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Abstract—The wide adoption of IoT gadgets and Cyber-
Physical Systems (CPS) makes embedded devices increasingly
important. While some of these devices perform mission-critical
tasks, they are usually implemented using Micro-Controller
Units (MCUs) that lack security mechanisms on par with those
available to general-purpose computers, making them more
susceptible to remote exploits that could corrupt their software
integrity. Motivated by this problem, prior work has proposed
techniques to remotely assess the trustworthiness of embedded
MCU software. Among them, Control Flow Attestation (CFA)
enables remote detection of runtime abuses that illegally modify
the program’s control flow during execution (e.g., control flow
hijacking and code reuse attacks).

Despite these advances, current CFA methods share a funda-
mental limitation: they preclude interrupts during the execution
of the software operation being attested. Simply put, existing
CFA techniques are insecure unless interrupts are disabled
on the MCU. On the other hand, we argue that the lack of
interruptability can obscure CFA usefulness, as most embedded
applications depend on interrupts to process asynchronous events
in real-time.

To address this limitation, we propose Interrupt-Safe Control
Flow Attestation (ISC-FLAT): a CFA technique that is compatible
with existing MCUs (i.e., does not require hardware changes)
and enables interrupt handling without compromising the au-
thenticity of CFA reports. Similar to other CFA techniques that
do not require customized hardware modifications, ISC-FLAT
leverages a Trusted Execution Environment (TEE) (in particular,
our prototype is built on ARM TrustZone-M) to securely generate
unforgeable CFA reports without precluding applications from
processing interrupts. We implement a fully functional ISC-FLAT
prototype on the ARM Cortex-M33 MCU and demonstrate that
it incurs minimal runtime overhead when compared to existing
TEE-based CFA methods that do not support interrupts.

I. INTRODUCTION

From IoT gadgets to vehicular safety-critical sensors, soci-

ety has grown accustomed to the pervasiveness of embedded

devices. Naturally, this increased reliance is accompanied by

a growing risk of embedded software compromise. Unfor-

tunately, prevention of software compromises in embedded

devices is especially challenging because they are typically

implemented using (one or several) Micro-Controller Units

(MCUs). Due to strict cost and energy budgets, MCUs lack

security mechanisms commonly found in higher-end general-

purpose CPUs, such as strong separation of privilege levels and

memory management units to support virtual memory and iso-

lation. Furthermore, embedded devices are often deployed in

multitudes, sharing the same (potentially vulnerable) software.

Unsurprisingly, the insecurity of embedded software has al-

ready resulted in several attacks, including massive Distributed

Denial of Service (DDoS) [15], [29] and large-scale exploits

with economical and life-threatening consequences [56], [59],

[41], [34].

Since preventive approaches are often too costly or un-

feasible in resource-constrained embedded devices, security

services that enable remote detection of software compromise

have attracted attention in recent years [39]. Remote Attesta-

tion (RA) [61], [51], [42], [32], [46], [14], [38], [17], [33],

[18], [22], [23], [37], [21], [35], [52] is one such service

that enables a Verifier (Vrf) to assess the trustworthiness

of the software executing on a remote low-end embedded

device – called a Prover (Prv). In its simplest form (a.k.a.

“static RA” or “RA of binaries”), RA offers means to detect

illegal modifications to the binary installed and running on

Prv. However, by itself, it provides no information about

the order in which instructions within the binary execute at

runtime. In particular, control flow hijacks [10] and code reuse

attacks [63], [65] (e.g., via return-oriented programming [60],

[24]) can change the order in which instructions execute

without modifying the binary. As the binary remains the same,

such attacks cannot be detected by static RA.

To address this limitation, Control Flow Attestation

(CFA) [11], [31], [30], [74], [67], [28], [69], [75] augments

static RA to provide Vrf with an unforgeable “control flow

proof”, containing the order in which the instructions of the

attested binary have executed. As such, CFA enables the

detection of control flow hijacks and code reuse attacks, even

when these attacks do not modify the installed binary.

CFA defines a Control Flow Graph (CFG). Nodes in the

CFG are sequences of non-branching instructions. Edges

represent control flow transfers (e.g., jumps, calls, returns,

etc.). CFA techniques work by tracking the path taken in the

program’s CFG during execution. This model assumes that

all instructions within the same CFG node are guaranteed to

execute sequentially. However, when interrupts are enabled,

this assumption is falsifiable because interrupts can cause

control flow transfers asynchronously within any given node

in the CFG. As a result, existing CFA techniques either

assume [11], [67] or enforce [28], [48] disablement of all

interrupts in the MCU. On the other hand, most real-time

applications are interrupt-based [70]. This conflict can make

current CFA methods impractical in many settings.
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Contributions. In this work, we aim to reconcile CFA with

the real-time needs of MCU application domains. To that

end, we propose ISC-FLAT: an Interrupt-Safe Control Flow

Attestation method. ISC-FLAT leverages ARM TrustZone-M

to isolate side-effects of external interrupts from the execution

being attested. Since TrustZone-M is available in several ARM

CPUs, ISC-FLAT is readily deployable on “off-the-shelf”

MCUs without requiring additional customized hardware. To

the best of our knowledge, ISC-FLAT is the first TEE-based

CFA approach to securely support interrupts while maintaining

CFA integrity. In sum, the anticipated contributions of this

paper are three-fold:

• We formulate and characterize the conflict between real-

time applications and existing TEE-based CFA methods.

