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Bias in neural network model training datasets has been observed to decrease
prediction accuracy for groups underrepresented in training data. Thus,
investigating the composition of training datasets used in machine learning
models with healthcare applications is vital to ensure equity. Two such
machine learning models are NetMHCpan-4.1 and NetMHClIpan-4.0, used to
predict antigen binding scores to major histocompatibility complex class | and Il
molecules, respectively. As antigen presentation is a critical step in mounting the
adaptive immune response, previous work has used these or similar predictions
models in a broad array of applications, from explaining asymptomatic viral
infection to cancer neoantigen prediction. However, these models have also
been shown to be biased toward hydrophobic peptides, suggesting the network
could also contain other sources of bias. Here, we report the composition of the
networks’ training datasets are heavily biased toward European Caucasian
individuals and against Asian and Pacific Islander individuals. We test the ability
of NetMHCpan-4.1 and NetMHCpan-4.0 to distinguish true binders from
randomly generated peptides on alleles not included in the training datasets.
Unexpectedly, we fail to find evidence that the disparities in training data lead to a
meaningful difference in prediction quality for alleles not present in the training
data. We attempt to explain this result by mapping the HLA sequence space to
determine the sequence diversity of the training dataset. Furthermore, we link the
residues which have the greatest impact on NetMHCpan predictions to structural
features for three alleles (HLA-A*34:01, HLA-C*04:03, HLA-DRB1*12:02).
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1 Introduction

Antigen presentation by the major histocompatibility complex
(MHC) class I and II proteins (referred to as HLA in humans) is one
of the crucial steps to activating the adaptive immune response, and
the genes which encode these proteins are some of the most
polymorphic genes in humans (1). As a result, the epitopes
presented to T cells are determined partly by the binding affinity
between the peptide fragment of the antigen and the host-specific
MHC protein, which is determined by the amino acid sequences of
both peptide and MHC. Because of the central role of this process in
adaptive immunity, the ability to predict which peptides will bind to
a given MHC allele has utility in diverse fields. For example,
peptide-MHC binding predictions have been used to select
peptides for a cancer neoantigen vaccine and to explain
asymptotic SARS-CoV-2 infection in individuals with a specific
HLA-B allele (2, 3). While molecular dynamics (MD) systems exists
for modelling these complexes (4, 5), the current consensus is that
neural network prediction models are accurate enough at predicting
binding affinity to be used in clinical settings (6). Many such tools
have been developed to predict peptide binding to both MHC class I
and MHC class II (6-9). Two neural-network based predictors,
NetMHCpan-4.1 and NetMHClIIpan-4.0 (here on out collectively
referred to as NetMHCpan) are hosted on a web server and are fast
to return predictions (10). The relative popularity of NetMHCpan
makes it a fitting choice for further investigation (Supplementary
Figure S1).

Despite its popularity, NetMHCpan does not rely on any
structural information about the peptide or MHC molecule, and
only takes an amino acid sequences for the peptide and MHC
protein as input, which limits the model’s ability to generate
mechanistic explanations for its binding predictions Additionally,
the tool is closed-source, exacerbating its “black box” nature and
prompting investigations into potential hidden biases. A previous
study has shown NetMHCpan-4.1 has a previously unreported bias
toward predicting hydrophobic peptides as strong binders,
suggesting the predictions of these models need to be examined
closely (11).

Many times when medical and biological neural network based
prediction systems have been evaluated, researchers have uncovered
numerous examples of racial bias in machine learning algorithms
(12-14). Furthermore, datasets from prior genomic studies often
fail to capture the genetic diversity of the human population, often
focusing on individuals of European descent (15-17). As these two
significant effects intersect to produce models that overfit to
overrepresented populations, it is vital that neural-network
models be carefully investigated to determine the extent to which
there is bias in the training dataset, and if it exists, the extent to
which this bias affects the model predictions.

To determine the impact of training dataset bias on
NetMHCpan’s predictions, we examined the geographic
distribution of NetMHCpan’s training dataset and determined
which populations are likely to have alleles not represented in
NetMHCpan’s training dataset. We then measured the performance
of NetMHCpan on alleles not present in its training dataset, and
compared the performance to binding predictions for alleles present
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in its training dataset. To better understand these predictions, we
created a map of HLA sequence space to determine the diversity of
the dataset at the sequence level. Finally, for each of three MHC
molecules not in NetMHCpan’s training dataset, we determined the
residues of that molecule that have disproportionate impact on
NetMHCpan’s predictions.

