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Abstract: Dispersal is a fundamental aspect of primates’ lives and influences both population and
community structuring, as well as species evolution. Primates disperse within an environmental
context, where both local and intervening environmental factors affect all phases of dispersal. To
date, research has primarily focused on how the intervening landscape influences primate dispersal,
with few assessing the effects of local habitat characteristics. Here, we use a landscape genetics
approach to examine between- and within-site environmental drivers of short-range black-and-white
ruffed lemur (Varecia variegata) dispersal in the Ranomafana region of southeastern Madagascar. We
identified the most influential drivers of short-range ruffed lemur dispersal as being between-site
terrain ruggedness and canopy height, more so than any within-site habitat characteristic evaluated.
Our results suggest that ruffed lemurs disperse through the least rugged terrain that enables them to
remain within their preferred tall-canopied forest habitat. Furthermore, we noted a scale-dependent
environmental effect when comparing our results to earlier landscape characteristics identified as
driving long-range ruffed lemur dispersal. We found that forest structure drives short-range dispersal
events, whereas forest presence facilitates long-range dispersal and multigenerational gene flow.
Together, our findings highlight the importance of retaining high-quality forests and forest continuity
to facilitate dispersal and maintain functional connectivity in ruffed lemurs.

Keywords: Madagascar; isolation-by-resistance; circuit theory; gravity models; landscape
genetics; conservation

1. Introduction

Animal movement, or an individual’s change in spatial location through time, can
occur at multiple spatial and temporal scales [1,2]. It is a fundamental aspect of a primate’s
life and is key to individual survival and fitness, population and community structuring,
and species evolution [1,3]. Behaviors involving close-range movement, such as foraging,
locating a mate, or avoiding predators, occur periodically at relatively small spatial and
temporal scales [1]. By contrast, long-range movement, such as natal or secondary dispersal,
typically occurs only once or a few times throughout a primate’s lifetime and at relatively
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larger spatial and temporal scales. The latter also facilitates population connectivity through
gene flow; has important consequences for adaptation and speciation [4–6]; and is one of
the primary drivers of community structure and assembly across primates [3,7].

Primate movement occurs within an environmental context, and thus environmen-
tal variables play an explicit role in the motivation, capacity, timing, and direction of
an individual’s movement decisions [1,8]. Large-scale environmental variability, particu-
larly landscape composition, configuration, and quality, can significantly impact long-range
movement decisions, including the timing and success of dispersal events [9,10]. For in-
stance, many taxa preferentially disperse through landscapes that are most structurally
similar to their source habitat [11,12]. In cases where landscapes are of poor quality or
fragmented, dispersal can be delayed, dispersal rates decrease, and mortality risks increase,
especially as distances between patches grow [13–18]. The quality of the source habitat can
also influence an individual’s dispersal propensity and motivations [19,20]. Individuals
inhabiting lower quality source habitats often exhibit higher, albeit delayed, dispersal rates
and greater dispersal distances than those from higher quality sites [21–26]; but see [14].

Research directly investigating large-scale primate movement has historically been
limited; individual dispersal events are rare and difficult to observe, as dispersing ani-
mals often settle large distances from their departure site [27,28]. Large-scale movements
such as these can be monitored opportunistically with remote GPS tracking (e.g., wolves,
Canis lupus: [29]; leopards, Panthera pardus: [30]; tigers, Panthera tigris: [31]), though it has
only rarely been used in primates (e.g., Papio ursinus: [32]; Daubentonia madagascariensis:
Louis pers. comm.). Instead, most studies of primate dispersal rely on indirect measures,
among them genetic distance, which can be generated from population genetic and ge-
nomic data to quantify gene flow between groups or populations and infer functional
population connectivity (i.e., successful dispersal followed by subsequent mating and
reproduction; [33,34]). More recently, landscape genetic methods have allowed researchers
to combine genetic distances with remotely sensed landscape information to explicitly
evaluate the environmental drivers of between-site functional connectivity and within-site
environmental variability and gene flow [35–37]. Studies of primate landscape genetics
remain limited, though are increasing in number [38]. From these, it is clear that primate
gene flow can be impeded by both natural (e.g., rivers: [39,40]) and anthropogenic barriers
(e.g., highways: [41]), including anthropogenically-driven landcover change (e.g., agriculture
and deforestation: [41–45]) and proximity to human settlements ([46,47]). Environmental
variability can influence dispersal at multiple scales—from smaller-scale gene flow re-
sulting from typical dispersal events to long-range dispersal and multigenerational gene
flow—with implications ranging from driving local population genetic structure to influ-
encing potential speciation events [3–6]. Presently, it is unclear whether and to what extent
the identified environmental drivers of primate dispersal are scale-dependent, as in other
non-primate taxa [48–51]; but see [42]. Furthermore, within-site environmental variation
can have significant influence on functional genetic connectivity through impacts on the
immigration and/or emigration phases of dispersal [4,52]. Despite its broad relevance to
primate behavior, the extent to which within-site habitat quality impacts primate dispersal
remains untested.

Here, we use a landscape genetics approach to assess potential environmental drivers
of black-and-white ruffed lemur dispersal throughout southeastern Madagascar’s Ra-
nomafana region. Ruffed lemurs (Genus Varecia) are an excellent taxon in which to evaluate
the relationship between environmental variability and primate dispersal. Despite their
reputation as obligate frugivores, ruffed lemurs are relatively ecologically flexible and
inhabit forests of varying quality and structure across their latitudinal gradient [53–57].
However, remaining black-and-white ruffed lemurs are structured spatially and genet-
ically into northern and southern populations [58]. Southern ruffed lemur sites (those
south of the Mangoro River) are more environmentally fragmented, and the ruffed lemurs
therein are more genetically isolated and less genetically diverse than those in northern
populations [58]. Across their range, dispersal is facilitated primarily by available habitat
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cover, deterred by proximity to human settlements, and, contrary to expectations, environ-
mental features such as rivers and altitude are unrelated to range-wide gene flow in the
species [46]. It is, however, unclear whether these patterns might vary at different spatial
scales (as in [48–51]). Further work has identified local habitat quality as a major predictor
of ruffed lemur occupancy across the species’ range [55]; however, studies have not yet
assessed the impact of source habitat quality on ruffed lemur dispersal decisions.

