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Abstract— Dexterous grasping is a critical ability for
humanoid robots to interact efficiently with the physical
environment. Human beings achieve dexterous grasping
through a series of high level cognitive processes including
target perception, object recognition, feature estimation, and
intuitive reasoning. These processes cooperatively contribute
to object understanding and the generation of appropriate
grasping strategies. However, the current research focuses on
establishing large object datasets to estimate object features
and employing learning and planning approaches for task
deployment, the exploration of the cognitive aspect of dexterous
grasping is limited, especially the role of intuition. This paper
addresses this research gap by investigating the cognitive
processes in dexterous grasping and presents a cognition
based grasping system. The proposed system integrates various
cognitive processes to enable dexterous grasping. It gathers
object information and estimates missing details using a
large language model with common sense. Based on the
complemented information, the system learns suitable grasp
strategies and intuitively guides their execution. Real-world
experiments with a anthropomorphic robot hand demonstrated
the performance of the proposed system. By leveraging cognitive
processes and utilizing the capabilities of a large language
model, The proposed method enhances object understanding,
generates effective grasping strategies, and provides guidance
for the execution of the grasping strategies.

I. INTRODUCTION

In recent years, the need for humanoid robots is
consistently growing in our daily lives such as home service,
education, medication, and transportation [1]-[4]. The robots
are required to interact with real-world environments with
efficiency and dexterity, making dexterous manipulation the
most challenging problem [5]-[7]. Dexterous grasping, as
the initial step of dexterous manipulation, mainly relies on a
comprehensive understanding and precise measurement of
the physical characteristics of the target object, including
dimensions, material, rigidity, texture, fragility, and shape,
which influence grasping strategies significantly [8], [9].
Although many methods have been developed to measure the
physical features of objects [10], [11], humanoid robots often
struggle to gather complete information due to factors such
as lighting conditions, obstacles, and varying viewpoints.
Consequently, it is therefore beneficial to research an
approach to plan dexterous grasping without complete or
accurate sensing of object characteristics.

To address this problem, knowledge datasets of objects
were established either by collecting the features manually
or by mining the data from the internet [12]-[14]. However,
building such large datasets requires enormous resources
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Fig. 1. Framework of the cognition based grasping system.

and can be impractical. Some research try to bypass the
problem by learning directly from human demonstrations
[14]. However, human grasping also needs common sense
to estimate contextual information and decide grasping
strategies. Inspired by human grasping, we address this
problem by employing large language models (LLM). LLMs,
such as GPT-3, BERT, XLNet, and T5, are trained with
extensive text data to learn patterns, relationships, and
context. They possess a basic understanding of objects
and some level of common sense, which are leveraged to
complement the missing information about the target object
[15].

Human grasping is a complex process. Dexterity in
grasping and manipulation is enabled by the redundant
DoF of multi-fingered hands. There may be many possible
strategies to grasp an object, and the optimal one depends
on the affordances of the target object. Previous works
have successfully mapped object features to proper grasp
strategies [16], [17], yet the deployment of these strategies
remains a challenging task. The current research employs
learning or planning approaches to address this problem, but
these methods either require a large amount of data or a
comprehensive understanding of the grasping environment.
In this work, we further explore the intuitive reasoning
abilities of the large language model to tackle this problem
efficiently.

In this paper, we propose a cognition based grasping
system, as shown in Fig. 1, to guide humanoid robots in
accomplishing dexterous grasping of daily objects using
incomplete features. The system consists of five models:
Object Perception (OP), Feature Complementation (FC),
Grasp Selection (GS), Task Planning (TP), and High Level
Robot Control Library (HLRC). The workflow of the
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Fig. 2. The workflow of the proposed system. In the figure, OP stands for Object Perception, FC represents Feature Complementation, GS denotes Grasp
Selection, TP is the abbreviation for Task Planning, and HLRC is short for High Level Robot Control Library.

system is illustrated in Figure 2. The Object Perception
model perceives the object and gathers useful information
about both the object and the environment. The Feature
Complementation model estimates and complements the
features collected in the Object Perception model. The
Grasp Selection model maps the complemented features
to appropriate grasp strategies. The Task Planning model
generates functional code to guide the robot in executing
the task, and the High Level Robot Control Library provides
functions to adapt to the code and control the robot. The
contributions of this research are twofold:

o Design and implement a cognition based grasping
system that can tackle grasping task dexterously using
incomplete information of the target object.

