sin(𝑘𝜔𝑠) + 𝑏

𝑗,1,𝑖

𝑘
cos(𝑘𝜔𝑠), (27)

where 𝜇 sets the number of terms of the Fourier series that are retained.
Noticing that the coefficients of the Fourier series expansion do not
depend on 𝑠, they can be pulled out of the integral from Eq. (26) to
yield

𝑒𝑇𝑚(𝑦(𝜎𝑇 ) − 𝑦
𝛾
𝑝(𝜎𝑇 )) = 𝛤 𝑇 (𝜎𝑇 )𝛶 , (28)

where 𝛶 ∈ C𝛽(2𝜇+1) is a vector containing the nontruncated Fourier
series coefficients of each 𝐼 𝑖

1,1
(𝜔𝑠),… , 𝐼 𝑖

𝛽,1
(𝜔𝑠) and 𝛤 ∈ C𝛽(2𝜇+1) is
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Fig. 1. The figure above represents a high level overview of the necessary information required by the proposed model identification strategy for a general dynamical system.
(Top panels) In the absence of input, the model identification strategy requires a stable fixed point 𝑥𝑠𝑠; the corresponding model output approaches the constant 𝑦𝑠𝑠 in the absence
of external forcing. (Middle panels) Forced limit cycles 𝑋𝛾

𝑝 emerge in response to the periodic forcing 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡); the corresponding steady state output 𝑦𝛾𝑝 is recorded. The
colors here represent different periodic orbits and associated periodic inputs for different values of 𝑝. (Bottom panels) For each forced limit cycle, additional perturbations are
applied and the resulting output 𝑦(𝑡) is compared to 𝑦𝛾𝑝 to infer the terms of the phase-isostable reduction of the form (16) yielding a low-order model. Here for instance, inputs
and outputs are considered relative to the 𝑝 = 1 periodic orbit.

comprised of the remaining terms and is arranged so that Eq. (28)

is identical to Eq. (26). Note that the computation of the terms that

comprise 𝛤 requires knowledge of each 𝜅1,… , 𝜅𝛽 (which are known to a

good approximation) and 𝛼(𝑡) (the input applied to the system). As such

all terms of 𝛤 (𝜎𝑇 ) can be computed leaving 𝛶 as the only unknowns.

With enough measurements, one can ultimately obtain a least-squares

estimate of 𝛶 according to

𝛶 =

⎡
⎢⎢⎢⎢⎣

𝛤 𝑇 (𝜎𝑇 )

𝛤 𝑇 ((𝜎 + 1)𝑇 )

⋮

𝛤 𝑇 ((𝜎 + 𝑛)𝑇 )

⎤
⎥⎥⎥⎥⎦

† ⎡
⎢⎢⎢⎢⎢⎣

𝑒𝑇𝑚(𝑦(𝜎𝑇 ) − 𝑦
𝛾
𝑝(𝜎𝑇 ))

𝑒𝑇𝑚(𝑦((𝜎 + 1)𝑇 ) − 𝑦
𝛾
𝑝((𝜎 + 1)𝑇 ))

⋮

𝑒𝑇𝑚(𝑦((𝜎 + 𝑛)𝑇 ) − 𝑦
𝛾
𝑝((𝜎 + 𝑛)𝑇 ))

⎤
⎥⎥⎥⎥⎥⎦

, (29)

where 𝑛 corresponds to the number of periods the stimulus 𝑢(𝑡) is

applied after the influence of initial conditions has been forgotten and †

is the pseudoinverse. Once an estimate for 𝛶 has been obtained, refined
estimates for 𝐾 =

[
𝜅1 … 𝜅𝛽

]𝑇
can be obtained using a Newton

iteration. To this end, defining

𝐸(𝐾) =

⎡⎢⎢⎢⎢⎣

𝛤 𝑇 (𝜎𝑇 )

𝛤 𝑇 ((𝜎 + 1)𝑇 )

⋮

𝛤 𝑇 ((𝜎 + 𝑛)𝑇 )

⎤⎥⎥⎥⎥⎦
𝛶 −

⎡⎢⎢⎢⎢⎢⎣

𝑒𝑇𝑚(𝑦(𝜎𝑇 ) − 𝑦
𝛾
𝑝(𝜎𝑇 ))

𝑒𝑇𝑚(𝑦((𝜎 + 1)𝑇 ) − 𝑦
𝛾
𝑝((𝜎 + 1)𝑇 ))

⋮

𝑒𝑇𝑚(𝑦((𝜎 + 𝑛)𝑇 ) − 𝑦
𝛾
𝑝((𝜎 + 𝑛)𝑇 ))

⎤⎥⎥⎥⎥⎥⎦

(30)

as the error associated with the estimate from Eq. (29), a Newton
iteration can be performed to update the estimate of the Floquet
exponents by solving

0 = 𝐸(𝐾 + 𝛥𝐾)

≈ 𝐸(𝐾) +
𝜕𝐸

𝜕𝐾
𝛥𝐾, (31)

where 𝛥𝐾 is a small refinement to the Floquet exponents. A least
squares solution for Eq. (31) can be obtained according to

𝛥𝐾 = −
𝜕𝐸

𝜕𝐾

†

𝐸(𝐾). (32)

Above, the elements of 𝜕𝐸∕𝜕𝐾 can be estimated via numerical differ-
entiation. For instance, by changing the value of 𝜅1 to 𝜅1 + 𝜖 for some
small value of 𝜖, reevaluating 𝛶 after the shift in the Floquet exponent,
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and subsequently computing 𝐸(𝐾 + 𝑒1𝜖), the first column of 𝜕𝐸∕𝜕𝐾
can be approximated according to (𝐸(𝐾 + 𝑒1𝜖) − 𝐸(𝐾))∕𝜖. Refinements
can be implemented iteratively by computing 𝛥𝐾 multiple times until
convergence. Recall that strategy described above only yields estimates
of the 𝑖th element of each 𝐼1,1(𝜃),… , 𝐼𝛽,1(𝜃) by applying inputs of the
form 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡) + 𝑒𝑖𝛼(𝑡). The remaining elements can be repeated by
applying additional inputs 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡) + 𝑒𝑖𝛼(𝑡) for 𝑖 = 1,… ,𝑀 and
estimating the associated terms according to Eq. (29).

3.3.2. Inferring each 𝐼𝑗,2(𝜃, 𝑝) from data

Consider a single periodic orbit 𝑋𝛾
𝑝 (𝑡) that results when the input 𝑢 =

𝑝𝑓 (𝜔𝑡) is applied. Assume that an approximation for each 𝜅1(𝑝),… , 𝜅𝛽 (𝑝)

has already been obtained using the strategy described in Section 3.3.1.
Let 𝑢(𝑡) = 𝑝𝑓 (𝜃), this time removing the requirement that 𝑓𝜃(𝑡) = 0 for
all 𝑡. Also, take 𝐺𝑝 = 0 so that 𝑝̇ = 0. In this case, the reduced order
equations for the dynamics of the phase and Floquet coordinates from
(21) simplify to

𝜃̇ = 𝜔(𝑝) + 𝑓𝜃(𝑡),

𝜓̇𝑗 = 𝜅𝑗 (𝑝)𝜓𝑗 + 𝐼𝑗,2(𝜃, 𝑝)𝑓𝜃(𝑡), (33)

for 𝑗 = 1,… , 𝛽. The phase dynamics are obtained according to

𝜃(𝑡) = mod

(
𝜃0 + ∫

𝑡

0

(
𝜔 + 𝑓𝜃(𝑡)

)
𝑑𝑡, 2𝜋

)
≡ 𝜃̂(𝑡), (34)

where 𝜃0 is the initial condition and is taken to be zero for convenience.
Notice that the Floquet coordinate dynamics of (33) are similar to those
from (23) with 𝑓𝜃(𝑡) taking the place of 𝛼(𝑡). Repeating the analysis that
starts with Eq. (23) and culminates in Eq. (25), one finds

𝑦(𝑡) − 𝑦𝛾𝑝(𝑡) = ∫
𝑡

𝑡0

( 𝛽∑
𝑗=1

𝑔̃𝑗 (𝜃̂(𝑠), 𝑝) exp(𝜅𝑗 (𝑡 − 𝑠))𝐼𝑗,2(𝜃̂(𝑠))𝑓𝜃(𝑠)

)
𝑑𝑠, (35)

for any 𝑡 large enough for the influence of initial conditions to be forgot-
ten. With the same scaling on each 𝑔̃𝑗 (𝜃, 𝑝) described under Eq. (25) it
will once again be assumed that 𝑒𝑇𝑚𝑔̃𝑗 (0, 𝑝) = 1. With this in mind, letting

𝑡∗
𝑘
correspond to the 𝑘th time that 𝜃̂ crosses 0, multiplying Eq. (35) on

both sides by 𝑒𝑇𝑚 admits the simplification

𝑒𝑇𝑚(𝑦(𝑡
∗
𝑘
) − 𝑦𝛾𝑝(𝑡

∗
𝑘
)) = ∫

𝑡∗
𝑘

𝑡0

( 𝛽∑
𝑗=1

exp(𝜅𝑗 (𝑡
∗
𝑘
− 𝑠))𝐼𝑗,2(𝜃̂(𝑠))𝑓𝜃(𝑠)

)
𝑑𝑠, (36)

for any 𝑡∗
𝑘
large enough so that the influence from initial conditions is

forgotten. 𝐼𝑗,2(𝜃) for 𝑗 = 1,… , 𝛽 are the only unknown term in the above
equation. As before, representing these 2𝜋-periodic functions using a
truncated Fourier series

𝐼𝑗,2(𝜃) = 𝑏
𝑗,2

0
+

𝜇∑
𝑘=1

𝑎
𝑗,2

𝑘
sin(𝑘𝜃) + 𝑏

𝑗,2

𝑘
cos(𝑘𝜃), (37)

the Fourier coefficients can be pulled out of the integral from (36)
allowing it to be written as

