FPGA Implementation of Associative Processors

Hongzheng Tian, Mohammed E. Fouda, Minjun Seo and F. J. Kurdahi

Abstract—In order to deal with increasingly complex com-
puting problems, an In-memory-based computation system was
proposed to replace the traditional Von-Neumann architectures.
In-memory computing can save the time and energy of data
movement between the memory and processor to avoid the
memory-wall bottleneck of traditional Von-Neumann architec-
ture. The associative processor (AP) is such an architecture
that is proposed to implement in-memory computing. Content
addressable memory (CAM), as a critical part of in-memory
computing, plays an important role in an AP. In this paper, we
proposed a novel FPGA implementation of the AP, including
the CAM and its peripheral circuits, such as the controller, data
cache, instruction cache, and program counter. The design details
of the whole AP architecture are described by Verilog HDL. To
the best of our knowledge, this is the first work that implements
an associative processor on a real-world FPGA platform.

Index Terms—In-Memory Computing, Associative Processors,
FPGA.

I. INTRODUCTION

To solve the memory bottleneck problem, the researchers
designed the in-memory computation structure [1], which is
considered the most efficient computing paradigm. All the
computations are performed in the memory without moving
the data between the processor and memory. In-memory
computing not only reduces the amount of data access between
the processor and memory but also reduces the computational
complexity of the problem [2].

The associative processor (AP) is considered to be an excel-
lent platform for implementing in-memory computation. The
key idea of implementing an associative processor is to place
a small arithmetic logic unit in each storage unit. Since APs
can easily implement single instruction, multiple data (SIMD)
[3], it has a strong performance in parallel computing. It is
widely used in various computing forms, such as convolution
[4], matrix multiplication [5], [6] and fast Fourier transform
(FFT) [7]. This makes it popular in artificial intelligence fields
such as machine learning and deep learning [8], [9].

The associative processors use content addressable memo-
ries (CAMs) to compute the data directly inside the memory.
Currently, most CAM implementations are based on traditional
SRAM designs [10]. However, this solution has a lot of static
and dynamic power consumption, and it is area inefficient.
Another possible implementation is the Field Programmable
Logic Gate Array (FPGA). Due to the outstanding perfor-
mance of FPGA in parallel processing and its high flexibility,
it provides a possibility to implement associative processors
based on FPGA. Compared with SRAM-based CAM, FPGA-
based CAM is more flexible and can flexibly utilize various

This work was partially supported by the National Science Foundation
under award ECCS-2028782, as well as King Abdullah for Science and
Technology under award ORA-2021-CRG10-4704.

Hongzheng Tian, Minjun Seo, and F. J. Kurdahi are with Center for Embedded
& Cyber-physical Systems, University of California-Irvine, Irvine, CA, USA
92697-2625.

Mohammed Fouda is with Rain Neuromorphics Inc., San Francisco, CA, USA.
Email: foudam@uci.edu

resources on FPGA. For instance, [11] contains some im-
plementations of the CAM and TCAM based on the FPGA.
According to this survey, there are three main directions to
implement the CAM: by using block random-access memory
(BRAM), lookup table RAM (LUTRAM), and flip-flops (FFs).
Each of them has its advantages and disadvantages. [12]
proposed a Ternary CAM (TCAM) implementation based
on FPGA, which combines both BRAM and LUTRAM to
implement the TCAM architecture.

Currently, most CAM implementations are based on BRAM
or LUTRAM since they have more advantages in large CAM
sizes. As aforementioned, the existing FPGA-based CAM
designs can not perform computation due to the lack of
capability of the bitwise read and write operations. In that case,
our proposed design is based on the flip-flops to implement
the CAM modules, the first CAM design that can compute
data at the bit level based on FPGA.

In this paper, we introduced an FPGA-based design of an
associative processor and dedicated CAM module designed
to ease the AP operation. The contributions of this paper are
summarized in the following points:

o To the best of our knowledge, this is the first work that
proposed an AP design that contains a flip-flops-based
CAM with calculation ability on the FPGA.

« proposed an instruction set architecture (ISA) based on
this CAM design, which includes basic logical operations.

o proposed a possible controller and peripheral circuits
design.

