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Abstract—Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge
applications with limited power and latency budget. In this paper, we propose a content-addressable memory compiler for decision tree
inference acceleration. We propose a novel "adaptive-precision” scheme that results in a compact implementation and enables an
efficient bijective mapping to ternary content addressable memories while maintaining high inference accuracies. We also develop a
resistive-based functional synthesizer to map the decision tree to resistive content addressable memory arrays and perform functional
simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including
device defects, manufacturing variability, and input encoding noise. We test our framework on various decision tree datasets including
Give Me Some Credit, Titanic, and COVID-19. Our results reveal up to 42.4% energy savings and up to 17.8 x better energy-delay-area
product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.
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1 INTRODUCTION

ACHINE Learning (ML) continues to play a crucial
Mrole in performing complex tasks that are character-
ized by “learnable” properties. While brain-inspired Deep
Neural Networks (DNNs) are nowadays thriving in several
fields including computer vision, autonomous driving, the
Internet of Things (IoT), and smart industries, they are not
applicable where interpretability and domain knowledge
are required [1]. Some applications that require integrating
hand-crafted solutions (and hence domain expertise and
explainability) as part of the learning process include pre-
dictive maintenance, risk management, anomaly detection,
and image recognition for purposes of medical diagnosis [2].
In particular, Decision Trees (DTs) are popular to perform
explainable ML [3], this is known as DT-based ML.

Several hardware accelerators for DT-based ML are pro-
posed in literature. Most of these are CPU, GPU, FPGA,
or ASIC-based accelerators [4]-[6]. More recently, hardware
accelerators based on emerging memories like In-Memory
Computing (IMC) architectures have been proposed for DT-
based ML [4], [7]. The need to accelerate DT algorithms
by means of IMC is motivated by the promise of orders
of magnitude gains in energy efficiency and throughput
provided by such architectures. This is particularly pivotal
in edge applications that have hard constraints on energy
and latency [4], [8]. Ternary Content Addressable Memories
(TCAMSs) perform massively parallel search operations, and
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are IMC architectures that have proven to boost perfor-
mance in terms of energy and latency [8].

DT graphs consist of paths (i.e., routes) that describe
some rules on features and that terminate by leaf nodes
storing class values. To perform inference on DTs, incoming
data should “match” one single path to associate it with
some output class. Classical architectures will perform se-
quential searches on the DT routes to find the matching one.
Motivated by the fact that each route in a DT can be mapped
to a TCAM row (where the route’s feature rules are stored)
and by the high search throughput offered by TCAMs,
we propose DT2CAM: a Decision Tree to Content Addressable
Memory framework. DT2CAM simulates the inference of DTs
on CAMs in general and Resistive CAMs (ReCAMs) in
particular. We summarize our contributions as follows: 1)
We propose DT2CAM, a framework that bijectively maps
any DT into TCAM units relying on a novel adaptive
precision encoding scheme. 2) DT2CAM demonstrates high
robustness characterized by a low accuracy drop in presence
of hardware non-idealities. 3) Results show up to 1.7x and
3.8 reduction in energy dissipation and area respectively,
as well as 1.6x gain in throughput compared to the similar
SOTA hardware accelerator on analog CAMs [4].

The rest of the paper is organized as follows. In section
II, we explain the proposed DT2CAM framework. Section
III presents the implementation details, and Section IV elab-
orates on the results and compares the framework against
other hardware accelerators. Section V concludes the work.

2 PROPOSED DT2CAM FRAMEWORK

DT2CAM comprises: 1-) DT-HW compiler and 2-) ReCAM
functional synthesizer. The DT-HW compiler translates a DT
graph to a structured Look-Up Table (LUT). The ReCAM
functional synthesizer maps the LUT into ReCAM arrays
and evaluates energy, latency, and accuracy via simulations.
The detailed analysis and experiments can be found in [9].



