Check for
Updates

An End-to-End HPC Framework for Dynamic Power Objectives

Daniel C. Wilson
danielcw@bu.edu
Boston University

Massachusetts, USA
Intel Corporation

Massachusetts, USA

Siddhartha Jana
Federico Ardanaz

Jonathan M. Eastep
siddhartha.jana@intel.com
federico.ardanaz@intel.com
jonathan.m.eastep@intel.com
Intel Corporation
Oregon, USA

ABSTRACT

High-Performance Computing (HPC) centers demand a lot of power,
and continue to grow through the Exascale era. This work estab-
lishes the need for a multi-tiered, feedback-driven power man-
agement framework to follow dynamic power objectives while
maximizing job performance, highlighting the need to respond to
external factors (e.g., power constraints), and internal factors (e.g.,
performance variation). We present a practical implementation of
this framework on a real-world cluster in addition to conducting
simulations for larger data centers. We accurately track a moving
power target for demand response while reacting to incomplete
or inaccurate prior knowledge about job power and performance
properties. We demonstrate that online performance feedback from
a job runtime enables a cluster power management policy to re-
cover most of the performance degradation introduced by job-type
misclassification.

CCS CONCEPTS

« Hardware — Enterprise level and data centers power issues;
Impact on the environment; « Computing methodologies —
Modeling methodologies.

KEYWORDS

power management, demand response, high performance comput-
ing, data centers, quality of service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624262

1801

Fatih Acun
acun@bu.edu
Boston University
Massachusetts, USA

Ioannis Ch. Paschalidis

Ayse K. Coskun
yannisp@bu.edu
acoskun@bu.edu
Boston University

Massachusetts, USA

ACM Reference Format:

Daniel C. Wilson, Fatih Acun, Siddhartha Jana, Federico Ardanaz, Jonathan
M. Eastep, Ioannis Ch. Paschalidis, and Ayse K. Coskun. 2023. An End-to-
End HPC Framework for Dynamic Power Objectives. In Workshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12—17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3624062.3624262

1 INTRODUCTION

Data centers need to manage a lot of power, and they need to do so
under time-varying constraints. Data center power consumption is
estimated to account for 3% of the global energy supply [12] and
reaches tens of megawatts for large facilities [23].

Data centers are exposed to time-varying constraints, such as
different energy pricing based on time of day and peak consump-
tion [5], or user requests that change over time. Data centers have
previously been asked to be ready to participate in demand re-
sponse events [13], in which the data center is asked to modify
its power consumption to help balance supply and demand in an
electrical grid. Participation in such programs helps increase grid
flexibility, but the current rate of adoption of energy storage and
demand response programs needs to double in order to offer suffi-
cient grid flexibility for 2050 net-zero carbon emission goals [10].
It is important for data centers to be prepared to increase adop-
tion of programs that require time-varying power management
constraints, such as in demand response.

Prior work has demonstrated that data centers are suitable ca-
pacity providers in demand response programs, and have proposed
policies to maximize cost savings while meeting a data center’s
quality of service (QoS) commitments to its users [3, 28, 29]. Those
prior works assume that application power and performance prop-
erties are known in advance and do not change after profiling the
applications.

We design a multi-tiered power management framework that en-
ables a high degree of power sharing across jobs while being robust
to scenarios where job performance diverges from precharacterized
expectations. We measure missed performance opportunities in a

https://orcid.org/0000-0001-5101-9471
https://orcid.org/0000-0002-2479-8972
https://orcid.org/0000-0002-6231-8415
https://orcid.org/0000-0003-4440-4739
https://orcid.org/0000-0002-1611-4817
https://orcid.org/0000-0002-3343-2913
https://orcid.org/0000-0002-6554-088X
https://doi.org/10.1145/3624062.3624262
https://doi.org/10.1145/3624062.3624262
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624262&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12-17, 2023, Denver, CO, USA

power management policy that is purely driven by precharacterized
job properties and demonstrate that our framework enables the
power manager to recover the lost performance.

We implement and evaluate a cluster demand response policy on
16 real compute nodes. We explore the impacts of power manage-
ment choices made when the power and performance properties
of some jobs are unknown. Lastly, we simulate demand response
scenarios with job performance variation! on a 1000-node data
center to explore opportunities for further policy enhancements.

Key contributions of this work include:

o An end-to-end design framework to enforce cluster power
policies while exploiting awareness of node-specific applica-
tion properties.

o A practical implementation of the design framework, which
delineates the power management at cluster-level from job-
level policies. Management of the cluster-level tier is driven
by awareness of the demand response policies within the
job scheduler and resource manager. Management of the
job-level tier is driven by awareness of application behavior
and node-specific properties. This novel design enables in-
tegration of power management at both the tiers, without
introducing excessive dependencies in either tier.

e An empirical evaluation that accounts for two types of unex-
pected job power-performance properties: The first is mis-
classification of pre-characterized job types, and the second
is node-to-node performance variation.

o A discussion of using online performance feedback to re-
spond to both of the performance modeling uncertainty cases
above.

Through evaluations on a 16-node cluster, we show that our
multi-level power management framework enables a demand re-
sponse policy to stay within 8% of a time-varying cluster power
target. We show that online performance feedback from a job-tier
runtime enables a cluster-tier power manager to recover from per-
formance degradation resulting from job-type misclassification. In
simulations, we show QoS? degradation when the power manager
is unaware of performance variation, and identify opportunities to
integrate performance feedback.

The rest of this paper begins with a discussion of related work in
multi-layer power management and in demand response for data
centers in Section 2. Section 3 describes our multi-tiered power
management framework, followed by a description of a practical
implementation in Section 4. Section 5 describes the experimental
methodology we follow to present results in Section 6. We discuss
this work’s outcomes and implementation challenges in Section 7
and discuss future work in Section 8. We conclude in Section 9.

2 RELATED WORK

In this section, we outline related works in performance-aware
resource management, multi-tiered power management, and grid-
aware scheduling and power management.

In this work, performance variation broadly refers to differences in job execution
time from one run to another.

2Q0S in this work corresponds to the time a user must wait for a submitted job to
complete.

1802

Wilson et al.

Various studies have investigated job power consumption in
data centers to develop better power management and resource
utilization policies while considering QoS constraints. A recent
study demonstrates a power consumption analysis from the sys-
tem, job, and user perspectives, and touches on using job queue
metadata to predict job power properties [17]. Saillant et al. further
investigate job power forecasting techniques, underlining the pos-
sible use case in cluster management policies [20]. Other studies
introduce QoS-aware power management policies by considering
job-level features [4, 6]. Those studies continuously monitor the
performance of workloads to ensure whether they meet the QoS
constraints. Our work aims to supplement forecasting efforts by re-
sponding to unknown or changing applications while they execute.

Some works consider methods to improve a job’s performance
under power constraints by steering power within a job based on
performance feedback sent to a job-specific power manager [7, 9,
24]. Other methods improve power utilization by sharing power
across jobs, albeit without reacting to measured job performance [8,
22]. Our proposed framework is intended to act as a platform to
connect the two categories of approaches for feedback-driven end-
to-end power management control.