𝑒𝑇𝑚(𝑦(𝑡
∗
𝑘
) − 𝑦𝛾𝑝(𝑡

∗
𝑘
)) = 𝛤 𝑇 (𝑡∗

𝑘
)𝛶 , (38)

where 𝛶 ∈ C𝛽(2𝜇+1) is a vector containing the Fourier series coefficients
of each 𝐼1,2(𝜃),… , 𝐼𝛽,2(𝜃) and 𝛤 ∈ C𝛽(2𝜇+1) is comprised of the remain-
ing terms. Similar to Eq. (29), one can use (38) to obtain a least-squares
estimate for the unknown Fourier coefficients

𝛶 =

⎡⎢⎢⎢⎢⎢⎣

𝛤 𝑇 (𝑡∗
𝑘
)

𝛤 𝑇 (𝑡∗
𝑘+1

)

⋮

𝛤 𝑇 (𝑡∗
𝑘+𝑛

)

⎤⎥⎥⎥⎥⎥⎦

† ⎡⎢⎢⎢⎢⎢⎣

𝑒𝑇𝑚(𝑦(𝑡
∗
𝑘
) − 𝑦

𝛾
𝑝(𝑡

∗
𝑘
))

𝑒𝑇𝑚(𝑦(𝑡
∗
𝑘+1

) − 𝑦
𝛾
𝑝(𝑡

∗
𝑘+1

))

⋮

𝑒𝑇𝑚(𝑦(𝑡
∗
𝑘+𝑛

) − 𝑦
𝛾
𝑝(𝑡

∗
𝑘+𝑛

))

⎤⎥⎥⎥⎥⎥⎦

, (39)

where 𝑛 corresponds to the number of crossings of 𝜃̂ = 0 that are used
in the fitting.

3.3.3. Inferring each 𝐸𝑗 (𝜃, 𝑝) from data
Ref. [19] established direct relationships between the gradients of

the Floquet coordinates and the associated terms 𝐸𝑗 (𝜃, 𝑝). Of particular

use here, let 𝜁𝑗 (𝜃, 𝑝) ≡ 𝜕𝜓𝑗

𝜕𝑋

𝑇
𝜕𝐹

𝜕𝑝
∈ C1 where all partial derivatives are

evaluated on the periodic orbit 𝑋𝛾
𝑝 . Note that while 𝜁𝑗 (𝜃, 𝑝) is similar

to 𝐼𝑗 (𝜃, 𝑝) as defined below Eq. (5), these two terms are not identical.
As illustrated in Section 3.2 of [19] 𝐸𝑗 (𝜃, 𝑝) is directly related to 𝜁𝑗 (𝜃, 𝑝)
according to

𝐸𝑗 (𝜃, 𝑝) =
𝑏
𝑗

0

𝜅𝑗
+

∞∑
𝑚=1

[
𝑎
𝑗
𝑚𝜅𝑗 sin(𝑚𝜃)

𝜅2
𝑗
+ 𝜔2𝑚2

+
𝑎
𝑗
𝑚𝑚𝜔 cos(𝑚𝜃)

𝜅2
𝑗
+ 𝜔2𝑚2

−
𝑏
𝑗
𝑚𝑚𝜔 sin(𝑚𝜃)

𝜅2
𝑗
+ 𝜔2𝑚2

+
𝑏
𝑗
𝑚𝜅𝑗 cos(𝑚𝜃)

𝜅2
𝑗
+ 𝜔2𝑚2

]
, (40)

where 𝑎𝑗
𝑘
and 𝑏𝑗

𝑘
are Fourier coefficients of 𝜁𝑗 (𝜃, 𝑝), i.e.,

𝜁𝑗 (𝜃, 𝑝) = 𝑏
𝑗

0
+

∞∑
𝑚=1

[
𝑎𝑗𝑚 sin(𝑚𝜃) + 𝑏𝑗𝑚 cos(𝑚𝜃)

]
. (41)

Ultimately, the relation (40) allows for the inference of each 𝐸𝑗 (𝜃, 𝑝)
for 𝑗 = 1,… , 𝛽 without the need for additional data beyond what is
required to implement the strategies from Sections 3.3.1 and 3.3.2.
Indeed, considering the specific model (12) used here

𝜁𝑗 (𝜃, 𝑝) =
𝜕𝜓𝑗

𝜕𝑋

𝑇
𝜕𝐹

𝜕𝑝

=
[
𝜕𝜓𝑗

𝜕𝑥

𝑇 𝜕𝜓𝑗

𝜕𝑠

] ⎡⎢⎢⎣

𝜕𝐹𝑥
𝜕𝑢
𝑓 (𝜃)

𝜕𝜔

𝜕𝑝

⎤⎥⎥⎦
= 𝐼𝑗,1(𝜃, 𝑝)𝑓 (𝜃) + 𝐼𝑗,2(𝜃, 𝑝)

𝜕𝜔

𝜕𝑝
. (42)

Supposing that 𝐼𝑗,1(𝜃, 𝑝) and 𝐼𝑗,2(𝜃, 𝑝) have already been obtained using
the strategy described in Sections 3.3.1 and 3.3.2, respectively, 𝜁𝑗 (𝜃, 𝑝)
can be computed according to (42) and subsequently used to infer
𝐸𝑗 (𝜃, 𝑝) according to Eq. (40).

3.4. Terms of the adaptive reduction in the limit of weak forcing

Here, the terms of the adaptive reduction are considered for periodic
orbits of (12) that are valid in the weakly perturbed limit, i.e., using
small values of 𝑝 to yield the resulting periodic orbit. To begin, consider
the underlying system (10) using the 𝑇 -periodic input 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡)

where 𝜔 = 2𝜋∕𝑇 . Also suppose that 𝑝 = 𝑂(𝜖) where 0 < 𝜖 ≪ 1

so that local linearization techniques are applicable. For simplicity of
exposition, assume that 𝑥eq = 0. To linear order, the state dynamics
of Eq. (10) becomes

𝑥̇ = 𝐴𝑥 + 𝐵𝑝𝑓 (𝜔𝑡), (43)

where 𝐴 =
𝜕𝐹𝑥
𝜕𝑥

and 𝐵 =
𝜕𝐹𝑥
𝜕𝑢
, both evaluated at the stable fixed point.

The variation of constants formula [37] can be used to write the state
as a function of time

𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) + ∫
𝑡

𝑡0

𝑒𝐴(𝑡−𝜏)𝐵𝑝𝑓 (𝜔𝜏)𝑑𝜏, (44)

where 𝑒𝐴 denotes the matrix exponential of 𝐴 and 𝑡0 is the initial time.
In the limit that 𝑡 approaches infinity, Eq. (44) approaches a forced
periodic orbit given by

𝑥𝛾𝑝(𝑡) = 𝑝

(
𝑒𝐴𝑡𝑥0 + ∫

𝑡

0

𝑒𝐴(𝑡−𝜏)𝐵𝑓 (𝜔𝜏)𝑑𝜏

)
, (45)

where

𝑥0 =
[
Id − 𝑒𝐴𝑇

]−1
∫

𝑇

0

𝑒𝐴(𝑡−𝜏)𝐵𝑓 (𝜔𝜏)𝑑𝜏, (46)

with Id being an appropriately sized identity matrix. Note that the
inverse in Eq. (46) is guaranteed to exist because 𝐴 is a stable matrix
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so that the eigenvalues of 𝑒𝐴𝑇 have magnitude less than 1. With this in
mind, to leading order, the measured periodic orbit is

𝑦𝛾𝑝(𝑡) =
𝜕𝐶

𝜕𝑥
𝑥𝛾𝑝(𝑡). (47)

Towards computation of the terms of the adaptive phase–amplitude
reduction from Eq. (16), once again considering the autonomous form
of the ordinary differential equation with state 𝑋 =

[
𝑥𝑇 𝑠

]𝑇
, the

corresponding periodic orbit of (12),𝑋𝛾
𝑝 (𝑡), is given by Eq. (13). Turning

attention towards the Floquet exponents and gradients of the Flo-
quet coordinates, the Jacobian evaluated on this periodic orbit can be
written as

𝐽 (𝑡) =

[
𝐴 0

0 0

]
+ 𝑂(𝜖). (48)

To obtain the above equation, recall that 𝑝 = 𝑂(𝜖); consequently
from Eq. (45), 𝑥𝛾𝑝(𝑡) = 𝑂(𝜖) so that 𝜕𝐹𝑥

𝜕𝑥
= 𝐴 + 𝑂(𝜖). To leading order

𝜖, solutions nearby 𝑋𝛾
𝑝 evolve according to

𝛥𝑋̇ =

[
𝐴 0

0 0

]
𝛥𝑋 + 𝑂(𝜖), (49)

where 𝛥𝑋 = 𝑋 − 𝑋
𝛾
𝑝 . While Eq. (49) is linear time varying (owing to

the 𝑂(𝜖) terms), it is linear time invariant to leading order. Considering
(49), Appendix B provides approximations for

𝜕𝜓𝑗

𝜕𝑋
in Eq. (B.10). This

approximation can be used to determine 𝐼𝑗,1 and 𝐼𝑗,2 to leading order.
In particular

𝐼𝑗,1(𝜃, 𝑝) =

(
𝜕𝜓𝑗

𝜕𝑥

)𝑇
𝜕𝐹𝑥

𝜕𝑢

= 𝑤𝑇𝑗 𝐵 exp(−𝜃𝑖𝑚). (50)

where (𝑤𝑗 , 𝜆𝑗 ) is a left eigenvector/eigenvalue pair of 𝐴 associated with
the 𝑗th Floquet exponent. Above, the first line comes from the definition
given after Eq. (16) and the second line is obtained by substituting the
first 𝑁 elements of

𝜕𝜓𝑗

𝜕𝑋
and using the coordinate transformation 𝜃 = 𝜔𝑡.