2.1 DT-HW Compiler

DT-HW compiler maps a DT graph into a structured LUT
in four steps: DT graph generation, tree parsing, column
reduction, and ternary adaptive encoding step.

Decision Tree Graph Generation: For some dataset,
a supervised DT model capable of performing multi-class
classification is trained by relying on the Classification and
Regression Trees (CART) algorithm [10]. The DT model is
represented by a DT graph where internal nodes represent
rules on the attributes or features, branches represent the
decisions for the rules, and leaf nodes represent classes.

Tree Parsing: The DT-HW compiler parses the DT into
its equivalent table of conditions; each row in the ta-
ble represents a path in the DT from root to leaf, and
#rows = F#TreePaths. Subsequently, each row consists
of condition(s) applied to at least one feature.

Column Reduction: The DT-HW compiler reduces the
conditions on each feature to one single condition (or rule)
per row. The incoming input features can then be easily
compared against their respective features’ rules. The single
rule for some feature f; in row j, rule;;, specifies the
range for f;. We note that by construct, the DT enforces
a continuous range for the rule definition in a given path
(row). The rule can be defined using a comparator € {'0’,
‘1’,’2’,’NaN’} and two thresholds: (T'h1;;) and (T'h2;;). The
comparator states ‘0%, '1’, '2’, and 'NaN’ represent a-) less
than or equal, b-) greater than, c-) in-between, and d-) no
rule for this feature in this row, respectively. In particular,
if the comparator is ‘0’ in a row for some feature f;, an
incoming input feature, f;,,, should be less than or equal
to Thl;; (equivalently, fin, € (—Inf,Thl;;]) to match f;'s
rule in row j. When the comparator is '1’, f;,, should be
greater than Thl;; to match the rule on f;. In these two
cases, T'h2;; is ignored and hence represented as "NaN” in
the reduced table. When the comparator is '2’, f;,, should
belong to (T'h1,;, Th2;;] to match the rule.

Ternary Adaptive Encoding: In the final step, the DT-
HW compiler encodes each feature rule relying on an
“adaptive-precision” unary encoding scheme suitable for
TCAM implementations. Note that the scheme exploits the
"don’t care” feature of the TCAM as will be explained next.
The ”adaptive-precision” technique optimizes the area by
setting a feature-dependent encoded string length. Thus, the
number of bits varies for the different features but remains
constant for a specific feature across all rows. This ensures
that the encoding scheme is compact and efficient. We refer
to it as Ternary Adaptive Encoding. The number of encoding
bits for a specific feature is determined by the number of
respective unique threshold values identified in the preced-
ing column reduction step. In particular, for a given feature
fi out of N features (i € 1,2,...,N), the number of bits,
n;, needed to encode f; depends on the number of unique
thresholds over the m rows, T; = | UJ; {Thl;;, Th2;;}|,
as n; = T; + 1. Hence, for N features, the total number of
bits (n40tq1) that are eventually needed to encode the whole
DT (excluding the leaf nodes that store the class labels) is
Ntotal = Noranches * 27, (’I'L»L), where Npranches = m is the
number of branches or paths from the root to leaf nodes
in the DT (or the number of leaf nodes). The encoding
scheme employs unary codes in the ‘normal’ form [11]. The
encoded bits belong to the basis {0, 1, z}; = denotes a “don’t
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care”. This facilitates bijective mapping of the rules into
TCAM(s). The encoding for a given feature f; is explained
as: 1- Sort the elements of Th'i = UM {Thl;;,Th2;;} in
ascending order. 2- Construct n; =" T; + 1’ exclusive ranges
defined in the set R; = {ry, = (—Inf,min(Th')], ..., r, =
Jmax(Th¥), +Inf)}; 3- map the ranges in R; to ascending
unique normal unary codes, u/i, ..., uff, each comprising
n; bits starting with the code /00...01" and ending with
’11...11". We encode input features relying on the same
scheme, and each will be represented by one of the unique
feature codes based on the exclusive ranges they satisfy. We
rely on the above encoding to construct an LUT. Recall that
the rule range is continuous for a given path and thus can
be interpreted in terms of the union of a set of multiple
consecutive exclusive ranges. When a feature spans multiple
exclusive ranges, we rely on “don’t care” bits denoted as ”x”
to encode the new union range. Hence, inputs belonging
to the different exclusive ranges that construct the rule
will result in a match in the TCAM. As such, for each
rule rule;; of f; in row j, we perform those two steps:
1) Find the set of exclusive ranges, {r.p,rvp}, spanned
by rule;;. LB,UB € {1,..,n}. Then, 2) encode rule;;
as Idr = Findige(XOR(Ury g, Uryy) == 1), Upute,; =
Replace(uy, ,, Idz,” 7). Find;q,(.) returns a list of indices
satisfying a condition. Replace(u, Idz,”c”) replaces all the
characters of string u in positions I'dz by the character ”c”.