In recent years, it has been well established within the HPC
community that there exists a need for feedback-driven end-to-
end power management control across the system stack. The HPC
PowerStack Initiative [1, 2, 27] is working toward a standardized
methodology for end-to-end data center power management from
site down to hardware. They outline the architecture of system
software within HPC systems that interact with each other to
drive efficiency at different levels of granularity within the stack: at
facility-level, system-level, node-level, job-level, and platform-level.
Wilson et al. highlight opportunities to improve cluster efficiency
through a collection of application characterization experiments
that enable static power management policies based on application
feedback [25]. Saba et al. propose a machine learning approach to
predict job performance through feedback from performance coun-
ters while under CPU and GPU power caps, as part of a combined
scheduling and power-capping solution [19]. Our work provides an
empirical study that captures the benefits of incorporating power
management across multiple tiers of the power management stack.

Wou et al. [26] propose a hierarchical approach for power man-
agement in data centers by reacting to power monitoring data
at multiple hardware layers and pre-allocating servers for specific
types of workloads. Another multi-tier power management solution
focuses on increasing the power over-provisioning ratio of hyper-
scale data centers by exploiting the flexibility of non-production
workloads [21]. In contrast, our work investigates HPC data center
scenarios with a lower portion of non-production workload queues.

The ability to incorporate power management and task schedul-
ing policies for data centers also provides the opportunity to miti-
gate the environmental and power-grid impact of data centers. The
RMAP power manager accepts user tolerance for job slowdown as
an input to a backfilling algorithm that sets static job power caps to
improve throughput in overprovisioned cluster configurations [18].
Lots of studies underline the importance of task scheduling and
power management for reducing data center carbon footprint and
participation in demand response programs [11, 14, 15, 30].

An End-to-End HPC Framework for Dynamic Power Objectives

SC-W 2023, November 12-17, 2023, Denver, CO, USA

User R t ' . T
Users ser Requests | Cluster Tier slb e
@ Job Power Server Power
Environment Distribute Available gj‘g‘:g
Environment State Resources Budgets Budgets 47
& Performance

Power Constraints

Power Providers
Power Demand

Forecast Resource
Requirements

Measured Power

Tas

<} Power Flexibility

B2

Figure 1: Tiers of power management entities in the ANOR framework. The cluster tier distributes the cluster’s resources to
members of the job tier. The cluster tier makes its decisions based on external state and aggregated power and performance

data that comes from the job tier.

Our work introduces a holistic approach that brings together
multi-tiered power management, power and performance-aware
workload scheduling, and a demand response integration that al-
lows data centers to cooperate with the grid to increase demand
flexibility. By loosely coupling a cluster-tier power budgeting mech-
anism with a job-tier performance monitor, we enable end-to-end
performance-aware power sharing across jobs in an HPC cluster.

3 A FRAMEWORK FOR MULTI-TIERED
POWER MANAGEMENT: ANOR

Our goal is to design a framework that tracks time-varying cluster
power targets under user QoS constraints where power-performance
sensitivity may change over time. Potential applications for chang-
ing power targets include grid-aware power management scenarios
where data center operators may react to time-varying carbon
intensity, changing power tariffs, or demand response events. Time-
varying QoS impacts may surface in many ways, such as seeing
a new job type execute for the first time or running a previously
seen job type under new conditions. In Section 4, we describe a
specific implementation that works toward these goals to enable
QoS-constrained demand response.

To that end, we propose ANOR (Attach Nested-Objective Run-
times), a multi-tiered design framework that manages a cluster with
power objectives and QoS impacts that change over time. At a high
level, this framework attaches two tiers of monitoring and control
mechanisms, shown in Fig. 1. A cluster tier orchestrates entities in a
job tier to optimize for application performance under time-varying
constraints over total cluster power consumption. The tiers interact
by sending control messages down to jobs from the cluster tier and
by sending status messages up from the job tier.

This framework enables cluster power management policies to
integrate performance awareness by delegating job-specific tasks
to the job tier. We outline an implementation for demand response
scenarios. Our cluster-tier policies for QoS-aware demand response
are based on the Adaptive policy with QoS Assurance (AQA) [29].
Our job-tier performance monitor utilizes the GEOPM HPC run-
time [7]. Communication between the tiers is managed by TCP
connections between the cluster manager and one compute-node
process per job, which uses GEOPM’s endpoint interface to monitor
job progress and set power controls.

1803

Power Job
Targets |[Schedulel nodel Job's Budget Performance Agent's Budget

@ Power “ GEOPM
h M
Modeler Shared Memory Agent
1 Per Job 1 Per Job
Compute Nodes

Cluster
Power Budgeter
1 Per Cluster

Head Node

Figure 2: Our implementation of ANOR for demand response.
A single cluster-tier process communicates over TCP with
one job-tier power-modeling process per job, sending down
power budgets and receiving power models. The power-
modeling process sends power budgets to one GEOPM agent
instance per job, over shared memory, and receives perfor-
mance metrics back from the agent.

4 IMPLEMENTING ANOR FOR DEMAND
RESPONSE

We demonstrate the ANOR framework by implementing it on the
Global Extensible Open Power Manager (GEOPM) framework [7] to
realize a performance-aware demand response policy. The demand
response mechanism is based on the AQA [29] demand response
bidder, job scheduler, and power budgeter.

We use the GEOPM HPC runtime to monitor and control node
power consumption and to monitor job performance in our cluster.
GEOPM provides signals to monitor applications (e.g., a count of
times a region of code was entered) and hardware (e.g., power and
energy), and provides controls for the hardware platform (e.g., CPU
power caps). GEOPM offers a software framework to define agents
that periodically read signals and write controls in response to those
signals while a job executes. Agents on multi-node jobs interact
across nodes through a hierarchical communication interface. The
root level of that agent hierarchy has a software interface, called the
GEOPM endpoint interface, that can be used to dynamically write
new objectives and read summarized state updates from agents.

We implement a software layer that bridges the GEOPM endpoint
to a job-tier power and performance model, illustrated in Fig. 2. This
job-tier endpoint communicates through a TCP connection to a job-
tier management process running on the head node in our cluster.
The cluster-tier manager periodically reads cluster power targets
from a file, receives messages from nodes running jobs, calculates
how to distribute available power to jobs, and sends messages to
inform each job-tier endpoint of the job’s new power cap.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

4.1 Cluster Power Budgeter

In this work, we consider two methods to allocate a cluster’s avail-
able power to its compute nodes. We refer to the allocation mech-
anism as a power budgeter. An effective power budgeter ensures
that the available power is allocated to components that use their
power to improve system performance.

A single process balances the cluster’s power budget from the
head node in our cluster. For experimental repeatability (discussed
in Section 5), this process reads power targets and a job submis-
sion schedule from files. Other implementations may schedule jobs
through a separate scheduling mechanism, which is also compatible
as long as new jobs initiate connections with the power budgeter.

Different power caps are selected by each of the two policies
we investigate in this work when multiple jobs with different
power-performance relationships run at the same time. The power-
balancing approach aims for all jobs to operate on the same percent
of power consumption across their range of achievable power. Each
job has different performance impacts at that power ratio. In con-
trast, the time-balancing approach aims for every job to degrade
performance by the same amount, but each job consumes a different
amount of power.