Despite evidence of genetic isolation in ruffed lemurs south of the Mangoro River [46],
we recently found evidence of functional connectivity throughout Ranomafana National
Park and the adjacent Ambositra-Vondrozo Forest Corridor (COFAV), which encompass
the greatest contiguous stretch of forested habitat remaining within ruffed lemurs’ current
southern range [59]. As with all remaining ruffed lemur habitats, these areas are subject
to ongoing habitat transformation due to slash-and-burn agriculture (tavy), mining, and
selective logging [60–62], leading to significant environmental heterogeneity across the
region. Furthermore, within ruffed lemurs’ habitats, there is evidence of significant en-
vironmental variability in terms of forest structure and floristic diversity resulting from
historic and contemporary anthropogenic activities [59,62]. This environmental variation
across the landscape, combined with documented patterns of ruffed lemur connectivity
throughout the southeastern rainforest corridor, makes the Ranomafana National Park
and the adjacent COFAV region an excellent location to evaluate the role of environmental
variation on patterns of short-range dispersal in this species.

Given ruffed lemurs’ reliance on large-canopied trees and high levels of frugivory [63],
we expected that higher-quality sites (e.g., those with greater productivity and/or greater
structural complexity) would be more attractive to dispersers than sites of lower quality (as
identified in [59]). Between-site forest cover is a major driver of dispersal and gene flow in
black-and-white ruffed lemurs across the species’ range [46]. We, therefore, expected that
reductions in forest cover (via loss or degradation) would impede gene flow throughout the
Ranomafana region. We tested for the influence of both historic and contemporary forest
cover, as time lags are often present when detecting the impacts of environmental variables
on genetic signatures [64]. Furthermore, as elevation closely relates to forest structure and
floristic diversity worldwide [65–71], we also expected altitude to indirectly drive gene flow
via its effect on plant communities throughout the Ranomafana region. Because environ-
mental impacts on species are often scale-dependent [48–51], we compared our results to
those from Baden et al. [46] to evaluate similarities and differences in environmental drivers
of short-range dispersal (this study) and long-range dispersal/multigenerational gene flow
in ruffed lemurs, as previously identified [46]. Furthermore, to our knowledge, our study is
the first to evaluate the impact of within-site habitat characteristics on gene flow in primates
and will inform our understanding of how local environmental characteristics influence
the dispersal process, particularly the emigration and immigration phases [4]. Finally,
by comparing regional and species-wide drivers of gene flow, this study strengthens our
understanding of the role environmental variation plays in community structuring, and by
extension, the evolutionary process at varying scales.

2. Materials and Methods
2.1. Ethics Statement

This research adhered to the American Society of Primatologists Principles for the
Ethical Treatment of Non-Human Primates. The research complied with the laws and
guidelines set forth by ANGAP/Madagascar National Parks and Hunter College IACUC
(#AB-impact 4/18-01).

2.2. Genetic Sampling, Relatedness, and Differentiation

The multilocus genotype data included 10 microsatellite loci for 159 adult black-and-
white ruffed lemurs (V. variegata; 67 males, 54 females, 38 unknown; [59]). Fecal samples
were collected between 2015–2017 from 15 localities in the Ranomafana National Park and
the Ambositra-Vondrozo Forest Corridor region with distances between sample localities
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ranging from 0.85 to 38.56 km (Figure 1). The provenance of each sample was reported to
the level of an individual, where individuals sampled together were assigned the same
geographic coordinates.

Using the full dataset, we estimated pairwise relatedness using ML-Relate [72,73] and re-
moved all pairs of individuals with a relatedness coefficient > 0.5. Our reduced sample included
62 individuals at 15 localities (mean = 4.13 individuals/locality, range = 1–10 individuals);
26 within-locality dyads (mean = 1.86 dyads, range = 1–3 dyads/locality), and 94 between-
locality dyads (mean = 2.62 individuals, range = 1–8 individuals with relatives at other
localities) shared a relatedness of 0.5. Removal of related individuals is generally rec-
ommended to avoid introducing artificial structure in population and landscape genetic
assessments [74]. However, there is ongoing discussion regarding this approach [75,76].
While a threshold of >0.5 retained some parent-offspring and full sibling dyads (i.e., those
with r = 0.5) in this study, the average relatedness within (r = 0.15) and among sites (r = 0.08)
was low, and our decision was ultimately a compromise between reducing potential bi-
ases introduced by including related individuals and retaining sufficient samples sizes for
downstream analyses.

Using the remaining individuals (N = 62), we estimated individual pairwise genetic
dissimilarity by calculating Rousset’s Ar [77] in the program FSTAT v.2.9.4 [78].
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2.3. Landcover Classification and Landscape Feature Selection