This paper presents a geographic imbalance in the HLA types
present in NetMHCpan’s training data, yet fails to find a
meaningful drop in the accuracy of the network’s peptide binding
predictions for alleles not present in the training data compared to
the accuracy of the models’ prediction on alleles present in the
training dataset. Furthermore, the results suggest two possible
explanations for this finding. First, while the model may be
lacking in geographic diversity, the alleles represented in the
training dataset cover a large range of HLA sequences. Second,
the model gives attention to residues structurally involved in
peptide-MHC complexes for novel alleles.

2 Materials and methods
2.1 MHC allele population demographics

Data on HLA allele population frequencies were downloaded
from the National Marrow Donor Program (NMDP) (18). The
dataset contains HLA-A/B/C/DRBI1 population frequencies from
n =6.59 million subjects from the United States. Population
frequencies are reported 21 self-reported racial groups, which are
combined into six larger ethnicity categories, given in Supplementary
Table S1. Because NetMHCpan uses a motif deconvolution algorithm
for training, there exist data points in the eluted ligand dataset where
a peptide corresponds to multiple MHC alleles (10). In this case, we
conservatively counted an allele as present in the training dataset if
there is at least one positive example of a peptide binding to the
associated cell line.

2.2 Evaluating NetMHCpan performance

2.2.1 Evaluation datasets

In order to evaluate the performance of NetMHCpan, we used a
dataset from Sarkizova et al. (19). The dataset consists of eluted
ligand (EL) data for 31 HLA-A alleles, 40 HLA-B alleles, and 21
HLA-C alleles, with a median of 1,860 peptides per allele, generated
by cell lines engineered to express only one HLA type. Of these
alleles, 7 (A*24:07, A*34:01, A*34:02, A*36:01, C*03:02, C*04:03,
and C*14:03) have no representation in NetMHCpan’s training data
(binding affinity or eluted ligand). We compute but do not report
the results for HLA-B, as all forty of the HLA-B alleles had some
presence in the NetMHCpan training data. We have an average of
2179 peptides per MHC class I allele, with all alleles having at least
918 peptides (Supplementary Tables S1, S2).

As no similar dataset exists for MHC class 1I, we created an
evaluation set by downloading peptides from IEDB (20). For each
allele, the filters used were “Include Positive Assays”, “No T cell

»

assays”, “No B cell assays”, and “MHC Restriction Type: [allele]
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protein complex.” To choose DRBI alleles of interest, we selected
alleles for which NetMHCIIpan-4.0 had eluted ligand data from a
cell line engineered to express only one HLA-DRBI allele. To obtain
data for HLA-DRB1¥12:02, the only HLA-DRBI allele not in
NetMHCIIpan-4.0’s training dataset for which sufficient peptide
binding data exists, we use a eluted ligand dataset from cell line C1IR
expressing HLA-DR12/DQ7/DP4 (21). Because the cell line
expressed both HLA-DRB1*12:02 and HLA-DRB3*02:02:01,
Gibbs Cluster was used to separate the two groups (22)
(Supplementary Figure S2, Supplementary Data Sheet 6). The
group belonging to DRB1*12:02 was identified by the absence of
F at P1, the absence of N at P4, and the presence of Y/F at P9. We
have an average of 8094 peptides per HLA-DRBI1 allele, with a
minimum of 8094 (Supplementary Table S3).

To provide negative controls for both MHC class I and II, the
real peptides were combined with randomly sampled peptides from
the human proteome so that the ground truth peptides made up 1%
of the final evaluation set. We found that sampling random amino
acid strings compared to entire peptides made a small difference in
the relative rankings of allele performance, but did not meaningfully
alter our conclusions (Supplementary Figure S3). For the MHC
class II dataset, the length distribution of the randomly generated
peptides was fixed to be equal to the length distribution of the
ground truth peptides.

2.2.2 Log rank predictions, motif entropy
correction, and AUPRC

As a result of the above preprocessing steps, we obtained a
dataset for 31 HLA-A alleles, 40 HLA-B alleles, 21 HLA-C alleles,
and 11 HLA-DRBI alleles, each dataset being made up of 1%
peptides experimentally verified to bind to the HLA allele in eluted
ligand assays, and 99% randomly generated peptides to serve as a
control (Supplementary Figure S4). For each allele, we used
NetMHCpan-4.1 or NetMHCIIpan-4.0 to generate an eluted
ligand (EL) score for each peptide in the training dataset, and
ranked all peptides by their EL scores. That is, each peptide was
assigned a (fractional) rank score as:
9" (EL; < EL)

100n ()

rank; =

where EL, is the EL score of the i-th peptide and 7 is the number
of experimentally verified peptides in the dataset. Thus, peptides
with higher binding scores will have lower ranks.