2.2 ReCAM Functional Synthesizer

The ReCAM functional synthesizer comprises two steps;
mapping where the LUT, provided by DT-HW compiler, is
mapped into ternary ReCAM arrays and simulation where
the synthesizer evaluates energy, latency, and accuracy.

2.2.1 Mapping

A bit of ”0”, "1”, or "x” in the LUT is mapped to a "01”,
710”7, or ”11”, respectively, in the two resistive elements of a
TCAM cell as shown in Fig. 2. Ideally, one TCAM array
is used, and the total number of TCAM cells needed is
equal to n4oq1. However, in practice, the number of TCAM
cells depends on the design requirements and limitations in
terms of energy efficiency, latency, and dynamic range.
Dynamic Range: Describes the voltage difference be-
tween a full match voltage, V},,, and the one mismatch
voltage, Vimm. Its equation for a capacitive sensing design
is adopted from [12]. Given a dynamic range limit, Dj;pit,
we choose a target TCAM row size S to meet Dy iz
Organization, Latency and Energy Efficiency: For prac-
tical purposes, we also assume that the TCAM width (#
of rows) would be S. Hence, multiple TCAMs are needed;
specifically, the synthesized TCAM cells of the encoded LUT
rules need to be divided among N; = Nyq * Nypwqg TCAM
arrays (aka tiles) each of size Sx .S to guarantee practical cor-
rect operation, where Neywq = [(Ntotar/#Hrows+1)/S] and
Nywa = [#rows/S] represent the number of column-wise
and row-wise TCAM tiles respectively. The "+1” in N¢yq is
explained by the reserved decoder column discussed below.
1- If the original size of the LUT is smaller than S x S (in
that case N¢yq=Nrwq=1), the functional synthesizer needs
to extend the table obtained from the encoding step by
padding “don’t care” cells to render the LUT size S x S
(1). We reserve the first column of the TCAM array and
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Fig. 1: DT-HW Compiler: Translates a DT graph to a structured LUT. From left to right: it first parses the DT and creates a

table, then reduces the columns of the table, and then uses a ”

"ternary adaptive encoding” scheme to create the LUT.
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P and E stand for Precharge and Evaluate respectively. V;,
is the voltage measured across Cjy,.

refer to it as the decoder column to enforce mismatch for
the “rogue” rows that are not part of the original LUT.

2- Otherwise, it needs to divide that table into multiple
TCAM tiles of size S x S as shown in Fig. 2. Tiles that are
not completely filled by the LUT are padded by “don’t care”
cells. We reserve the first column of all TCAM arrays in the
first division as decoder columns (see Fig. 2). For energy
efficiency, the column-wise TCAM tiles are separated by
row-enable bits that deactivate the rows in the following

tiles if the respective rows in the previous tiles mismatch. By
setting the decoder column bits to "1’ for the rogue rows, we
enable further energy savings since it forcibly mismatches
the rogue rows. Aside from the decoder column, the re-
maining columns in the rogue rows are stored as “don’t care
cells”. Each one of the S x.S TCAMs has a column of S Sense
Amplifiers (SAs) used to determine the match/mismatch
status of each row. The class values corresponding to the
rogue rows are populated with random values from the set
of possible classes. We equip the row-wise tiles of the last
column-wise division with an extra column of ReRAM cells,
used to store the class bits (or equivalently the encoded leaf
nodes’ values of the DT). ReRAM cells are made of 1T1R
cells, and each binary bit used to encode the classes is saved
in one 1T1R cell. So, for a DT that has C' possible classes,
[log2(C)] bits (1T1R cells) are needed per row.