To motivate the need for interrupt-safe CFA, we demon-

strate interrupt-based attacks on current CFA designs.

• We propose ISC-FLAT, a TEE-based CFA design that

supports interrupts without compromising the integrity of

underlying CFA proofs. At its core, ISC-FLAT imple-

ments a TrustZone-based secure interrupt dispatcher that

leverages TrustZone’s Nested Vectored Interrupt Con-

troller (NVIC) to interpose itself between any interrupt

trigger and its respective service routine. The dispatcher

saves the necessary context of the interrupted task within

TrustZone’s Secure World and verifies that this context

is resumed appropriately when the service routine ends.

This design ensures CFA integrity for the interrupted

task without making service routines part of ISC-FLAT

Trusted Computing Base (TCB).

• We implement and evaluate ISC-FLAT on an “off-

the-shelf” ARM Cortex-M33 MCU, equipped with

TrustZone-M. Our experimental results demonstrate ISC-

FLAT quasi-negligible overhead when compared to an

existing CFA technique that does not support secure

interrupts. To foster future research in this topic, we make

ISC-FLAT implementation publicly available at [3].

II. BACKGROUND & RELATED WORK

A. ARM TrustZone-M

ARM TrustZone is a Trusted Execution Environment (TEE)

included in modern ARM CPUs. It partitions the System on

Chip (SoC) hardware and software into Secure and Non-secure

regions (called “Worlds”). Resources belonging to the Secure

World are isolated from the Normal (Non-Secure) World, re-

sulting in a secure environment for executing security-critical

functions and storing sensitive data. TrustZone’s hardware

controllers prevent the Normal World from accessing physical

memory regions assigned to the Secure World.

TrustZone-M defines the security state of memory segments

(i.e., whether a segment in the address space belongs to

the Secure or Normal World) by using a combination of

the Secure Attribution Unit (SAU), and the Implementation

Defined Attribution Unit (IDAU) to enforce spatial isolation.

IDAU is a fixed memory map defined by the manufacturer,

while SAU is programmable by the Secure World.

A number of prior efforts aim to leverage TrustZone-M

to enhance embedded system security from various perspec-

tives, including low latency secure interrupts [50], real-time

system availability guarantees [71], Address-Space Layout

Randomization (ALSR) without requiring memory manage-

ment units [44], and support for virtualization [55]. For a

comprehensive overview of TrustZone’s architecture, we refer

the reader to [54].

B. Interrupts & TrustZone-M NVIC

TrustZone-M capable MCUs process all interrupts using two

separated Interrupt Vector Tables (IVTs) for the Secure and

Normal Worlds. They are managed by an integrated controller

called Nested Vector Interrupt Controller (NVIC). Each in-

terrupt can be assigned as Secure or Non-secure by setting

a register named Interrupt Target Non-secure (NVIC ITNS),

which is only programmable in the Secure World. In addition,

the IVTs can share the same priority level, or secure interrupts

can have priority over non-secure ones. The interrupt pipeline

follows the standard execution flow if an interrupt is triggered

while the CPU is in the same security state as the interrupt.

If a Secure interrupt is triggered while the CPU is in the

non-secure state, the CPU ignores the Non-Secure IVT and

redirects execution to the Interrupt Service Routine (ISR)

address stored in the Secure IVT, while automatically pushing

the registers of the interrupted task to the non-secure stack.

Recent related work [50], [49] takes advantage of the NVIC

controllers. Specifically, the NVIC ITNS register is used to

enforce specific interrupt states as a requirement for the

additional security features.

C. Static Remote Attestation (RA)

Static RA (a.k.a. “RA of binaries”) allows a verifier (Vrf)
to determine the integrity of an application’s binary running

on an untrusted remote platform (Prv), i.e., Vrf is able

to detect illegal modifications to the binary. RA is also a

building block for other services, including Control Flow

Attestation (CFA), Data Flow Attestation (DFA), and Proof

of Execution (PoX) [47]. For instance, since TEE-based CFA

requires binary instrumentation (see details in Section II-D),

RA is necessary as a part of CFA to guarantee that the

instrumentation has not been maliciously removed.

Fig. 1. RA interaction

As depicted in Figure 1, RA is a challenge-response

protocol wherein Vrf sends an attestation request to Prv
containing a cryptographic challenge (Chl) (e.g., a random

nonce) to guarantee that the Prv will generate a unique, timely

response to this request. Prv receives Chl and computes an

authenticated integrity check (e.g., a MAC or a signature) over

its own program memory and Chl, and sends the resulting
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report back to Vrf. Finally, Vrf checks the received report

against the expected value (i.e., the expected binary for Prv).