¢ Conducted real-world experiments using a humanoid
robot hand to demonstrate the performance of the
proposed system.

II. COGNITION BASED GRASPING SYSTEM

Dexterous grasping in unstructured environments could be
challenging due to the lack of environmental information
and the ability for intuitive reasoning and planning. We,
therefore, developed a cognition based grasping system to
solve this problem. This system complements perceived
object features, maps the features to grasp strategies, and
guides and performs the grasping task using common sense
and intuitive reasoning. In this section, we provide a detailed
explanation of the proposed system.

A. Object Perception

The Object Perception model utilizes the MagicHand
platform to acquire object features, including object name,
mass, material, and dimensions, and information about the
environment such as the position and orientation of the

object. The MagicHand platform integrates multiple sensors,
including RGB-D cameras, Force Sensing Resistors (FSR),
and a SCiO sensor, to enhance perception abilities. RGB-
D cameras are used for object recognition, 3D modeling,
and determination of object coordinates and orientation. FSR
sensors are integrated into the tips of a five-digit robotic hand
to enable the detection of contact force. The SCiO sensor
collects the near-infrared spectrum of the object for material
recognition [18]. An electrical scale is also employed in the
model to measure the mass of the object. The dimensions of
the target are derived from its 3D model. Further details of
the MagicHand platform can be found in our previous work
[19].

B. Feature Complementation

Although certain information about the object and the
environment can be collected by the Object Perception
model, perceiving features such as fragility, rigidity, shape,
and textures can still be challenging. Traditional methods
for acquiring these attributes, often involve costly chemistry
or physical analysis and are not suitable for real-time
dexterous grasping. It is straightforward to estimate these
attributes based on the recognized features using common
sense, similar to human reasoning. We, therefore, developed
a Feature Complementation model by leveraging a large
language model which has a basic understanding of common
objects and common sense.

Even though large language models possess knowledge
and proficiency in common-sense and logical reasoning,
they demonstrate limitations in problem-solving [20]. LLMs
are sensitive to input phrasing and often output misleading
and overgeneralized knowledge. To address this issue, we
precisely define and categorize each feature and build
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prompts to prompt the LLM to generate consistent and
unambiguous estimations of missing object features.

1) Feature Definition and Categorization: We provide
clear definitions and categorizations for physical
characteristics including fragility, rigidity, shape, and
texture. For each feature, we explored different definitions
of that feature from various dictionaries, online resources,
and research papers. Then, we input each definition into the
LLM and observed the output feature name. The definition
that yields the most consistent and accurate results was
selected as the definition for that particular feature.

While estimating object features, humans often provide a
binary response, such as “smooth” or “tough” for texture
and “rigid” or “soft” for rigidity. Thus, we emulate this
strategy to categorize features including fragility, rigidity,
and texture. However, classifying the shape of an object
into binary classes is not possible. Instead, we categorize the
shape with the most basic shapes in geometry. In addition, a
complex shape can be treated as a combination of these basic
shapes. The definitions and categorizations for each feature
are shown in Table I.

TABLE I
FEATURE DEFINITIONS AND CATEGORIZATIONS.

Features Definition Categorizations
Fragility Tendency to break, shatter, {fragile, sturdy}
or deform when subjected to
external forces or stress.
Rigidity Ability to resist deformation {soft, rigid}
or bending and retain its
shape and structural integrity
when external forces are
applied.
Shape The overall form and {sphere, cube, cone,
structure of an object. cylinder, cuboid, disk}
Texture physical characteristics and {smooth, rough}

qualities, such as roughness
or smoothness, of the outer
layer of an object

These definitions and categorizations reduce ambiguity
and enhance the LLM’s comprehension of those features,
thus achieving a more accurate understanding of the
attributes.

2) Prompt Implementation: The accuracy and the
consistency of LLMs highly depend on the quality of the
descriptions of the problem such as phrasing, relevant details,
context, and specific requirements or constraints. To have
LLMs generating more close output to the desired one, we
formulated various prompts to enhance problem descriptions.
The prompt yields the most precise and consistent result is
shown in Table II. An example input “calculator 15.4 7.9 1.5
116 plastic” yields the result “{"shape": "cuboid", "texture":
"smooth", "rigidity": "rigid", "fragility", "sturdy"}”.