Input Processing and TCAM Mode of Operation: A "0/
bit is padded at the beginning of the input. This padding
along with decoder column bits enforces a mismatch in the
rogue rows. For the rows that are part of the original LUT
the padded bit matches with the decoder column bit. The
original encoded input is then split across row-wise tiles
of the column-wise tiles. Input pins that exceed the size of
the encoded input may be assigned random inputs or may
be masked. For the latter, the extended columns of the last



column-wise division are “masked”, and the "masked don’t
care” cells have a pair of OFF-OFF transistors and do not
dissipate energy. To exploit the parallel processing property
of TCAMs whereby an input is processed in one shot across
all TCAM rows, the row-wise tiles are allowed to operate in
parallel. Moreover, to save precharge and evaluate energy
we force a sequential operation on the column-wise TCAM
tiles where no energy is dissipated in the following tiles
upon mismatch in the previous tiles. The mode of operation
is depicted in Fig. 3. Eventually, each encoded input must
have one matching row in the row tiles of the last column
division. We call this row the surviving row.

Selective Precharge: For each input, we evaluate
column-wise TCAM tiles sequentially to enable Selective
Precharge (SP) (shown in Fig. 2). With the SP circuit, a row
that mismatches in the previous column-wise tile for some
input is not precharged nor evaluated in the current tile.
If an input mismatches a given row in some T'ile;; (stage
k-1), the SP circuit deactivates the precharge circuitry and
SA of the corresponding row in T'ile;;11 (stage k). Deacti-
vating S Ay prevents the floating capacitor voltage residue
from falsely flagging a match and activating the following
tiles while SP preserves the charge to save energy during
future precharges of the same tile. The SP circuit reduces
the energy-delay product (see Section IV for details). If an
input at stage k-1 matches some row, the SA and precharge
circuitry of the corresponding row in stage k are activated.

2.2.2 Simulation

The synthesizer performs simulations to evaluate energy,
latency, and accuracy for the design with/without hardware
non-idealities, with the following assumptions.

Technology: To calculate energy, latency, dynamic range,
and optimal evaluation time (15,;), we rely on 16nm tech-
nology parameters shown in Fig. 2.

Target Size: We determine the target size S values of
the TCAM for Dyjmiz € {0.2,0.3,0.4,0.5,0.6}. For each
Diimit value, we rely on dynamic range to determine the
maximum number of TCAM cells per row allowed to satisfy
this value. Finally, we choose a power-of-two target S value
close to and lower than the maximum value. For example,
for Dyjimir = 0.2, max#cells/row = 154, s0 S = 128.

Energy: The total energy per an active TCAM row per
input is calculated as E%'"¢ = Ercan + Esq where Ey,
is the energy of the SA obtained via SPICE simulations.
In particular, for a target size S, E;, is the energy dissi-
pated in the SA for a certain reference voltage capable of
differentiating between a fully matching row and a row
with one mismatch. In addition, Ercan and the optimal
evaluation time, T, are derived based on the closed form
in [12]. We assume worst-case scenario for energy, where the
extended cells in the row-wise tiles of the last column-wise
division are treated like regular “don’t care cells”, hence
dissipating energy as opposed to being masked. We note
that we maintain the sequential functionality assuming null
energy dissipation in rows that have been deactivated by the
respective mismatching rows in previous tiles. Since the en-
ergy defined above is measured per row / per input, the total
energy for a given input is Fypi = > 1 ¢ Eﬂg}f“e + Emem,
where N, is the number of active rows for that input. Eyep,
is the energy needed to access the class label of the surviving
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row. We assume that class labels are stored in 1T1R cell(s)
(total # of 1T1R cells = loga(F#classes)) followed by a SA
adapted from [13]. So, E,ep, is the energy dissipated in
the 1T1R cell(s) and the SA adapted from [13]. The average
energy per input can then be computed from all inputs.