We selected eight landscape features that were hypothesized to influence ruffed
lemur movement and gene flow: (1) 1990 forest cover (historic); (2) 2016 forest cover
(contemporary); (3) rivers; (4) altitude; (5) topographic position index (TPI); (6) terrain
ruggedness index (TRI); (7) fire density; and (8) canopy height (Figure 2). Categorical
surfaces analyzed included 1990 and 2016 forest cover and rivers, while continuous surfaces
included altitude, TPI, TRI, fire density, and canopy height. Forest cover in 1990 and 2016
were classified using spectral mixture analysis (SMA) and linear spectral unmixing (see
Supplementary Methods S1 for details). River data were downloaded from Open Street
Map (https://www.openstreetmap.org/; accessed on 5 January 2021) as vector data and
were rasterized. Altitude data from the Shuttle Radar Topography Mission (SRTM) were
downloaded from the USGS Earth Explorer data portal (https://earthexplorer.usgs.gov/;
accessed on 5 January 2021) at 1 arc second (approximately 30 m) resolution. Topographic
position index, a measure that compares the elevation of each pixel in the raster to the
adjacent landscape and calculates a quantitative value that is indicative of the pixel’s
relative position (i.e., slope, valley, plain, or ridge), was derived from altitude data using
the topographic position index function from the GDAL library (http://www.gdal.org/;
accessed on 5 January 2021) in QGIS v.3.20. Terrain ruggedness index, a measure of the
ruggedness of a pixel calculated by comparing elevation differences between a pixel and its
eight neighboring cells within the raster [81], was also derived from the altitude data using
the terrain ruggedness index function from the GDAL library (http://www.gdal.org/;
accessed on 5 January 2021) in QGIS v.3.20. Fire data were downloaded from the NASA Fire
Information for Resource Management System (FIRMS) from both the MODIS Collection
6 (MC6; 2001–2016) and the VIIRS S-NPP 375 m (2012–2016) datasets. Data from MC6
and VIIRS were subsampled to only include nominal and high-confidence fire reports
(above 30% confidence; [82]), data were merged, and fire density was estimated using
the Heatmap Kernel Density Estimation function in QGIS v.3.20 with a radius of 500 m
(based on suggestions from Page et al. [83]). ‘No-data’ pixels were filled with a value of 0 to
indicate no fires in that pixel. We downloaded 2019 (contemporary) canopy height data
from Potapov et al. [84], which were generated through the integration of the NASA Global
Ecosystem Dynamics Investigation (GEDI) spaceborne lidar system on the International
Space Station and a timeseries of Landsat imagery. We resampled canopy height data to
a 10,000 m2 resolution and corrected non-forest values (over 60) to 0. All surfaces were
converted to a uniform geographic coordinate system (Universal Transverse Mercator;
UTM), resampled at a resolution of 10,000 m2, and clipped to the study extent for analysis.
Previous work has shown that changes in spatial resolution do not significantly alter the
results of landscape genetic analyses [85,86]. Therefore, this resolution was chosen as
a trade-off between retaining detail across the landscape and minimizing processing time
for analyses. Straight-line Euclidean distance between individuals (i.e., geographic distance)
was not included as an additional factor in our models, as distance is incorporated as a null
model in ResistanceGA. We did, however, conduct a linear regression between pairwise
Euclidean and genetic (Ar) distances to identify the proportion of our data influenced by
geographic distance alone.

2.4. Resistance Surface Parameterization and Optimization

Resistances between sampling localities were calculated using the commuteDistance
function from the R package gdistance [87], based on average pairwise resistances us-
ing an eight-neighbor connectivity scheme, and optimized using the R package Resis-
tanceGA [88]. ResistanceGA utilizes genetic algorithms to adaptively search a broad pa-
rameter space to determine the optimal resistance values that best describe pairwise genetic
differentiation (in our study, Ar). This approach makes no a priori assumptions about the
direction or magnitude of the resistance between landscape and genetic distances, allowing
for a more thorough investigation of the relationship between landscape features and gene
flow than more widely used methods (i.e., expert-based value assignments; [89,90]). Con-

https://www.openstreetmap.org/
https://earthexplorer.usgs.gov/
http://www.gdal.org/
http://www.gdal.org/
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tinuous surfaces were optimized using Monomolecular and Ricker transformations, while
categorical surfaces were optimized by holding one feature constant at a value of 1 and
then adjusting resistance values for all other features between the values of 0 and 5000 for
single surfaces and 10,000 for composite surfaces. The analyses were run in parallel on
the Extreme Science and Engineering Discovery Environment (XSEDE) Bridges-2 Regular
Memory platform [91] using a modified Singularity environment from Finnish Center for
Science (CSCfi; https://github.com/CSCfi/singularity-recipes; accessed on 11 March 2021).
We evaluated the resistance optimization process for each surface (i.e., landscape feature)
using log-likelihood (corroborated with AICc; Akaike’s Information Criterion corrected for
small/finite population size; [92]), which was determined from linear mixed-effects models
with MLPE parameterization [93] and evaluated by maximum likelihood in lme4 [94].
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2.5. Resistance Surface Model Selection

To account for our uneven sampling design and control for bias, we conducted bootstrap
resampling using 75% of the data (47 sampling locations) following Ruiz-Lopez et al. [47].
These data were randomly selected without replacement, and then optimized surfaces
were fit to the selected data. Following 10,000 iterations, the average rank and average
model weight (ω) were determined for each resistance surface, along with the frequency
with which a surface was ranked as the top model (π̂) in order to address uncertainty
in the top model; Burnham & Anderson [95] identify π̂ as the bootstrap equivalent of ω.
After identifying the top surfaces in isolation, we ran Spearman’s rank correlation between
the surfaces to assess the degree of correlation. We created and optimized composite
surfaces by combining the top models; surfaces that had both a greater selection frequency
(π̂) than distance alone and were selected more than one percent of the time (π̂ > 1.00)
were used to generate composite surfaces. All single and composite surface optimization
processes were conducted at least twice, as per recommendations by Peterman [96], to
ensure convergence on the top model(s). Following optimization, we again conducted
a bootstrap model selection using 10,000 iterations, and average rank, ω, and π̂ were
calculated to assess composite models in relation to their component surfaces. Finally,
current flow across the landscape was visualized in Circuitscape v4.0.5 using the best
supported resistance surface(s). Landscape surfaces generated during the current study
are available on GitHub (https://github.com/amandamancini/ruffed_lemur_landscape_
genetics accessed on 5 January 2021), along with the Singularity image and all code used
to parameterize, optimize, and assess resistance layers.

2.6. Gravity Model

To evaluate how within-site conditions influence dispersal and functional population
connectivity, we used singularly constrained gravity models based on a saturated network.
Gravity models use a network-based approach composed of nodes and edges to evaluate
both within- and between-site environmental drivers of functional population connectivity,
respectively [97]. To evaluate within- and between-site drivers, gravity models integrate
three parameters: the distance between sites (ω), influence of within-site conditions on
attraction of individuals to or from a site (υ), and the resistance of intervening landscape
features between sites (c). We used proportion of shared alleles (DPS) as our measure of gene
flow as this metric is free of equilibrium assumptions and can represent shared information,
therefore satisfying the “maximum entropy information minimizing” approach used in
landscape genetic gravity models (for more details see Murphy et al., [98]). We calculated
DPS using the R package adegenet and implemented the singularly constrained gravity
models in R in package GeNetIt [37].