4.2 Power Modeler

The cluster power budgeter uses power models to determine how
to efficiently distribute a power budget. Each model relates a job’s
rate of progress to a CPU power cap. The modeler receives an epoch
count (i.e., count of main loop iterations) from the GEOPM agent
layer via the GEOPM endpoint interface. The modeler records the
time since the last epoch update, and the average power cap applied
over that time span. We fit T = AP? + BP + C for T seconds per
epoch and power cap P watts below TDP. We re-train the model
when at least 10 new epochs have been recorded. Jobs that report
no epochs or that have yet to build a model use a default model.
Our contributions include an evaluation of performance impact
from different default models (Section 6.1).

4.3 GEOPM Agent

The GEOPM agent enforces the budgeted power caps and feeds
application performance to the modeler. The agent resides on the
same node as the modeler, which communicates with the agent
over shared memory through the GEOPM endpoint interface.

The agent reports the GEOPM epoch count to the endpoint inter-
face. The epoch count is incremented each time all processes in the
monitored program reach an instrumented geopm_prof_epoch()
call in the program’s main compute loop. We modified the GEOPM
power_governor agent to write epoch count to the endpoint.

The endpoint supports multi-node jobs through GEOPM’s inter-
nal agent communication layer. When the endpoint sends a new
power cap to a job’s GEOPM agent on one node, the agent forwards
the power cap over a communication tree to the rest of the agent
instances (one per node running the job).

4.4 Cluster-Tier Policies to Track Power Targets

The goal of our cluster policy is to achieve a target level of power
consumption across the cluster while distributing performance loss
across jobs. This policy enables performance-aware power capping

1804

Wilson et al.

without knowing the relationship between every job’s power and
performance in advance. We achieve that goal by delegating power-
performance modeling to the job tier, as described in Section 4.

Cluster tier policies define how the job tier and external enti-
ties interact with each other. We explore policies that work with
each other to meet QoS objectives while participating in demand
response programs. A resource-forecasting policy aims to maximize
the cluster’s power flexibility under job performance constraints. A
job scheduler and power capper maximize job performance under
time-varying cluster power constraints.

4.4.1 Forecasting Power Demand. In our demand response sce-
nario, the resource-forecasting policy determines how much av-
erage power the cluster should request and what range of power
flexibility the cluster should offer as reserve for demand response.
The bidding decision is made once per hour, influencing the range
of power targets that will be received until the next bid. The data
center must enforce time-varying power caps that span the average
power plus or minus the reserve. New power targets arrive once
every few seconds.

4.4.2 Scheduling Jobs. We base our scheduling and power man-
agement mechanisms on those introduced by the AQA policy [29].
AQA models job types as a collection of work queues. Each queue
is assigned a weight of node allocations that is tuned over simula-
tions of expected power-constraint and job-submission scenarios.
Compute nodes are allocated so that so queues with greater weight
are assigned more nodes.

AQA searches for queue weights and demand response bids
(average power and reserve) that reduce electricity cost under con-
straints for QoS and power-tracking error. We set a power-tracking
constraint allowing no more than 30% error for at least 90% of the
time. Error is calculated as distance between the measured power
and the target power, divided by the reserve. For example, if reserve
is 100 kW and the absolute difference between actual power and
target power is 10 kW, then the reported error is 10/100 = 10%.
Power caps are applied uniformly across active nodes.

AQA assumes that all jobs are classified into precharacterized
job types with known power-performance relationships. We use
the existing job-weight training mechanism in AQA to support jobs
with types that are not yet known at the time AQA is trained. For
each unknown job type in the user submission queue during AQA
training, we simulate a known minimum execution time (which may
be provided at launch time, similar to setting a job’s time limit). We
simulate the job’s achievable power-demand range and maximum
slowdown (i.e., at the minimum power cap) to be randomly sampled
from those of known job types.

4.4.3 Controlling Power Consumption. We evaluate two cluster-
tier power-budgeting policies that utilize information from the job
tier: a power-utilization balancer and a power-efficiency balancer.

The performance-unaware balancer follows the power capping
rules used by the AQA [29]. In this approach, we select node power
caps that are scaled equally between the minimum and maximum
power achievable for all jobs. We select a single y value that lets
total power equal the power budget for:

Pjcap =Y (Pj,max - Pj,min) + Pj,min,

An End-to-End HPC Framework for Dynamic Power Objectives

where each pj cqp is a job’s selected power cap, pj min is a job’s
minimum power consumption, and pj max is a job’s maximum
power consumption.

The performance-aware balancer follows a similar approach, but
balances the expected slowdown of each job instead of balancing
the expected power consumption of each job. That is, we select the
expected-slowdown limit s that lets the total power cap utilize the
full power budget for:

pjcap = Pj (sTj (Pjmax))

where each P; function models a job’s power caps as a function of
execution time, and each T; function models that job’s execution
time as a function of power caps.

5 EXPERIMENTAL METHODOLOGY

Our experiments are designed with two goals in mind. First, we
quantify the real-system impact that a multi-tiered power control
mechanism has on a cluster. Next, we evaluate the implications of
using such a mechanism at larger scale by simulating a 1000-node
cluster. We perform both evaluations in demand response scenarios
where the cluster is subjected to power targets that vary with time.

This section describes the benchmarks used in our evaluations,
describes how we select QoS constraints, describes how we generate
job schedules, describes the tools we use for performance and power
measurement, and describes the system on which we execute our
cluster experiments.

5.1 Benchmarks

We evaluate multiple combinations of concurrently executing
benchmarks from the NAS Parallel Benchmark suite [16] across our
simulated and real-cluster experiments. The power-performance
relationship of each job type is shown in Fig. 3. The name of
each job type follows a format of benchmark-name.input-problem-
class.process-count.

This work investigates how cluster-level policies interact with
job-level performance awareness, including scenarios with hour-
long job submission schedules. We use benchmarks as placeholders
to emulate different application phase characteristics. Multiple job
schedules with mixes of these benchmarks emulate the variation of
job behavior within job types concurrently executing in the cluster.
Future works may investigate introducing additional complexity
by also evaluating additional application phase variability within
each job in a queue.

We insert a geopm_prof_epoch() function call once per itera-
tion of the main outer loop in each benchmark, to indicate how long
each iteration takes to complete. An epoch count is incremented
after all processes across all nodes running the benchmark call this
function. Each job’s latest epoch count is reported whenever the
cluster tier requests performance data from the job tier.

Our experiments use a combination of job power-performance
curves that are precharacterized or learned at execution time. We
precharacterize jobs by fitting them to the model described in Sec-
tion 4.2. Most job types have training R? scores of at least 0.97. The
exceptions are IS (0.92), MG (0.94), and SP (0.84).

1805

SC-W 2023, November 12-17, 2023, Denver, CO, USA

1.8
1.7
1.6
15
1.4
1.3
1.2
11

Time (relative to uncapped)
7*

1.0

140 160 180 200 220 240 260 280
Power Cap (W)
Application
—— bt.d.81 —d— ep.d.43 =Y~ is.d.32 mg.d.32
cg.d.32 =~ ft.d.64 -Pb— lu.d.42 —4— sp.d.81

Figure 3: Execution time of each job type under varied power
caps, relative to the execution time at a 280 W CPU power
cap per node. Error bars show standard deviation over 10
runs.