TABLE 11
PROMPT FOR FEATURE COMPLEMENTATION.

Imagine you are helping me to estimate the physical features of an
object based on some known features of that object.

I will give you some features of an object, and you need to
complement the features with common sense. The features that
need to be complemented are Fragility, Shape, Texture, and
Rigidity.

Shape is defined as the overall form and structure of an object and
is categorized as {sphere, cube, cylinder, cone, cuboid, disk}.
Texture is defined as the physical characteristics and qualities, such
as roughness or smoothness, of the outer layer of an object, and
categorized as {smooth, rough}.

Rigidity is defined as an object’s ability to resist deformation or
bending and retain its shape and structural integrity when external
forces are applied,

and categorized as {soft, rigid}.

Fragility is defined as an object’s tendency to break, shatter, or
deform when subjected to external forces or stress, and categorized
as {fragile, sturdy}.

The output should be in JSON format. Only output Fragility,
Shape, Texture, and Rigidity. Do not explain your answer.

C. Grasp Selection

The grasp of an anthropomorphic robotic hand defines a
set of angles of the finger joints, and the magnitude of the
contact forces applied by the fingers and palm to an object
at the contact points. The objective here is to emulate human
grasping by mapping object features f complemented from
the Feature Complementation model onto grasp prioritization
H

ey

where (a, b, ¢) are dimensions along orthogonal directions
(a2b 2 c¢)and (m, s, mt, r, t, fr) are the mass, shape,
material type, rigidity, texture and fragility of the object.

1) Grasp Definition: The complemented object features
f may be inaccurate or even erroneous due to rough
measurement and estimation. To enable imprecise measure
of object dimensions and position, and improving system
robustness and adaptivity, We therefore implement grasp
strategies in terms of grasp topology and grasp dimension.
Grasp scales are determined by the orthogonal dimensions
a, b, c around which the grasp closure occurs, as illustrated in
Fig. 3. This labeling convention is commonly adopted in the
literature [21], facilitating the computation of hand closure in
forward and inverse kinematics. Grasp dimension d includes
all feasible dimensions that can be utilized to grasp the object
and

f: [a7b7cﬂm757mt7’r7t’f,r] HH

d € {a,b,c,ab,be, ac, abc} 2)

where ab indicates the object can be grasped either around
dimension a or around dimension b.
The grasp topology h is one of the grasp types drawn from

the set of human grasp primitives
h € {wt,wp, wh,we, rp,rc} 3)

where grasp types wt, wp, wh,we,rp and re, as shown in
Figure 4, are high level grasp topology adopted from the
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Fig. 3. Tllustrations of grasp dimension.

grasp taxonomy presented by Cutkosky [22]. This grasp
definition can be easily applied to other type of hand-
effectors by restricting the number of fingers used.

We developed a grasp classification system by combining
the grasp type and dimension to overcome the inconsistencies
in grasp dimensions for certain object-grasp associations.
This taxonomy ensures that each grasp topology is associated
with proper dimensions and sizes. The extended grasp
taxonomy is defined as

distribution
L(P(HI), P(HI)) = Y 3 PUH; 1) log P(E 1)
C ©)

where ¢ € [1, N] with N as the number of observations and
7 is the index of grasp topology.
The grasp with the maximum probability is chosen by

H;,oy = arg max P(H|f) @
J

the predicted grasp configuration H max contains information
regarding the grasp type and object dimension along which
the grasp can be executed, so H*0e can be easily
decomposed into grasp type h* and grasp dimension d*,
which can be used subsequently to calculate robot hand
configuration. The optimal grasp type is chosen as the one
corresponding to the highest probability from the predicted

probability distribution.
Because the model predicts probability distributions, we
defined two scoring metrics for training and evaluation of the
model. The predicted grasp choice is scored as a success if

H € {rc.ab,rc.be,p.b, rp.c, we.abe, wh.be, wh.c, wp.be, wt.c} the same grasp type was chosen at least once in the evaluation

“)
Further details regarding this methodology can be found in
our previous work [17].