We used Euclidean distance between dyads (ω) and landscape resistance (c) calculated
from optimized resistance assignments in ResistanceGA [96]. Within-site (υ) variables
included forest structure and floristic diversity measures, average Normalized Difference
Vegetation Index (NDVI), and topographic variation. Forest structure measures included
average canopy height, basal area, and stem density at each sampling site, and floristic
diversity included effective number of species (ENS) and average Importance Value Index
(IVI) of ruffed lemur food trees at each site. Both forest structure and floristic diversity were
quantified from three to five 25 m by 25 m plots at each site (described in Mancini [59]).
Normalized Difference Vegetation Index (NDVI) was used to evaluate site vegetation
density and was calculated as (NIR − VIS)/(NIR + VIS) from the 2016 Landsat OLI imagery,
and mean NDVI was calculated within each of the 15 sampling sites. Topographic variation
was quantified as the standard deviation of altitude using data from the Shuttle Radar
Topography Mission (SRTM) within each of sampling sites. Site extents for mean NDVI
and topographic variation were defined by a 500-m buffer around each botanical plot
noted above. Within-site conditions (υ) for each individual were assigned based on the
site in which an individual was sampled, where all individuals sampled within a site were
assigned the same within-site conditions.

https://github.com/amandamancini/ruffed_lemur_landscape_genetics
https://github.com/amandamancini/ruffed_lemur_landscape_genetics
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We initially evaluated nine ‘within-site’ models against a null model of isolation-by-
distance (IBD) to evaluate the significance of within-site conditions alone in explaining
current ruffed lemur gene flow. Within-site models included singular models for each of
the seven within-site conditions, forest structure (a combination of canopy height, basal
area, and stem density), and forest productivity (a combination of ENS, IVI, and NDVI).
We combined within-site variables that performed better than IBD with resistance distance
variables to evaluate the joint potential of within- and between-site metrics in explaining
ruffed lemur gene flow. In total, we tested 15 composite models along with their component
singular models. We log-transformed the response variable (DPS; gene flow) and all
predictor variables. Gravity models were performed using linear mixed effect models fit
using Restricted Maximum Likelihood (REML), and model selection was conducted using
log-likelihood (corroborated with Akaike Information Criterion; AIC). Finally, we used β
estimates from all singular models as an evaluation of the variables’ directional effect on
connectivity, with positive β values suggesting within-site characteristics were attractive to
ruffed lemur dispersal [99].

3. Results
3.1. Resistance Analysis

We found a significant signature of isolation-by-Euclidean distance, which explained
4.4% (Pearson’s r = 0.2091) of the observed population genetic structure (Figure S1). Despite
evidence of IBD, three surfaces—terrain ruggedness index (TRI), canopy height, and topo-
graphic position index (TPI)—were more strongly associated with genetic differentiation
than geographic distance alone (Tables 1–3 and S1). Resistance to terrain was lowest in areas
of low-to-moderate ruggedness where altitude did not vary greatly on a fine scale (below 10
ha; Figure 3 and Table 2). Relatively tall canopy (above 15 m) appears to better facilitate func-
tional connectivity and gene flow than areas with low canopy height (Figure 4 and Table 2).
Furthermore, resistance was lowest on flat or moderate slopes leading to ridges (Figure 5
and Table 2). The remaining five surfaces (1990 and 2016 forest cover, altitude, rivers, and
fire density) explained slightly more variation than distance alone but were seldom chosen
as the top model (less than 1.0% of the time) and thus were not considered in the composite
analysis (Table 1). Although both 1990 and 2016 forest cover were rarely considered in the
top model, results for both single surface resistance models indicated that ruffed lemur gene
flow was more resistant through matrix than forest (Table 3). Additionally, resistance de-
creased monotonically with increasing altitude and exponentially with increasing fire density
(Figures S2 and S3 and Table 2). Finally, rivers were predicted to cause more resistance to
gene flow in ruffed lemurs than the intervening landscape (Table 3).

Table 1. Results from bootstrap selection of optimized linear-mixed effects models on single surfaces.
Rows shown in bold indicate models that performed better than Euclidean distance alone and were
selected as the top model more than 1% (π̂ ≥ 1.00) during 10,000 bootstrap iterations.

Layer k Avg. Rank ¯
ω

^
π

TRI † 4 2.278 0.285 63.34
Canopy Height 4 2.539 0.097 25.20

TPI ‡ 4 3.671 0.053 9.42
1990 Forest Cover 3 5.436 0.104 0.38
2016 Forest Cover 3 5.614 0.105 0.96

Altitude 4 6.064 0.027 0.30
Rivers 3 6.125 0.082 0.01

Fire Density 4 6.199 0.025 0.39
Distance 2 7.078 0.223 0.00

k = number of parameters following continuous surface transformation or number of categories in categorical
surfaces; Avg. rank = average model rank following 10,000 bootstrap iterations; ω = average model weight
averaged over 10,000 bootstrap iterations, representing the probability that the model is the best of the set;
π̂ = proportion of bootstrap iterations in which model was chosen as the top model; † TRI: Terrain Ruggedness
Index; ‡ TPI: Topographic Position Index.
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Table 2. Model results and resistance transformation variables, including the transformation equation,
shape, and maximum value for the optimized continuous single surface. For each surface, the model
was parameterized using log-likelihood, and AICc is presented for corroboration.

Surface Log-Likelihood AICc Equation Shape Maximum

Altitude 1798.387 −3588.073 Reverse Monomolecular 7.381 5.192
Canopy Height 1800.029 −3591.357 Inverse Ricker 4.857 364.762

Fire Density 1798.126 −3587.551 Inverse-Reverse Ricker 4.972 2770.590
TPI ‡ 1799.192 −3589.682 Inverse-Reverse Ricker 3.624 2568.438
TRI § 1801.033 −3593.364 Inverse Ricker 2.606 3490.174

Distance 1797.957 −3591.710 - - -
‡ TPI: Topographic Position Index; § TRI: Terrain Ruggedness Index.

Table 3. Model results and resistance values for features within the optimized categorical single
surface. For each surface, the model was parameterized using log-likelihood, and AICc is presented
for corroboration.

Surface Log-
Likelihood AICc Feature 1: Resistance Feature 1 Feature 2: Resistance Feature 2

1990 Forest
Cover 1798.493 −3590.572 12.740 Matrix 1 Forest Cover

2016 Forest
Cover 1798.511 −3588.066 3.185 Matrix 1 Forest Cover

Rivers 1798.280 −3590.607 1 Non-rivers 17.175 Rivers
Distance 1797.957 −3591.710 - - - -
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Figure 5. Resistance transformation plot for single surface Topographic Position Index (TPI). Positive
TPI values represent ridges, negative TPI values represent valleys. Flat terrain or areas of constant
slope are represented by a TPI value near zero. Resistance to ruffed lemur movement was lower for
shallow slopes leading to ridges.