We then measured performance based on the distribution of
log;o ranks for the experimentally verified peptides. For example, if
the model is a perfect predictor, all real peptides will have a log;,
rank below -2, and if the model is a random predictor, 90% of real
peptides will have a log;, rank between 0 and -1.

To correct for any discrepancies in difficulty predicting ligands
based on selectivity of the MHC binding motif, we calculated the
information of the binding motif for each allele by using the
Kullback-Leibler divergence, so

I= izpa,i 1082 (%) > (2)

i=1 a
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where p,; is the frequency of amino acid a at position i in the
allele-specific experimentally verified binding peptides, and q,, is the
background frequency of amino acid a in the human proteome
(Supplementary Figures S5-58). No correlation exists between the
number of peptides in the allele dataset and the allele motif
information, suggesting that low motif information is not a
results of small sample size (Supplementary Figure S8).

We then performed a linear regression for the log-rank against
the information (Supplementary Figure S9). For both MHC class I
and class II, we found alleles with higher information (more
predictable) motifs were associated with better predictions, as
expected. Therefore, for each allele we calculated a correction
factor C such that:

Callele =0+ ﬁIallele —u (3)

where I is the KL divergence of the allele motif against the
human proteome amino acid frequency distribution, ¢ and 3 are
the coefficients computed from the linear regression, and y is the
mean of all log ranks for all alleles. Including the i term ensures that
our predictions remain on the same scale after subtracting the
correction factor.

Additionally, because MHC proteins bind a core motif that can
contain additional amino acids on the ends that do not affect the
binding prediction, we encountered cases in the prediction datasets
where multiple versions of a peptide contained the same core
sequence. Therefore, in these cases, we chose to weight the
peptides based on NetMHCpan’s reported binding core such that
each core was weighted equally.

To determine a 95% confidence interval for the difference
between the median of the ranks of the alleles with and without
training data, a bootstrap procedure was used. Data were sampled
with replacement for a number of times equal to the size of the data,
and the difference between the medians of the bootstrap samples
was calculated. This was repeated 10° times, and the 0.025 and 0.975
quantiles were reported as the 95% confidence interval.

Finally, we calculate the AUPRC and PPV metrics for each
allele. We calculate AUPRC as the area under the precision-recall
curve. The precision is defined by P = TP/(TP + FP), and the recall is
defined by R = TP/(TP + FN). True positives are defined as
experimentally verified peptides with a motif entropy-corrected
score greater than a given cutoff, and false positives as randomly
generated peptides with an motif entropy-corrected score greater
than a given cutoff. True negatives are defined as randomly
generated peptides with a motif entropy-corrected score less than
a give cutoff, and false negatives as experimentally verified peptides
with a motif entropy-corrected score less than a given cutoff. We
calculate the positive predictive value PPV as the number of
experimentally verified peptides with corrected rank less than
0.01 divided by the number of experimentally verified peptides.

2.3 MDS of HLA alleles

Using the NMDP frequency database, HLA-A, B, C, and DRB1
alleles with a frequency greater than 0.01% in any population were
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selected (n = 135 HLA-A, n = 258 HLA-B, n = 66 HLA-C, n = 118
HLA-DRBI1). The IPD-IMGT/HLA alignment tool was used to
create an alignment of the selected HLA full protein sequences (23).
In cases where large gaps occurred at the beginning or end of the
alignment, gaps were filled with the most common amino acid
occurring at that residue. Similarity between sequences was
measured by summing the values of the PAM100 matrix for each
pair of amino acids in the two sequences (24). Sequence distance
was then measured as the difference between the maximum
similarity and the computed similarity, normalized so that the
maximum distance was reported. For peptides which has
associated binding data, motif distance was computed as the
Jenson Shannon divergence. The R cmdscale function with
default parameters was used to compute the MDS (25, 26).