2) Learning Grasping Strategies from Object Features:
Most studies attempting to understand and codify human
grasps have concluded that human grasp choice is a function
of object affordances (geometry, texture etc.) and the task
requirements (forces, mobility, etc.) [8], [22], [23]. Attempts
to assign one most suitable grasp for a given object-task
combination have not been conclusive. The major problem
is that even for the same specific object-task combination,
there are multiple grasp choices possible, which appears to
be arbitrary and not amenable for deterministic modeling.
Human grasp choices nevertheless do tend to cluster when
studied over a large set of objects. Both the clustering effect
and the confusion between grasp types can be seen in the data
presented by [21], which shows that a single object could be
held in multiple different grasp types in the course of picking
or handling. There is no one-to-one mapping of one object
to one grasp type.

The problem of grasp selection is therefore not selecting
one ideal grasp type but one of the many feasible grasp types
in human grasp taxonomy for the given context. To that end,
we plan to learn the mapping from features f into grasp
topology distributions

f— P(H|f) = [P(rc.ablf),--, P(wt.c[f)]  (5)

We designed a neural network to model the probability
distribution over all grasp classes P(H|f), as illustrated in
Fig. 5. The network is designed with cross-entropy loss and
optimized using stochastic gradient descent algorithms. The
loss function is defined by cross entropy that measures the
deviation between the ground truth and predicted probability

dataset. The feasibility of the grasp is scored as

R 1 P(Hpay) >0
F(P(H), P(H)) = {0 Pgﬁ ;>O ®)
where . R
Hyax = arg max P(H;|f) 9)
J

is the grasp topology with the maximal probability, and H
is defined in (4). The feasibility score Fj is representative
of the ability of the algorithm to pick a feasible grasp for a
given object. The match score metric F),, is defined as

Fo(P(H), P(H)) = {1 P(Hmax) = P(Hmax)

0 P(fye) £ P(Hue)

This match score is representative of the ability of algorithm
to predict the most frequently applied human grasp as the
grasp with the highest probability for a given object. In other
words, F}, is akin to the accuracy. This metric is much more
stringent and therefore we can expect the match score F,,
to be always lower than feasibility score F;

F,(P(H),P(H)) < F,(P(H),P(H)) (1D

We used the feasibility score as the primary scoring metric,
for the objective is to find one feasible grasp that can be
successfully executed by a robot.

D. Task Planing

Traditional grasp deployment methods, relying
on planning or learning approaches, require a deep
understanding of the environment or extensive data for
training which are not resource-efficient and sometimes
impossible to achieve. In this section, we introduce a
LLM-based Task Planing model, which leverages LLM’s
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abilities of common sense and reasoning abilities, to deploy
the learned grasp strategies with efficiency and flexibility.

Python

# Step 1: Decide the most secure and stable grasp direction from the sides
grasp_direction = 'side’

# Step 2: Rotate hand and approach the object based on the selected
direction

rotate_hand(grasp_direction)

approach_object(grasp_direction)

# Step 3: Move to the object

object_position = get_object_position(grasp_direction)

target_position = [ object_position[0], object_position[1],
object_position[2]]

move_hand(target_position)

# Step 4: Grasp the object

grasp_object()

# Step 5: Pick up the object for 10 cm

target_position[2] += 10 # Move 10 cm upward from the current position
move_hand(target_position)

Fig. 6. Generated grasping deployment plan.

To generate appropriate grasping plans, we devised
prompts that outline the task, elucidate the available
functions, provide a description of the environment, and
specify the goal. The model will analyze the given
information, decide to grasp the object from the top or from
the side, and generate a comprehensive and practical grasping
deployment plan based on the decision. To simplify the
problem, grasp pose is pre-adopted and the target object was
placed in a manner that its grasp dimension can be grasped
from the direction decided by the model. The final prompt,

TABLE III
PROMPT FOR TASK PLANING.