The rest of the paper is organized as follows: Section II
gives the architecture of APs, and section II-C introduces
a simple self-designed Instruction Architecture Set for this
processor. Then Section III discusses the details of the FPGA-
based CAM design for APs. Finally, Section V shows this ar-
chitecture’s experimental results and analysis. Finally, Section
VI gives the conclusion and suggestions about future work.

II. AP ARCHITECTURE

The implementation of the associative processor is mainly
based on the CAM, which can automatically compare input
data with all the data stored in the CAM. At the same time, it
judges whether the input data matches any data stored in the
CAM and then outputs the matching information correspond-
ing to the matched data. In general, CAM can search and
compare large amounts of data in a single step or time cycle.
As a result, a search operation costs O(1) time complexity
for a CAM-based architecture compared to O(n) in traditional
architectures.

A. General AP Architecture

The architecture of a general AP is shown in Fig. la [3].
It contains an Instruction Cache, Controller, MASK registers,
KEY registers, CAM, TAG registers, and an optional inter-
connection circuit. Instruction cache stores the instructions

[Testben(h

DDR3 Interface

Instruction Cache L) H
Controller Program Instruction
... MASK. .. 1101 e [Counter Cache Data Cache
CKEY... |1]o]o fer i
(Controller] .
* * * * input_row [j]#{RowxRow 1 X X 1 00
...... 1110 a1 CAM Q' —»{RowxRow 0 1 1 01
— 1
------ 11|10 5 //Column Decode\ / Column Decode\ / Column Decod: input_col [i] #|ColxCol 1 X X 5 3
Il = T T S B =
,,,,,, 1100 ke 1 0] Q —»{ColxCol 011 D flip-flop 4 1o
—| =8 z - B T QAIi] [jl— COPY.A X X X rdk['”ﬂq 11
) 3 <l Flll o B a QRIi] [l—*{COPYR X X X
Content = = @ % . g) %) 9 Q —>|OTHER X 11
Addressable B = S| MatrcAFN - MatriB R Matrix R Q—{OTHER X 11 Mask [j] Key [j]
o
Memory =] Mask [j]
Associative Processor . tag [il
L inout mode e _R[i] &Ie_C [j]
(a) (b) (©)

Fig. 1: (a)General architecture of APs, (b)proposed architecture on

that are operated on the CAM. The Controller then generates
the required MASK and KEY values for the corresponding
instruction. The KEY register is used to store the value that
will be written or compared. MASK register indicates which
bits are activated during the operation phase. Each bit of MASK
and KEY will be the inputs for all cells of the corresponding
column. For each cell, if the MASK input is 1, then it means
that this cell is activated and will compare the KEY input
with the value stored in the cell. If they are matched, then
the output of this cell will be logic 1. Else if the stored
value is unmatched with the given KEY, then the output of
the cell is 0. In addition, if the MASK is 0, this column of
cells is not activated, and the outputs of these kinds of cells
are 1 by default. The value stored in each cell of the TAG
area is the result of AND operation of all cells’ output of the
corresponding row.

For example, in Fig. la, we set the MASK register as 101,
which means the first and third columns are activated to be
compared. Furthermore, we set the KEY register as 100. Then
the cells in the first and third columns will compare the KEY
values between the stored values. The bits in the TAG of the
corresponding rows will become logic 1 as shown in Fig. la.

To implement logic operations inside the CAM, each CAM
cell needs to have the ability to determine whether it needs
to be inverted itself according to whether the data matches or
not, or, whether the TAG is 1 or not. The method to implement
this will be illustrated in detail in section IV.

B. Proposed AP Architecture

To make the structure and function of this processor more
complete, in addition to the modules mentioned in section
II-A, we have added two other modules: the program counter,
and the data cache. The overall design architecture is shown
in Fig. 1b.