Additionally,

𝐼𝑗,2(𝜃, 𝑝) =
𝜕𝜓𝑗

𝜕𝑠

= 𝑝𝜂𝑗 (𝜃∕𝜔), (51)

where the first line comes from the definition given after Eq. (16)
and the second line is obtained by substituting (B.12) keeping in mind
that 𝑏𝑗,2 from (B.12) is identical to 𝜕𝜓1∕𝜕𝑠 and using the coordinate
transformation 𝜃 = 𝜔𝑡. Considering the above analysis, both 𝑦𝛾𝑝 from
(47) and 𝐼𝑗,2 from (51) are proportional to 𝑝 (to leading order) in
the limit of small forcing. Conversely, 𝐼𝑗,1 from Eq. (50) does not
depend on 𝑝. Likewise from (B.4), to leading order the Floquet exponent
𝜅𝑗 depends directly on the period of forcing and the corresponding
eigenvalues of 𝐴 denoted by 𝜆𝑗 .

3.5. Implementation using purely sinusoidal forcing

In order to implement Eq. (21), the matrix inverse from Eq. (18)
used to determine the terms 𝐺𝑝 and 𝑓𝜃 must exist. Here, letting 𝐿 ∈ R𝑀

it is shown that when taking 𝑝𝑓 (2𝜋𝑡∕𝑇 ) = 𝑝𝐿 sin(2𝜋𝑡∕𝑇 ) to yield the
periodic orbits that comprise the adaptive phase–amplitude reduction
from (16), provided the periodic input excites the mode associated with
the 𝜓1 Floquet coordinate, the transformation to (21) is always possible
in the limit that 𝑝 is small.

To this end, consider the underlying system (10) taking 𝑢(𝑡) =

𝑝𝐿 sin(𝜔𝑡) where 𝜔 = 2𝜋∕𝑇 . When 𝑝 is small, the linearized dynamics
are identical to those from (43). Let 𝜆1 and 𝜆2 be a simple, complex-
conjugate pair of eigenvalues of 𝐴 that give rise to resonant oscillations
with Imag(𝜆1) > 0. It is assumed that 𝑤𝑇

1
𝐵𝐿 ≠ 0 where 𝑤1 is the left

eigenvector associated with the 𝜆1 eigenvalue; this ensures that the
input excites the mode associated with 𝜆1. To proceed, let 𝐷 = 𝑄−1𝐴𝑄

be the Jordan normal form of 𝐴 where 𝑄 is an appropriately defined

invertible matrix. Considering the linearized dynamics (43) with a
change of variables 𝑥𝐽 = 𝑄−1𝑥 yields dynamics

𝑥̇𝐽 = 𝐷𝑥𝐽 +𝑄−1𝐵𝐿𝑝 sin(𝜔𝑡). (52)

Because 𝜆1 is simple, it will have a Jordan block of size 1 with
eigenvalue 𝜆1. Letting (𝑒𝑇

𝑘
𝐷)𝑘 = 𝜆1 where 𝑒𝑖 is the 𝑖th element of the

standard unit basis, one can write

𝑥̇𝑘
𝐽
= 𝜆1𝑥

𝑘
𝐽
+ 𝑝𝛿 sin(𝜔𝑡), (53)

where 𝑥𝑖
𝐽
denotes the 𝑖th element of 𝑥𝐽 . Notice that 𝛿 = 𝑒𝑇

𝑘
𝑄−1𝐵𝐿 =

𝑤𝑇
1
𝐵𝐿 ≠ 0. In response to sinusoidal forcing, Eq. (53) has a stable

steady state response

𝑥𝑘
𝐽 ,𝑠𝑠

(𝑡) = −
𝑝𝛿

𝜔2 + 𝜆2
1

(𝜆1 sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡)). (54)

Transforming back to the original coordinates taking 𝑥 = 𝑄𝑥𝐽 , the
stable forced periodic orbit 𝑥𝛾𝑝(𝑡) can be written as

𝑥𝛾𝑝(𝑡) = 𝑥𝑘
𝐽 ,𝑠𝑠

(𝑡)𝑞𝑘 +
∑
𝑗≠𝑘

𝑥
𝑗

𝐽 ,𝑠𝑠
(𝑡)𝑞𝑗

= −
𝑝𝛿

𝜔2 + 𝜆2
1

(𝜆1 sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡))𝑞𝑘 +
∑
𝑗≠𝑘

𝑥
𝑗

𝐽 ,𝑠𝑠
(𝑡)𝑞𝑗 , (55)

where 𝑞𝑗 is the 𝑗th column of Q.
Ultimately, the goal here is to show that the matrix inverse from

Eq. (18) exists when 𝑝 is small. To do so, it is necessary to consider
𝐸1(𝜃, 𝑝) and 𝐼1,2(𝜃, 𝑝) as defined below Eqs. (8) and (16), respectively.

Towards this goal, recalling that 𝐼1,2(𝜃, 𝑝) =
𝜕𝜓1
𝜕𝑠

and considering

Eq. (A.5) which is valid in the limit that 𝑝 is small,

0 =

(
𝜕𝜓1

𝜕𝑋

)𝑇 𝑑𝑋
𝛾
𝑝

𝑑𝑡

=
[
𝑤𝑇

1
exp(−𝜔𝑖𝑚𝑡)

𝜕𝜓1
𝜕𝑠

]

×

[
−

𝑝𝛿𝜔

𝜔2+𝜆2
1

(𝜆1 cos(𝜔𝑡) − 𝜔 sin(𝜔𝑡))𝑞𝑘 +
∑
𝑗≠𝑘 𝑑

𝑑𝑡

(
𝑥
𝑗

𝐽 ,𝑠𝑠
(𝑡)
)
𝑞𝑗

𝜔

]
, (56)

where the second line is obtained by substituting (B.10) for 𝜕𝜓1∕𝜕𝑋

(noting that 𝑏𝑗,2 from (B.10) is identical to 𝜕𝜓1∕𝜕𝑠), recalling that 𝑋
𝛾
𝑝 =

[𝑥
𝛾
𝑝
𝑇
mod(𝜔𝑡, 2𝜋)]𝑇 , and substituting Eq. (55) for 𝑥𝛾𝑝. Recalling that 𝜆1 is

a simple eigenvalue, 𝑣1 (the eigenvector associated with 𝜆1) is identical
to 𝑞𝑘 and the corresponding left eigenvector 𝑤1 is orthogonal to 𝑞𝑗 for
𝑗 ≠ 𝑘. With this in mind, Eq. (56) simplifies to

𝜕𝜓1

𝜕𝑠
=

𝑝𝛿

𝜔2 + 𝜆2
1

exp(−𝜔𝑖𝑚𝑡)(𝜆1 cos(𝜔𝑡) − 𝜔 sin(𝜔𝑡))

=
𝑝𝛿

𝜔2 + 𝜆2
1

(cos(𝑚𝜔𝑡) − 𝑖 sin(𝑚𝜔𝑡))(𝜆1 cos(𝜔𝑡) − 𝜔 sin(𝜔𝑡)). (57)

With the coordinate transformation 𝜃 = 𝜔𝑡 and recalling from the
definition given after Eq. (16) that 𝜕𝜓1

𝜕𝑠
= 𝐼1,2, one finds

𝐼1,2(𝜃, 𝑝) =
𝑝𝛿

𝜔2 + 𝜆2
1

(cos(𝑚𝜃) − 𝑖 sin(𝑚𝜃))(𝜆1 cos(𝜃) − 𝜔 sin(𝜃)). (58)

Next, focusing attention on 𝐸1(𝜃, 𝑝), per the definition given under
Eq. (8)

𝐸1(𝜃(𝑡), 𝑝) = −

(
𝜕𝜓1

𝜕𝑋

)𝑇
𝜕𝑋𝛾

𝜕𝑝

= −
[
𝑤𝑇

1
exp(−𝜔𝑖𝑚𝑡)

𝜕𝜓1
𝜕𝑠

]

×

[
−

𝛿

𝜔2+𝜆2
1

(𝜆1 sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡))𝑞𝑘 +
∑
𝑗≠𝑘 𝜕

𝜕𝑝

(
𝑥
𝑗

𝐽 ,𝑠𝑠
(𝑡)
)
𝑞𝑗

0

]

=
𝛿

𝜔2 + 𝜆2
1

exp(−𝜔𝑖𝑚𝑡)(𝜆1 sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡)). (59)

Above, the second line is obtained by substituting (B.10) for 𝜕𝜓1∕𝜕𝑋,
recalling that 𝑋𝛾

𝑝 = [𝑥
𝛾
𝑝
𝑇
mod(𝜔𝑡, 2𝜋)]𝑇 , and substituting Eq. (55) for 𝑥𝛾𝑝.
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The third line is obtained by exploiting the relationships between 𝑤1

and 𝑞𝑗 as described below Eq. (56). With the coordinate transformation
𝜃 = 𝜔𝑡, Eq. (59) simplifies to

𝐸1(𝜃, 𝑝) =
𝛿

𝜔2 + 𝜆2
1

(cos(𝑚𝜃) − 𝑖 sin(𝑚𝜃))(𝜆1 sin(𝜃) + 𝜔 cos(𝜃)). (60)

Finally, considering both 𝐼1,2(𝜃, 𝑝) and 𝐸1(𝜃, 𝑝) from Eqs. (58) and (60),
the determinant of 𝐴1(𝜃, 𝑝) from Eq. (19) simplifies to

det(𝐴1(𝜃, 𝑝)) =
Im(𝜆1)𝜔𝑝|𝛿|2
|𝜔2 + 𝜆2

1
|2

, (61)

where |𝑎| denotes the magnitude of 𝑎 ∈ C. In particular, det(𝐴1(𝜃, 𝑝)) ≠
0. As such, 𝐴1(𝜃, 𝑝)

−1 always exists allowing for the implementation
of Eq. (21). Note that this conclusion is only valid in the limit that 𝑝 is
small, i.e., in the linear regime. Nonetheless, as seen in the examples
from Section 4, Eq. (21) can typically be used to implement the pro-
posed approach far beyond the linear regime to yield a low-dimensional
model that accurately captures the response to general inputs.