An object is placed on a table in front of the robot. The the width
of the palm is 11 cm. The max length of the grasp aperture is 12
cm. The height of the object is along the vertical direction, width
along horizontal direction, and the thickness along the
forward-backward direction. Your task is to grasp the object and
pick it up. To accomplish the task, you need to 1. decide which
direction (side or top) would provide the most secure and stable
grasp. 2. rotate hand and approach the object based on the selected
direction. 3. move to the object. 4. grasp the object. 5. pick up for
10 cm. The following functions are available for you:
rotate_hand(direction): take a string input, rotate the robotic hand so
that the hand can grasp the given direction
approach_object(direction): move to a safe distance based on the
grasp direction

get_object_position(direction): return the current coordinates and
orientation of the direction of the object.

move_hand([X,y,x]): move the hand to the given position [X,y,x]
grasp_object(): close the hand to grasp the object.

You need to learn the skill of picking up the object and holding
it.The object is a water bottle with dimension 21 X 7.5 X 7.5
corresponding the height, the width, and the thickness. Use your
common sense and reasoning skill to write python code to control
the robot to pick up this specific object. You are allowed to create
new functions using the available functions, but you are not allowed
to use any other hypothetical functions. Keep the solutions simple
and clear. Do not output code for each step. Output an overall code.
Additional points to consider when giving your answer:

1. Your responses should be informative, visual, logical and
actionable.

2. Your logic and reasoning should be rigorous, intelligent, and
defensible.

3. You can provide additional relevant details to respond thoroughly
and comprehensively to cover multiple aspects in depth.

shown in Table III, yields the grasping deployment code
in Figure 6. Note that the prompt is task and environment
specific. For different task and environment combinations,
the prompt needs to be adjusted accordingly.

E. High Level Robot Control Library

This High Level Robot Control Library (HLRC) is
implemented to adapt to the code generated from the Task
Planing model. HLRC is a versatile library developed,
utilizing API from OpenCV, Sawyer and ARI10 libraries,
and ROS Python libraries, to provide precise robot control
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in real-world robot test beds. The ‘“get_object_position”
function locates the object and return its current coordinates
and orientations in the environment through the MagicHand
system [24]. The “rotate_hand” function rotates the robot
hand so that the robot can grasp the object from either the left
side or the top. The “approach_object” function ensures the
object in the grip by calculating the relative position among
the palm, the fingers and the object. The “grasp_object”
function executes the grasping action until a specific contact
force threshold is reached.

III. EXPERIMENTS

Real-world experiments were conducted using an
anthropomorphic robotic hand to evaluate the overall
performance of the proposed cognition based grasping
system. We revised our previous object dataset in [13] to
test the accuracy of the Feature Complementation model
and to train and evaluate the Grasp Selection network.
The experiment results demonstrated the performance and
improved the overall understanding of the proposed system.

A. Experiment Setup

1) Testing Environment: The MagicHand platform, as
shown in Fig. 7, serves as the test bed for the proposed
system. The robot includes an AR10 robotic hand, a Rethink
Sawyer robot (with an in-arm camera), as well as an Intel
RealSense RGB-D camera, Force Sensing Resistors (FSR),
and an SCiO sensor installed on the wrist. The robotic
hand has limited force sensing through the FSR attached
to fingertips, so we focused on hand configurations and
planning and used the force sensors to examine contact
conditions.

~ RGB-D Camera
e

Fig. 7. MagicHand: Sawyer robotic arm with an AR10 robotic hand and
in-hand sensors.

2) Testing Dataset: To align with the categorization
strategy described in Section 2. B, we revise the Fragility,
Rigidity, Shape, and Texture features of the object dataset
[13]. The dataset was established by nine non-expert college
students who collected information from 100 everyday
objects and labeled each object with all applicable grasp
topologies. Object features, including name, dimensions,
mass, shape, texture, fragility, material, and rigidity, were
measured, estimated, and mapped with grasp topologies in
4. For each object, the label includes all applicable grasp

topologies and their corresponding frequency. A selection of
object samples is show in Figure 8.

Fig. 8.

Sample objects for experiments.

B. Object Feature Estimation

The efficiency of the Feature Complementation (FC)
model is evaluated with the revised object dataset. Perceived
information from the Feature Perception model, including
object name, dimension, and material, is enhanced and
complemented. The performance of the FC model is shown
in Figure 9.

100 Feature Prediction Accuracy
95
95
91
90
87
85
82
) .
75
Fragidity Rigidity Shape Texture

Fig. 9. Feature estimation accuracy of the Feature Complementation model.