The proposed AP architecture contains the Program
Counter (PC), the Instruction Cache (IC), the Data Cache
(DC), the Controller, and the CAM. Like a traditional proces-
sor, the PC is responsible for counting the addresses of the
current program. The PC communicates with the IC and the
controller at the same time, because when the program needs
to perform operations, such as jumping, the controller needs
to send the jumping target address to the PC. After the IC
receives the address sent by the PC, it will check whether
there is an instruction corresponding to this address in the

FPGA, and (c) proposed design of the B cell.

current cache. If hit, the instruction is sent to the controller
for decoding. Otherwise, the IC will make the controller wait,
and at the same time send the new address to the DDR3
Interface. A group of instructions that corresponds to that
address is moved from the DDR3 to the IC. When the IC is
full, the needed commands are sent to the waiting controller.
The function of the DC is similar to that of the IC. The
controller sends the address of the required data to the DC,
and the DC judges whether it is a hit or not, and then sends
the required data to the controller. The controller is responsible
for controlling the operation of the entire processor and data
transmission between the cache and CAM. The CAM module
contains three matrices A, B, and R, which are used to store
and process the data required for one operation. The one-
dimensional vectors C and F are used to store the carry and
flag bits, and the Tag part is used to indicate whether each
row in the CAM match or not. This part will be explained in
section III in detail.

In addition to this, there are other 3 extra modules, Test-
bench, DDR3, and DDR3 Interface. Testbench is used to test
the entire processor; it reads an instruction file and a data
file from the computer and inputs them into the associative
processor for processing. After its processing is complete,
Testbench will output the results of the associative processor
to the computer.

To be able to process more data, instead of using a complex
testbench function, we store a large amount of data in the
DDR3 of the FPGA board. In the data input process of the
system. After the DDR3 is initialized, the DDR3 Interface
module will first send a data request signal to the Testbench,
and then the Testbench will send instructions and data to it in
turn and store them in DDR3. After this process is completed,
the DDR3 Interface module will automatically load the in-
struction at address O from DDR3 into the Instruction Cache.
When the Instruction Cache is loaded fully, the instruction
pointed to by the Program Counter will be loaded into the
Controller. Then, the entire system will start executing the
program.

C. Instruction Set Architecture

This section introduces a sample of the instruction set
architecture (ISA) of this processor. This ISA is a simple self-
designed instruction set prototype that focuses on the AP’s
processing. An instruction contains four parts, 4 bits opcode,

tag_cell

opcode example
RESET RESET;
ADD ADD;
SUB SUB;
0 operand opcode
TSC TSC;
ABS ABS;
STOP STOP;
1 operand opcode PRINT PRINT 0x1057;
2 operands opcode COPY COPY M_A M_B;
LOADRBR | LOADRBR 0x05 M_A 0x1005;
LOADCBC LOADCBC 0x00 M_B 0x1010;
3 operands opcode
STORERBR | STORERBR 0x01 M_B 0x1021;
STORECBC | STORECBC 0x03 M_B 0x1040;

TABLE I: The opcodes of ISA.

8 bits operand-1, 2 bits operand-2, and 16 bits operand-3.
Operand-1 indicates the address inside a CAM matrix, and its
maximum depends on the depth of CAM. Operand 2 indicates
which matrix of CAM will be loaded, which can be chosen
from matrix A, matrix B, and matrix R. Operand-3 indicates
the address inside the DDR3. If one operand is vacant, fill it
with 0.

There are 12 different opcodes, and they can be divided into
0 operand opcodes, 1 operand opcodes, 2 operands opcodes,
and 3 operands opcodes. The details and examples are listed
in the TABLE L

Let us emphasize the load and store operations here. In this
design, the data in the CAM matrix can be accessed either row
by row or column by column. Therefore, storage operations
are divided into STORERBR and STORECBC, representing
row-by-row storage and column-by-column storage. Similarly,
the load operation is divided into LOADRBR and LOADCBC.
Whenever a load operation is performed, the controller sends
the address (operand 3) that it wants to load to the data cache,
and the data cache checks whether the data at this address
has been loaded into the cache. If it misses, the cache will
load data from DDR3 that starts at the address indicated by
operand-3 until the cache is full. Then, if it is LOADRBR,
load the data on the row indicated by operand-2 in the cache
to the corresponding row in the CAM. If it is LOADCBC,
the corresponding column is loaded. Storage is the same. In a
word, row by row or column by column is for data exchange
between CAM and data cache, not between data cache and
DDR3. Data exchange between cache and DDR3 is always
row-by-row.