Static RA architectures are typically classified as software-

based, hardware-based, or hybrid. Software-based RA [62],

[26], [66] does not require hardware support. Instead, it

leverages precise timing, along with strong assumptions about

direct communication and adversarial silence, to detect mal-

ware on Prv. To relax these assumptions, hardware-based at-

testation relies on a hardware root of trust for measurement and

reporting to produce unforgeable attestation reports securely.

This category includes TPM-based approaches [73], Intel SGX

[72], [40], and ARM TrustZone [12]. Hardware-based designs

provide a high level of security. However, they are restricted to

devices that support these custom features. Between hardware

and software-based, hybrid RA [51], [38], [32], [17], [46],

[27] requires minimal hardware trust anchors to provide strong

security guarantees on resource-constrained devices. Besides

just attesting the integrity of a single device’s binary, collective

RA methods focus on groups of devices [20], [45], [13], [16].

Carpent et al. [21], [23] introduce attestation for self-relocating

malware.

D. Control Flow Attestation (CFA)

CFA augments RA by including a proof of the sequence

in which instructions were executed in the attested binary.

Consequently, CFA can detect runtime attacks that hijack the

program’s control flow but do not modify Prv’s code (e.g.,

the well-known return-oriented programming and code-reuse

attacks [68]). CFA is achieved by tracking and logging the

control flow path taken during the execution of the attested

binary. While CFA does not actively protect the system against

control flow attacks, it provides Vrf with information to detect

any control flow attack during the execution. As such, Vrf can

accurately decide if a result produced by this execution (e.g.,

a sensed value) is trustworthy.

In CFA, Vrf requests from Prv an authenticated proof

that: (i) Prv indeed executed the expected binary (denoted

App) in a timely manner, i.e., after the most recent request

from Vrf; and (ii) there were no control flow attacks during

App execution. Optionally, the proof may also include any

execution results (e.g., a sensed value) produced by App
execution on Prv, allowing Vrf to assess the trustworthiness

of this result based on the CFA verification. We refer to

this “proof” as the CFA report. We define a CFA report
as unreliable if the control flow path taken during App
execution differs from the one contained in the CFA report.
Therefore, an unreliable report could make an attack execution

oblivious to Vrf.
TEE-based CFA methods [11], [67], [43] use automated

binary instrumentation to build an authenticated control flow

log (CFLog) containing all control flow transfers, i.e., the des-

tination address of all the branching instructions (e.g, jumps,

calls, returns) taken during execution. Vrf can then

check CFLog to decide if the control flow transfers were valid.

Every node in the attested program’s CFG is instrumented with

additional trampoline instructions that trap the execution into

Fig. 2. The figure illustrates an example of a valid (left) and an invalid (right)
control flow execution with their respective generated CFLog.

the Secure World. Within the Secure World, the branch desti-

nation is appended to CFLog. CFLog itself is stored in the Secure

World protected memory. This approach assumes that only

branching instructions can modify the control flow. Therefore,

sequences of regular (non-branching) instructions are treated

as “blocks”. A block followed by a branching instruction

defines a node of the CFG (a block can be empty in the

case of two sequential branching instructions). When interrupts

are disabled, this approach works well because instructions

within a block are unable to modify the program’s control

flow. However, when interrupts are enabled, any number of

control flow transfers may occur within the execution of a

single block. Even worse: these transfers would not be saved

to CFLog and therefore not noticed by Vrf. In Section III we

elaborate on this issue and further motivate its importance.

Figure 2 exemplifies CFA. N1 - N6 are nodes in the

CFG of the attested application. Solid arrows represent le-

gal control flow transfers, and dashed arrows represent con-

trol flow paths taken during a particular program execu-

tion. When a node is executed entirely, the additional (in-

strumented) instructions within the node produce two new

entries in CFLog (denoted Ai
x and Ae

x, for node Nx). Ai
x

represents the memory address of the first instruction of

the node Nx, and Ae
x represents the destination of Nx’s

branching instruction (i.e., Nx last instruction). The example

in the left part of the figure shows a valid execution that

traverses existing edges in the program’s CFG. The path

is composed by the node sequence {N1, N3, N6, N4} and

generates the CFLog entries {Ai
1, A

e
1, A

i
3, A

e
3, A

i
6, A

e
6, A

i
4, A

e
4}.

By inspecting CFLog, Vrf can check the entries sequence to

validate the control flow path and the fact that each node

executes in its entirety (due to in order appearance of pairs

{Ai
x,Ae

x}, i.e., valid entry and exit points of each node).