Latency: We define the column-wise latency, T¢,q, as
the time needed to complete the inference per input per a
column-wise tile according to Tvwa = 3Tpehg + Topt + Tsa,
where T, (determined via SPICE simulations) is the time
needed for the SA to sense a match or a mismatch. The
average total latency per input, Tyoe;, is then given by
Tiotal = NewdTewd + Tinem- Tmem is the time needed to
access the 1T1IR cell(s) storing the class label of the surviving
row. Note that for multiple 1TIR cells, these are accessed
in parallel. In addition, our simulator operates with the
maximum frequency (unless otherwise mentioned) which is
given as frae = (Mmax(37pchg + Topt + Tsa, Tmem))_l. For
instance, the operating frequency for an array width of 128
is 1 GHz under the parameters reported in Fig. 2.

Hardware Non-idealities: We study the accuracy-wise
robustness of our DT2CAM framework under device de-
fects. In particular, we focus on a common problem in resis-
tive TCAM cells: the fabrication-induced permanent Stuck-
At-Fault (SAF) problem. Such fault cannot be writable as it
is stuck at either High-Resistance State (HRS) (equivalently
stuck at the bit ”0” or S A0) or Low-Resistance State (LRS)
(equivalently stuck at the bit ”“1” or S A1) [14]. We study the
DT2CAM SAF problem in the presence of SA manufacturing
variability similar to [15], and input noise. Thus, we perform
Monte Carlo analysis to induce bit flips in the encoded
TCAM cells. Our independent variables are: a-) SA reference
voltage (Viey ~ N(uv,.,;0sa)), b-) Stuck-At-Fault (SAF)
(each cell is an event that gets stuck at “0” or “1” with prob-
ability SA0/1), and ¢-) input noise which is ~ N (0, 0yy,).
We sweep the probability percentage values as follows:
SA0 =1[0,0.1,0.5,1,5]% and SA1 = [0,0.1,0.5,1,5]%. We
emulate the SA variability by applying random offsets to
reference voltage, V,.s, of the individual SAs for a given
TCAM division where o, € [0, 0.03, 0.04, 0.05, 0.1]V. In
addition, we study the effect of input noise where we induce
random noise in the normalized input features dataset with
oin € [0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1].

3 IMPLEMENTATION DETAILS

We develop the DT2CAM framework in Python/MATLAB.
Our Python-based compiler extracts and parses the DT
model and further reduces it and produces an encoded LUT
as shown in the last step of Fig. 1. Then, our MATLAB-
based ReCAM functional synthesizer takes the LUT as an
input and performs the mapping and hardware simulations.
For testing, we use six datasets from UCI Repository and
Kaggle [16], [17]. Particularly, we use the Fisher’s Iris (Iris),
Haberman’s Survival, Car Evaluation, and Breast Cancer Wis-
consin (Diagnostic) datasets from the UCI repository. Give Me
Some Credit (training) and Pima Indian Diabetes datasets are
taken from Kaggle. From Stanford’s CS109 website [18], we
utilize the Titanic dataset. We also evaluate our framework
on a more recent dataset, COVID-19 compiled by [19]. In
some datasets, we omit some incomplete instances and
some features that are unique for each data instance. We use



the same split percentage of the data in the aforementioned
datasets to generate the DTs: 90%/10% for training/testing.
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4 RESULTS AND COMPARISON

Here, we discuss the ReCAM functional synthesizer results
and compare DT2CAM to other hardware accelerators.