5.2 QoS Constraint Selection

We use probabilistic QoS constraints as inputs to the scheduling and
power-capping modules. We define a job’s QoS degradation limit
Q in terms of that job’s sojourn time (i.e., elapsed time between job
submission and job completion), Ts,, and the amount of time that
job takes to execute when it is not power limited, Tr,ip:

Tso — Tmin

Tmin

Q:

QoS objectives should be configured for a data center based on the
requirements of its users. We set the QoS objective for all job types
in our experiments to be within Q = 5 with 90% probability. To
justify this experimental design decision, we measured the queue
wait time and execution time of jobs from a month of real-world
job queue data [17]. The 90t percentile of job wait time divided
by execution time is larger than 22, making our selected constraint
more aggressive than the properties of that real-world queue trace.

5.3 Job Schedule Selection

We evaluate combinations of co-scheduled jobs across a range of
power sensitivities, where power sensitivity indicates how much a
job’s performance changes under different power budgets. Some of
our experiments (Section 6.2) do so through a randomly generated
job schedule.

Job submissions are generated as Poisson processes with job
arrival rates that achieve a target node utilization. We relate a target
utilization # to job type j’s arrival rate A; and non-power-capped
time to completion T; over N nodes by the following equation:

J
D AT =1N.
j=1

SC-W 2023, November 12-17, 2023, Denver, CO, USA

5.4 Power and Performance Management

The cluster power manager periodically receives CPU power mea-
surements from the CPU_ENERGY signal in the GEOPM HPC runtime.
That signal aggregates energy across CPU package energy mea-
surements from the PKG_ENERGY_STATUS MSR. The GEOPM agent
enforces power targets with the CPU_POWER_LIMIT_CONTROL con-
trol in GEOPM, which maps to the PKG_POWER_LIMIT MSR. Our
GEOPM instance uses MSRs through the msr-safe kernel module.

We measure application performance in two ways. For our hard-
ware experiments, we report the time that the job spends running its
benchmark, as reported by the Application Totals section of GEOPM
reports that are generated for each job. For simulation experiments,
we report the QoS metric described in Section 5.2.

5.5 Test Platform

The goals of our real-cluster experiments are two-fold. First, we
aim to demonstrate that offline job performance model analyses
sufficiently describe real opportunities in cluster power manage-
ment. Then we evaluate the efficacy of ANOR as a way to mitigate
job performance loss when offline analyses do not accurately rep-
resent an executing job. We run both evaluations on 16 nodes with
dual-package Intel® Xeon® Gold 6152 CPUs and 100 GB RAM and
140 W Thermal Design Power (TDP) per socket.

At this scale, we can understand the range of individual applica-
tion behavior as well as the impact of scheduling across multiple
nodes with different jobs executing at the same time. This approach
enables scaling to larger node counts by ensuring that at least one
compute node per job can communicate with the cluster-tier power
manager. Since this work requires modifications to job scheduler
and resource manager, extending this study to larger node counts
will require close collaboration with large-scale HPC centers.

5.6 Tabular Cluster Simulator

Some of our evaluations simulate a 1000-node cluster with random
performance variation to evaluate the impact it has on QoS and
power-tracking accuracy in demand response scenarios. Further-
more, we investigate whether alternative power-capping mecha-
nisms can help mitigate any resulting impacts.

The simulator takes cluster and job-type properties, and produces
a time series of cluster power consumption and a job queue with
submission, start, and end time of each job. Input cluster properties
include average idle power per node, total node count, average node
utilization, and demand response parameters. Job type properties
include the maximum acceptable QoS degradation as defined in
Section 5.2, nodes per instance of the job type, maximum power
per node while running the job, minimum power per node, and the
elapsed execution time when the job runs with a cap at either of
those power levels. Demand response parameters include average
power P, reserve power R offered by the simulated cluster, and a
time-varying regulation signal y(t). The regulation signal ranges
from —1 to 1, indicating the cluster power target Parget = P+Ry(t).

The simulator is implemented as a collection of tables that store
the current state of nodes and jobs in the cluster. The node table
indicates whether a given node is idle, or which job it is executing,
and tracks the current power consumption and current cap applied
to each node. The job table keeps track of timestamps for queue

1806

Wilson et al.

70% Job Iyge
— bt.D.x

60% ep.D.x

g 50% —— |u.D.x
8 — ft.D.x
c;> 40% — ¢g.D.x
»n e .D.
D 30% :;gD XX
) .D.
T 20% —— is.D.x
10% Budgeter

-------- Even Slowdown (ldeal)
——- Even Power Caps

0%

1500 2000 2500 3000
Cluster Budget

Figure 4: Estimated job slowdown when 8 job types each
execute one instance under a range of shared power budgets.

entry, job start, and job end, as well as the type of job. The simulator
also tracks the minimum and maximum power and time of each job
type, to simulate a simple linear power-performance relationship.
Each simulated second, the simulator updates the state of the
node table, then updates the view of the cluster seen by the job
scheduler and power manager, then schedules jobs and caps power.
The policy updates inputs to the node table that will be processed in
the node-update stage of the next time step. Lastly, before starting
the next iteration, we append the current state of all tables to a file.
Each non-idle node tracks its current job’s progress. The rate of
progress is calculated in each time step by linearly scaling between
the job type’s fastest and slowest precharacterized rate of progress,
based on the server’s current power cap. Some of our experiments
introduce performance variation in the rate-of-progress by assign-
ing a random multiplier to each simulated server for the duration
of the simulation. We treat a simulated multi-node job as finished
when all nodes executing the job have reached 100% progress.

6 RESULTS

In this section, we discuss the impacts of multi-tiered power man-
agement on the real cluster’s power-tracking accuracy, and on the
simulated cluster’s demand response bidding and tracking accuracy.

6.1 Opportunities to partially precharacterize
cluster job types

The goal of this set of experiments is to identify where job power-
performance model accuracy is expected to impact job performance
under a cluster power cap. We estimate the slowdown of each job
under a given power cap, as modeled in Section 4.2. We evaluate the
slowdown of jobs under ranges of cluster power caps following the
performance-unaware (even power caps) and performance-aware
(even slowdown) balancer policies described in Section 4.4.3.

6.1.1 Impact of integrating precharacterized performance models in
a power budgeter. We estimate the expected slowdown of each job
running in a cluster, assuming one of each job type in Section 5.1
is executing at the same time under a shared cluster power cap.

An End-to-End HPC Framework for Dynamic Power Objectives

Underpredict Sensitivity of Small Job

60%

40%

20%

Job Slowdown

0%

60%

40%

20%

Job Slowdown

0%
1400 1600
Cluster Budget

1800 2000 2200 2400 2600 2800 1400

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Overpredict Sensitivity of Small Job

Job Type
— ep.D.x
- ft.D.x (unknown)
— is.D.x
Budgeter
= |deal
=— = Even Power Caps
= Mischaracterized

1600 1800 2000 2200 2400 2600 2800
Cluster Budget

Figure 5: Performance impact when a medium-sensitivity job is misclassified as one with higher or lower sensitivity than its
true behavior, while co-scheduled with both high-sensitivity and low-sensitivity jobs. Upper subplots model the unknown
job as requiring more compute nodes than the known jobs, while lower subplots model the unknown job as requiring fewer

compute nodes than the known jobs.