To assess the combined effects of terrain, canopy height, and topography, we created
four composite surfaces that combined TRI, canopy height, and TPI together in all permu-
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tations and compared results against the isolated surfaces, as well as against straight-line
Euclidean distance. There was low correlation among all surfaces used in the composite
models, with Spearman rank correlation coefficients less than 0.10 in all cases (Table S2).
There was no clear consensus on the top model predicting ruffed lemur gene flow, as both
TRI and canopy height in singular, the composite of TRI and canopy height (Combination
C), and the composite of TRI and TPI (Combination D) were all ranked similarly and were
top models more than 10% of the time (Tables 4, 5 and S3). Resistance patterns in the com-
posite surfaces showed an identical pattern for TRI as with the variable in singular, where
resistance was lowest in areas of low-to-moderate ruggedness (Figures 6 and 7). Canopy
height was transformed to distance when combined with TRI, meaning this composite
surface was essentially identical to TRI in isolation (Combination C; Figure 6). However,
for the other two composite models containing canopy height (Combinations A and B), we
found the same pattern as canopy height in singular, where taller trees above 15 m appear to
facilitate dispersal (Figures S4 and S5). Transformations for TPI showed greater variability,
although for composite surfaces containing TPI resistance was lowest on flat or moderate
slopes leading to ridges, as was found in the singular surface (Figure 7, Figures S4 and S5).

Table 4. Results from bootstrap selection of optimized linear-mixed effects models on composite
surfaces. Rows shown in bold indicate models that performed better than Euclidean distance alone
and were selected as the top model more than 10% (π̂ ≥ 10.00) during 10,000 bootstrap iterations.

Layer k Avg. Rank ¯
ω

^
π

Combination C 7 3.045 0.007 12.15
TRI † 4 3.104 0.375 30.65

Combination D 7 3.458 0.007 18.56
Canopy Height 4 4.347 0.161 17.53
Combination A 10 4.450 <0.001 5.02
Combination B 7 4.568 0.002 8.84

TPI ‡ 4 5.515 0.087 7.23
Distance 2 7.513 0.361 0.02

k = number of parameters following continuous surface transformation or number of categories in categorical
surfaces; Avg. rank = average model rank following 10,000 bootstrap iterations; ω = average model weight
averaged over 10,000 bootstrap iterations, representing the probability that the model is the best of the set;
π̂ = proportion of bootstrap iterations in which model was chosen as the top model; † TRI: Terrain Ruggedness
Index; ‡ TPI: Topographic Position Index.

For both highly ranked composite surfaces (Combinations C and D), TRI contributed to
more than 95% of the surface, and results were therefore driven primarily by TRI (Table S4).
This suggests that TRI on its own was the top model approximately 60% of the time (a sum
of TRI in singular and contributions from Combinations C and D), lending support for TRI
as the best predictor of the genetic data. However, canopy height was also a top-ranked
model nearly 20% of the time and, therefore, cannot be excluded as a strong predictor
(Table 4). Our visualization of the optimized TRI model shows a high degree of current
(gene) flow throughout the eastern extent of our study area, particularly in the eastern
portion of the remaining forest (Figure 8). Our visualization of the canopy height model
revealed a relatively uniform current flow throughout much of the remaining rainforest
in our study extent, although the visualization does suggest current flow may be greatest
in the eastern and western boundaries of the remaining forest (Figure 9). Together, these
results suggest a high degree of connectivity throughout all localities sampled, although
the northern-most site (VIAVY) seems to have weaker current flow than any of the other
sites (Figures 8 and 9).
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Table 5. Model results and resistance transformation variables, including the transformation equations, shapes, and maximum values for each continuous surface
comprising the optimized composite surface. For each surface, the model was parameterized using log-likelihood, and AICc is presented for corroboration.

Surface Log
Likelihood AICc

Canopy
Height
Trans

Canopy
Height
Shape

Canopy
Height

Max

TPI ‡

Trans
TPI ‡

Shape
TPI ‡

Max
TRI §

Trans
TRI §

Shape
TRI §

Max

Comb. A 1799.883 −3575.451 Inverse Ricker 4.27 9250.48 Inverse-Reverse
Ricker 3.08 14.23 Inverse

Ricker 2.43 4422.37

Comb. B 1800.073 −3584.243 Inverse Ricker 4.82 3974.92 Ricker 0.76 5483.57 - - -

Comb. C 1801.071 −3582.323 Distance 2.77 5939.49 - - - Inverse
Ricker 2.57 9837.73

Comb. D 1801.025 −3586.255 - - - Inverse
Monomolecular 0.59 2957.12 Inverse

Ricker 2.57 8347.75

Distance 1797.957 −3584.071 - - - - - - - - -
‡ TPI: Topographic Position Index; § TRI: Terrain Ruggedness Index.
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Figure 6. Resistance transformation plot for ‘Composite C’ surface of (A) Terrain Ruggedness Index 
(TRI) and (B) canopy height. Low TRI values represent relatively flat terrain and high values repre-
sent rugged areas. Resistance to ruffed lemur movement was greater in flat (low value) and rugged 
(high value) terrain as show in panel (A). Canopy height (B) was transformed to Distance and, there-
fore, was non-influential on ruffed lemur movement when evaluating ‘Composite C’ resistance sur-
face. 