The right part of the figure exemplifies an invalid execution

path, containing an illegal transition from N6 to N2. For
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instance, this could be caused by an attack (e.g., a buffer

overflow) that overwrites function2()’s return address to

point to function1(). In this second case, the control

flow path is {N1, N3, N6, N2, N5, N4}, generating the CFLog

entries {Ai
1, A

e
1, A

i
3, A

e
3, A

i
6, A

e
6, A

i
2, A

e
2, A

i
5, A

e
5, A

i
4, A

e
4}. By

inspecting CFLog, Vrf can identify the control flow abuse due

to the invalid sequence of entries {Ai
6, A

e
6, A

i
2, A

e
2} present in

CFLog.

C-FLAT [11] is the earliest work to introduce CFA and

propose an instrumentation-based method using TrustZone as

a TEE. OAT [67] optimizes CFA to reduce the number of mea-

sured control flow transfers and enforce data integrity. ReCFA

[75] proposes to condense the control flow events to gener-

ate a compressed CFA report. LO-FAT [31], LiteHAX [30],

and Atrium[74] propose to attest the control flow without

instrumenting the executable binary, by adding customized

hardware modules, such as a branch filter, a loop monitor,

a hash controller, and a hash lookup. Tiny-CFA [28] proposes

a hybrid design for low-end MCUs that uses instrumentation

and only requires the formally verified hardware from support

from APEX proofs of execution [47].

All of these approaches assume that attested applications

execute atomically, meaning that they cannot be interrupted.

To deal with interrupts, OAT [67] suggests instrumenting all

ISRs along with the attested application. While this simplifies

the evaluation of the CFLog, it does not provide information

on whether the interrupts have resumed correctly. Moreover,

it is not suitable for MCUs running multiple applications. To

the best of our knowledge, our work presents the first secure

CFA architecture that can be applied to interrupt-prone and

real-time systems and applications.

III. PROBLEM STATEMENT: INTERRUPTS & CFA

This section discusses why current TEE-based CFA methods

generate unreliable reports when interrupts are enabled. It

also demonstrates associated attacks in practice. As discussed

in Section I, this is an important problem because disabling

all interrupts on the embedded device is often impractical.

A. Interrupt-based Attack Examples

We now present interrupt-based CFA attacks and discuss

the fundamental limitations explored by these attacks. To

demonstrate their practicality, we have also implemented an

open-source example of the most general attack case (i.e.,

example 3 below). For more details on this implementation,

see our repository at [2].

Figure 3 illustrates three execution possibilities for Prv
when interrupts are enabled. Ix represents the implementation

of an untrusted ISR unrelated to the attested application App.

Note that Vrf is only concerned with and knowledgeable about

App’s binary and is oblivious to low-level system ISRs, such

as Ix. Consequently, Ix is not instrumented, and its control

flow transfers are not appended to App’s CFLog (because Vrf
cannot interpret them). Ny and Nz represent nodes (lists of

sequential instructions) within App. Whenever they execute,

new entries are added to CFLog. App is instrumented to

generate two new CFLog entries per node: one before executing

the node’s first instruction and one before the branching

instruction (i.e., the last instruction) of the node. This in-

strumentation is in line with the TEE-based CFA methods

discussed in Section II-D. Without interrupts, once a node’s

execution starts, instructions within the node run sequentially,

and this approach generate a reliable CFLog. However, this can

not be guaranteed when interrupts are enabled, as discussed

below.

Example 1 in Figure 3 illustrates a benign interrupt control

flow transfer, where Ix does not tamper with App control

flow path. Execution starts from the first instruction in Ny ,

which is a trampoline to the Secure World to add new

entry Ai
y to CFLog. Before reaching the instruction in address

0x400, the interrupt is triggered, and execution is redirected

to Ix. After Ix execution, Ny resumes correctly from address

0x400 and proceeds sequentially, finally reaching the second

trampoline instruction that adds entry Ae
y to CFLog. After

executing the Node Ny , CFLog will have two new log entries

{Ai
y ,Ae

y}. Without interrupts or with a benign Ix that resumes

Ny correctly, these two new CFLog entries indicate that all

instructions within Ny executed.

Fig. 3. Interrupt-based attacks on CFA.

We now consider the case where Ix is vulnerable/malicious,

as illustrated in Example 2 of Figure 3. In this case, Adversary

(Adv) could corrupt the return address of Ix (e.g., by exploit-

ing a buffer overflow within Ix code), modifying it from 0x400

to 0x500. Once Ix returns, the CPU resumes the execution

in address 0x500, skipping all the instructions between these

addresses and consequently modifying the control flow and the

behavior of App. However, in this case, the generated CFLog

is the same as in Example 1 since the trampoline instructions

of Ny are still reached in the same order.