4.1

Fig. 4a shows the energy per decision (dec) vs throughput
for all datasets where Sx.S € {16x16, 32x 32,64 x64, 128 x
128}. Larger markers indicate larger S values. Inference on
Credit (largest dataset) consumes the highest energy and
has the lowest throughput, while inference on Iris (smallest
dataset) consumes almost the lowest energy and yields the
highest throughput. This is expected as energy and through-
put are dataset-size dependent. For Credit, Covid, Titanic,
and Diabetes (relatively large datasets), increasing S results
in reducing the per decision energy consumption (nJ/Dec)
and increasing the throughput in terms of the number of
decisions per second (Dec/sec). The energy reduction is
due to a decrease in the number of switching blocks and
SAs. The throughput improvement is attributed to the fact
that the number of TCAM tiles operating sequentially for
these datasets decreases with increasing S. Accordingly, the
Energy-Delay Product (EDP) demonstrates improvement
with increasing S as illustrated for these datasets in Fig.
4b. For the other datasets, the throughput (Dec/sec) im-
proves with the target size demonstrating similar behavior
as the previous ones. However, the energy consumption
(nJ/Dec) increases with S. This is because small datasets
are represented by at most two tiles when S = 128 thereby
not benefiting from deactivated rows due to mismatching
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TABLE 1: Comparison with SOTA hardware accelerators. P=
pipelined. We normalize to the P-DT2CAM.

Accelerator Technology/ feir | Normalized | Normalized | Normalized | Normalized | Normalized
(nm)/(GHz) Throughput Energy Area Area/bit FOM
ASIC [6] 65/0.2 9.01% 10~ 1.91 %1070 - - -
ASIC [20] 65/0.25 1.80 % 10~ 4.69 % 107°
ASIC IMC [7] 65/1 1.09%10-7 1.98+ 10T - - -
ACAM [4] 16/1 6.25% 10~ 1.73 3.80 1.76 + 1071 1.01+ 107
P-ACAM [4] 16/1 1 1.73 3.80 1.76 x 1077 6.33
DT2CAM_128 16/1 177+ 101 1 1 1 5.67
P-DT2CAM_128 16/1 1 1 1 1 1

rows in previous tiles. Nevertheless, the throughput im-
provement is larger than the energy degradation (increase),
and the EDP improves (decreases) with larger .S values (Fig.
4b). Only the Iris dataset favors smaller S values when it
comes to EDP due to its extremely small LUT size. From
Fig. 4b, for all datasets where at least two column-wise tiles
are required for different target size S, we see a reduction
in the EDP when SP is used compared to when it is not.
Particularly, the Credit dataset with SP circuit achieves the
highest reduction in EDP (around 90%) because it is the
largest dataset with the largest produced LUT, which in turn
yields a large number of column-wise tiles. Column-wise
tiles benefit from SP by evaluating few rows in each tile.

4.2 Analysis with Hardware Non-idealities

We study the accuracy loss in DT2CAM for different target
sizes S and under the mentioned hardware non-idealities.
Without loss of generality, we focus on Cancer and Covid
datasets. For all the datasets under study, the accuracy
evaluated by the ReCAM synthesizer for ideal hardware
matches the inference accuracy obtained in Python (hereon de-
noted as golden accuracy). The accuracy loss of each dataset is
measured compared to the corresponding golden accuracy.
From Fig. 5, the target size S does not impact the accuracy
loss in the presence of non-idealities for Cancer. For Covid
(has a large number of tiles) a smaller S is more robust
against non-idealities as the drop in accuracy is lower. This
is clear for the case when SA'Y = 0.1% and S = 64
(yellow plane) and S = 128 (dark blue plane). The same
holds for the case of SA'Y’ = 0%. We truncate the cases
for SA'Y = 0.5% for better illustration. Note that the
probability of a defect falling in a division decreases with
S. The variability induced in SAs affects the accuracy more
severely compared to the noise in the input test datasets. In
some cases, the input noise reduces the accuracy loss, and
this is due to the test dataset itself, and how it changes with
the input noise. The SAF problem affects the accuracy the
most, as it can increase the % accuracy loss up to 50% (in
the absence of other non-idealities), especially for large S.