III. PROPOSED CAM IMPLEMENTATION

As introduced in section II-B, there are three different kinds
of matrices (matrix A, B, and R) and registers C, F, and
Tag. The matrix A is used to store the addend in addition,
subtrahend in subtraction, or the original data of 2’s com-
plement and absolute value operations. The matrix B stores
the augend, minuend, and in-place addition or subtraction

results. And the matrix R can store the results of the out-of-
place 2’s complement and absolute value operations. Register
C will store the carry bit of addition, or borrow a bit of
subtraction. Register F will store the flag bit of the out-of-
place 2’s complement and absolute value operations.

To implement the arithmetic calculation, the controller will
set the key and mask values to the CAM matrices according
to the corresponding lookup table (LUT) [3]. Then, for the
matched rows, we mark the corresponding rows in the tag area
and then invert the column whose MASK value is 1 according
to the LUT. The LUT determines the value of the KEY that
needs to be set at each phase and whether the corresponding
cell of the CAM needs to be inverted.

As shown in Fig. 1b, for each matrix in CAM, there will
be two address decoders. One is for decoding the row address,
and the other one is for the column address. The output of the
row decoder is called Ie_row, and that of the column decoder
is called Ie_col. Moreover, there will be an input signal called
inout mode. If the inout mode is Row x Row, the input or output
method of the CAM will be row-by-row. As a result, all the
Ie_col signals will be 1, but only the row indicated by the
row address will have Ie_row of 1. Similarly, inout mode is
Colx Col, all the Ie_row signals will be 1, and only 1 Ie_col
signal will be 1. And for each cell, only if both Ie_row and
Ie_col signals are 1, this cell will be able to get an input or
output its value.

In the following part, we will introduce the implementation
of cell B as an example. The cell of A, R, C, and F will be
similar to it.

A. Cell B Design

The architecture of a B cell is shown in Fig. 1lc. Each cell
contains a D flip-flop to store 1 bit of data. D[i][j] represents
the data stored in the cell in the i*" row and 5" column storing
either 1 or 0. According to Section II-C, there are three input
scenarios of a CAM matrix, input row-by-row, column-by-
column, and copy from another matrix. As a result, we need
a multiplexer to accommodate these scenarios. When this cell
is chosen (in other words, Ie_row & Ie_col equals 1) and the
inout mode is RowxRow, then the D will get the input data
from the jth bit of the input. On the other hand, if the inout
mode is ColxCol, then the D will update to the i*" bit of the
input. If the instruction is copy from another matrix, then the
DIi][j] will be directly equal to the Q[i][j] of the other matrix.
When copying from another matrix, signal Ie_R or Ie_C will
not be considered. During the evaluation, the multiplexer on
the right of Fig. 1c will be considered. If Mask[j] is 1, this
column of cells is selected. If Key[j] is 1 and D[i][j] is O, it
means the cell and the key are not matched. So, the output
tag will be 0. And if D[i][j] is 1, the output tag will be 1. In
other words, if the key is 1, the tag of the cell is equal to Q,
if the Key is 0, the tag will be equal to Q’. All the tags from
the same row will be ANDed together to generate a tag signal
of the row.

The Tag output signal is sent back to the multiplexer of the
B cell as shown in Fig. Ic. For instance, in the calculation
mode or the non-input mode (i.e. Ie_row & Ie_col equals 0),
if Mask[j] is 1 (The column j is selected), Tag[i] is 1 (the row
i matches), then D[i][j] is equal to Q’, that is, the bit stored in
the current cell has been inverted. By inverting the bit value

START -
Calculate opcode
Calculate

States
— STORECBC STORE_CBC STORE_END
— STORERBR STORE_RBR 4T
—LOADCBC LOAD_CBC
—LOADRBR—| LOAD_RBR
—COPY——» COPY_M
——PRINT—| PRINT_DATA
——STOP—| FINISH

Fig. 2: The state machine of the AP’s controller.

of each cell in the CAM, we can change the data stored in the
CAM, in other words, we can implement calculations in the
memory.