Example 3 of Figure 3 illustrates an even worse case,

where Adv leverages control over interrupt configurations. For

instance, timer-based interrupts can be configured to interrupt
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Prv precisely after a selected number of instructions (see our

implementation in [3]). In Example 3, Adv leverages this

capability to change the return address of a first instance of

Ix to the address 0x700 located inside a different App Node:

Nz . In addition, the attacker configures the interrupt Ix to

be triggered again after a specific number of clock cycles:

enough to execute the desired number of instructions but less

than enough to reach the trampoline instruction that appends

information to CFLog. For instance, the second interrupt occurs

after executing the instructions from 0x700 to 0x900 within

Nz . At that point, Ix execution is triggered again. This time,

the attacker changes Ix return address to 0x400 (the original

return address of the first interrupt). At the end of Node Ny ,

the new CFLog entries generated by the described process

would be exactly the same as Example 1. Therefore, Vrf
would consider this report legal. In reality, however, this attack

strategy allows Adv to execute any number of sub-sequences

of instructions (gadgets) within App nodes, implying arbitrary

code reuse and a complete modification of App’s intended

behavior. Given an appropriate gadget set in App (which

occurs in most programs), this can result in undetected Turing-

complete malicious behavior [60].

B. What makes existing CFA vulnerable to interrupt attacks?

Based on the previous discussion, we elucidate the fun-

damental limitations that enable interrupt-based attacks. This

discussion serves as a guideline to the design of ISC-FLAT,

presented next, in Section V.

Instrumentation without Atomicity. TEE-based CFA

methods assume that instructions within a node are executed

atomically. Therefore, the binary is only instrumented in each

node’s first and last instruction position. Interrupts falsify this

premise, enabling control flow transfers at any point within

the node. An naı̈ve solution to this problem would be to

instrument every instruction within the node. However, such

an approach would incur extremely high overhead, requiring

context switches between Secure and Normal Worlds for every

executed instruction in App.

Untraceable ISRs. ISRs are external to App; thus, their

behavior is not reflected in CFLog. Since they are untrace-

able, security mechanisms should be in place to ensure non-

interference of ISRs of the App’s execution.

No Stack Isolation. Unfortunately, ISRs run as privileged

code in the Normal World (see [53] for related discussion).

Therefore, they have access to all of the Normal World’s

stack (including control flow associated data and registers

pushed to the stack during function calls). Conversely, they can

modify interrupt configurations and also misconfigure Memory

Protection Units (MPU) when applicable. These issues imply

that any protection against malicious/compromised ISRs must

be enforced by Prv’s Secure World.

IV. ISC-FLAT: OVERVIEW

ISC-FLAT architecture comprises three modules to support

secure interruptable CFA: (i) Interrupt Safety Module (ISM),

(ii) CFA Measurement Engine, and (iii) Remote Verification

Engine.

• Interrupt Safety Module (ISM): This module aims to

augment TEE-based CFA with the capability to generate

reliable reports while enabling interrupts. To this end,

ISM securely initializes attestation and creates a dis-

patcher inside the Secure World that interposes itself be-

tween interrupt triggers and the respective ISR execution.

The dispatcher configures protections to the interrupted

App before the ISR can execute.

• CFA Measurement Engine: The measurement engine

tracks App’s control flow and manages CFLog. This is

achieved through instrumentation of App’s binary. Before

App’s deployment on Prv, an automated instrumentation

script adds instructions to App’s assembly code for each

node of App’s CFG (as described in Section II-D). This

instrumentation invokes a Secure World component that

appends new entries to CFLog according to the control

flow path taken during App’s execution.

• Remote Verification Engine: This module is executed

by Vrf to analyze the CFA report and detect violations

either due to software control flow attacks or malicious

interrupts during App’s execution.

Fig. 4. Overview of ISC-FLAT protocol.

Figure 4 illustrates ISC-FLAT’s protocol. Before being de-

ployed on Prv, each CFG node of App binary is instrumented

with additional instructions to track the execution control flow

(step 0 ). These additional instructions activate the CFA engine

by adding entries to CFLog during App execution.

As indicated in step 1 , ISC-FLAT’s protocol starts with Vrf
locally generating a request Req: { Chl, ID(App) } composed

of: a challenge/nonce (Chl) and an identifier (ID(App)),
where App is the application that should be executed and

attested. Chl is a unique random number to provide liveness,

preventing replayed CFA reports. To initiate an attested exe-

cution of App, Vrf sends Req to Prv.

Upon receiving Req, Prv must call the ISM Initialization

Routine, implemented in the Secure World, to create an

attestation instance associated with Chl (step 2 ). Failure to do

so implies the inability to produce a valid CFA report (since

the ISM finalization routine – detailed below – only signs CFA

reports associated with initialized attestation instances). ISM

Initialization Routine also computes a hash of all the memory
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regions in Prv that contain App’s executable, resulting in

H(App). Next, it makes the memory regions storing this

binary immutable (see Section V-D for details). Similar to

Chl, H(App) is also assigned to this attestation instance. Chl
and H(App) are defined during initialization (before App
execution) and included in the signed CFA report (see below).