2.4 NetMHCpan residue
substitution sensitivity

Here, we describe a technique similar to the occlusion
sensitivity technique common in the field of computer vision. We
chose the alleles HLA-A*34:01, HLA-C*04:04. and HLA-
DRB1*12:02 for the following experiments, as NetMHCpan
performed the poorest on these three alleles. For each allele, we
used NetMHCpan to predict the eluted ligand score for all peptides
found to bind to the allele in the evaluation datasets described
above. Next, for residues 1-205 (29-125 for DRB1*12:02), we asked
NetMHCpan to predict the eluted ligand score for all
experimentally verified peptides, using a version of the MHC
sequence where for each residue, each of the other 19 amino
acids was substituted. From this, we took the 5 amino acids for
which NetMHCpan predicted the lowest scores, and calculated the
mean difference between EL scores for the mutated and unmutated
predictions, as to investigate the effect of replacing residues with
dissimilar amino acids. Repeating this for every residue, we then
obtained a metric for the relative importance of the residue to
NetMHCpan’s predictions. HLA tertiary structures were generated
using PANDORA and visualized using PyMOL (4, 27).

2.5 Software versions
The following software versions were used: NetMHCpan (4.1),
NetMHClIpan (4.0), PANDORA (2.0), GibbsCluster (2.0), PyMol

(2.6.0a0). For all tools, a local version was downloaded instead of
using a web server.

3 Results

3.1 Common European Caucasian HLA
types are overrepresented in NetMHCpan
training data

As neural network prediction biases are often enforced by
disparities in the amount of model training data, we first
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investigate NetMHCpan’s training dataset to determine whether
the data is representative of the global population. To do this, we
used allele distribution data from the National Marrow Donor
Project (NMDP) (18). Codes for population groups can be found in
Supplementary Table S4. For each population, we calculated the
fraction of people who have at least one HLA-A/B/C/DRBI allele
for which there is no data in NetMHCpan’s training set.

There exists a substantial disparity between the most and least
represented populations in NetMHCpan’s training dataset.
European Caucasian individuals are most likely to see their
genotypes represented in the training set, while Southeast Asian,
Pacific Islander, South Asian, and East Asian individuals are least
likely to have genotypes represented in the training set (Figure 1)
(Supplementary Data Sheet 2). Using the NMDP categories, only
0.4%/0.9%/0.6%/2.6% of European Caucasian individuals have an
HLA-A/B/C/DRBI allele not found in NetMHCpan’s training data,
while 5.1%/27.7%/12.1%/33.6% of Vietnamese individuals and
30.1%/39.3%/10.8%/16.1% of Filipino individuals have an HLA-
A/B/C/DRBI allele not found in NetMHCpan’s training data.

These disparities are not likely to have arisen by chance alone,
given the fractions of the populations for which no data exists are
correlated between HLA groups (Supplementary Table S5). For all
pairs of groups there exists a positive correlation, with the strongest
correlation between HLA-A and HLA-B (0.750) and the weakest
correlation between HLA-A and HLA-DRB1 (0.238). Because the
disparities are found in all four HLA groups examined and are
correlated with each other, this suggests a common systemic factor
driving the extreme imbalance of the training dataset.

3.2 NetMHCpan-4.1 and NetMHCllpan-4.0
accurately predict peptide binding to
novel alleles

Because there exists such a vast disparity in the representation
of populations in NetMHCpan’s training data, we hypothesized
NetMHCpan is overfitting to the training set, making the model
unable to make accurate predictions for peptides binding to novel
MHC proteins. Therefore, we investigated whether there is a
decrease in prediction quality for HLA sequences not found in
the training data. To do this, we performed an experiment in which
NetMHCpan was tasked to predict eluted ligand binding scores for
a dataset consisting of 1% peptides experimentally verified to bind
to their corresponding MHC proteins and 99% randomly generated
peptides, as is the standard to test MHC-peptide prediction models
(10, 28). We then measured the rank of the predictions for the
experimentally verified peptides, which we use as our metric for the
accuracy of the predictions (after a correction for motif information
described in the Methods section), as well as the area under the
precision-recall curve for each set of predictions (AUPRC).