B. Tag Cell Design

As we introduced before, each matrix will output a tag_row
to indicate whether this row is matched or not. The tag matrix
is used for checking the line of each matrix together. For
example, for the ADD operation, we need to calculate the
tag for matrices A, B, and C; as a result, we need to connect
the tag_row of each row from each matrix to the tag area’s
corresponding row.

IV. CONTROLLER IMPLEMENTATION

The controller is an essential part of the AP because it
controls the various parts of the entire processor, decodes
the instructions, and transfers data between the cache and
the CAM. To make the controller operate correctly, this
design uses a state machine to manage the controller. For the
convenience of description, here we only introduce the state
machine jump process of the controller. The state machine of
the entire controller is shown in Fig. 2.

In the beginning, the entire controller will be in the START
state, and depending on the opcode, the controller will jump to
different states to perform different operations. In the follow-
ing, we will briefly introduce some details about implementing
some operations.

When the opcode is ADD, SUB, ABS, or TSC, the con-
troller enters the calculation state, which is the state of all
rectangles in Fig. 2. For APs, as mentioned in the previous
section, ADD, SUB, and ABS have four passes, while TSC
has three passes. Since the computation of the CAM takes 8
clock cycles to reach the steady state, each PASS state waits
for 8 clock cycles before jumping to the next state.

Let us take the ADD operation as an example in Fig. 3.
Initially, the controller is in the START state. After receiving

—F—{ START

T
ADD

PASS_1_ADD

RSTTAG_ADD =\pa1557

A
1

2
s

PASS_3_ADD

bit_cnt <
DATA WIDT FINISH_CK

Fig. 3: The state machine of the ADD operation.

the ADD command, the controller jumps to the PASS_1_ADD
state and sets the values of the corresponding MASK and KEY
registers. After that, the state jumps to the RSTTAG_ADD
state. In this state, the controller will issue the rst_tag signal to
reset the value of the TAG register in the CAM. The controller
will record the current PASS value so that the current PASS
information can be saved for return when the interrupt occurs.
Then because the current PASS is 1, the next state jumps to
PASS 2 ADD, and then back to RSTTAG_ADD. Until the
PASS value is 4, the state machine jumps from RSTTAG_ADD
to FINISH_CHECK state. In this state, it will check whether
the currently calculated bit has reached the MSB of the data;
if not, shift the MASK register to the left for 1 bit, and
jump to the PASS_1_ADD state to repeat the above process.
Otherwise, return to the START state. The operation process
of the other three calculations is the same.

Lastly, to load the data from board memory to the CAM,
we use LOADCBC or LOADRBR operation, which means
loading from the data cache to the CAM column by column
or row by row, respectively.

When the controller is at the LOAD_RBR or LOAD_CBC
states, it will set the inout_mode as RowxRow or ColxCol,
so that the corresponding matrix in CAM can get the input
correctly. Then the controller will send the memory address
to the data cache, and the data cache will check whether the
address misses or hits. If it hits, then the data cache will set the
data_cache_rdy signal to indicate that the data cache is ready
for the required data. If the address misses, the controller will
remain at the load state until the data cache is loading. After
getting the data, the controller will transfer the data to the
matrix and address of CAM that the instruction indicates.

Similar to the LOAD operation, in the STORE operation, the
controller will jump to STORE_RBR or STORE_CBC states
and then set the inout_mode to the matrix we want to store
and set the corresponding output the enable signal to the CAM
matrix. Then the controller will jump to STORE_END state
to reset some registers to 0, such as the address for output and
the output data registers.