Therefore, any attempt to initialize an incorrect binary AppAdv

is detectable by Vrf during verification, due to the mismatch

H(App) �= H(AppAdv). Finally, the ISM Initialization Rou-

tine uses NVIC to configure all interrupts to be handled by

the Secure World’s ISM dispatcher. The dispatcher, in turn, is

responsible for redirecting interrupts to their real ISRs after

enabling ISC-FLAT’s interrupt protections.

Following ISM Initialization Routine, App execution starts

(step 3 ). During execution, all control flow transfers are

saved to CFLog in the Secure World (step 4a ) by the CFA

engine. Similar to Chl and H(App), CFLog is associated to

this particular attestation instance. During App execution, due

to the initial NVIC configuration, all interrupts are trapped

to ISM before their handling by their respective (untrusted)

ISRs (step 4b ). For all interrupts, ISM Dispatcher will save

App’s context and “lock” App’s state (including App’s stack).

After this process, ISM redirects the interrupt to its actual

(untrusted) ISR, located in the Normal World. Once finalized,

ISR must return to the ISM Dispatcher module to re-enable

App’s execution (i.e., unlock App’s state and stack). In this

final stage, the ISM Dispatcher assures that App’s control flow

and context are resumed appropriately. This protects App’s

execution against (otherwise untraceable) interrupt-based CFA

attacks.

Once App execution is over, the ISM Finalization Routine

is called (step 5 ) to produce a signed CFA report (R(App))
containing the produced CFLog along with Chl and H(App).
Optionally, the report may include any output (out) produced

by App’s execution. If all steps succeed, R(App) is sent to Vrf
(step 6 ). Finally, Vrf uses the Remote Verification Engine to

decide on R(App)’s trustworthiness (The remote verification

process is detailed in Section V-E).

V. ISC-FLAT IN DETAIL

This section further details each component in ISC-FLAT.

We start by specifying the system and adversary models. Then

we describe each of ISC-FLAT’s components, namely CFA

Measurement Engine, Interrupt Security Module (ISM), and

Remote Verification Engine.

A. System Model

We consider that Prv is a single-core, bare-metal MCU,

equipped with a TEE, such as ARM TrustZone-M. Prv hosts

multiple untrusted applications, including untrusted privileged

software in the form of ISRs or a simple real-time operating

system (RTOS). All untrusted software modules (including the

application to be attested – App) execute in the Normal World

to keep security critical functionality (including the trusted

CFA implementation) isolated within the Secure World. In line

with the CFA related work (see Section II-D), we assume the

following Prv features, which are implemented by the ARM

TrustZone-M (v8) architecture:

• Prv can securely store a secret key (sk) within the Secure

World (making it inaccessible to the Normal World). The

(ideally minimal) code inside the TEE’s Secure World is

trusted.

• Prv features separate IVTs for Normal and Secure

Worlds. Any interrupts can be delegated to either one of

the IVTs. The Secure-IVT has priority over the Normal-

IVT (when an interrupt exists in both IVTs).

• Prv features a Non-Secure Memory Protection Unit (NS-

MPU). NS-MPU is a hardware monitor that controls

memory access in the Normal World. Nonetheless, the

Secure World can hijack control of the NS-MPU by

restricting Normal World’s access to NS-MPU configura-

tion registers1. As discussed in Section V-D, ISC-FLAT

leverages this capability to ephemerally make App’s code

immutable yet executable in the Normal World.

We assume that Vrf has knowledge of App’s binary and

CFG but is unaware of other (potentially malicious/vulnerable)

application/system-level software executing on Prv. Vrf also

has knowledge of the public key (pk) corresponding to the sk
(stored within Prv’s Secure World).

B. Adversary Model

We consider a strong adversary (Adv) that has full control

of Prv’s Normal World (including the privileged mode in

the Normal World). Adv can modify Normal World code

(e.g., through code injection attacks) and trigger control flow

hijacks and code re-use attacks. Similarly, Adv can control

interrupt configurations to call ISRs at any time [19] and

modify/corrupt ISR implementations. On the other hand, Adv
is unable to tamper with Secure World-resident software and

data. Conversely, it cannot disable or bypass TEE hardware-

enforced access control rules and guarantees.

Compared to prior work, this threat model considers a

stronger Adv that leverages interruptions and malicious Nor-

mal World code during CFA of App. As such, it presents a

more realistic case where CFA must securely co-exist with

the real-time requirements and multiple tasks in embedded

devices. We consider invasive physical attacks that modify

hardware out-of-scope, as they require an orthogonal set of

anti-tampering methods [57].

C. CFA Measurement Engine

The measurement engine generates CFLog and works in

parallel with ISM (described in Section V-D) to support

secure interruptable CFA. It leverages binary instrumentation

to construct CFLog during App execution.