3.6. List of steps required to implement the proposed model identification
strategy

The proposed model identification strategy discussed in Sections 3.1
–3.3 can be implemented using the steps summarized below. Implemen-
tation of this strategy yields a low order model of the form (21) that
can be used to the general input–output dynamics in a general model
of the form (10).

(1) Identify a fixed point of the model (10) for which 𝐹𝑥(𝑥𝑠𝑠, 0) = 0

with steady state output 𝑦𝑠𝑠 = 𝐶(𝑥𝑠𝑠). The linearized version of
(10) is assumed to have a complex-conjugate pair of eigenvalues
𝜆1,2 = Real(𝜆1) ± 𝑖Imag(𝜆1) that give rise to resonant oscillations.
A coarse estimate of these eigenvalues can be obtained, for
instance, by identifying the resonant frequency and observing
the associated decay of oscillations back to the fixed point.
Determine how many (if any) additional Floquet coordinates
to include in the fitting; Floquet coordinates 𝜓3,… , 𝜓𝛽 can be
used to capture the behavior of additional eigenmodes that have
relatively small contributions to the dynamics.

(2) Define a periodic input 𝑢(𝑡) = 𝑝𝑓 (𝜔𝑡) which will be used to
determine periodic orbits 𝑋𝛾

𝑝 .

(3) Initially taking 𝑝 = 𝑝0 to be small enough so that the system can
be well approximated by local linearization, record the output
𝑦
𝛾
𝑝0
associated with the resulting periodic orbit.

(4) For 𝑖 = 1,… , 𝑚, apply an input 𝑢(𝑡) = 𝑝0𝑓 (𝜔𝑡) + 𝑒𝑖𝛼(𝑡) to (10)
where 𝛼(𝑡) as defined below Eq. (22) and 𝑒𝑖 is the 𝑖th element of
the standard unit basis. Record the output 𝑦(𝑡). Use Eq. (29) to
estimate the Fourier series coefficients of 𝐼𝑘

1,1
(𝜃, 𝑝0),… , 𝐼𝑘

𝛽,1
(𝜃, 𝑝0)

for some arbitrary choice of 𝑘 ∈ {1,… , 𝑚}. Subsequently update
the estimate for the Floquet exponents by applying Eq. (32) and
iterate until the estimate for the Floquet exponents converges.
For the remaining 𝑖 ≠ 𝑘, use Eq. (29) to estimate the Fourier
series coefficients of 𝐼 𝑖

1,1
(𝜃, 𝑝0),… , 𝐼 𝑖

𝛽,1
(𝜃, 𝑝0).

(5) Let 𝜃̂(𝑡) = mod(∫ 𝑡
0

(
𝜔+𝑓𝜃(𝑡)

)
𝑑𝑡, 2𝜋) as defined in Eq. (34) for some

prespecified 𝑓𝜃(𝑡). Apply the input 𝑢(𝑡) = 𝑝0𝑓 (𝜃̂) and record the
output 𝑦(𝑡). Use this information to estimate the Fourier series
coefficients of 𝐼1,2(𝜃, 𝑝0),… , 𝐼𝛽,2(𝜃, 𝑝0) according to Eq. (39).

(6) Use Eq. (40) to compute the terms of each 𝐸𝑗 (𝜃, 𝑝0) for 𝑗 =

1,… , 𝛽. The terms of the right hand side of (40) can be computed
using Eqs. (41) and (42) which in turn use information that is
obtained in Steps 4 and 5.

Steps 3 through 5 must be repeated taking 𝑝 = 𝑝0 + 𝑖𝛥𝑝 for 𝑖 = 1, 2,… .
As part of Step 4, an initial guess for 𝜅𝑗 (𝑝0 + 𝑖𝛥𝑝) can be taken as
𝜅𝑗 (𝑝0 + (𝑖− 1)𝛥𝑝), i.e., the Floquet exponent inferred for the prior orbit.

Upon completion of Steps 1–6 for each 𝑝-limit cycle, 𝐼𝑗,1(𝜃, 𝑝), 𝐼𝑗,2(𝜃, 𝑝),
𝐸𝑗 (𝜃, 𝑝) and 𝜅𝑗 (𝑝) for 𝑗 = 1,… , 𝛽 can be computed for any 𝑝 in the
allowable range using linear interpolation. The terms 𝑓𝜃 and 𝐺𝑝 in the
implementation of the reduced order model can be computed according
to (18). In response to an arbitrary input 𝑢(𝑡), provided the Floquet
coordinates 𝜓3,… , 𝜓𝛽 remain 𝑂(𝜖) terms, the approximation for the
output 𝑦(𝑡) ≈ 𝑦

𝛾
𝑝(𝜃(𝑡)) is accurate to leading order 𝜖.

A few general notes about the implementation of the proposed
model identification strategy are highlighted below:

Note (1) In practice, it often works well to take 𝜔(𝑝) near, but not iden-
tical to the resonant frequency associated with the 𝜓1 Floquet
coordinate. As discussed in [25], in the limit that 𝑝 is small
and the frequency is exactly identical to the resonant frequency
(i.e., when 𝜔 = Imag(𝜆1), the Floquet exponent 𝜅1 becomes iden-
tical to 𝜅2, thereby precluding implementation of the reduced
order modeling strategy. As 𝑝 increases, the resonant frequency
may drift making it necessary to update 𝜔(𝑝). In simulations con-
sidered here, it worked well to target Imag(𝜅1) ≈ 𝜋∕2, increasing
or decreasing 𝜔(𝑝) as necessary in order to achieve this target.

Note (1) If 𝑓 (𝜔𝑡) = sin(𝜔𝑡) is used to define the periodic orbits 𝑋𝛾
𝑝 ,

when both 𝑝 is small and 𝜔 is chosen to be close to the natural
frequency so that 𝑚 = 1, all Fourier modes of 𝐼1,2(𝜃, 𝑝) are zero
beyond second order in the Fourier series, as can be inferred
from Eq. (58). It is straightforward to show that this property
holds for all 𝐼1,2(𝜃, 𝑝),… , 𝐼𝛽,2(𝜃, 𝑝). Coupled with the fact that the
Fourier series coefficients for each 𝐼𝑗,1(𝜃, 𝑝) are zero beyond first
order, the Fourier series basis from (27) and (37) only requires
𝜇 = 1 and 𝜇 = 2, respectively, when 𝑝 is small. In practice, even
when 𝑝 is larger it is often useful to take 𝜇 to be small to mitigate
the risk of overfitting.

Note (1) When noise is present in the system, 𝛼(𝑡) and 𝑓𝜃 from Steps 4 and
5 must be large enough to obtain a strong signal relative to the
noise strength but must be small enough so that the inputs do
not drive the system too far from the underlying limit cycle. In
numerical results presented below, it often worked well to use a
continuous signal for 𝛼(𝑡) and to use a series of short pulses for
𝑓𝜃(𝑡).

4. Results

4.1. Coupled planar oscillators

As a preliminary example, the proposed model identification strat-
egy is applied to a population of 𝑁 = 10 heterogeneous planar
oscillators:

𝑎̇𝑗 = 𝜎𝑎𝑗 (𝜇𝑗 − 𝑟
2
𝑗 ) − 𝑏𝑗 (1 + 𝜌𝑗 (𝑟

2
𝑗 − 𝜇𝑗 )) +

𝐾

𝑁

∑
𝑗≠𝑖

𝑎𝑗 + 𝑢(𝑡),

𝑏̇𝑗 = 𝜎𝑏𝑗 (𝜇𝑗 − 𝑟
2
𝑗 ) + 𝑎𝑗 (1 + 𝜌𝑗 (𝑟

2
𝑗 − 𝜇𝑗 )), (62)

for 𝑖 = 1,… , 𝑁 . Here, 𝑎𝑗 and 𝑏𝑗 are Cartesian coordinates of the 𝑗th
oscillator with 𝑟2

𝑗
= 𝑎2

𝑗
+ 𝑏2

𝑗
, 𝐾 = 0.62 is the coupling strength, and

𝑢(𝑡) is a common input to each oscillator. System parameters are taken
to be 𝜇𝑗 = −3 + (𝑗 − 1)∕9, 𝜎 = 0.1, and 𝜌𝑗 = 0.2 − (𝑗 − 1)∕9. The
output for this model is taken to be identical to the state, i.e., 𝑦 =[
𝑎1 𝑏1 … 𝑎𝑁 𝑏𝑁

]𝑇
.