Fig. 4 shows the estimated slowdown of each job under a policy
that distributes cluster power budgets for even slowdown across
jobs and under a policy that distributes budgets for even power caps
across nodes. As expected from Section 4.1, we see varied slowdown
across jobs under the even-power budgeting policy, with a range
of job slowdown that increases as the cluster budget decreases.

Under the even-slowdown policy, all jobs have equal expected
slowdown at high cluster power budgets. As the cluster budget
decreases, the jobs with lower power-performance sensitivity level
off because they receive less power than high-power-sensitivity
jobs in order to achieve equal slowdown. Those low-sensitivity jobs
level off when they reach the system’s minimum-allowed power
cap (70 W per CPU package in our evaluation system).

The even-slowdown power-budgeting policy reduces the slow-
down of the most severely impacted job across currently-scheduled
jobs. There is no opportunity for reduced slowdown at minimum
or maximum budgets since neither policy has flexibility to assign
power caps beyond the range allowed by the power-capping inter-
face. But there is opportunity in the mid-range power budgets.

6.1.2 Impact of misclassifying applications in a performance-aware
power budgeter. It may not be practical for a data center to require
that all user jobs are characterized with power-performance models
in advance of their execution. Some jobs may execute before they
are characterized, or may be misclassified as a job type with different
characteristics. This set of experiments evaluates the performance
cost of misclassifying a job’s power-performance sensitivity, and
explores mechanisms that cope with misclassification.

Fig. 5 shows job slowdown in scenarios where low, medium, and
high power sensitivity jobs are scheduled. Those jobs follow the
power-performance curves of IS, FT, and EP, respectively. In these
scenarios, the power-performance curve of FT is unknown to the
power budgeter. The left subplots show performance of jobs if the
budgeter assumes unknown jobs follow the sensitivity curve of the

1807

least-sensitive known job type (IS). The right subplots show the
opposite policy where the budgeter assumes unknown jobs follow
the curve of the most sensitive job type (EP). Upper subplots show
cases where the unknown job is smaller (2 nodes) than the known
jobs (4 nodes each), while lower subplots show cases where the
unknown job is larger (8 nodes) than the known jobs (1 node each).
The solid lines show the ideal slowdown when the budgeter knows
the true sensitivity of all jobs, while the dashed lines show the
slowdown if a performance-agnostic policy is employed, and dotted
lines show the slowdown when the budgeter relies on a default
sensitivity assumption for the unknown job type.

There are two key takeaways from comparing this set of sce-
narios. First, we note that an underprediction policy slows down
the unknown job while an overprediction policy slows down the
co-scheduled jobs that are highly power sensitive, compared to
the ideal budgeter. This means that a power manager guided by
precharacterized power-performance models must consider how to
classify unknown job types based on whether it is more acceptable
to degrade performance of the unknown job or other running jobs.

Second, the impact of misclassification depends on both the size
of the misclassified job relative to the size of the co-scheduled jobs
and the direction of mischaracterization. This should be accounted
by a data center in order to minimize the risk of performance
degradation when some jobs have not been precharacterized. Small
unknown jobs are heavily slowed down when their power sensitiv-
ity is underpredicted. Large unknown jobs heavily slow down other
executing jobs when the unknown job’s sensitivity is overpredicted.

Regardless of which sensitivity assumption is used for unknown
job types, there is a risk of misclassification, which will either limit
the performance of the unknown job or the other jobs running
in the cluster. In case of misclassification, it is important to select
a policy for unknown job types that exposes whichever type of
cluster performance risk is preferred in the data center, or to have a
method to detect the misclassification and adjust the power budget.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Job Type
B bt.D.x mmm sp.D.x

i
Performance Agnostic —=y

.
Performance Aware e

. .]
Under-estimate bt —y

. : e —
Under-estimate bt, with feedback

i -
Over-estimate sp Em——

i i e E—
Over-estimate sp, with feedback S e—

0.0% 5.0% 10.0% 15.0%
Slowdown

Figure 6: Job slowdown when BT (high power sensitivity) and
SP (low power sensitivity) are co-scheduled under a shared
power budget with 75% of TDP available in the budget. Slow-
down is reported as a percentage of each job type’s time to
completion when there is no power cap. Error bars show
standard deviation over 3 trials of SP.

6.2 Performance Under Shared Power Caps on
Real Hardware

The goal of this set of experiments is to demonstrate how the offline
analysis results translate to jobs executing under a power cap on
a real cluster. In these experiments, we measure the slowdown of
jobs under different mixes of co-scheduled job types. Specifically,
we consider 3 scenarios where there are two jobs with low power
sensitivity (both SP), two jobs with high power sensitivity (both
BT), or one each of high and low (BT and SP) power sensitivity job
types.

Under these 3 job-type scenarios, we measure each job’s execu-
tion time under a static power budget that is shared across 4 nodes
by a power-balancing policy and by a performance-balancing pol-
icy that relies on precharacterized power-performance curves to
distribute the shared power cap. Here, we set the budget to 840 W,
mid-way between the maximum and minimum power caps sup-
ported by our test platform. We consider cases where each job’s
type is known in advance, so the power balancer selects the correct
performance model, as well as cases where the job’s type is mispre-
dicted to be one of much higher or much lower power sensitivity.

Fig. 6 shows the job slowdown under multiple scenarios of model
accuracy given a job mix that includes one instance each of BT and
SP executing in the cluster at the same time. As expected from
the offline model analysis, the performance of power-sensitive BT
degrades from the fully characterized case both when that job
is misclassified as low sensitivity, or when its co-scheduled job
is misclassified as high sensitivity. Furthermore, by allowing the
system to re-train a job’s model when performance feedback is
available, the power budgeter reduces the slowdown of BT in both
misclassification cases.

Although the fully characterized case does not completely close
the slowdown gap between BT and SP, it does reduce the gap in
comparison to the performance-agnostic policy. One way this might
be addressed is by improving the accuracy of the characterization
model. A more robust control system may also help by reacting to
modeling error as part of including performance feedback.

1808

Wilson et al.

Job Type
. bt.D.x=is.D.x

Performance Agnostic -

Performance Aware TEEEEI————"—
Under-estimate bt T—

Under-estimate bt, with feedback g_'

0.0% 5.0% 10.0% 15.0% 20.0%
Slowdown

Figure 7: Job slowdown when two instances of BT (high power
sensitivity) are co-scheduled under a shared power budget
with 75% of TDP available in the budget, with one instance
potentially being misclassified as IS. Slowdown is reported
as a percentage of each job type’s time to completion when
there is no power cap. Error bars show standard deviation
over 3 back-to-back trials.

Job Type
mmm sp.D.x 1 sp.D.x=ep.D.x

Performance Agnostic

Performance Aware

Over-estimate sp

.) L —
Over-estimate sp, with feedback ————

0.0% 2.0% 4.0% 6.0%
Slowdown

Figure 8: Job slowdown when two instances of SP (low power
sensitivity) are co-scheduled under a shared power budget
with 75% of TDP available in the budget, with one instance
potentially being misclassified as EP. Slowdown is reported
as a percentage of each job type’s time to completion when
there is no power cap. Error bars show standard deviation
over 6 back-to-back trials.

