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Abstract

Electroseparations (e.g., electrofiltration, electrosorption,
electrodeposition, electroprecipitation, electrocoagulation)
have received growing interest toward the selective recovery of
value-added compounds from wastewater. The coupling of
electroseparations with electroconversion (e.g., advanced
electrooxidation, organic electrosynthesis) has given rise to
new materials and systems that uniquely combine reactivity
and selectivity. These new reactive separation platforms offer
several synergistic advantages beyond each individual
component, such as (i) mass transport enhancement, (ii)
increased removal rates and yields toward biorecalcitrant pol-
lutants, and the (iii) improvement of recovery and regeneration
of porous electrosorptive materials. Significant efforts have
recently been devoted to the functionalization of tunable
conductive materials for enhanced selectivity (e.g., by
leveraging redox-electrochemistry), and in parallel, hybrid
systems designs are emerging that enhance efficiency and
modularity. Going forward, a major challenge remains to
evaluate the efficiency of reactive electroseparation schemes
in real effluent contexts and to test the lifetime and viability of
these electrochemical systems at larger scales.
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Introduction

The world is facing critical water issues with the
concomitant rise of water stress, partly due to climate
change, and partly due to the increase of water
demand from agriculture, industry, and houscholds
[1]. As such, new strategies for water and wastewater
management are urgently needed to implement water
reuse, which is recognized as one of the most reliable
solutions to the impending crisis. The recovery of
value-added inorganic (e.g., metals, phosphorus) and
organic (e.g., phenols, short chain carboxylic acids,
biomolecules) compounds represents an emerging
codevelopment strategy that enables the circular
economy loop through generating value-added streams
from waste.

The implementation of new advanced physicochem-
ical treatments is required in wastewater plants to
achieve the removal of biorecalcitrant pollutants,
while extracting the valuable molecules [2]. As a
design target, these systems should reduce the overall
capital costs, while achieving a high removal rate and
yield of recovery even in dilute water streams.
Furthermore, the treatment system should also mini-
mize the release of unwanted byproducts. Advanced
clectrochemical systems are gaining interest through
their modularity and possible pathways for process
intensification. Electrochemical systems can combine
several unit operations in hybrid reactors, especially
through the combination of electroconversion (i.e.,
involvement of electrochemical reactions) [3—10]
with electroseparation (i.e., absence of conversion)
technologies, which we will refer to as reactive elec-
troseparation [11]. For these integrated reactive sep-
aration systems, a critical component is the control of
interfacial selectivity, through the development of new
clectrode materials to enhance the separation perfor-
mance [12]. In conjunction, at a systems scale, there is
increased attention needed for the selection and
optimization of operating conditions and electro-
chemical process design. Here, we will highlight
recent developments in reactive electroseparations
and discuss future opportunities in this growing area
of research.
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Main reactive electroseparation systems
Reactive electrofiltration

Reactive methods for breaking electroneutrality in
water to drive salt migration have grown in attention
as energy-efficient methods for selective separations
and desalination. Core to these technologies are filters
and membranes that enable charge and species sepa-
ration and reaction. The major electrochemical tech-
nology for desalination is electrodialysis, which relies
on water splitting at each electrode and alternating
anion- and cation-exchange membranes (AEMs and
CEMs) between two electrodes to drive ionic trans-
port [13—15]. While this technology has historically
been used for desalination, modifications to the
membranes and integration of ion exchange resins
have led to emerging applications, including resource
recovery [14]. Recently, Kim et al. combined electro-
dialysis with redox-flow concepts and nanofiltration
membranes to eliminate the need for AEMs,
which carry a high cost and propensity for fouling
[16]. A poly(ferrocenylproylmethacrylamide-co-[2-
(methacryloyloxy)ethyl]trimethylammonium chlo-
ride] [P(FPMAm-co-METAC)] was used as a water-
soluble redox-copolymer containing redox-active
ferrocene groups to prevent Crossover over nano-
filtration membranes, while reducing the energy con-
sumption of a  conventional sing-unit cell
electrodialysis system by 88% [16]. Conventional