In the figure, we can see that the model has a lower
accuracy in predicting shape and texture. This is due to
the limitation of the given information. Objects with the
same names and dimensions could have different shapes.
For example, a 7 x 7 x 2 plate could either be square-
shaped or disk-shaped. Additionally, differentiating cylinder
and cuboid based on the dimensions of the object can be
also challenging. By using diameter to describe the disk
and cylinder-shaped object, the accuracy for predicting shape
increased to 91%. The prediction of the texture faces the
same problem, name and material of the object are not
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Labled Grasp Probability Distributions Predicted Grasp Probability Distributions

Object rc.ab | rc.bc | rp.b rp.c |wc.abc| wh.bc [ wh.c | wp.bc| wt.c | rc.ab | rc.bc | rp.b rp.c |wc.abc| wh.bc | wh.c [ wp.bc| wt.c | FI [Fm
calculator 0.00 | 0.00 [ 0.56 | 0.22 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.22 0 0.22 | 0.41 0 0 0 0 0 037 1|1
water bottle 0.00 | 0.11 | 0.11 [ 0.22 | 0.00 | 0.56 | 0.00 | 0.00 | 0.00 0 0 0.32 | 0.25 0 0.43 0 0 0 1(1
wood cylinder 0.00 | 0.22 | 0.56 | 0.22 | 0.00 [ 0.00 [ 0.00 | 0.00 | 0.00 0 0.18 | 031 | 0.29 0 0.22 0 0 0 1(1
cardboard box 0.00 0.00 0.56 0.22 0.00 0.00 0.00 0.00 0.22 0 0 0.37 0.19 0 0 0.22 0 022 11]1
mini rubix cube 0.11 | 0.44 | 033 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 0.45 | 031 0 0 0 0 0 024 1|1
wood wedge 0.00 | 0.22 | 044 | 0.22 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.11 0 0.12 | 0.25 | 0.43 0 0 0 0 02 1o
wood disk 0.44 | 0.00 | 0.22 [ 0.22 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.11 | 0.34 0 026 | 04 0 0 0 0 0 1|0
tennis ball 0.11 0.11 0.22 0.11 0.44 0.00 0.00 0.00 0.00 0.2 0.25 0 0.25 0.3 0 0 0 0 1)1
wood piece 0.22 | 044 | 0.22 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.39 | 0.26 | 0.24 0 0 0 0 0 1(1
plastic cap 0.56 | 0.00 | 0.22 [ 0.11 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.11 | 0.15 0 0.25 0.2 0.2 0 0 0 02 1o
medicine dispenser| 0.00 | 0.00 | 0.67 [ 0.22 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 0 0 0.35 | 0.18 0 0 0.22 | 0.25 0 1(1
screw driver 0.00 0.00 0.33 0.11 0.00 0.00 0.00 0.56 0.00 0 0 0.17 0.29 0 0.16 0 0.38 0 111
balll 0.11 0.22 0.11 0.11 0.44 0.00 0.00 0.00 0.00 0.19 0.15 0.21 0 0.45 0 0 0 0 111
rubix cube 0.11 | 0.11 | 0.56 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.22 0.2 0.3 0.16 | 0.12 0 0 0 0 1(1
water bottle cap 0.56 | 0.00 | 0.33 | 0.11 [ 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.35 0 0.23 | 0.23 | 0.19 0 0 0 0 1(1
sanitizer bottle 0.00 | 0.00 | 0.56 [ 0.22 | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 0 0.25 0.4 0.1 0 0.25 0 0 0 1(1
wallet 0.11 0.00 0.44 0.22 0.00 0.00 0.00 0.00 0.22 0.25 0 0.35 0.24 0 0 0 0 016 1|1
ball2 0.11 | 0.22 | 0.11 | 0.11 | 0.44 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.21 | 0.24 0 0 0.55 0 0 0 0 1(1
toy car 0.00 | 0.00 | 0.56 [ 0.33 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 0 0 0.48 | 0.23 0 0.29 0 0 0 1(1
kitchen scale 0.00 | 0.00 | 0.00 [ 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 0 0 0.18 | 0.27 0 0 0 0 055111

Fig. 10. Sample grasping strategy determination: ground-truth vs. predicted grasping.

enough for deciding whether its surface is smooth or rough.
The surface of objects can vary in smoothness or roughness
not only based on the material but also due to the surface
structure. For instance, the surface of a metal cup can
be either smooth or rough based on the surface finish or
polishing.