Figs. 7 and 8 both show that performance-agnostic solutions
perform similar to the precharacterized power budgeter when all
scheduled jobs have similar power-performance properties. Since
the scheduled job types have the same power-performance trade-
offs, both solutions make the same decisions. In Fig. 7, we see
increased slowdown when a high-sensitivity job type is misclassi-
fied. By misclassifying one of the low-sensitivity jobs in Fig. 8, we
see a small slowdown for its co-scheduled job. In both cases, we are
able to recover some of the lost performance by communicating
information about the unexpected slowdown from the job tier to
the cluster tier’s power budgeter.

6.3 Performance Under Time-Varying Power
Caps

In this section, we evaluate job performance under a time-varying

power cap through a 1-hour job schedule. The power target changes

once every 4 seconds, staying within the range of 2.3 kW to 4.5 kW,

as shown in Fig. 9. Our power objective is not just to stay less than

the power target, but to closely follow the power target.

An End-to-End HPC Framework for Dynamic Power Objectives

—-—==- Mean Target Power
—— Measured

Target

4.0

3.5

Power (kW)
1

3.0

2.5

0 500 1000 1500 2000 2500 3000 3500

Time (s)

Figure 9: Time-varying cluster power targets and measure-
ments using ANOR over an hour of job arrivals from 6 job
types. The y axis spans the cluster’s committed range of
power flexibility around the requested mean target power.

mmm Uniform mmm Characterized mmm Misclassified mmm Adjusted

Q.

©

o

5 15%

2

o

o

S 10%

v

>

c

2 5%

o

©

; I
o

V0%

mg.D.x ft.D.x bt.D.x lu.D.x sp.D.x cg.D.x
Job Type

Figure 10: Mean execution-time slowdown of job types un-
der a 1-hour schedule with time-varying cluster power caps.
Slowdown is shown as a percentage of each job type’s mean
execution under no power cap. Error bars indicate the 95%
confidence interval.

Fig. 10 shows the execution-time impact of different power cap-
ping techniques summarized across 6 job types arriving for 95%
node utilization as described in Section 5.3, using the scheduler
described in Section 4.4.2. These results show that the slowdown of
jobs with greater power sensitivity (BT, LU, and FT) under a uniform
power distribution policy is greater on average than the slowdown
of other co-scheduled jobs. The performance-aware (characterized)
balancer improves the worst-job slowdown by steering power to-
ward power-sensitive jobs. As a result, the three most-sensitive job
types achieve less slowdown on average, reducing the slowest job
type from 11.6% slowdown to 8.0% slowdown.

The misclassified runs represent the case where BT (high power
sensitivity) is misclassified as IS (low power sensitivity). This slows
down BT on average, but performance feedback from the job tier
enables the adjusted policy to recover much of the lost performance.

1809

SC-W 2023, November 12-17, 2023, Denver, CO, USA

90t Percentile QoS Degradation
[9,]

0% +7.5% +15% +22.5% +30%
99% of Performance Within

Figure 11: QoS degradation under different levels of perfor-
mance variation. Each line presents the mean degradation
over 10 trials. The shaded region indicates the 90% confidence
interval. The horizontal dashed line indicates the QoS target
of all applications.

Measured power is under 24% error at least 90% of the time in the
worst case (misclassified, without job feedback), within our error
constraint. All other cases are under 17% error.

6.4 Impact of Performance Variation on QoS
Degradation

We evaluate our policy under different levels of performance vari-
ation to observe the impact of variation on the QoS degradation
of jobs. To that end, we generate performance coefficients from
a normal distribution with a mean of 1, and adjust the standard
deviation to change the level of performance variation. The per-
formance coefficients are randomly generated for each of 1000
compute nodes at the start of each of 10 simulations per variation
level. Each simulation uses a different random seed that impacts
performance coefficients and job arrival times of 6 job types at 75%
utilization. All jobs are scaled to use 25x as many nodes as the job
types used in the 16-node cluster experiments. Under each level of
performance variation, our method’s power tracking error is within
our constraint for less than 30% error 90% of the time.

Fig. 11 shows the 9oth percentile of QoS degradation across
performance variation levels. The results indicate that, across all
applications, a greater degree of performance variation causes more
QoS degradation. However, since different applications have vary-
ing levels of sensitivity to performance variation, some of them
more rapidly degrade beyond the QoS threshold of 5. While we
are able to avoid capping power on jobs that application feedback
indicates are at risk of QoS degradation, we found that this does not
improve QoS significantly because the AQA policy already lightly
caps power on jobs in this schedule, primarily reducing power by
refraining from scheduling jobs to idle nodes. Future work may
place more emphasis on node power capping, which can be adjusted
after jobs are already scheduled. Such a decision reduces the range
of power control that AQA can offer for demand response, but may
be a reasonable trade-off under tight QoS constraints.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

7 DISCUSSION

In this work, we evaluate the cluster-power-tracking accuracy and
job QoS impacts of a multi-layered power capping method, and we
investigate the opportunities and challenges that a multi-layered
solution introduces to a demand response power management sce-
nario. In this section, we discuss alternative scopes of power man-
agement and outline some practical challenges we encountered.

7.1 Scope of Power Management

We limit our investigation to CPU power monitoring and control
to simplify the initial implementation. The same framework can be
used with wider scope through modeling or additional monitoring.
For example, the job tier can model or directly monitor more devices
and components in the nodes. Alternatively, the cluster tier can
apply a model of its total power demand as a function of the job
tier’s power and other state within the cluster (e.g., environmental
conditions). A data center facility may use its own models and
metering infrastructure directly for higher-level power monitoring.

7.2 Practical Implementation Challenges

We encountered practical challenges while implementing and evalu-
ating a performance-aware power-capping system. Specifically, we
encountered challenges with asynchronous management of sam-
ples and summarized metrics across power management tiers, and
challenges transitioning from ideal and static cluster scenarios to
end-to-end scheduled scenarios.

For asynchronous sample management, we initially needed to
gather many samples from the job runtime to consistently map
power caps to job performance metrics. To tackle this issue, we
introduced timestamps so that different tiers of the power manage-
ment system can be mapped to each other when the tiers are not
executing their control loops at the same rate.

We initially observed unexpected performance improvements in
all power management policies when we moved from ideal power-
capping scenarios to real-world experiments. Ultimately, those im-
provements ended up being due to two job types (IS and EP) that
have very short execution times (less than half a minute). The time
spent setting up and tearing down those short jobs (both in the
batch system and in the job itself) represents a major share of the
total time those jobs hold compute node resources in the batch
submission system. During that time, the compute node’s power
consumption is low, which enables all policies to reallocate extra
slack power to all other active jobs for most of the time the short
job is active. We omit those job types from schedules in our final
evaluation since they hide the slowdown that would be expected
in a system with mostly minutes-or-longer jobs.

8 FUTURE WORK

Multi-tier power management is rich with opportunities for future
work to investigate scalability challenges, harnessing additional
control levels within tiers, and additional application usage patterns.

Multi-tier power management may introduce scalability chal-
lenges when there are many concurrent jobs. Our example imple-
mentation limits the depth of control needed in the widely-scoped
cluster tier by delegating application-aware and node-aware pro-
cessing to the job tier. The cluster tier needs to know the coefficients

1810

Wilson et al.

of the job performance model to distribute power effectively, and it
needs to issue new power caps to all jobs whenever the distribution
shifts. Future work may investigate methods to reduce the required
communication or to localize it within additional control hierarchy.