Figure 1

electrodialysis relies on the water-splitting reaction to
drive ionic transport through AEM and CEM, while
redox-mediated electrodialysis uses reversible redox
reactions to drive deionization (Figure 1). Since the
standard reduction potential of the ferricyanide and
ferrocyanide redox pair is lower than that of the water-
splitting reaction, their redox-flow system lowered
energy consumption by 52% compared to traditional
electrodialysis [17]. Membrane tuning by layer-by-
layer polyelectrolyte was also found to be able to
impart ion selectivity to redox-electrodialysis — with
the benefits of improving membrane stability by sup-
pression of radicals or pH change [17]. In particular,
these redox-mediated electrodialysis concepts have
been expanded to different aspects of food and bio-
manufacturing, including the ion-selective recovery of
carboxylic acids and the sustainable valorization of
whey proteins [17—19].

Reactive electrochemical membranes (REMs) can also
be considered as a major technology class of reactive
electrofiltration, in which the membrane is often the
working electrode and promotes an electrocatalytic re-
action (Figure 2) [20,21]. For example, REMs can
combine an electrochemical advanced oxidation
process with physical separation and could mediate
some drawbacks of even polymeric electrodialysis,
including organic and mineral fouling and high
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Schematic illustrating redox-mediated flow electrodialysis.
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Schematic illustrating a reactive electrochemical membrane (REM)
system.

production costs [22]. More recent work by Le et al.
applied Magnéli phase Ti4O7 REM to the oxidation of
perfluorooctanoic  acid (PFOA) and  perfluor-
ooctanesulfonic acid (PFOS). After a single pass through
the REM, they reported concentrations of <86 ng L!
and 35 ng L7 PFOA and PFOS, respectively, reduced
from starting concentrations of 4 mg L™ and 5 mg L™}
[23]. Work by Guo et al., in 2016, began tests on a novel
chemically resistant Magnéli phase REM for water
treatment that could eliminate fouling and scaling [22].

Overall, reactive electrofiltration methods that combine
membranes with surface redox-reactions provide a
modular platform beyond desalination. REMs provide a
pathway for process intensification through combination
of reaction and separations, while redox-flow electrodi-
alysis concepts can provide a platform for both selective
membrane separations as well as low-energy, low-cost
desalination. Going forward, we envision parallel ef-
forts in process design and scaleup to de-risk many of
these emerging technologies for practical applications at
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the same time as growing studies in the materials design
of redox-materials and membranes for more efficient
separations and transformations.

Other electrokinetic-based water treatment methods
have recently gained growing interest for desalination and
selective ion removal include electrodeionization and
shock electrodialysis or shock ED. These technologies rely
on electrokinetic processes, and the transport of charged
contaminants in an electrolyte in response to an applied
electric field and can remove organic and inorganic ions
from water [24]. Among them, shock ED is an emerging
electrochemical technique for water treatment in which
deionization shock waves are generated in a charged
porous material. A relatively high over-limiting current is
passed perpendicular to the direction of fluid flow be-
tween the ion-selective membrane [25]. This creates
zones of ion depletion or enrichment within the fluid [26].
In 2015, Schlumpberger et al. published the first example
of a continuous and scalable shock ED system [26], with
over 99% of salt removal and a water recovery of 79% at
high current. In 2019, Conforti and Bazant showed the
first use of shock ED to continuously separate ions from
multicomponent electrolytes [25]. They showed the
magnesium ion, Mg2+, could be selectively removed from
a mixture of sodium chloride, NaCl, and magnesium
chloride, MgCl,. For feed solutions with 9:1 Na:Mg, a peak
magnesium removal of 99% is achieved at a total desali-
nation of only 68% [25].

Finally, it must be noted that electrohydrodynamics
(EHD) can be used for a range of applications of envi-
ronmental remediation. EHD can play a key role in
process intensification, which has led to a growing
number of applications (e.g., water treatment, soil
remediation, sensing, monitoring, synthesis, surface
finishing of materials) [27—29]. Electrokinetic remedi-
ation in particular has seen extensive development over
the years for a range of heavy metal decontamination,
organic species removal, among others, with several re-
views providing an extensive summary of the
field [30,31].