For the individual elements of (62), without coupling a Hopf bifur-
cation occurs when 𝜇𝑗 = 0. Here 𝜇𝑗 < 0 for all 𝑗 so that a stable fixed
point results at 𝑎𝑗 = 𝑏𝑗 = 0 when 𝑢(𝑡) = 0. Linearizing about this fixed
point yields 10 pairs of complex-conjugate eigenvalues. The oscillatory
modes associated with these eigenvalues have natural frequencies be-
tween 1.21 and 1.59 rad/s. In particular, the eigenvalues associated
with the slowest decaying mode are 𝜆1,2 = −0.015±1.32𝑖 with a resonant
peak near 1.32 rad/s; the eigenvalues associated with the next slowest
decaying mode are 𝜆3,4 = −0.23±1.21. Panel A of Fig. 2 shows the forced
response of this model to the input 𝑢(𝑡) = 0.8 sin(1.4𝑡) from panel B. In
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Fig. 2. For the model (62), Panel A shows individual traces of 𝑎𝑖 in response to the sinusoidal input 𝑢(𝑡) = 0.8 sin(1.4𝑡) from panel B. In response to continuous application of
the sinusoidal forcing, the dynamics settle to a forced periodic orbit. Traces of the individual oscillators on this orbit are shown in panel C with dots indicating the location at
𝜃 = 0. For a collection of orbits described in the text, the proposed data-driven model identification strategy is applied to the model. Panels D-G provide a representative sample of
the information inferred from this procedure (solid lines). These terms are also compared to the ground truth which is computed directly with knowledge of the model equations
(dashed lines). Panel D shows the Floquet exponent as a function of 𝑝. Panels E, F, and G, show 𝐼1,1(𝜃), 𝐼1,2(𝜃), and 𝐸1(𝜃), respectively, obtained for the 𝑝 = 0.8 orbit.

response to this input, the system settles to a stable, forced periodic
orbit. Traces of the individual oscillators on this orbit are shown in
panel C. The proposed data-driven model identification strategy from
Section 3.3 is applied to the model (62) to obtain a reduced order
model. The steps from Section 3.6 are followed as described below:
Step (1) The steady state for this model is 𝑎𝑗 = 𝑏𝑗 = 0 for all 𝑗
when 𝑢(𝑡) = 0. The resonant frequency is 1.32 rad/s which can be seen
from 𝜆1 but could also be approximated by applying sinusoidal input
at various frequencies and measuring the maximal response. Only two
Floquet coordinates are considered here so that 𝛽 = 2. Step (2) Inputs
𝑢(𝑡) = 𝑝𝑘 sin(𝜔𝑘𝑡) for 𝑘 = 1,… , 10 are used for model identification.
Here, 𝑝𝑘 = 0.1𝑘 is the magnitude of the input. The frequency 𝜔1 =

1.06 is chosen to be slightly slower than the resonant frequency. On
subsequent iterations, 𝜔𝑘+1 = 𝜔𝑘 + 0.1(𝜋∕2 − Imag(𝜅1)𝑇 ) where 𝜅1 is
the Floquet exponent inferred from 𝑘th limit cycle considered in the
model identification process. Further discussion of this choice for the
frequencies appears in Note 1 from Section 3.6. Step 3) inputs from
Step 2 are applied over multiple cycles until all transients decay in
order to infer the output 𝑦𝛾𝑝 associated with the limit cycle. Step (4)
For each 𝑝-limit cycle, the input 𝑢(𝑡) = 𝑝𝑘 sin(𝜔𝑘𝑡) + 𝛼(𝑡) is applied
where 𝛼(𝑡) is chosen as follows: random numbers between −0.05 and
0.05 are chosen from a uniform distribution and held constant over
a 0.2 unit time interval and the resulting signal is smoothed using
spline interpolation. Simulations are performed for 500 time units and
the resulting data is used to estimate Fourier series coefficients up to
order 𝜇 = 2 for 𝐼1

1,1
(𝜃, 𝑝) and 𝐼1

2,1
(𝜃, 𝑝) along with the associated Floquet

exponents using the iteration described in Section 3.3.1. Results are not
sensitive the initial guess for 𝜅1,2. Step (5) For each 𝑝-limit cycle, the
input 𝑓𝜃(𝑡) is chosen as follows: random numbers between −0.15 and
0.15 are chosen from a uniform distribution and held constant over a
2 time unit interval and the resulting signal is smoothed using spline
interpolation. This is used to calculate 𝜃̂(𝑡) from Eq. (34) and the input
𝑢(𝑡) = 𝑝 sin( ̂𝜃(𝑡)) is applied to the full system (62) in order to estimate
the Fourier coefficients of 𝐼𝑗,2(𝜃, 𝑝) up to order 𝜇 = 2. Step (6) Results
from Steps 4 and 5 are used to determine 𝐸1(𝜃, 𝑝) for each 𝑝-limit cycle
according to Eq. (40).

Panels D-G of Fig. 2 provide a representative sample of the infor-
mation inferred from the proposed data-driven model identification
procedure. The model is simple enough so that the associated terms can
also be computed numerically with knowledge of the model equations
themselves, i.e., by computing the monodromy matrix associated with
the periodic orbit, computing the associated Floquet exponents, find-
ing periodic solutions of (A.3) to identify 𝐼1

1,1
(𝜃, 𝑝) and 𝐼1

2,1
(𝜃, 𝑝), and

computing 𝐸𝑗 (𝜃, 𝑝) directly as defined below Eq. (8). Panel D shows
the Floquet exponents as a function of 𝑝 with panels E, F, and G,
showing 𝐼1,1(𝜃), 𝐼1,2(𝜃), and 𝐸1(𝜃), respectively, obtained when 𝑝 = 0.8.
While not yielding a perfect match, the true values of these functions
obtained through direct computation (dashed lines) are reasonably well
approximated by their corresponding terms obtained from the proposed
data-driven model identification strategy (solid lines).

Once the fitting is completed, the resulting reduced order model
takes the form (21). The full model has 20 states. The reduced order
model considers only two Floquet coordinates, ultimately requiring
only two variables to describe the 𝜃 and 𝑝 dynamics. Comparisons are
provided with two additional data-driven model identification strate-
gies. The first uses a Koopman model predictive control (MPC) [9]
which is closely related to the extended dynamic mode decomposition
algorithm [7]. Details of the general implementation of this algorithm
are given in Appendix C. Here, the time step is taken to be 0.1
units with a time-delay embedding of 24 units. The functions 𝐿𝑦 =

[𝑦𝑖−1,… , 𝑦𝑖−24]
𝑇 ∈ R480 and 𝐿𝑢 = [𝑢𝑖−1,… , 𝑢𝑖−24]

𝑇 ∈ R24 are used to
lift to a higher dimensional state, defining ℎ𝑖 from Eq. (C.2). The same
data used to obtain the model of the form (21) is used to build the
matrices 𝐻 and 𝐻+ defined below Eq. (C.2) and the 𝐴 and 𝐵 matrices
are fit according to Eq. (C.3). The length of the delay embedding for
the Koopman MPC strategy is chosen with a trial-and-error process; the
Koopman MPC algorithm is applied for various embedding lengths and
increased until there are no discernible improvements in the accuracy
of the resulting model. The second model identification strategy used
for comparison was presented in [18]. Here, sinusoidal inputs of vary-
ing frequencies are applied and the resulting steady state outputs are



Physica D: Nonlinear Phenomena 459 (2024) 134013

10

D. Wilson

Fig. 3. The different inputs from panels C, F, I, and L are applied to the full order model (62) along with the proposed adaptive data-driven model identification strategy and
two other data-driven models. Corresponding traces of 𝑏̄ =

1

𝑁

∑𝑁

𝑗=1
𝑏𝑗 are shown in panels A, D, G, and J with associated errors shown in panels B, E, H, and K. The proposed

model identification strategy outperforms the other strategies for all inputs shown here.

used to infer a model of the form

𝜙̇𝑖 = 𝜆𝑖𝜙𝑖 + 𝑐𝑖𝑢(𝑡),

𝑖 = 1… 𝑟,

𝑦(𝑡) = 𝑦0 +

𝑟∑
𝑘=1

𝜙𝑘, (63)

where 𝜙 ∈ C is an isostable coordinate, 𝜆𝑖 ∈ C is an associated
unperturbed decay rate, 𝑐𝑖 ∈ C captures the response to input, and
𝑦0 ∈ R is the steady state when 𝑢(𝑡) = 0. Isostable coordinates can
be formally defined as level sets of the slowest decaying eigenmodes
of the Koopman operator [5]. The model (63) represents a reduced
order model taken to first order accuracy in the expansion of a subset of
the slowest decaying isostable coordinates. A more detailed description
of this model identification strategy is given in [18] which explains
how the model (63) can be inferred with knowledge of the steady state
response to various sinusoidal inputs. Inputs of the form 𝑢(𝑡) = sin(𝜔𝑡)

with 𝜔 = {0.1, 0.2,… , 2.0} are used for the fitting with 𝑟 = 10 isostable
coordinates. The decay rates 𝜆𝑘 = −0.2𝑘 are used to implement the
fitting procedure. Other choices were also used that gave similar results
to those presented here.

Simulations for the various reduced order models are compared to
those obtained from full model simulations of (62) for different inputs
with results shown in Fig. 3. A purely sinusoidal input 𝑢(𝑡) = 1.5 sin(0.5𝑡)

is shown in panel C, a positively shifted sinusoid 𝑢(𝑡) = 1 + 0.4 sin(1.2𝑡)

is shown in panel F, pulses applied every 8 time units of magnitude 0.6
are shown in panel I, and the sum of three sinusoids 𝑢(𝑡) = 0.15 sin(1.3𝑡)+

0.2 sin(0.4𝑡) + 0.5 sin(1.5𝑡) is shown in panel L. The resulting value of
𝑏̄ =

1

𝑁

∑𝑁
𝑗=1 𝑏𝑗 from each input is given in panels A, D, G, and J with

the respective error between the full and reduced order models shown
in panels B, E, H, and K. The mean absolute error, 1

100
∫ 110

10
|Error(𝑡)|𝑑𝑡

over 100 time units after the inputs are applied is given below: for
the purely sinusoidal input from panel C, the shifted sine wave in
panel F, pulse input from panel I, and mixed sinusoidal input from
panel L the average error is (0.06, 0.41, 0.14), (0.20, 0.25, 0.61),
(0.11, 0.25, 0.35), and (0.03, 0.50, 0.30) for the proposed adaptive
method, Koopman MPC, and first order isostable method respectively.
The proposed model identification strategy gives a better match than
the other two model identification strategies. Note that none of the
testing inputs were seen during training; the purely sinusoidal input has
a substantially slower natural frequency and higher magnitude than the
inputs used for training.