In addition to investigating scalability within a cluster, there are
opportunities to scale beyond a single cluster. For example, a facil-
ity with multiple clusters may wish to coordinate power demand
across those clusters. Our proposed framework may be extended by
treating the facility as a power provider to each member of the clus-
ter tier. Coordinated power management across clusters could be
particularly useful for facilities that are bringing up next-generation
clusters while previous-generation clusters are still operating under
a shared power infrastructure that may not have the capacity to
use both clusters at peak power demand concurrently.

Modern HPC systems have software controls for more than
just CPU power (e.g., accelerator power caps, node power caps,
frequency and voltage controls). Current works already investigate
methods to combine CPU power controls with other power controls
in a node. Additional work may consider harnessing more control
levels within power management tiers. For example, the cluster tier
may distribute node power caps across jobs based on coarse job
characterization models, but the job tier may locally explore power
and performance trade-offs across resources within jobs.

Our example multi-tiered power management implementation
utilizes a single characterization per job, informed by manually-
inserted instrumentation. However, some jobs may consist of mul-
tiple power-sensitivity profiles through the job’s lifecycle, or may
even contain multiple concurrent profiles executing at a time (e.g.,
for simulations running alongside in-situ data analyzers). Future
work may consider how to handle job phase changes across the man-
agement hierarchy, and how to handle multiple distinct phases con-
currently within a job. Such efforts will also benefit from reusable
instrumentation (e.g., by annotating commonly-used software li-
braries) or automatic epoch detection (e.g., by identifying periodic
usage of system resources or software interfaces).

9 CONCLUSION

In this work, we motivate the need for feedback-driven multi-tiered
cluster power management stack. We present ANOR, which couples
power management frameworks at cluster level and job level in
order to achieve system-wide power and performance constraints.
Our analysis reveals trends where job performance awareness is
expected to improve system performance under a cluster power
cap versus a performance-agnostic policy, but that performance
degrades when pre-characterization data is missing or inaccurate.
We demonstrate a practical implementation of a QoS-aware data
center demand response policy through the ANOR framework,
successfully tracking power in many cases, and identifying prac-
tical challenges for others. Furthermore, we show a performance
variation analysis in 1000-node cluster simulations.

ACKNOWLEDGMENTS

Development of the GEOPM software package has been partially
funded through contract B609815 with Argonne National Labora-
tory. Some of this work was partially funded by the Hariri Institute
and the Institute for Global Sustainability at Boston University.

An End-to-End HPC Framework for Dynamic Power Objectives

REFERENCES

[1] Eishi Arima, A. Isaias Comprés, and Martin Schulz. 2022. On the Conver-

~
[

[9

[11

[12

(13

[14

(15

(16

[17

[18

=

]

]

gence of Malleability and the HPC PowerStack: Exploiting Dynamism in Over-
Provisioned and Power-Constrained HPC Systems. In High Performance Comput-
ing. ISC High Performance 2022 International Workshops, Hartwig Anzt, Amanda
Bienz, Piotr Luszczek, and Marc Baboulin (Eds.). Springer International Publish-
ing, Cham, 206-217.

Christopher Cantalupo, Jonathan Eastep, Siddhartha Jana, Masaaki Kondo,
Matthias Maiterth, Aniruddha Marathe, Tapasya Patki, Barry Rountree, Ryuichi
Sakamoto, Martin Schulz, and Carsten Trinitis. 2018. A Strawman for an HPC
PowerStack. (8 2018). https://doi.org/10.2172/1466153

Hao Chen, Yijia Zhang, Michael C. Caramanis, and Ayse K. Coskun. 2019. Ener-
gyQARE: QoS-Aware Data Center Participation in Smart Grid Regulation Service
Reserve Provision. ACM Trans. Model. Perform. Eval. Comput. Syst. 4, 1, Article 2
(jan 2019), 31 pages. https://doi.org/10.1145/3243172

Shuang Chen, Angela Jin, Christina Delimitrou, and José F. Martinez. 2022. Re-
Tail: Opting for Learning Simplicity to Enable QoS-Aware Power Management
in the Cloud. In 2022 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). IEEE, Seoul, Korea, 155-168. https://doi.org/10.1109/
HPCAS53966.2022.00020

Anders Clausen, Gregory Koenig, Sonja Klingert, Girish Ghatikar, Peter M.
Schwartz, and Natalie Bates. 2019. An Analysis of Contracts and Relationships
between Supercomputing Centers and Electricity Service Providers. In Workshop
Proceedings of the 48th International Conference on Parallel Processing (Kyoto,
Japan) (ICPP Workshops ’19). Association for Computing Machinery, New York,
NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3339186.3339209

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014), 127-144.

Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Brad Geltz, Federico
Ardanaz, Asma Al-Rawi, Kelly Livingston, Fuat Keceli, Matthias Maiterth, and
Siddhartha Jana. 2017. Global Extensible Open Power Manager: A Vehicle for
HPC Community Collaboration on Co-Designed Energy Management Solutions.
In High Performance Computing, Julian M. Kunkel, Rio Yokota, Pavan Balaji, and
David Keyes (Eds.). Springer International Publishing, Cham, 394-412.

Daniel A. Ellsworth, Allen D. Malony, Barry Rountree, and Martin Schulz. 2015.
POW: System-wide dynamic reallocation of limited power in HPC. HPDC 2015 -
Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing (2015), 145-148. https://doi.org/10.1145/2749246.2749277
Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. 2018.
PShifter: Feedback-Based Dynamic Power Shifting within HPC Jobs for Perfor-
mance. In Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing (Tempe, Arizona) (HPDC ’18). Association for
Computing Machinery, New York, NY, USA, 106-117. https://doi.org/10.1145/
3208040.3208047

IEA 2022. Demand Response. IEA. Retrieved March 14, 2023 from https://www.
iea.org/reports/demand-response

Ali Jahanshahi, Nanpeng Yu, and Daniel Wong. 2022. PowerMorph: QoS-aware
server power reshaping for data center regulation service. ACM Transactions on
Architecture and Code Optimization (TACO) 19, 3 (2022), 1-27.

Bran Knowles. 2021. ACM TechBrief: Computing and Climate Change. ACM
Technology Policy Council (Nov. 2021).

Jacklin Kwan. 2022. Climate change threatens supercomputers. Science (New
York, NY) 378, 6616 (2022), 124-124. https://www.science.org/doi/10.1126/science.
adf2882

Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. 2012. Renewable and Cooling Aware
Workload Management for Sustainable Data Centers, In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measure-
ment and Modeling of Computer Systems. SIGMETRICS Perform. Eval. Rev. 40, 1,
175-186. https://doi.org/10.1145/2318857.2254779

Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun Chen.
2013. Data center demand response: Avoiding the coincident peak via workload
shifting and local generation. In Proceedings of the ACM SIGMETRICS/international
conference on Measurement and modeling of computer systems. Elsevier, New York,
NY, USA, 341-342.

nasa.gov. 2022. NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/
npb.html.