Reactive electrosorption

Electrosorption, the mechanism in capacitive deioniza-
tion (CDI), is a technique in which species in solution
are attracted to a positively polarized electrode and are
subsequently released by applying a negative polariza-
tion [32—34]. While CDI has proven effective in certain
contexts of desalination, recent studies have expanded
beyond double-layer effects to achieve selectivity
through redox reactions [35]. In order to transition from
a purely capacitive method to more selective ion-
binding, redox-active materials can be utilized
[24,36,37]. Redox reactions can create a tunable surface
charge on immobilized electrodes, attracting ions to-
wards the respective electrodes — and the redox site
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can be tuned for selectivity and also controlled voltage
[38]. When the opposite bias is applied, the redox re-
action is reversed, and the ions are expelled (Figure 3a).
Furthermore, this electrochemical ion-binding process
can be coupled with electrocatalytic moieties to pro-
mote reaction upon adsorption or desorption
(Figure 3b—c) [39,40].

Redox-mediated electrosorption has been applied to a
range of wastewater treatment and resource recovery
contexts, with some of them highlighted as follow:

e Arsenic

In many cases, the removal of anionic As(V) over neutral
As(IIT) species is favored by membrane separation and
conventional adsorption techniques. As such, there is a
growing focus on the development of electrochemical
remediation techniques which transform As(III) into the
less harmful As(V) [39,41]. Su et al. utilized redox-active
polyvinylferrocene/carbon nanotube (PVF/CNT) elec-
trodes to selectively capture As(V) at concentrations as
low as 100 ppb in the presence of competing excess ions
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Schematic illustrations showing redox-mediated reactive separation mechanisms: (a) Redox reaction driven asymmetric electrosorption (left) and release
(right). (b) Asymmetric electrosorption by redox species (left) and reactive conversion upon desorption (right). (c) Coupled reaction and reaction by redox

electrodes.
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[42]. Song et al. performed a similar study using PVF-/
CNT-functionalized electrodes to adsorb arsenic at zero
applied voltage leading to the selectivity of As over
competing anions such as CI™, SO427, and NO;3; ™, which
have low affinity at 0 V. A total As removal efficiency of
51% of the original 150 pg/L present in the feed solution
was performed with a low electrical energy consumption
only on the order of 0.12 kWh/m? [41].

Next, through an asymmetric electrosorption and elec-
trocatalytic system, Kim et al. achieved over 90% removal
efficiencies in wastewater where the concentration of
arsenic was as low as 10 ppb [39]. As(III) was selectively
captured by a redox-active PVF electrode and was cata-
lytically converted into As(V) during desorption by the
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) group of
poly-TEMPO-methacrylate, another redox-electrode
[39]. This combined system showed an order of magni-
tude decrease in energy consumption compared to the
sequential system (in which reaction and separation are
decoupled), thus highlighting the importance of inte-
gration reaction and separations. Recent work by Shi
et al. combined redox-active ferrocene with an iron (Fe)-
based metal—organic framework (MOF), Fe-MIL.-88B-
NH;. From an initial arsenic concentration of 150 ug/L,
they showed a reduction to <10 ug/L. with the process
requiring only 0.025 kWh/m? [43].

e Nitrate

The removal of hazardous NO3;~, which accumulates
in land and water [44—46], has been proposed by
conventional desalination techniques such as electro-
dialysis, reverse osmosis, and ion exchange [32]. More
recently, there has been an increase in the investiga-
tion of electroadsporption-based techniques, which
can be coupled with ion exchange membranes, to in-
crease the selectivity of CDI-based technologies
toward nitrate [32]. To expand upon conventional
membrane capacitive deionization (MCDI), Kim et al.
coated active carbon electrodes with AF20E, a nitrate-
selective resin, in an ion-exchange resin, and tested
their system using real municipal wastewater. The
electrodes containing AF20E proved more selective for
NO;™, over chloride (CI7) and sulfate (SO4°7) than
did an electrode coated with just an ion-exchange
polymer [35].