4.3 Comparison with Other Hardware Accelerators

In Table 1 and Fig. 6b, we summarize the (normal-
ized) per decision throughput and energy for our frame-
work and other hardware accelerators for DT inference
(4], [6], [7], [20]). For DT2CAM, we assume a 2000 x 2048
original TCAM size, divided into 128 x 128 (S = 128) tiles to
mimic inference on the traffic dataset problem. In particular,
we take into consideration the 2000 rows by 256 features re-
ported for the traffic dataset in [4], and further assume that
each feature will require eight bits of storage (overestima-
tion). We report the values for the sequential case (column-
wise tiles operate sequentially) and pipelined case (column-
wise tiles are pipelined). Compared to other SOTA accelera-
tors, our proposed DT2CAM achieves up to seven orders of
magnitude gain in throughput. Particularly, the pipelined
version of DT2CAM can achieve 1.6 % 10x, 1.11 * 107 x,
5.56%10°x, 917 x throughput enhancement compared to [4]
(non-pipelined), [6], [20], and [7] respectively. Furthermore,
our pipelined design achieves 1.73x, 1.91 * 106x%, 4.69 x*
10°x, and 1.98 * 10?x energy reduction compared to [4]
(pipelined and non-pipelined), [6], [20], and [7]. [7] (SRAM-
based IMC ASIC) offers advantages (energy and through-
put) over traditional ASIC implementations [6], [20], where
a local database is utilized. However, as mentioned in [4],
achieving low energy and high throughput inference is still
a challenge. [4] brings forth the advantages of memristive-
based CAM arrays in terms of low power and high com-
putational density. Our proposed design capitalizes on bi-
nary TCAM that does not undergo static currents, employs
a ternary adaptive encoding scheme, and benefits from
a selective precharge scheme. This results in energy sav-
ings compared to [4]. Non-pipelined DT2CAM has higher
throughput than non-pipelined ACAM (2.8x) because in
our case we need 16 TCAM arrays compared to 29 ACAM
arrays required by [4], which would give us at least 29/16
improvement given that we operate at the same frequency
(1GHz). Moreover, they use extra periphery circuits which
we do not use. Furthermore, the area efficiency of ACAM-
based implementation has been shown in [4] to be much
better than [7] (SRAM-based IMC) so we hereon compare
to [4]. As shown in Table 1, compared to the area reported
for the analog CAM framework [4], we achieve about 3.8
and 17.6x reduction in area overhead and area/bit respec-
tively due to relying on 2T2R cells as opposed to analog
CAM cells (whose area is larger). We define a figure of merit,
FOM as Energy-Delay-Area (EDP) product to better com-
pare the accelerators’ performances. Accordingly, the lower
the FOM, the better the performance. Our DT2CAM/P-
DT2CAM framework has 17.79x /6.33x better FOM com-
pared to the ACAM/P-ACAM realization.

5 CONCLUSION

In conclusion, we proposed DT2CAM, a DT to ReCAM
framework that evaluates energy, latency, and accuracy of
DT inference using (resistive) TCAMs with/without hard-
ware non-idealities. DT2CAM has two phases: The DT-HW
compiler maps a DT graph into an LUT, and the ReCAM
functional synthesizer maps the LUT into ReCAM arrays
and performs simulations. Experiments on various datasets
show that the ternary adaptive encoding scheme adopted
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by the DT-HW compiler is robust against noise and efficient
in terms of energy and latency. Compared to other SOTA
hardware accelerators, DT2CAM achieves the lowest en-
ergy, highest throughput, lowest area overhead, and lowest
FOM (preferred). As future work, we want to extend the
framework to include other ReRAM cell topologies (like
ACAM) and to support deep decision ensembles.
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