Figure 6. Resistance transformation plot for ‘Composite C’ surface of (A) Terrain Ruggedness Index
(TRI) and (B) canopy height. Low TRI values represent relatively flat terrain and high values represent
rugged areas. Resistance to ruffed lemur movement was greater in flat (low value) and rugged (high
value) terrain as show in panel (A). Canopy height (B) was transformed to Distance and, therefore,
was non-influential on ruffed lemur movement when evaluating ‘Composite C’ resistance surface.
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Figure 7. Resistance transformation plot for ‘Composite D’ surface of (A) Terrain Ruggedness Index
(TRI) and (B) Topographic Position Index. Low TRI values represent relatively flat terrain, and high
values represent rugged areas. Positive TPI values represent ridges, negative TPI values represent
valleys, and flat terrain or areas of constant slope are represented by a TPI value near zero. Resistance
to ruffed lemur movement was greater in flat (low value) and rugged (high value) terrain, as shown
in panel (A). Resistance to ruffed lemur movement was lower for slopes leading to ridges and ridges,
as shown in panel (B).
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Figure 8. Cumulative resistance among individuals for optimized Terrain Ruggedness Index (TRI)
created using Circuitscape v4.0.5 (https://circuitscape.org; accessed on 22 January 2019). Darker
greys indicate areas of higher conductance (i.e., low resistance, high dispersal); lighter greys indicate
areas of higher resistance (i.e., low conductance, low dispersal). Cumulative resistance is overlayed
on 2016 forest cover and red circles represent the 15 sampling localities throughout the region.
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3.2. Gravity Model

When investigating within-site drivers of dispersal, we found equal support for the
null model of IBD and the test models of IVI and NDVI, with no support for the other
test models (Table 6). Unsurprisingly, we found a negative relationship between distance
and DPS, suggesting fewer shared alleles between individuals at increasing geographic
distances (β = −0.030, SE = −0.003, df = df = 3685, t = −9.36, p < 0.001). We found
a significant and slightly positive relationship between the average IVI of Varecia food
resources and DPS, suggesting that these food resources were attractive to ruffed lemur
dispersers (β = 0.093, SE = 0.036, df = 60, t = 2.62, p = 0.011). Finally, we found a negative
(but non-significant) relationship between mean site NDVI and DPS, suggesting that sites
with higher productivity values have a reduced attractiveness to dispersal than sites with
lower NDVI values (β = −0.261, SE = 0.465, df = 60, t = −0.56, p = 0.576). Together, these
results indicate that sites such as TALA, SAKA, and HG are more likely to attract dispersers
due to their relatively higher values of average IVI and lower values of average NDVI
compared to sites such as MGV, MAND, and MALA, which display lower average IVI and
higher average NDVI (Figure 1 and Table S5).

Table 6. Results for within-site gravity model predictions. Rows shown in bold indicate the best
supported model based on log-likelihood criteria and corroborated using AICc.

Model K Log-Likelihood AIC

IVI † 1 722.129 −1434.258
NDVI ‡ 1 721.557 −1433.114

IBD § 1 721.248 −1434.496
Productivity 3 721.063 −1428.126

Canopy Height 1 719.966 −1429.932
ENS †† 1 719.835 −1429.671

Stem Density 1 719.619 −1429.238
Topography 1 719.373 −1428.747

Basal Area 1 719.137 −1428.275
Structure 3 717.375 −1420.750

† IVI: Importance Value Index; ‡ NDVI: Normalized Difference Vegetation Index; § IBD: Isolation-by-distance;
†† ENS: Effective Number of Species.

Finally, we combined the best-supported within-site models (IVI and NDVI) with the
two best-supported resistance models (TRI and DSM) to evaluate the combined influence
of within- and between-site drivers on ruffed lemur dispersal. First, all models containing
one or both resistance variables were more strongly supported than the null model of
IBD (Table 7). Two models—canopy height in singular and canopy height combined with
NDVI—showed equal support as the best models predicting dispersal in ruffed lemurs
throughout the Ranomafana region (Table 7). As expected, in the composite model, we
found a significant and negative relationship between canopy height resistance distance
and DPS, confirming that greater resistance distances reduced gene flow (β = −0.216,
SE = 0.024, df = 3683, t = −9.01, p < 0.001). Furthermore, we found a negative (but
non-significant) relationship between mean site NDVI and DPS, similar to the variable
in singular (β = −0.488, SE = 0.437, df = 60, t = −1.12, p = 0.269). As with the composite
model, we found a significant and negative relationship between canopy height resistance
distance and DPS when evaluating the variable in singular (β = −0.215, SE = 0.024, df = 3683,
t = −8.96, p < 0.001).
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Table 7. Results for composite, within-site, and between-site gravity model predictions. Rows
shown in bold indicate the best supported model based on log-likelihood criteria and corroborated
using AICc.

Model K Log-Likelihood AIC

NDVI + Canopy Height Resistance 2 758.784 −1505.567
Canopy Height Resistance 1 758.069 −1506.137

NDVI + IVI + Canopy Height Resistance 3 757.557 −1501.114
IVI + Canopy Height Resistance 2 757.280 −1502.560

NDVI + Canopy Height Resistance + TRI Resistance 3 756.445 −1498.889
Canopy Height Resistance + TRI Resistance 2 755.811 −1499.621

NDVI + IVI + Canopy Height Resistance + TRI Resistance 4 755.188 −1494.377
IVI + Canopy Height Resistance + TRI Resistance 3 754.942 −1495.884

NDVI + IVI + TRI Resistance 3 730.210 −1446.420
NDVI + TRI Resistance 2 730.004 −1448.008

IVI + TRI Resistance 2 729.988 −1447.977
TRI Resistance 1 729.764 −1449.529

NDVI + IVI 2 722.366 −1432.731
IVI † 1 722.129 −1434.258

NDVI ‡ 1 721.557 −1433.114
IBD § 1 721.248 −1434.496

† IVI: Importance Value Index; ‡ NDVI: Normalized Difference Vegetation Index; § IBD: Isolation-by-distance.

4. Discussion

The main objective of this study was to evaluate the between- and within-site envi-
ronmental drivers of black-and-white ruffed lemur dispersal throughout Madagascar’s
southeastern Ranomafana region. We found that the predominant between-site drivers of
ruffed lemur dispersal were terrain ruggedness index (TRI) and canopy height, where areas
of low-to-moderate ruggedness and relatively tall canopy heights (above 15 m) facilitated
functional connectivity and gene flow. The other six environment variables evaluated
(topographic position index, 1990 and 2016 forest cover, altitude, rivers, and fire density)
were not significant predictors of ruffed lemur dispersal, although resistance was lowest
within forests, at moderate slopes, at lower altitudes, in areas with lower fire density, and
outside of rivers. Productivity metrics, including the Normalized Difference Vegetation
Index (NDVI) and the average Importance Value Index (IVI) of ruffed lemur food trees,
were the most influential within-site drivers of ruffed lemur dispersal, with animals being
more likely to disperse into areas with lower NDVI and higher IVI values. However, when
between- and within-site drivers were combined, models containing only between-site re-
sistances were consistently the best supported. We, therefore, conclude that the within-site
environmental variables tested were less influential in ruffed lemur dispersal decisions
than between-site factors.