While the aforementioned techniques aim to remove
the nitrate present in water, reactive electroseparation
technologies can also offer a platform to convert nitrate
into value-added ammonia [40]. Kim et al. recently
combined polyaniline, a nitrate-selective redox-active
polymer, with cobalt oxide, an electrocatalyst for nitrate-
to-ammonium conversion. Using a wastewater source
containing dilute nitrate of 0.27 mM, a wholly electrified

Reactive electroseparation for resource recovery Mousset et al. 5

system for capture, up-concentration, and conversion
was demonstrated within a single electrochemical cell
[40]. The impact of the electroseparation step on the
efficiency of electroconversion was highlighted, where
concentration of the dilute nitrate into a more concen-
trated stream significantly enhanced current efficiency
toward ammonia production.

e Perfluoroalkyl and polyfluoroalkyl substances

Electrochemical methods have proven effective at
removing highly persistent perfluoroalkyl and poly-
fluoroalkyl substances (PFASs) [46,47] from water, with
Kim et al. reporting an electrosorption system that
effectively removed PFOA with a high uptake capacity
of >1000 mg g71 [48]. An asymmetric design of redox
electrodes was accomplished by integrating P(TMAx-
co-TMPMA1-x)-CNT with a boron-doped diamond
(BDD) electrode to selectively adsorb/release and sub-
sequently degrade the PFOA. The developed redox-
electrosorbent proved highly selective toward PFOA,
with a separation factor of 500 PFOA versus CI™ in the
presence of 200-fold excess of chloride [48]. Beyond
PFOA, other shorter chains have also been evaluated
and treated using redox-clectrosorption methods.
Manufacturers have switched to short-chain PFAS
compounds, such as hexafluoropropylene oxide dimer
(HFPO-DA, tradename GenX), which poses further
challenges due to their higher mobility and recalcitrance
to adsorptive treatments such as granular activated
carbon and anion exchange [46,49]. The redox copol-
ymer and BDD system described earlier was also eval-
uated for capturing and destroying GenX, with 100%
defluorination being achieved after 24 h of opera-
tion [50]. A recent study by Roman Santiago et al. tuned
redox-active copolymers with differing ratios of fluori-
nated and amine functional groups to study the effect of
these interactions on short-chain PFAS binding,
including perfluorobutanoic acid (PFBA) and perfluor-
ohexanoic acid [51]. The key impact of fluorophilicity in
promoting higher adsorption of the shorter PFBA was
elucidated through both electrosorption tests and mo-
lecular dynamic simulations.

Overall, there has been a fast-growing interest in
leveraging redox-electron transfer reactions for selective
separations, as well as the integration of capture and
conversion for different environmental remediation and
resource recovery applications [52—55]. We envision
that a growing combination of tools will be leveraged to
increase predictive capabilities for tailoring electrodes
for selective electrosorption, including (i) chemical
design and synthesis, (ii) multiscale modeling from an
atomistic model all the way to macroscopic transport and
process models, and (iii) operando methods for inves-
tigating interfacial binding.
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Reactive electrodeposition

Electrodeposition is a widely and historically used
technique to remove heavy metal ions from wastewater.
In particular, three-dimensional porous electrodes have
been extensively studied for the capture and removal of
metals, especially from dilute solutions [56—58]. Elec-
trodeposition relies on a redox process in which a metal
ion in solution can be deposited onto the cathode upon
reduction and subsequently oxidized upon acid leach-
ing. Electrodeposition can be performed selectively by
applying an optimal reduction potential to target
deposition of specific ions [13,37,59,60].

More recently, electrodeposition has been applied for
battery recycling, for the separation of cobalt and nickel
from spent nickel-manganese-cobalt (NMC) cathodes
[61,62]. A major challenge encountered is often the
relatively close physicochemical properties of Co(II)
and Ni(II), including close electrodeposition potentials
under aqueous conditions. Armstrong et al. explored
electrodeposition to separate Co and Ni, ultimately
producing a 90% Co/10% Ni alloy, while concluding that
additional steps, including predeposition and refining,
were needed [61]. Yan et al. applied a unique technique
combining electrodeposition with electrodialysis to
treat spent electroless nickel plating bath, achieving
82% recovery of Ni(Il) while simultaneously removing
52% of the HPO3*~ present [63]. Kim et al. sought a
more direct approach to control the selectivity of Co/Ni
separation by tailoring an electrode with a poly-
electrolyte, poly(diallyldimethylammonium chloride)
(PDADMA) [62]. The selectivity was tuned by polymer
loading and electrolyte control. When concentrated
chloride is used as a background electrolyte, Co exists in
the form of a stable anion C0C1427, while nickel exists as
the cationic complex [Ni(H,0)sC11". This speciation
led to a difference in onset potentials, creating a window
in which nickel can be selectively electrodeposited [62].