We ran the MHC class I peptide experiment on a large HLA
class T eluted ligand dataset (19). In the dataset are n = 39617
peptides for 27 HLA-A and 18 HLA-C alleles with training data in
NetMHCpan-4.1’s training set, and n = 8652 peptides for 4 HLA-A
alleles and 3 HLA-C alleles without data in NetMHCpan-4.1"s
training set. All together, these novel alleles represent up to 28.8%
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NetMHCpan training data fails to cover common HLA alleles: Proportion of populations (as defined by the National Marrow Donor Program) that
have at least one HLA class A, B, C, or DRBL1 allele with no data in the NetMHCpan-4.1 or NetMHClIpan-4.0 training datasets

of HLA-A alleles, and up to 11.7% of HLA-C alleles for some
populations (Supplementary Figure S10). Because there are no
HLA-B alleles present in the dataset but absent from
NetMHCpan-4.1’s training set, we do not report information
about HLA-B in the results (although we do use these alleles in
the information correction).

NetMHCpan-4.1 accurately recalls experimentally validated
peptides from a training dataset containing validated peptides and
randomly generated peptides for these 7 alleles. For both HLA-A
and HLA-C, the alleles for which NetMHCpan-4.1 has no training
data are roughly evenly distributed amongst the other alleles in
terms of performance (Figure 2) (Supplementary Data Sheet 3).
Opverall, the predictions of binding peptides for the alleles for which
NetMHCpan-4.1 has no training data only slightly underperform
compared to the predictions for alleles for which it does have data
(Supplementary Figure S11A), with a 95% bootstrap confidence
interval for the difference in the medians of the two sets being
(-0.039, -0.014) (Supplementary Figure S12A). On average,
NetMHCpan-4.1 ranks experimentally verified peptides for alleles
for which data exists in its training dataset only 1.06 times higher
than it ranks peptides which have no data in the training set. In
almost all cases, there is a large difference between the raw EL scores
between the true binders and the randomly generated peptides
(Supplementary Figure S13). Furthermore, the general trend of the
results hold without the correction for motif information
(Supplementary Figure S14). In summary, we fail to find evidence
that the imbalance in the training dataset leads a decrease in the
quality of NetMHCpan-4.1 predictions for novel alleles.

In the case of MHC class II predictions, we focus exclusively on
DRBI because HLA-DR is the only MHC class II protein to vary
only in the beta chain, which simplifies the testing process, as we do
not have to test combinations of alleles. While a comprehensive
eluted ligand dataset exists for the MHC class I peptidome, no
analogous dataset exists for HLA-DRBI. Therefore, we used IEDB
to gather data for alleles which were present in NetMHCIIpan-4.0’s
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training data, and data from a recent CIR cell line eluted ligand
study for peptides binding to DRB1*12:02, an allele not represented
in NetMHClIIpan-4.0’s training set (20, 21). All together, we have n
= 45286 peptides from 10 alleles with training data in
NetMHClIpan-4.0, and n = 32402 peptides from allele DRB1*12:02.

In contrast to NetMHCpan-4.1, the predictions generated by
NetMHClIIpan-4.0 for peptides corresponding to alleles for which it
has no data are slightly worse than average, when measured by
median log-rank (Supplementary Figure S11B). However, when
measured by AUC, DRB1*12:02 ranks around average, with
NetMHCIIpan-4.0 predictions for this allele better than 6 other
alleles and worse than 4 other alleles (Figure 3) (Supplementary
Data Sheet 3). A 95% bootstrap confidence interval for the
difference in the medians between peptides corresponding to
alleles with and without data in NetMHCIIpan-4.0’s training set
is (-0.372, -0.321) (Supplementary Figure S12B). However, the
middle 50% of ranks for DRB1*12:02 contains all other median
ranks, suggesting the difference in prediction quality is relatively
minor compared to the variability in predictions for a given allele.
Furthermore, there exists an allele with data in NetMHCIIpan-4.0’s
training dataset, DRB1*04:04, for which NetMHCIIpan-4.0 is less
accurate at distinguishing real peptides than for DRB1*12:02. Like
MHC class I predictions, in almost all cases there is a large
difference between the raw EL scores between the true binders
and the randomly generated peptides (Supplementary Figure S15),
and the results hold without the correction for motif information
(Supplementary Figure S16).