4.1. Between-Site Influences on Ruffed Lemur Dispersal

The best-supported between-site drivers of ruffed lemur dispersal in the Ranomafana
region were terrain ruggedness index (TRI) and canopy height. Ruffed lemur dispersal was
facilitated by areas of low-to-moderate ruggedness and impeded by increasingly rugged
terrain. Our results add to a growing body of evidence identifying areas of high ruggedness
as impediments to gene flow (including lizards, Sceloporus occidentalis: [100]; stone marten,
Martes foina: [101]; Northern quoll, Dasyurus hallucatus: [102]; and tigers, Panthera tigris: [31];
but see Balkenhol et al. [49], wolverine, Gulo gulo). For instance, tigers preferentially se-
lected the least rugged dispersal paths from within their preferred landscapes—forested
areas with low anthropogenic presence—suggesting that avoiding areas of high terrain
ruggedness was secondary to moving through their preferred landscape [31]. We found
a similar pattern in ruffed lemurs, with gene flow predicted to be highest in areas of low-to-
moderate ruggedness in the eastern boundary of the remaining forest of the Ranomafana
region (Figures 3 and 8). Interestingly, our results predicted that ruffed lemurs would avoid
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areas of the lowest ruggedness (Figure 3). The reasoning for this may be twofold: low
ruggedness areas of the eastern Ranomafana region are associated with increased anthro-
pogenic presence and are preferentially used by humans for both irrigated and shifting
agriculture (i.e., flooded rice paddies and slash-and-burn or tavy; [103,104]), whereas low
ruggedness areas in the western region are associated with higher altitudes and shorter
forest canopies [65–67]. In this way, similar to tigers, the ruffed lemurs in our study area
are likely dispersing through the least rugged terrain that enables them to avoid anthro-
pogenic landscapes while also remaining within their preferred tall-canopied habitats [31].
Alternatively, the relationship found between topography and dispersal may be driven by
ruffed lemur behavioral ecology, similar to what has been hypothesized in wolverines [49]:
ruffed lemurs segment their territories along ridgelines (Baden, pers. comm.), making it
possible that individuals preferentially move along ridgetops with less rugged terrain to
avoid core territories of unknown individuals.

In addition to terrain ruggedness, canopy height was also predicted as a significant
driver of ruffed lemur dispersal in the Ranomafana region. We found that relatively tall
canopy (above 15 m) facilitated and short canopy height impeded dispersal between locali-
ties. In other forest-dwelling species, canopy height or structural homogeneity were also
found to be significant predictors of gene flow (Western capercaillie, Tetrao urogallus: [105];
black-eared mouse, Peromyscus melanotis: [106]), although unsurprisingly the forest-dwelling
scarlet macaws (Ara macao)—which disperse via flight—were not impacted by either [107].
Ruffed lemurs rely on tall, broad-canopied fruiting trees due to their obligate frugivory [53,56]
and, despite their ecological flexibility, are found at greater densities in localities character-
ized by these features [57,108,109]. It is thus unsurprising that taller forest canopy facilitates
dispersal, as animals tend to preferentially move through landscapes that are most similar
to their preferred habitat [11,12]. The high rates of gene flow identified by our study likely
correspond with areas of tall canopy at lower altitudes along the eastern boundary of the
remaining forest in the Ranomafana region, similar to patterns found in other parts of the
world [65–67] (Figure 9). Our results also predicted high rates of gene flow throughout
fragmented forests along the western edge of the region (Figure 9); however, dispersal
through these areas is unlikely given its higher altitude, as there are few records of ruffed
lemurs occurring above 1200 m and no evidence above approximately 1350 m [110–112].

Curiously, forest cover was not identified as a significant driver of ruffed lemur disper-
sal, as in Baden et al. [46], which may reflect scale-dependent differences in dispersal drivers.
Specifically, the simple presence of forest may be an important driver of gene flow for long-
range and multigenerational dispersal, while the quality of forest may be most influential
for short-range dispersal decisions. Alternatively, these results may simply mirror those
found by Milanesi et al. [105], where forest structure derived from LiDAR remote-sensing
yielded better estimates of gene flow compared to traditional land cover data.

4.2. Within-Site Influences on Ruffed Lemur Dispersal

Ultimately, within-site habitat features in this study were less influential than between-
site features in driving ruffed lemur dispersal in the Ranomafana region. These findings
are similar to other recent studies using similar methodologies (black-capped vireos, Vireo
atricapilla: [112]; Arizona treefrog, Dryophytes (Hyla) wrightorum: [113]). Although not sig-
nificant, productivity measures– Normalized Difference Vegetation Index (NDVI) and the
average Importance Value Index (IVI) of ruffed lemur foods– were the best supported
habitat features driving ruffed lemur emigrations and immigrations. Sites with relatively
lower IVI and higher NDVI, such as Mangevo (MGV), Mandiandry (MAND), and Malaza-
masina (MALA), likely act as source populations (i.e., source of emigrants), and those
with relatively high IVI and lower NDVI, such as Talatakely (TALA), Sakaroa (SAKA), and
Harangangavo (HG), are likely most attractive to dispersers and may act as sinks (Figure 1;
Table S5). This finding is further supported by the presence of several first-generation
immigrants identified in both TALA and SAKA, suggesting that these sites are indeed
attractive to dispersers [59].
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There is high within-site structural variability between the sampling localities eval-
uated in this study, with more pristine and higher quality sites such as Mangevo (MGV),
Tandrokaomby (TAND), and Amboasary (AMBO) having taller canopies, larger basal
area, and greater stem density than disturbed, lower quality sites of Talatakely (TALA)
and Sakaroa (SAKA; Table S6) [59]. Many forest-dwelling species prefer to move through
higher quality, complex forest stands, as opposed to open habitat [114–116], and prefer-
entially incorporate these stands into their home range [116–118]. Furthermore, several
studies have found that higher quality sites (relative to the species’ biology) facilitated
gene flow and may act as sources of emigrants for the species (American martens, Martes
americana: [52]; Columbia spotted frogs, Rana luteiventris: [98]; Blainville’s horned lizard,
Phrynosoma blainvillii: [119]). It was, therefore, surprising that within-site forest structure
was not identified as a significant predictor of ruffed lemur dispersal. It is possible that our
metrics did not fully capture details of forest structure that are important to ruffed lemur
movement. In the future, LiDAR or photogrammetry could enable a more detailed quan-
tification of forest structure that our study may have missed, while allowing researchers to
measure other important characteristics such as canopy density and size and distribution
of canopy gaps [115,119–121].