Tirthak Patel, Adam Wagenhauser, Christopher Eibel, Timo Honig, Thomas
Zeiser, and Devesh Tiwari. 2020. What does power consumption behavior of
hpc jobs reveal?: Demystifying, quantifying, and predicting power consumption
characteristics. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, IEEE, New Orleans, LA, USA, 799-809.

Tapasya Patki, David K. Lowenthal, Anjana Sasidharan, Matthias Maiterth,
Barry L. Rountree, Martin Schulz, and Bronis R. de Supinski. 2015. Practi-
cal Resource Management in Power-Constrained, High Performance Comput-
ing. In Proceedings of the 24th International Symposium on High-Performance

1811

[19

[20

[21

[22
[23

[24

[25

[26

[28

[29

[30

]

]

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Parallel and Distributed Computing (Portland, Oregon, USA) (HPDC ’15). As-
sociation for Computing Machinery, New York, NY, USA, 121-132. https:
//doi.org/10.1145/2749246.2749262

Issa Saba, Eishi Arima, Dai Liu, and Martin Schulz. 2022. Orchestrated Co-
scheduling, Resource Partitioning, and Power Capping on CPU-GPU Hetero-
geneous Systems via Machine Learning. In Architecture of Computing Systems,
Martin Schulz, Carsten Trinitis, Nikela Papadopoulou, and Thilo Pionteck (Eds.).
Springer International Publishing, Cham, 51-67.

Théo Saillant, Jean-Christophe Weill, and Mathilde Mougeot. 2020. Predicting
job power consumption based on rjms submission data in hpc systems. In High
Performance Computing: 35th International Conference, ISC High Performance 2020,
Frankfurt/Main, Germany, June 22-25, 2020, Proceedings 35. Springer, Springer,
Cham, Frankfurt/Main, Germany, 63-82.

Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren
De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher Mal-
one, Jimmy Clidaras, et al. 2020. Data center power oversubscription with a
medium voltage power plane and priority-aware capping. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. Association for Computing Machinery, Lau-
sanne, Switzerland, 497-511.

Slurm Power Management Guide 2018. Slurm Power Management Guide. https:
//slurm.schedmd.com/power_mgmt.html. [Online; accessed 2022-06-13].
TOP500 List - June 2023 2023. TOP500 List - June 2023. https://www.top500.0rg/
lists/top500/list/2023/06/.

Daniel C. Wilson, Asma H. Al-rawi, Lowren H. Lawson, Siddhartha Jana, Federico
Ardanaz, Jonathan M. Eastep, and Ayse K. Coskun. 2022. Guiding Hardware-
Driven Turbo with Application Performance Awareness. In 2022 IEEE 13th In-
ternational Green and Sustainable Computing Conference (IGSC). 1-8. https:
//doi.org/10.1109/IGSC55832.2022.9969356

Daniel C. Wilson, Siddhartha Jana, Aniruddha Marathe, Stephanie Brink, Christo-
pher M. Cantalupo, Diana R. Guttman, Brad Geltz, Lowren H. Lawson, Asma H.
Al-rawi, Ali Mohammad, Fuat Keceli, Federico Ardanaz, Jonathan M. Eastep, and
Ayse K. Coskun. 2021. Introducing Application Awareness Into a Unified Power
Management Stack. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 320-329. https://doi.org/10.1109/IPDPS49936.2021.00040
Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, Sanjeev
Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dynamo: Facebook’s data
center-wide power management system. ACM SIGARCH Computer Architecture
News 44, 3 (2016), 469-480.

Xingfu Wu, Aniruddha Marathe, Siddhartha Jana, Ondrej Vysocky, Jophin John,
Andrea Bartolini, Lubomir Riha, Michael Gerndt, Valerie Taylor, and Sridutt
Bhalachandra. 2020. Toward an End-to-End Auto-tuning Framework in HPC
PowerStack. In 2020 IEEE International Conference on Cluster Computing (CLUS-
TER). 473-483. https://doi.org/10.1109/CLUSTER49012.2020.00068

Yijia Zhang, Daniel C. Wilson, Ioannis Ch. Paschalidis, and Ayse K. Coskun. 2021.
A Data Center Demand Response Policy for Real-World Workload Scenarios
in HPC. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, Grenoble, France, 282-287. https://doi.org/10.23919/DATE51398.
2021.9474075

Yijia Zhang, Daniel Curtis Wilson, Ioannis Ch. Paschalidis, and Ayse K. Coskun.
2022. HPC Data Center Participation in Demand Response: An Adaptive Policy
With QoS Assurance. IEEE Transactions on Sustainable Computing 7, 1 (2022),
157-171. https://doi.org/10.1109/TSUSC.2021.3077254

Jiajia Zheng, Andrew A Chien, and Sangwon Suh. 2020. Mitigating curtailment
and carbon emissions through load migration between data centers. Joule 4, 10
(2020), 2208-2222.

https://doi.org/10.2172/1466153
https://doi.org/10.1145/3243172
https://doi.org/10.1109/HPCA53966.2022.00020
https://doi.org/10.1109/HPCA53966.2022.00020
https://doi.org/10.1145/3339186.3339209
https://doi.org/10.1145/2749246.2749277
https://doi.org/10.1145/3208040.3208047
https://doi.org/10.1145/3208040.3208047
https://www.iea.org/reports/demand-response
https://www.iea.org/reports/demand-response
https://www.science.org/doi/10.1126/science.adf2882
https://www.science.org/doi/10.1126/science.adf2882
https://doi.org/10.1145/2318857.2254779
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://doi.org/10.1145/2749246.2749262
https://doi.org/10.1145/2749246.2749262
https://slurm.schedmd.com/power_mgmt.html
https://slurm.schedmd.com/power_mgmt.html
https://www.top500.org/lists/top500/list/2023/06/
https://www.top500.org/lists/top500/list/2023/06/
https://doi.org/10.1109/IGSC55832.2022.9969356
https://doi.org/10.1109/IGSC55832.2022.9969356
https://doi.org/10.1109/IPDPS49936.2021.00040
https://doi.org/10.1109/CLUSTER49012.2020.00068
https://doi.org/10.23919/DATE51398.2021.9474075
https://doi.org/10.23919/DATE51398.2021.9474075
https://doi.org/10.1109/TSUSC.2021.3077254

	Abstract
	1 Introduction
	2 Related Work
	3 A Framework for Multi-Tiered Power Management: ANOR
	4 Implementing ANOR for Demand Response
	4.1 Cluster Power Budgeter
	4.2 Power Modeler
	4.3 GEOPM Agent
	4.4 Cluster-Tier Policies to Track Power Targets

	5 Experimental Methodology
	5.1 Benchmarks
	5.2 QoS Constraint Selection
	5.3 Job Schedule Selection
	5.4 Power and Performance Management
	5.5 Test Platform
	5.6 Tabular Cluster Simulator

	6 Results
	6.1 Opportunities to partially precharacterize cluster job types
	6.2 Performance Under Shared Power Caps on Real Hardware
	6.3 Performance Under Time-Varying Power Caps
	6.4 Impact of Performance Variation on QoS Degradation

	7 Discussion
	7.1 Scope of Power Management
	7.2 Practical Implementation Challenges

	8 Future Work
	9 Conclusion
	Acknowledgments
	References