While problems of skewed datasets have affected quality of
numerous other machine learning based predictions algorithms, we
find no evidence this is true of NetMHCpan. By testing the ability of
NetMHCpan to recall experimentally verified binding peptides to
alleles for which the algorithm has no training data, we fail to
conclude there exists a meaningful difference between alleles for
which NetMHCpan has training data, and those for which it
does not.
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FIGURE 2

Evaluating NetMHCpan-4.1 performance on novel alleles: NetMHCpan-4.1 was tasked with separating peptides identified as true binders using LC-
MS/MS (from Sarkizova et. al.) from randomly generated peptides for 52 HLA class | alleles. (A) Box-and-whisker plot of log ranks of the true
peptides, corrected for entropy of the allele binding motif (lower is better). Whiskers show the middle 95% of data for each allele. Alleles with
training data in NetMHCpan-4.1's training dataset are shown in blue, alleles without are shown in pink. (B) Area under the precision-recall curve

(AUPRC) for each allele. (C) Positive predictive value (PPV) for each allele

3.3 NetMHCpan training data covers a
large subset of HLA allele space

As a lack of diversity in training data often leads machine
learning models to overfit to their training set, we seek to
understand why this does not appear to be true for NetMHCpan.
Therefore, we visualize the training dataset by measuring sequence
similarity between HLA alleles with frequency greater than 0.01% in
any population, and use these computed similarities to perform
multidimensional scaling (MDS) in order to visualize the sequence
space as a two-dimensional map (25) (Supplementary Data Sheet 4).

For all four HLA types measured, alleles tend to organize into
clusters, a majority which contain at least one allele with data in
NetMHCpan’s training dataset (Figure 4A). This suggests that while
NetMHCpan may be missing data for many alleles common in non-
European populations, the alleles for which it has data are
sufficiently similar to the missing alleles as to allow the model to
make reasonable inference about the biochemical properties of
alleles without data.

Although we measure the distance between two alleles as the
distance between their sequence, we recognize that measuring the
distance between their associated motifs is potentially a more
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informative metric. As this metric is not available for alleles with
no known binding peptides, we consider whether sequence distance
is a good metric to approximate motif distance. For all pairs of
alleles for which we have motifs, we compute the distance between
their amino acid sequences and the distance between their motifs
(Figure 4B). We find that there is moderate agreement between
these two metrics (Pearson correlation coefficient r = 0.54),
suggesting that sequence distance is a reasonable metric to use
when motif distance is unavailable. We also compute an MDS using
motif distance, and find that it generally agrees with our sequence
MDS (Supplementary Figure S17).

As sequence and motif distance are correlated, measuring
pairwise sequence distances between all alleles also provides
context for the performance of NetMHCpan on novel alleles
reported above. To measure the extent to which an allele is novel,
we calculate the sequence distance to the nearest allele in the
training data for each allele not in NetMHCpan’s training data
(Figure 4C, Supplementary Data Sheet 7). Therefore, while the
choices of which alleles without training data to test were driven by
data availability, we demonstrate the alleles tested are less similar to
the training data than other HLA alleles. Thus, the accuracy of
NetMHCpan’s predictions for these alleles is not driven by greater
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Evaluating NetMHClIpan-4.0 performance on novel alleles: NetMHClIpan-4.0 was tasked with separating peptides identified as true binders using
LC-MS/MS (from IEDB) from randomly generated peptides for 10 HLA-DRBLI alleles with data in NetMHClIpan-4.0's training set, and one allele
without training data. (A) Box-and-whisker plot of log ranks of the true peptides, corrected for entropy of the allele binding motif (lower is better).
Whiskers show the middle 95% of data for each allele. Alleles with training data in NetMHClIpan-4.0's training dataset are shown in blue, alleles
without are shown in pink. (B) Area under the precision-recall curve (AUPRC) for each allele. (C) Positive predictive value (PPV) for each allele.

than average similarity of these alleles to alleles found in the training
dataset. While we lack a sufficient number of alleles to establish a
relationship, we hypothesize that sequence and motif distance
between an allele with no training data and the nearest allele is
the training set are negatively correlated with performance
(Supplementary Figure S18).

3.4 NetMHCpan correctly identifies MHC
residues involved in peptide binding

Finally, we aim to understand the extent to which NetMHCpan
identifies residues structurally involved in peptide binding. As
NetMHCpan allows for direct input of an MHC protein
sequence, we perform an experiment in which we mutate each
residue of a given HLA sequence individually, and measure how
much NetMHCpan’s EL scores for experimentally verified peptides
change compared to the unmodified sequence (Supplementary Data
Sheet 5). We focus on three case studies, HLA-A*34:01, HLA-
C*04:03, and HLA-DRB1*12:02, as these alleles constitute the
worst-performing allele for each HLA type.