V. RESULTS AND ANALYSIS

We use Xilinx Vivado 2018.3 as our design platform and
Verilog HDL as the development language. We used Xilinx

= Bit Width=8 ,,/’T 10° e Bit Width=8
-v-Bit Width=16; 7 > Bit Width=16
Bit Width=32 it Bit Width=32|

107 |[#Bit Width=64 ot , [reBit Width=64

=) e &

=i o [

: o

B A 1)

VO: //,,"’) 210t

10'e"” o -

4 8 16

256 4 8 16 32
Data Depth

(b)

64 128 64 128 256

32
Data Depth
(@)
Fig. 4:

Virtex-7 FPGA VC709 board, which has 433,200 LUTs and
866,400 FFs running at 100MHz. The resource usage, power,
and latency values are obtained from the Vivado synthesis
report.”” The main component of an AP is its CAM matrix.
We evaluated the resource utilities and power consumption
increase when the bit width and data depth grow. Except
for the CAM, the data cache is also sensitive to these two
parameters. By changing the two parameters, data depth, and
bit width, we can get utilization results about how many LUTSs
and flip-flops we will use in different data sizes and the power
consumption.

The trends of the LUTs and flip-flop utilization as depth
grows are shown in Fig. 4(a) and (b) respectively. Different
color lines represent different data width in bits, and we can
see that their utilization of them will increase linearly as the
data depth increases. It also shows that the utilization of LUTs
and flip-flops will also approximately double as data width
doubles.

Resource constraints undoubtedly limit the scale of AP.
As shown in Figure 4a, when the bit width is 64 and the
data depth is 256, the consumption of LUTs reaches 587,040.
This already exceeds the total LUT resources of the FPGA
used. Therefore, in our implementation, the maximum size
is 64 bit width x 128 data depth, and 32 bit width x 256
data depth. Compared with the high consumption of LUT, the
consumption of FF is much smaller. For a 64 bit width x
256 data depth CAM, the FF consumption is only 106675, as
shown in Figure 4b, which is about one-eighth of the total
resources of FFs. This is because each cell in the CAM,
shown in Figure lcc, contains one FF only to store data, but it
contains two complex LUTs to judge the input and output of a
single cell. This leads to high consumption of the LUT. At the
same time, the controller logic and the cache heavily rely on
the LUT utilization. In short, resource constraints can lead to
small-scale CAM arrays which will lead to lower performance
due to the high increase in data exchange with external storage.
For different use cases, such as ADD, SUB, TSC, and ABS
instructions listed in Table I, the impact of resource constraints
is the same. The total number of resources limits the product
of bit width and data depth. To calculate more data at the
same time, it is necessary to reduce the bit width as much as
possible, to make the data depth larger.

The growth trend of the total power consumption also
increases roughly linearly with the increase of the single
dimension of the CAM, as shown in Fig. 4 (c). And according
to Fig. 4 (d), the proportion of dynamic power consumption
will increase as the size of the CAM increases. This is
because the power consumption of peripheral circuits, such

B Wi

-o-Bit Width=16,
0.8]| = Bit Width=32]
-e-Bit Width=64

8 -a-Bit Width=8
—«-Bit Width=16

Bit Width=32
-o-Bit Width=64]

>

Total Power (W)
S
..
Dynamic Power Percentage (%)

256 4 3 16 64 128 256

32
Data Depth

(d)

4 8

16 32 64 128
Data Depth

©)

FPGA utilization and power consumption with increasing data depth.

as controllers, is not sensitive to the size of the CAM. Also,
as the memory gets bigger, it consumes more dynamic power.
In addition, we evaluate the energy for some instructions such
as ADD and SUB to be 4.68 uJ and latency of 5940 ns for
16 bits and 64 data depth. While other instructions such as
TSC which consume 3.55 pJ and 4500 ns latency. When the
bit width is doubled, the energy and latency are also doubled.