Further redox reactions can be coupled to electrodepo-
sition through electrodeposition—redox replacement
methods (EDRR), a technique in which a target
metallic element is deposited through the redox
replacement reaction of a more reactive metal [64]. This
method can be applied for noble-metal recovery,
including platinum (Pt), silver (Ag), and gold (Au) [65].
Halli et al. applied EDRR to actual industrial hydro-
metallurgical process solutions, which contain primarily
Ni and almost negligible concentrations of platinum
(Pt) below one ppb. They achieved selective recovery of
Pt by utilizing novel pyrolyzed carbon (PyC) electrodes,
ultimately measuring an average of 90 weight percent Pt
for the nanoparticles deposited on the electrode surface
[64]. As seen, even though the field of electrodeposition
has been well-established, the incorporation of new
functional electrodes and modes of operation have
expanded their applicability to a range of metal recovery
and purification contexts. With the emerging supply-

chain challenges and growing awareness towards recy-
cling, we envision the study of molecular selectivity in
electrodeposition to play a key role for the efficient
recycling of metals from complex, multicompo-
nent feedstocks.

Reactive electroprecipitation

Electro-precipitation is based on the local alkalization at
the vicinity of the cathode material, through the
reduction of oxygen (O;) and/or H,O into hydroxyl ions
(OH™) (Figure 4) [66,67]. This local OH™ accumula-
tion is known to favor the cathodic precipitation of
mainly calcium carbonate (CaCOj;) and magnesium
hydroxide (Mg(OH);) in the presence of hard water
[68—71]. This phenomenon can be implemented in
water-softening systems to remove the divalent cations.
In practice, the reverse polarity technique is imple-
mented in other electrolytic systems whose objective is
to avoid scaling [72]. It consists of reversing the roles of
cathode and anode at a given frequency, leading to the
redissolution of precipitates in the bulk. This method
could not be effective enough with effluents having high
water hardness and/or with systems implementing
cathode materials that do not stand for high anodic po-
tentials. Therefore, efforts have been made to propose
alternatives to minimize the scaling. The hybrid com-
bination with advanced electrooxidation has been
investigated recently.

The generation of a powerful oxidant such as hydroxyl
radical (*OH) at a high O; evolution overvoltage anode
(e.g., BDD), has shown to decrease the cathodic
scaling (~5—10%) issue at higher current density
(16 mA Cmfz) in a thin-film reactor (500 pm inter-
electrode distance) [73]. This approach was concomi-
tant with the local anodic acidification that converted

Figure 4
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Schematic illustrations of cathodic electroprecipitation with possible
interaction (dashed arrow) with oxidant generated at anode.
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(bi)-carbonates (HCOg_/CO32_) into CO;, which
reduced carbonates content in the bulk. In the mean-
time, the use of porous carbon-based cathode material
(e.g., carbon paper) was shown to increase the electro-
precipitation phenomenon [74]. Thus, the microfluidic
conditions along with the types of cathode and anode
materials are critical parameters to consider for
increasing efficiency of the process [75,76]. These fac-
tors could be tuned to favor phosphate recovery, which is
listed as a critical raw material [77], especially because
the interest of phosphate electroprecipitation was pre-
viously shown in a simpler system (i.e., without
involvement of microfluidic) [78]. However, the effi-
ciency of the process to achieve high purity of phosphate
needs to be improved in real matrices. It has been noted
that organic matter can adsorb on amorphous calcium
phosphate during physical cathodic co-precipitation,
which slows down the electroprecipitation mechanism
and could reduce the purity of the crystallized calcium
phosphate recovered [79].