In each case, the MHC residues which have the greatest impact
on NetMHCpan’s prediction are all residues that make physical

Frontiers in Immunology

contact with the peptide (Figure 5, Supplementary Tables S6-S8).
This suggests that the accuracy of NetMHCpan’s predictions on
novel alleles is partly driven by its ability to selectively pay attention
to residues involved with the physical process of binding. Of special
interest is the observation that many residues which affect the
predictions for peptides binding to DRB1*12:02 are residues
previously identified to determine the binding motif of DRI12,
namely, 13G, 57V, 70D, 71R, 74A, and 86V (21). Therefore, we
conclude NetMHCpan implicitly learns the MHC residues
structurally involved in binding, and its ability to generalize these
findings to novel alleles increases its prediction accuracy.

4 Discussion

We report NetMHCpan fails to include a geographically diverse set
of HLA alleles in its training data. We find individuals from
underrepresented populations, predominantly from Asia, are twenty
times more likely to carry HLA alleles not present in NetMHCpan’s
training data. Furthermore, we observe correlation between population
representation between all four alleles measured, suggesting that the
dataset bias is a result of systemic underrepresentation of minority
groups in the NetMHCpan training dataset.
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Visualizing the training space of NetMHCpan: (A) MDS plot of HLA alleles, with smaller distances corresponding to greater sequence similarity. Alleles
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FIGURE 5

Impact of substituting residues on NetMHCpan predictions for HLA alleles of interest: Structure of (A) HLA-A*34:01 (B) HLA-C*04:03 and (C) HLA-
DRB1*12:02. Residues are colored by impact of substitution on NetMHCpan predictions. Yellow resides indicate a large change to NetMHCpan predictions
when replaced, purple resides indicate a small change. Sidechains are shown for residues of interest.
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Numerous previous examples of training dataset racial bias
affecting machine learning model predictions led us to hypothesize
NetMHCpan would make less accurate predictions on alleles which
were not present in its training dataset (12-14). Furthermore,
previous work showed NetMHCpan is subject to systemic biases
regarding hydrophobicity, suggesting that other biases may be
lurking (11). Unexpectedly, we fail to find evidence that there is a
substantial difference in the ability of NetMHCpan to discriminate
experimentally verified binding peptides from randomly generated
peptides. Instead, we observe a slight increase in the prediction
ability for MHC class I alleles with no data present in the training
set, and only a slight decrease for MHC class II alleles. While both
effects are statistically significant, we allege neither is large enough
to have a substantial effect on prediction quality.

To explain this unexpected result, we characterize the sequence
space of common HLA alleles. While NetMHCpan’s training
dataset fails to include many alleles common in underrepresented
populations, we show that the alleles for which training data exist
are well-distributed throughout sequence space. We thus
hypothesize that MHC sequence diversity in the training dataset
partially explains the failure to observe a drop in prediction quality.
Furthermore, we establish a connection between the residues that
impact NetMHCpan’s predictions and the residues that physically
contact the peptide for three HLA alleles not present in
NetMHCpan’s training data.

The discrepancies in the diversity of HLA eluted ligand datasets
that compelled this study also constitute a major limitation, as only
eight novel HLA alleles were tested, with no novel HLA-B alleles.
Furthermore, our study design was limited to only testing one allele
at a time, and so we did not investigate complex effects that could be
associated with linkage disequilibrium in MHC class II molecules
formed by two interacting chains, including HLA-DQ and HLA-DP
(29). We only tested the ability of NetMHCpan to distinguish
experimentally verified peptides from randomly generated
peptides, and did not perform any experiments to characterize
the model’s ability to predict binding affinity. Finally, NetMHCpan
is closed source, and so we were unable to view the internal network
structure, needing to rely on an occlusion sensitivity-like metric to
determine how the network makes predictions.

We present evidence of a strong bias in NetMHCpan’s
training dataset toward European Caucasian individuals. While
we fail to find evidence this bias affects the accuracy of
NetMHCpan’s predictions, the bias in the training dataset
highlights the need for MHC eluted ligand datasets that contain
data for alleles for underrepresented populations. Furthermore,
given the outsized impact of NetMHCpan on the training data
generated for other MHC binding prediction tools, future work
must investigate the composition of training datasets and
potential bias in other tools (30). Finally, we recommend all
tools that utilize a dataset involving HLA alleles as part of their
pipeline clearly report the composition of any datasets they utilize
for training, and perform additional testing in the presence of
biased training data to ensure model predictions do not
substantially decline for underrepresented groups.
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