4.2. Spike rate of a coupled neural population

Neural rhythms result from the complex interplay between in-
dividual neural dynamics, synaptic coupling between neurons, and
inputs from upstream neural populations. Due to the inherent com-
plexity of these systems, rather than examining individual neurons,
it can be more useful to examine the aggregate behavior, for in-
stance, capturing the dynamics of the firing rate, mean membrane
potential, or other population characteristics [38–41]. Phase-based re-
duction techniques have been considered population-level analysis of
neural populations [35,42–45], but it is generally unclear how to apply
phase-based approaches when the underlying model does not produce
aggregate oscillations in the absence of other external input. With these
considerations in mind, the proposed data-driven model identification
strategy is illustrated for a population of 𝑁 = 1000 synaptically
coupled, tonically firing, conductance-based neurons taken from [46].
Model equations are of the form

𝐶𝑉̇𝑖 = −𝐼L(𝑉𝑖) − 𝐼Na(𝑉𝑖, ℎ𝑖) − 𝐼K(𝑉𝑖, ℎ𝑖) − 𝐼T(𝑉𝑖, 𝑟𝑖)

+ 𝐼𝑏𝑖 −
𝑔syn

𝑁

𝑁∑
𝑗=1

𝑠𝑗 (𝑉𝑖 − 𝐸syn) +
√
2𝐷𝜂𝑖(𝑡) + 𝑢(𝑡),

ℎ̇𝑖 = (ℎ∞(𝑉𝑖) − ℎ𝑖)∕𝜏ℎ(𝑉𝑖),

𝑟̇𝑖 = (𝑟∞(𝑉𝑖) − 𝑟𝑖)∕𝜏𝑟(𝑉𝑖),

𝑠̇𝑖 =
𝑎(1 − 𝑠)

1 + exp(−(𝑉𝑖 − 𝑉𝑇 )∕𝜎𝑇 )
− 𝑏𝑠𝑖, (64)

for 𝑖 = 1,… , 𝑁 . Above, 𝑉𝑖 is the transmembrane voltage of neuron 𝑖,
ℎ𝑖, and 𝑟𝑖 are associated gating variables, and 𝑠𝑖 is a synaptic variable
used to set the synaptic current. The synaptic conductance is 𝑔syn =

0.4 mS∕cm2 and the neurons are coupled in an all-to-all manner.
𝐸syn = 0 mV so that the synaptic connections are excitatory with
additional parameters 𝑎 = 3, 𝑉𝑇 = −20 mV, 𝜎𝑇 = 0.8 mV, and 𝑏 = 1

determining the dynamics of the synaptic variable. 𝑢(𝑡) is an applied
current that is identical for each neuron, and 𝐶 = 1 μF∕cm2 is the
membrane capacitance. The term

√
2𝐷𝜂𝑖(𝑡) represents an independent

and identically distributed zero-mean white noise process with intensity
𝐷 = 1. The baseline current 𝐼𝑏

𝑖
is drawn from a normal distribution with

mean 5 and variance 1 μA∕cm2. Additional ionic currents 𝐼L, 𝐼Na, 𝐼K ,
and 𝐼T, and auxiliary functions ℎ∞, 𝑟∞, 𝜏ℎ, and 𝜏𝑟 are identical to those
from [46].
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Fig. 4. The collective behavior of the neuron population from (64) is shown in response to inputs. The inputs are shown in panels A, D, and G. Panels B, E, and H, respectively,
show a representative sampling of transmembrane voltages of individual neurons from the population in response to these inputs. Panels C, F, and I, respectively, show the firing
rate computed according to Eq. (65). When 𝑢(𝑡) = 0, 𝑦(𝑡) tends towards a firing rate of about 144 Hz. The goal in this example is to identify a model that captures the firing rate
𝑦(𝑡) in response to general inputs 𝑢(𝑡) using the method described in Section 3.1.

The firing rate for the model (64) is taken as the single model
observable, defined as

𝑦 =
1

𝑊

𝑁∑
𝑗=1

𝐴𝑖(𝑡,𝑊 ), (65)

where 𝐴𝑖 = 1 if neuron 𝑖 has fired an action potential in the window
[𝑡, 𝑡 −𝑊 ] and 0 otherwise. Here, neuron 𝑖 is defined to fire an action
potential when 𝑉𝑖 crosses a threshold of −25 mV with a positive slope
and 𝑊 = 1.5 ms. Fig. 4 shows the general behavior of the model (64)
in response to various inputs. When 𝑢(𝑡) = 0, the model tends towards a
constant firing rate 𝑦(𝑡) ≈ 144 Hz. The inputs shown in panels A, D, and
G yield the outputs shown in panels C, F, and I, respectively. In panels
B, E, and H, a representative subset of the transmembrane voltages of
neurons in the population is shown giving a sense of the aggregate
behavior in response to the inputs. Notice the strong resonance with
the periodic input in panel A, which is characteristic of systems with a
complex-conjugate eigenvalue.

The proposed data-driven model identification methodology from
Section 3.3 is applied to the model (64) in order to provide a low
order representation that can accurately predict the dynamics that map
the input to the output. The steps from Section 3.6 are followed as
described below: Step (1) The steady state for this model is taken to
be 𝑦 = 144 Hz which results in the limit that 𝑢(𝑡) = 0. Note that
due to noise, the model does not asymptote its steady state value.
The resonant frequency is estimated to be approximately 0.8 rad/s by
applying a sinusoidal input at various frequencies and measuring the
maximal response. Only two total Floquet coordinates are considered,
i.e., taking 𝛽 = 2. Step (2) An input 𝑢(𝑡) = 𝑝 sin(0.7𝑡) is applied where
𝑝 = {0.5, 1.0,… , 6.0} to define a collection of 12 periodic orbits used for
the reduction. Other frequencies could also be chosen provided they
are near the resonant frequency. Further discussion of the choice in the
frequency of the applied input is provided in Note 1 from Section 3.6.
Step (3) The input from Step 2 is applied over multiple cycles and
the output is averaged to obtain an approximation of each output 𝑦𝛾𝑝
associated with the limit cycle. Step (4) For each 𝑝-limit cycle, an input
𝑢(𝑡) = 𝑝 sin(0.7𝑡)+𝛼(𝑡) is applied where 𝛼(𝑡) is chosen as follows: random
numbers between −0.6 and 0.6 are chosen from a uniform distribution
and held constant over a 2 ms time interval and the resulting signal
is smoothed using spline interpolation. Simulations are performed for
𝑡 ∈ [0, 3000] ms. The resulting data is used to estimate the Fourier
series coefficients up to order 𝜇 = 2 for 𝐼1

1,1
(𝜃, 𝑝) and 𝐼1

2,1
(𝜃, 𝑝) along

with the associated Floquet exponents using the iteration described in
Section 3.3.1. Initial guesses for the Floquet exponents taken to be

𝜅1,2 = −0.06 ± 0.8𝑖. The results are not sensitive to this initial guess
provided Imag(𝜅1) for the guess is close to the resonant frequency for
this system. Step (5) For each 𝑝-limit cycle, pulses are chosen for 𝑓𝜃(𝑡)
of the form

𝑓𝜃(𝑡) =

{
5, if mod(𝑡, 16.5) < 0.075,

0, otherwise.
(66)

Considering the associated 𝜃̂(𝑡) phase dynamics from Eq. (34), this
corresponds to rapid shifts in 𝜃̂(𝑡) by 0.375 radians occurring every
16.5 ms. The input 𝑢(𝑡) = 𝑝 sin(𝜃̂(𝑡)) is applied to the full system (64)
and the resulting outputs are used to estimate the Fourier coefficients of
𝐼𝑗,2(𝜃, 𝑝) up to order 𝜇 = 2. Step (6) Results from Steps 4 and 5 are used
to determine 𝐸1(𝜃, 𝑝) for each 𝑝-limit cycle according to Eq. (40). Fig. 5
shows the functions that are obtained from this process. Panel A shows
the resulting periodic orbits for different values of 𝑝. The associated
Floquet exponents are shown in panel B. The real component of the
Floquet exponent decreases as the magnitude of the input increases
indicating that the orbit becomes more strongly attracting. Panels C and
D show the real and imaginary components of 𝐸1(𝜃, 𝑝) inferred from the
fitting procedure.

Once the fitting is completed, the resulting reduced order model
takes the form (21). In this case, only two Floquet coordinates are
considered so that the reduced order model only requires two variables
to describe the 𝜃 and 𝑝 dynamics. This is a significant reduction from
the 4000 variables contained in the full order model (64). Compar-
isons are provided with two additional data-driven model identification
strategies. The first uses Koopman model predictive control (MPC) [9].
Details of the general implementation of this algorithm are given in
Appendix C; here the time step is taken to be 0.15 ms with a time-delay
embedding of 49 units. The functions 𝐿𝑦 = [𝑦𝑖−1,… , 𝑦𝑖−49]

𝑇 ∈ R49 and
𝐿𝑢 = [𝑢𝑖−1,… , 𝑢𝑖−49]

𝑇 ∈ R49 are used to lift to a higher dimensional
state by defining ℎ𝑖 from Eq. (C.2). The same data used to obtain the
model of the form (21) is used to build the matrices 𝐻 and 𝐻+ defined
below Eq. (C.2) and the associated 𝐴 and 𝐵 matrices are fit according
to Eq. (C.3). The length of the delay embedding for the Koopman MPC
strategy is chosen with a trial-and-error process; the Koopman MPC
algorithm is applied for various embedding lengths and increased until
there are no discernible improvements in the accuracy of the resulting
model. The second model identification strategy used for comparison
was presented in [18]. Here, sinusoidal inputs of varying frequencies
are applied and the resulting steady state outputs are used to infer
a model of the form (63) which was explained in further detail in
Section 4.1. For this comparison model identification strategy, inputs
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Fig. 5. A sampling of the curves obtained from the proposed model-identification procedure. Panel A shows 𝑦𝛾𝑝(𝜃), i.e., the observable on the 𝑝-limit cycle for different values of
𝑝. The inferred Floquet multipliers are shown in Panel B. Panels C and D show 𝐸1(𝜃, 𝑝) as obtained from the fitting procedure for different values of 𝑝. This term captures how
the Floquet coordinates change in response to shifts in the parameter 𝑝.

of the form 𝑢(𝑡) = sin(𝜔𝑡) with 𝜔 = {0.3, 0.4,… , 1.2} are used for the
fitting with 𝑟 = 10 isostable coordinates having decay rates 𝜆𝑘 = −0.2𝑘.
Other choices were also used that gave similar results to those shown
here.