C. Grasp Selection Network

We developed the neural-network model to learn grasping
strategies as proposed in Section 2. C, and optimized the
model in terms of cross-entropy. The input layer includes
nine nodes activated by ReLu function. The next four layers
are hidden layers which contains 27, 2°, 27 and 2°neurons
which are also activated by ReLu function. The output layers
has nine nodes activated by Sigmoid activation function.
The input of the model is the acquired object features,
and the output is the grasping strategies corresponding to
human preference and knowledge. The grasping strategies
were represented by normalized probability distributions.
The results of grasping strategy determination with scores
are reported and compared to the ground truth in Fig. 10.
The feasibility score F; of the model is 100%, which was
defined as the hit rate of the predicted grasp strategy in
all human preferred grasps. The experiment shows that the
model’s capability in picking feasible (human validated)
grasping. The match-score F},,, on the other hand, measures
the accuracy of the prediction considering only the most
preferred human grasping. The experiment demonstrated that
the max-match rate was around 85% for the test objects.
The objects with complemented features were also tested
by the network. The testing result shows a feasibility score
of 100% and a match-score of 83% which is similar to

the object with human-decided features, indicating the grasp
topology predicted by the grasp selection network based on
complemented features are comparable to those made by
human decision-makers.

D. Robotic Grasping

To further examine the performance of the proposed
system, we performed grasping experiments using the
MagicHand platform. Test objects were placed on the table
with a default initial orientation, and located and identified
by the Object Perception model. The perceived information
was then complemented by the Feature Complementation
model. The robot autonomously chose the grasp strategies
according to the completed object affordance. The success
of a grasp was determined by the stability of grasping after
brief maneuvers including grasping, lifting, and holding. A
grasping task was considered a success if the object stays
secure throughout the maneuvers.

We conducted ten grasping tasks on different objects
and the overall success rate of grasping was 80%. One
failure case involved the grasping of a large-sized metal
cup, where the model predicted the most preferred human
grasping strategy (wh) and grasp direction (side). However,
the hand failed to wrap the cup tightly and securely, leading
to the failure of the grasping task. This was attributed to
the limitations of hand dexterity and the usage of the pre-
defined grasp pose. The other failure case happened while
trying to grasp a small bottle cap. Even though the model
predicted the most preferred human grasp (rp), it decided
to grasp the object from the side, we terminated the task to
prevent potential collision between the hand and the table.

We designed a sequential system to emulate human
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decision-making processes. In such a system, errors from one
model could permeate or propagate to subsequent models.
However, in the experiments, the final grasp execution on
the robot was minimally affected by the errors generated
in each model. The primary reason could be that, while
human grasping is complex, it is also highly resilient
to external perturbations of contextual variables. When
modeling robot grasping using human grasp primitives, this
resilience behavior was emulated as well. For example, there
are multiple ways to grasp an object, so it is less likely
to choose a wrong grasp as we have seen from the results
of our Grasp Selection model. The other reason is that the
experiment objects were designed with the intent of handling
by five-fingered hands, so when there is a miscalculation,
e.g., grasp dimensions, the fingers conform to the object
shape and still result in a secure grasp.

IV. CONCLUSION

This paper has presented a cognition based grasping
system to applying a proper strategy to grasp an object
without complete sensing of object affordance. The
framework of the proposed system emulates the human
grasping process, including object affordance acquisition,
strategy determination, and grasping deployment, by
combining common sense, intuitive, reasoning, and
machine learning approach. The accuracy of the feature
complementation process are between 82% to 95%
depending on the feature. The grasp selection model
achieves a 100% feasibility score and an 85% match score
in predicting human grasping knowledge. Experiment on the
humanoid robot achieved 80% success rate, demonstrating
the practicality and efficiency of the proposed system in
dexterous grasping task in unfamiliar environments. In
summary, the experiments show that the proposed system is
efficient and suitable for real-world grasping applications.
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