Instrumenting Control Flow Transfers. Static analy-

sis [64] is used to generate App’s CFG, denoted CFG(App)
(recall the CFG definition from Section II-D). The CFG is

used to both (i) instrument App’s binary before deployment

1In Armv8-M is possible to restrict the Normal World from accessing the
NS-MPU by marking the NS-MPU configuration memory region as belonging
to the Secure World, using TrustZone-M SAU (recall SAU from Section II-B).
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(see below); and (ii) by Vrf to verify the CFA reports (see

Section V-E). Before deployment, each node of CFG(App)
in App’s binary is instrumented to save control flow events to

CFLog. The additional instructions are trampolines that redirect

the execution to a function implemented within the Secure

World that appends the control flow information to CFLog.

As CFLog is stored within the Secure World, it cannot be

directly modified by Normal World software. Specifically, the

instrumentation is added before each node’s first and last

instructions (recall that the last instruction is the branching

instruction of the node). Therefore, during execution, CFLog

will be constructed as the sequence of control flow transfers,

containing two entries per node.

In each node’s entry point, the instrumentation introduces

a single branch and link (bl) instruction that branches to

a Non-Secure Callable (NSC) function. The NSC function

calls the CFA engine and sends the Link Register (LR)

value (containing the returning address) as an argument to

be recorded in the CFLog. The entry generated at this point

represents the memory address of the node’s first instruction,

and its presence in CFLog indicates that the node execution

started from the first instruction.

Two cases must be considered for the instrumentation at the

end of a node, depending on the nature of the node’s branch-

ing instruction. If the branching instruction is a conditional
branch, direct jump, or call, the additional instruction is the

same as for the entry point, and the value of the log entry

represents the memory address of the node’s last instruction.

If the branching instruction is an indirect jump/call or return,

the entry to be logged is the (dynamically determined) branch

destination. In this case, the instrumentation adds two instruc-

tions: first, it performs a push of the destiny address to the

stack and then a bl to an NSC function that will pop the

destiny address from the stack and send it to the CFA engine.

By using this method, dynamically defined illegal branches

can be detected. The instrumentation approach outlined here

permits the observation of all direct and indirect branches that

take place during the execution of App. Upon completing the

instrumentation process, App can be installed on Prv, where

it can operate as a Normal World application.

Measuring the Control Flow. Once the ISM Initialization

Routine is called, it allocates a secure memory space to store

CFLog within the Secure World and sets a flag to enable the

addition of new log entries. From this point until the end of

App’s execution, every time the CPU reaches the trampoline

instructions, it will pass the control to the Secure World, which

will append the related memory addresses (entries) in the

memory that comprises CFLog.

D. Interrupt Security Module (ISM)

ISM is the key feature to make CFA reliable when interrupts

are enabled. As shown in Figure 5, ISM is implemented in the

Secure World to safeguard App against all interrupts before

they are handled by their untrusted ISRs in the Normal World.

In doing so, ISM assures the CFA integrity of the interrupted

App on the following fronts: (i) protecting the stack portion

Fig. 5. Illustration of the ISM workflow.

containing the context and the returning address of the inter-

rupted App; (ii) blocking ISRs from executing/modifying code

sections in App or generating/tampering with CFLog entries;

and (iii) ensuring that App is resumed correctly.

ISM includes three sub-modules. ISM Initialization Routine

is responsible for all initial configurations that will guarantee

the security of the attestation process and activate the secure

interrupt dispatcher. ISM Dispatcher intermediates every ISR

activation to restrict access to the memory belonging to

App as well as protecting App control flow integrity from

external interference. ISM Finalization Routine is responsible

for generating the signed CFA report, restoring pre-attestation

system configurations, and finalizing the attestation instance.

1) ISM Initialization Routine: When Prv receives the

request Req from Vrf, the ISM Initialization Routine function,

located in the Secure World, must be called to initialize the

attestation. This routine contemplates necessary configurations

to initialize and ensure the CFA security by following the

subsequent steps:

• Step 1: Check if another application is currently being

attested. If so, returns an error flag.

• Step 2: Configure TrustZone SAU to set the memory region

containing NS-MPU rule configurations as a Secure World

region. This revokes Normal World permission to configure

NS-MPU.

• Step 3: Configure the NS-MPU to change the permission

of App’s program memory addresses to read-only. This will
protect App’s binary against modifications during its execu-
tion/attestation.

• Step 4: Hash App’s program memory, generating H(App).
Vrf will use this to later verify App’s binary integrity.

• Step 5: Assign all interrupts to be handled by the interrupt

Dispatcher, in the Secure World. This is achieved by setting

NVIC ITNS. All the interrupts are set as Secure Interrupts

by activating all entries in TrustZone’s NVIC Secure-IVT to

point to the ISM Dispatcher. Therefore, the ISM Dispatcher
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obtains the ability to interpose itself between all interrupts and

the execution of their (untrusted) ISRs in the Normal World.
• Step 6: Save the current value of the Normal World’s

Stack Pointer SP0. As this is done immediately before App
execution starts, the Dispatcher can use SP0 to determine the

location of App’s stack and “lock” it, i.e., prevent modifica-

tions during the execution of eventual ISRs.
• Step 7: Set the Log Access Control (LAC = True) flag.