Simulations for the various reduced order models are compared to
those obtained from full model simulations of (64) for different inputs
with results shown in Fig. 6. A sinusoidal input 𝑢(𝑡) = sin(0.83𝑡) which
is close to the resonant frequency shown in Panel C, a 𝑢 = −5 μA∕cm2

pulse applied for 30 ms is shown in panel F, pulses of amplitude 𝑢 =

5 μA∕cm2 applied every 15 ms are shown in panel I, and the input
𝑢(𝑡) = 1.53 sin(0.6𝑡) + 1.19 cos(0.7𝑡) + 2.21 cos(0.3𝑡) μA∕cm2 is shown in
panel L. Corresponding outputs from each input are shown in panels
A, D, G, and J with the respective error between full and reduced
order simulations given in panels B, E, H, and K. The mean absolute
error, 1

100
∫ 120

20
|Error(𝑡)|𝑑𝑡, is also provided for each model giving a

quantitative measure of the error for each model for the first 100 ms
after input is first applied. For the purely sinusoidal input in panel C,
single pulse in panel F, multiple pulse input from panel I, and mixed
sinusoidal input from panel L the average error is (19.2, 45.0, 31.9)
Hz, (24.0, 63.3, 54.3) Hz, (30.3, 82.4, 71.9) Hz, and (21.7, 50.0, 67.0)
Hz for the proposed adaptive method, Koopman MPC, and first order
isostable model, respectively. For each input, the proposed adaptive
method gives between 40 and 60 percent less error than the next best
model. Additionally, the proposed model identification strategy always
provides results that are qualitatively similar to the full order model
while the other reduced order models often provide results that are
substantially different.

5. Conclusion

In this work, a data-driven model identification strategy is presented
that considers the dynamics of a general nonlinear system in reference
to a collection of externally forced periodic orbits. By inferring infor-
mation about the phase–amplitude dynamics of the individual periodic
orbits, a low-order model can be obtained that accurately captures the
dynamics of the underlying model in response to arbitrary external
inputs. This work provides an extension for the strategy presented
in [25] which required explicit knowledge of the underlying model

equations. By contrast, the model identification procedure summarized
in Section 3.6 only requires the ability to apply inputs and measure
the resulting time-series data. In examples considered in Section 4, the
proposed technique outperforms both Koopman model predictive con-
trol [9] and an isostable-coordinate-based model identification strategy
from [18].

As compared to DMD [1–3] and its variants [7–9], the proposed
model identification strategy places some structure on the underlying
equations, learning a representation of the system based on the dy-
namics of the underlying periodic orbits. Specifying the underlying
structure likely mitigates the risk of overfitting to data and provides
a better representation of the overall system dynamics. As compared to
other data-driven model identification strategies that attempt to learn
the model equations that generate snapshot data, [10–13], the pro-
posed model identification strategy provides a universal representation
based on the phase and amplitude dynamics of the underlying forced
periodic orbits. The resulting model does not require a specification
of a function library and can be implemented without the need for
machine learning. Nonetheless, it may be of interest to consider more
sophisticated fitting strategies in the model identification procedure in
order to yield better approximations of the phase–amplitude reduced
order dynamics.

While the preliminary results presented here are promising, this
strategy still has a number of limitations. Foremost, it is explicitly
assumed that the dynamics of the underlying system (10) approach a
stable periodic orbit in response to the applied input 𝑢(𝑡). This is guar-
anteed in the limit of weak forcing for systems with a stable fixed point,
even when the associated eigenvalues of the linearized fixed point are
purely real. However, as the magnitude of the periodic forcing in-
creases, periodic orbits may not persist as the magnitude of the forcing
becomes larger. This limitation would likely preclude implementation
for systems displaying chaotic dynamics where stable periodic orbits
would not be observed, but potentially could be overcome by incor-
porating chaos control strategies [47–49] to stabilize the resulting
unstable orbits so that the necessary data can be collected for model
fitting. Additionally, in the implementation of the proposed strategy,
the extended phase and extended isostable coordinates from Eq. (16)
associated with the periodic orbit 𝑋𝛾

𝑝 must be continuous with respect
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Fig. 6. The inputs from panels C, F, I, and L are applied to the full order model (64), the proposed adaptive data-driven model identification strategy, and two other data-driven
models. Corresponding output traces are shown in panels A, D, G and J with associated errors shown in panels B, E, H, and K. In addition to giving the correct qualitative behavior,
the proposed adaptive reduction strategy yields a model with approximately half as much error as the other two comparison data-driven strategies. Note that the proposed method
was not trained on any of the test inputs from Fig. 6; the pure sine wave in panel C has different frequency than the sinusoidal inputs used for training.

to 𝑝 (the amplitude of the periodic forcing). This precludes critical
points of 𝑝 for which a bifurcation occurs from the allowable parameter
set. In order to consider forced vibration problems, for instance, with
a system having regions of phase space with qualitatively different
dynamics separated by homoclinic orbits [50], further extensions to the
proposed model identification strategy would be necessary.

The proposed model identification strategy exploits rapid conver-
gence of some of the Floquet coordinates in order to arrive at a
low-order representation for the model dynamics. In principle, it can
accommodate the influence of an arbitrary number of low amplitude,
slowly decaying modes, but in practice it may be difficult to distinguish
the influence from each of these modes using data, especially for Flo-
quet exponents that are close to each other. Additionally, adding more
low amplitude modes will not necessarily guarantee a more accurate
model. With this in mind, it would be worthwhile to extend this data-
driven procedure to accommodate additional pairs of large amplitude
oscillatory modes. In this work, the influence of noise and measurement
error is not explicitly considered here which may decrease the accuracy
of the proposed model identification strategy. Some of these concerns
are at least partially alleviated by the results for the neural system
from Eq. (64); even for a large scale and noisy model, the two-mode re-
duced order model performs well in this example, especially compared
to the other data-driven model identification strategies considered.
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Appendix A. Numerical computation of terms comprising the
adaptive phase-amplitude reduced order equations

Consider a general equation of the form (12) with a forced periodic
orbit of the form (13) that results for a constant choice of 𝑝 when
taking 𝑢(𝑡) = 0. If the underlying equations are known, the terms
comprising the adaptive phase–amplitude reduced order equations can
be computed numerically. For instance, the gradient of the phase
𝑎(𝜃, 𝑝) ≡ 𝜕𝜃

𝜕𝑋
evaluated on the periodic orbit 𝑋𝛾

𝑝 can be obtained by
computing periodic solutions of the adjoint equation [28,51],

𝑎̇ = −𝐽𝑇 𝑎, (A.1)

where 𝐽 is the Jacobian evaluated at 𝑋𝛾
𝑝 normalized so that

2𝜋

𝑇 (𝑝)
=

[
𝐹𝑥(𝑥

𝛾
𝑝(𝜃), 𝑝𝑓 (𝜃))

𝜔

]
⋅ 𝑎(𝜃, 𝑝), (A.2)

where the dot denotes the dot product. Likewise, as discussed in [33,
34], 𝑏𝑗 (𝜃, 𝑝) ≡ 𝜕𝜓𝑗

𝜕𝑋
evaluated on the periodic orbit 𝑥𝛾𝑝 can be computed

by finding periodic solutions of

𝑏̇𝑗 = −(𝐽𝑇 − 𝜅𝑗 Id)𝑏𝑗 , (A.3)

where 𝜅𝑗 is the Floquet exponent associated with the Floquet coordinate
𝜓𝑗 and Id is an appropriately sized identity matrix. Corresponding
Floquet eigenfunctions 𝑔𝑗 (𝜃, 𝑝) can be computed by finding periodic
solutions of

𝑔̇𝑗 = (𝐽 − 𝜅𝑗 Id)𝑔𝑗 . (A.4)

Additionally, the resulting 𝑔𝑗 (𝜃, 𝑝) and 𝑏𝑗 (𝜃, 𝑝) must be scaled so that
𝑔𝑇
𝑘
(𝜃, 𝑝)𝑏𝑗 (𝜃, 𝑝) = 1 if 𝑘 = 𝑗 and 0 otherwise. As discussed in [34], the

relationship

𝑏𝑇𝑗 (𝜃, 𝑝)
𝑑𝑋

𝛾
𝑝

𝑑𝑡
= 0, (A.5)

must also be satisfied for all states on the periodic orbit for all 𝑗.

Appendix B. Reduced order terms comprising the adaptive reduc-
tion in the limit of weak forcing

Ref. [25] derived explicit representations for the terms of an adap-
tive reduction of the form (16) for oscillations that result from a
carefully designed input added directly to the state equation. By con-
trast, in the current work, general periodic inputs are considered to
yield forced periodic orbits used in the adaptive reduction. Nonetheless,
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in the limit of weak forcing, the terms of the adaptive reduction have
a shared structure. This point is illustrated below following a similar
derivation to the one given in Section 3.2 of [25].

To begin, consider the 𝑇 -periodic linear time varying Eq. (49) that
characterizes solutions near the periodic orbit of (12) that results from
the periodic input 𝑝𝑓 (𝑡) when taking 𝑢(𝑡) = 0. Note that while (49) is
linear time varying, this equation becomes linear time invariant when
truncating the 𝑂(𝜖) terms. As such, the monodromy matrix 𝛷 that solves
𝛥𝑋(𝑇 ) = 𝛷𝑋(0) can be approximated to leading order as

𝛷 = 𝑒

(⎡⎢⎢⎣
𝐴 0

0 0

⎤⎥⎥⎦
𝑇

)

+ 𝑂(𝜖)

=

[
𝑒𝐴𝑇 0

0 1

]
+ 𝑂(𝜖)

= 𝛷0 + 𝑂(𝜖), (B.1)

where 𝛷0 contains the 𝑂(1) terms of the monodromy matrix. Above, the
structure in the second line follows directly from the diagonal structure
of the 𝑂(1) terms.