Although our CAM design is not optimized for memory
operation like the previous works which rely more on BRAM
and LUT, our design can still be used as traditional CAM
where the search is the primary goal. Our design uses 45x
and 76x LUTs and FFs, respectively, consumes 24x more
power and runs at 1.7x slower frequency as compared to
the design proposed in [13] for 512x36 CAM. On the other
hand, when compared with ASIC designs based on SRAM
or emerging technologies such as RRAMs, ASIC is always
superior in terms of performance compared to FPGA-based
design due to many factors including the ability to design
dedicated hardware and higher operating frequency. To give
more insights on our design as compared to ASIC, the 64 of
16-bit ADD operation consumes 4.68uJ on our design that is
running at 100 MHz frequency as compared to the RRAM-
based ASIC which consumes 1.5nJ running at 1GHz [14].
So, by scaling our design to 1GHz, the energy will improve
by 2-5x which could lead to better performance than ASIC.
However, this would require further analysis and evaluation.
We consider our work as a platform for fast prototyping and
evaluating the performance of APs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced FPGA-based architecture for
the associative processor including the initial instruction set
for this AP. Verilog HDL language is used to digitally design
CAM, tag, controller, and other peripheral circuits based on its
arithmetic operation principle. We showed the linear scalability
of the proposed architecture through power, latency, and hard-
ware utilization results. Our CAM designs are much smaller
in scale compared to BRAM and LUT implementations of
CAM. Importantly, our design demonstrates the feasibility of
implementing compute-enabled APs on FPGAs. While our
study has shown promising results, further optimization is
required. In future work, we plan to optimize the CAM and
controller structures to improve the operating frequency and
reduce resource usage. Additionally, we aim to expand the
initial instruction set to achieve more complex functions, e.g.,
the program interruption and return, and parallel execution of
multiple instructions. Furthermore, after further optimization
is completed, we will compare the performance and power

consumption with the existing AP design to observe the
improvement brought about by the optimized design. We
believe these efforts will help further enhance the applicability
and effectiveness of our FPGA-based associative processor
architecture.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
and P. Deaville, “In-memory computing: Advances and prospects,” IEEE
Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43-55, 2019.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529-544, 2020.

M. E. Fouda, H. E. Yanur, A. M. Eltawil, and F. Kurdahi, “In-
memory associative processors: Tutorial, potential, and challenges,”
IEEE Transactions on Circuits and Systems II: Express Briefs, 2022.
H. E. Yantur, A. M. Eltawil, and F. J. Kurdahi, “A hybrid approxi-
mate computing approach for associative in-memory processors,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
no. 4, pp. 758-769, 2018.

L. Yavits, A. Morad, and R. Ginosar, “Sparse matrix multiplication on
an associative processor,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 11, pp. 3175-3183, 2014.

M. A. Neggaz, H. E. Yanutr, S. Niar, A. Eltawil, and F. Kurdahi, “Rapid
in-memory matrix multiplication using associative processor,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 985-990.

H. E. Yantir, W. Guo, A. M. Eltawil, F. J. Kurdahi, and K. N.
Salama, “An ultra-area-efficient 1024-point in-memory fft processor,”
Micromachines, vol. 10, no. 8, p. 509, 2019.

R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A resistive cam
processing-in-storage architecture for dna sequence alignment,” IEEE
Micro, vol. 37, no. 4, pp. 20-28, 2017.

T. Higuchi, K. Handa, N. Takahashi, T. Furuya, H. Iida, E. Sumita,
0. Oi, and H. Kitano, “The ixm?2 parallel associative processor for ai,”
Computer, vol. 27, no. 11, pp. 53-63, 1994.

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(cam) circuits and architectures: A tutorial and survey,” IEEE journal
of solid-state circuits, vol. 41, no. 3, pp. 712-727, 2006.

M. Irfan, A. L. Sanka, Z. Ullah, and R. C. Cheung, “Reconfigurable
content-addressable memory (cam) on fpgas: A tutorial and survey,”
Future Generation Computer Systems, vol. 128, pp. 451-465, 2022.
M. Irfan, H. E. Yantir, Z. Ullah, and R. C. C. Cheung, “Comp-tcam:
An adaptable composite ternary content-addressable memory on fpgas,”
IEEE Embedded Systems Letters, vol. 14, no. 2, pp. 63-66, 2022.

Z. Ullah, M. K. Jaiswal, and R. C. Cheung, “Z-tcam: an sram-based
architecture for tcam,” IEEE transactions on very large scale integration
(VLSI) systems, vol. 23, no. 2, pp. 402-406, 2014.

M. Hout, M. E. Fouda, R. Kanj, and A. M. Eltawil, “In-memory multi-
valued associative processor,” arXiv preprint arXiv:2110.09643, 2021.