Reactive electrocoagulation

Electrocoagulation is known for a long time by promot-
ing the s situ generation of coagulant from anodic
dissolution of the materials (e.g., iron, aluminum)
[80,81]. It provokes the subsequent coagulation with
particulate matter, colloidal matter, and part of dissolved
pollution that are removed by decantation of the solid
phase (i.e., flocs). Additional mechanisms such as pre-
cipitation and adsorption on flocs can contribute to the
removal of contaminant species. This technology is
known to remove inorganic (e.g., phosphate, nitrate,
heavy metals) and organic compounds (e.g., natural
organic matter) [82]. Electrocoagulation has more
recently shown to be particularly useful to remove
microplastics from wastewater [83].

In combination with an electroconversion system,
namely the peroxicoagulation [84], the dissolved organic
pollution can be also removed with a high yield (>90%)
[85]. When iron is polarized as anode, it can react after
dissolution with the hydrogen peroxide (H,0;) clec-
trogenerated at the carbon-based cathode and produce
*OH through Fenton reaction [86,87]. This leads to
the concomitant degradation and mineralization of
dissolved organic pollution (e.g., 1,4-dioxane [88], 2,4-
dichlorophenoxiacetic acid [89], 7-hydroxycoumarin
[90]). This process combination could be particularly
useful for microplastics and nanoplastics removal, while
eliminating the persistent dissolved pollutants and
recovering value-added compounds (e.g., metals).
However, since the value-added compounds are trapped
into the hydroxide sludges, there is the need for an
additional selective post-treatment to recover the
products from the sludge.

Reactive electroseparation for resource recovery Mousset et al. 7

Conclusions and perspectives

Reactive electroseparation technologies are gaining
increased attention for their role in achieving environ-
mental remediation, water treatment and purification,
and a circular economy for valuable resources. These
advanced systems have benefitted from the enhanced
selectivity and electrochemical control derived from the
use of emerging conductive materials. Critical consid-
erations for improving efficiency include tailoring the
materials property of the electrodes (porosity and pore
size distribution, electroactive surface, conductivity,
surface functions, elemental composition, among
others) and optimizing operating conditions (including
current density/electrode potential, inter-electrode
distances and more generally the reactor design, ionic
membranes, among others). The physicochemical
properties of the target compounds (such as molecular
size, electrophoretic mobility, molecular structure, point
of zero charge, acid dissociation constant) along with the
matrix composition (type and concentration of salts,
etc) are also crucial parameters impacting the efficiency.
There are several areas for continued study to improve
existing reactive electroseparation systems, as well as
opportunities to develop new technologies, including:

e Investigate the matrix effects (ions, organic matter,
etc) on the reactive separation systems, particularly
with real wastewater, and develop solutions to over-
come potentially impacting side-effects such as
fouling, electrode degradation, or competing ions that
may impact selectivity.

e Develop sustainable and energy-efficient methods to
recover the value-added compounds deposited on the
electrodes after the electroseparation step. A major
challenge is the development of low-energy/low-waste
technique for recovering the wvaluable electro-
deposited species.

e Evaluate the long-term stability of newly proposed
electrode materials and associated cost-effectiveness,
including environmental cost. The development of
accurate process models and technoeconomic assess-
ments can be a critical step in de-risking many tech-
nologies for application in the wastewater contexts
[91,92].

e Make the full system sustainable, by recovering all
valuable compounds, as well as co-electrogenerating
green energy source (e.g., Hz, bioenergy [93—95]).

e Develop innovative, scalable, and flexible design to
ensure synergies in reactive electroseparations sys-
tems (e.g., moving electrochemical cells that could
combine advantages of microreactors with macro-
reactors [96,97]). Innovative design should permit
antagonist requirements (e.g., low/high overvoltage,
low/high electrode gap, low/high current) for hybrid
electro-processes combination, such as the proper
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integration of electrosorption (which is usually oper-
ated lower current density) with advanced electro-
oxidation (operated at high current density). More-
over, new designs should seek to intensify mass
transport and promote homogeneous current and po-
tential distributions, while avoiding the external
addition of salts to increase the ionic conductivity.

e In the long term, translating existing technologies
from proof-of-concept and bench-scale demonstra-
tions to pilot scale, ideally through industrial/aca-
demic partnerships that can provide a pathway for
product development and real market-end use.
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