Eigenvalues 𝜆𝛷
𝑗
and associated left and right eigenvalues 𝑤𝛷

𝑗
and

𝑣𝛷
𝑗
, respectively, of 𝛷 can be used to determine the Floquet multipliers

and Floquet eigenfunctions of the periodic orbit defined in (13). As
discussed in Appendix B of [25], the eigenvalues and eigenvectors of
𝛷0 (𝜆

𝛷0

𝑗
, 𝑤𝛷0

𝑗
, and 𝑣𝛷0

𝑗
) will be 𝑂(𝜖) approximations of 𝜆𝛷

𝑗
, 𝑤𝛷

𝑗
, and 𝑣𝛷

𝑗

provided 𝜆𝛷0

𝑗
is simple. With this in mind and considering Eq. (B.1), for

any eigenvalue, right eigenvector, and left eigenvector triple (𝜆𝑗 , 𝑣𝑗 , 𝑤𝑗 )
of 𝐴

𝑣
𝛷0

𝑗
=

[
𝑣𝑗
0

]
(B.2)

is a right eigenvector of 𝛷0 with eigenvalue 𝜆
𝛷0

𝑗
= exp(𝜆𝑗𝑇 ). It is also

straightforward to verify that

𝑤
𝛷0

𝑗
=

[
𝑤𝑗
0

]
(B.3)

is a right eigenvector of 𝛷𝑇
0
with corresponding eigenvalue 𝜆𝛷0

𝑗
and

hence is a left eigenvector of 𝛷0. The Floquet exponent for the periodic
orbit (13) corresponding to 𝜆𝛷0

𝑗
is

𝜅𝑗 =
log(exp(𝜆𝑗𝑇 ))

𝑇
+ 𝑂(𝜖)

=
log | exp(𝜆𝑗𝑇 )|

𝑇
+ 𝑖

arg(exp(𝜆𝑗𝑇 ))

𝑇
+ 𝑂(𝜖)

= Real(𝜆𝑗 ) + 𝑖Imag(𝜆𝑗 ) −
2𝜋𝑖𝑚

𝑇
+ 𝑂(𝜖). (B.4)

Above, because exp(𝑎+𝑏𝑖) = exp(𝑎+𝑏𝑖+2𝑘𝜋𝑖) for any integer value of 𝑘,
the additional term 2𝜋𝑖𝑚∕𝑇 is chosen appropriately with the mandate
that Imag(log(exp(𝜆𝑗𝑇 ))) ∈ (−𝜋, 𝜋]. The Floquet eigenfunction 𝑔𝑗 (𝜃, 𝑝)

associated with the Floquet multiplier 𝜅𝑗 can be obtained by finding
periodic solutions to Eq. (A.4); to leading order 𝜖, substituting Eq. (48)
for the Jacobian this equation becomes

𝑔̇𝑗 =

([
𝐴 0

0 0

]
− 𝜅𝑗 Id

)
𝑔𝑗 + 𝑂(𝜖). (B.5)

For any 𝑔𝑗 ∝
[
𝑣𝑇
𝑗

0
]𝑇
, Eq. (B.5) simplifies to

𝑔̇𝑗 = 𝑔𝑗 (𝜆𝑗 − 𝜅𝑗 ) + 𝑂(𝜖)

= 𝑔𝑗2𝜋𝑖𝑚∕𝑇 + 𝑂(𝜖). (B.6)

Above, the first line is obtained by recalling that 𝑣𝑗 is an eigenvalue
of 𝐴 and the second line is obtained by substituting (B.4). Integrating
Eq. (B.5) over one period ultimately yields the solution

𝑔𝑗 =

[
𝑣𝑗
0

]
exp (𝜔𝑖𝑚𝑡) + 𝑂(𝜖), (B.7)

with the substitution 𝜔 = 2𝜋∕𝑇 . Likewise, the gradient of the Floquet
coordinates with respect to the state can be computed by finding
periodic solutions of (A.3). Substituting the relevant terms, to leading
order this equation is

𝑏̇𝑗 = −

([
𝐴𝑇 0

0 0

]
− 𝜅𝑗 Id

)
𝑏𝑗 + 𝑂(𝜖). (B.8)

For any 𝑏𝑗 ∝
[
𝑤𝑇
𝑗

0
]𝑇
, Eq. (B.8) simplifies to

𝑏̇𝑗 = −𝑏𝑗 (𝜆𝑗 − 𝜅𝑗 ) + 𝑂(𝜖)

= −𝑏𝑗2𝜋𝑖𝑚∕𝑇 + 𝑂(𝜖). (B.9)

Noting that 𝑤𝛷0

𝑗
from (B.3) provides an initial condition that solves

(B.8) to leading order 𝜖, integrating (B.9) over one period ultimately
yields solutions of the form (recall that

𝜕𝜓𝑗

𝜕𝑋
≡ 𝑏𝑗)

𝑏𝑗 (𝑡) =

[
𝑤𝑗 exp(−𝜔𝑖𝑚𝑡) + 𝑂(𝜖)

𝑏𝑗,2(𝑡)

]
, (B.10)

where 𝑏𝑗,2(𝑡) is a 𝑇 -periodic 𝑂(𝜖) term. The term 𝑏𝑗,2(𝑡) can be deter-
mined by considering (A.5), specifically

0 = 𝑏𝑇𝑗 (𝜃, 𝑝)
𝑑𝑋

𝛾
𝑝

𝑑𝑡

=
[
𝑤𝑇
𝑗
exp(−𝜔𝑖𝑚𝑡) + 𝑂(𝜖) 𝑏𝑗,2(𝑡)

]

×

⎡
⎢⎢⎣
𝑝
𝑑

𝑑𝑡

(
𝑒𝐴𝑡𝑥0 + ∫ 𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝑓 (𝜔𝜏)𝑑𝜏

)

𝜔

⎤
⎥⎥⎦
, (B.11)

where terms 𝑂(𝜖2) and higher are truncated and the second line is
obtained by substituting (B.10) for 𝑏𝑗 and (45) for 𝑥

𝛾
𝑝 to leading order

𝜖. Solving (B.11) for 𝑏𝑗,2(𝑡) ultimately yields

𝑏𝑗,2(𝑡) = 𝑝𝜂𝑗 (𝑡), (B.12)

where

𝜂𝑗 (𝑡) = −
1

𝜔
𝑤𝑇𝑗 exp(−𝜔𝑖𝑚𝑡)

𝑑

𝑑𝑡

(
𝑒𝐴𝑡𝑥0 + ∫

𝑡

0

𝑒𝐴(𝑡−𝜏)𝐵𝑓 (𝜔𝜏)𝑑𝜏

)
. (B.13)

Note that 𝑏𝑗,2 ≡ 𝜕𝜓𝑗

𝜕𝑠
. Of particular importance, note that 𝑏𝑗,2(𝑡) is

directly proportional to 𝑝.

Appendix C. Koopman model predictive control algorithm

The proposed model identification algorithm is compared to the
Koopman model predictive control algorithm from [9] (cf., [52]). Con-
sidering the general model of the form (10), Koopman model predictive
control considers a series of data snapshots

𝑠𝑖 = (𝑦𝑖, 𝑦
+
𝑖
, 𝑢𝑖), (C.1)

where 𝑦𝑖 = 𝑦(𝑥(𝑡𝑖)) ∈ R𝐾 , 𝑦+
𝑖
= 𝑦(𝑥(𝑡𝑖 + 𝛥𝑡)) ∈ R𝐾 , and 𝑢𝑖 = 𝑢(𝑡𝑖) ∈ R𝑀 ,

with 𝛥𝑡 being a constant timestep. A lifted state vector is generally
considered

ℎ𝑖 =

⎡⎢⎢⎣

𝑦𝑖
𝐿𝑦(𝑦𝑖, 𝑦𝑖−1, 𝑦𝑖−2,…)

𝐿𝑢(𝑢𝑖−1, 𝑢𝑖−2,…)

⎤⎥⎥⎦
, (C.2)

where 𝐿𝑦 and 𝐿𝑢 are vectors comprised of the current and previous
outputs and previous inputs, respectively. The augmentation of the
current state with additional information about the time history is
often referred to as time-delay embedding [8]. Note that the time-
delay embedding is not explicitly required to implement the Koopman
model predictive control algorithm. The goal of the Koopman model
predictive control approach is to obtain an approximation for the linear
relationship ℎ+

𝑖
= 𝐴ℎ𝑖 + 𝐵𝑢𝑖. Letting 𝐻 =

[
ℎ1 …ℎ𝑑

]
, 𝐻+ =

[
ℎ+
1
⋯ℎ+

𝑑

]
,

and 𝑈 =
[
𝑢1 … 𝑢𝑑

]
where 𝑑 is the total number of pairs of lifted state
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coordinates, a least squares fit for 𝐴 and 𝐵 can be obtained according
to

[
𝐴 𝐵

]
= 𝐻+

[
𝐻

𝑈

]†
, (C.3)

where † denotes the pseudoinverse. At each step, predictions for the
observable can be obtained from the first 𝐾 entries of ℎ𝑖. The Koop-
man model predictive control algorithm is closely related to extended
dynamic mode decomposition [7] and other techniques involving dy-
namic mode decomposition [53]. This approach is distinct from stan-
dard linearization around a reference point or trajectory; because of its
close connection to the Koopman operator, it can be thought of as a
global linearization of the underlying dynamical system.
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