4.3. Spatial Variation in Response to Environmental Variables

In addition to our evaluation of between- and within-site drivers of dispersal, we com-
pare our regional results to a recent range-wide assessment by Baden et al. [46] to evaluate
how ruffed lemur dispersal might vary across spatial scales. The study by Baden et al. [46]
assessed pattens of long-range dispersal and multigenerational gene flow and found that
long-range ruffed lemur dispersal is facilitated primarily by available forest cover. By
contrast, the present study evaluated smaller-scale, more regional gene flow from typical
dispersal events and found weak evidence for this same relationship. Forest cover is
contiguous throughout our study area, making it possible for ruffed lemurs to avoid the
matrix when dispersing through the region, perhaps explaining why 1990 and 2016 forest
do not appear to play significant roles in regional ruffed lemur dispersal. We did, however,
find the height of contemporary forest—a strong correlate of 2016 (contemporary) forest
cover (ρ = 0.77; Table 6) and a moderate correlate of 1990 (historic) forest cover (ρ = 0.44;
Table S2)—was a significant predictor of dispersal, with taller canopy facilitating dispersal.
Tall canopy in the Ranomafana area is often related to higher quality forest [60,65] where
ruffed lemurs are found at their highest abundances [53,108,109]. Additionally, ruffed
lemurs rely on large, broad canopy trees for quadrupedal movement, access to sufficient
fruit [53], and successful reproduction [122]. Therefore, ruffed lemurs’ utilization of tall
canopy trees for dispersal is expected, particularly as animals preferentially use areas most
similar to their chosen habitat for dispersal [11,12].

Proximity to human settlements was found to be the main deterrent to long-range
ruffed lemur dispersal and multigenerational gene flow [46]. In comparison, we did
not find a significant influence of fire density—a more nuanced metric of anthropogenic
presence—on short-range ruffed lemur dispersal. Although not significant, we did find
an exponential increase in resistance with increasing fire density, similar to the pattern
found by Baden et al. [46] with proximity to human settlements. Topography was not
found to be a significant driver of long-range ruffed lemur dispersal across their remaining
range [46], although we did find the terrain ruggedness index to be a significant between-
site driver of short-range dispersal in the Ranomafana region, with low-to-moderate rugged-
ness facilitating dispersal. Finally, neither study found any influence of rivers on dispersal,
despite the role rivers have played in the biogeography of Malagasy primates [110,123]. The
permeability of rivers is likely dependent on several factors, including size, flow, and access
to bridging structures (e.g., overhanging trees or anthropogenic structures such as bridges),
with larger waterways expected to be less permeable than minor rivers [124,125]. Only
minor waterways are present within our study and, therefore, unlikely to pose dispersal
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barriers to the species, as they are likely able to disperse across these minor rivers via
natural canopy bridges.

4.4. Conclusions

In summary, we found that between-site environmental characteristics– specifically,
terrain ruggedness and forest canopy height– were better predictors of short-range ruffed
lemur dispersal than within-site characteristics such as NDVI and Importance Value Index
of ruffed lemurs’ foods in the Ranomafana region. Furthermore, we found evidence of
scale-dependent environmental influences on ruffed lemur dispersal, with topography only
driving short-range dispersal decisions. Forest characteristics influenced dispersal at all
scales, with forest presence facilitating multigenerational, long-range dispersal and taller
forest heights facilitating short-range dispersal in ruffed lemurs. Together, results from this
and earlier studies [46] highlight the importance of high-quality forest to sustaining ruffed
lemur gene flow across spatial scales. Given the accelerating forest modification, loss, and
fragmentation throughout Madagascar’s eastern rainforest escarpment [55,112,126–129], it
is likely ruffed lemur dispersal, along with the dispersal patterns of countless other arboreal
taxa [130], will become increasingly restricted in the future. Dispersal capacity and limita-
tions are primary drivers of community structuring across primate taxa at regional spatial
scales, more so than niche differentiation [3,130]. If ruffed lemur dispersal becomes signifi-
cantly limited by forest loss, this may lead to more divergent primate community structure,
even between neighboring localities [130]. Shifting community structure, decreasing forest
suitability, and limited dispersal ability will have cascading effects, and will likely result
in massive decreases in population sizes beyond what would be expected with shifting
suitable habitat alone [131,132]. Therefore, retaining high-quality forests (particularly in
areas without strict protection) and forest connectivity is paramount to retaining gene
flow of ruffed lemurs within their southern range, ultimately buffering against ongoing
population declines and local extinctions in this critically endangered species.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14030746/s1, Methods S1: Forest Cover Classifications [126,133–136];
Figure S1: Linear regression between pairwise Euclidean and genetic (Ar) distances; Figure S2:
Resistance transformation plot for single surface altitude; Figure S3: Resistance transformation plot
for single surface fire density; Figure S4: Resistance transformation plot for ‘Composite A’ surface of
(A) Terrain Ruggedness Index (TRI), (B) canopy height, and (C) Topographic Position Index (TPI);
Figure S5: Resistance transformation plot for ‘Composite B’ surface of (A) Terrain Ruggedness Index
(TRI) and (B) canopy height; Figure S6: Two-dimensional visualizations of unmixed feature space for
High Albedo, Low Albedo, and Vegetation end members from 2009 mosaic; Figure S7: Customized
decision tree for thematic classifications. Bands used for classification included b1: high albedo end
member; b2: vegetation end member; and b3: low albedo end member; Table S1: Parameter estimates
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model fit to the optimized composite resistance surfaces; Table S4: Percent contribution of each for
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