LAC indicates that the measurement engine is allowed to add

new entries to CFLog.
• Step 8: Call App function in the Normal World.

2) ISM Dispatcher: While App is running, the interrupt

Dispatcher handles all the interrupts before redirecting them

to their original ISR implementation. The Dispatcher’s goals

are to: (i) track all interrupts and control their permissions

to add new entries in CFLog (ii) guarantee that the App’s

context, including registers, the return address, and data in

the stack, is the same after the interrupting ISR completes;

(iii) prevent any attempt to bypass the Dispatcher and avoid

the required context-recovery from happening. As soon as an

interrupt is triggered, Secure World assumes the CPU control

and creates an instance of the Dispatcher to track the interrupt.

At this point, the Dispatcher saves the current Non-Secure

Stack Pointer on a temporary variable (SPc). Depending on

the architecture, it is also necessary to store other critical

registers that need protection (i.e., any registers not pushed

to the stack before the interrupt). Next, the Dispatcher locks

the App’s stack by setting the NS-MPU to define the region

within addresses [SP0, SPc] as a read-only (recall that after

Initialization Routine, NS-MPU cannot be modified by the

Normal World). This will temporarily prevent the Normal

World from overwriting the App’s stack, protecting it from

ISR interference. Finally, the Dispatcher stores the previous

LAC value and sets LAC = False, implying that no entries

will be appended to CFLog until LAC = True again. This

prevents the ISR from adding fake entries to CFLog.
The Dispatcher then passes control to the Normal World ISR

and waits for the ISR. To find the address of the Non-Secure

ISR code, the Dispatcher looks-up the NS-IVT position asso-

ciated with the triggered interrupt. Note that App execution

cannot be resumed unless the ISR returns to the Dispatcher.

Meanwhile, the App’s context is blocked. As a consequence,

in order to produce a valid attestation report, the untrusted

ISR must eventually give control back to the Dispatcher, by

returning appropriately, otherwise, a valid attestation report

can not be produced for App execution. When the Dispatcher

receives control back, it changes LAC to its previous value

and recovers all the App’s context, including the stack pointer

register, to the same values as before the interrupt triggering.

Finally, the previous configuration of the NS-MPU is restored,

and App execution is resumed.
Interrupt Preemption. Note that a new dispatcher instance

is created every time an interrupt is triggered. In the case of

a preempting interrupt, multiple dispatcher instances – each

related to each active interrupt – will exist simultaneously.

Whenever the preemption is triggered, the LAC value, regis-

ters, and NS-MPU configuration belonging to the preempted

task are pushed onto a stack within the Secure World. Then,

the new dispatcher instance sets LAC to False and reconfigures

the NS-MPU accordingly. When the preempting interrup-

tion concludes, the former NS-MPU/LAC/registers values are

popped from the protected stack.

3) ISM Finalization Routine: Once the execution of App
ends, the ISM finalization routine, implemented in the Secure

World, is automatically called to generate the CFA report and

reset configurations made by the Initialization Routine at the

beginning of attestation (before App attested execution). We

note that the finalization routine function is not callable by

the Normal World. Thus, signing the CFA report without a

prior call to initialize the attestation is impossible. The signed

report is bound to the data produced and stored by the latest

ISM Initialization Routine call, including Chl and H(App).
Specifically, the finalization routine performs the following

actions:

Producing CFA Report. The final CFA report is denoted by

R(App) = {σApp, CFLog}. It contains all information needed

to prove to Vrf which control flow path was taken by App.

CFLog is the verbatim control flow path. The signature σApp

has the format

σApp = Sigsk(H(CFLog)||H(App)||Chl),
where Sigsk denotes a cryptographic signature computed

using Secure World’s secret key sk. The signature is computed

on H(CFLog), H(App), and Chl. Therefore, it authenticates

CFLog, App’s binary and proves the freshness of R(App)
(through Chl). Optionally, R(App) (and respective signature)

may include any results produced by App’s execution, proving

that the results (e.g., sensed quantities) were produced by a

trustworthy execution of App.

Restoring Non-CFA System Status. The finalization rou-

tine sets LAC = False to disable new additions to the

CFLog. In addition, it re-configures Non-Secure Interrupts to

be handled in the Normal World by their original ISRs without

going through the Dispatcher checks. The original NS-MPU

configuration also returns to its original state.
E. Remote Verification Engine (executed by Vrf)

Authentication. Upon receiving R(App) from Prv, Vrf
verifies the signature using pk and based on the hash of App’s

expected binary, Chl, and according to the copy of CFLog, that

is included in R(App).
Control Flow Validation. If all authentication checks

(above) succeed, Vrf is assured that CFLog corresponds to

App’s execution on Prv. As a final step, Vrf can analyze CFLog

through a variety of means. The simplest approach is to run

CFLog through App’s legal CFG (recall Figure 2). Furthermore,

to verify backward edges (e.g., return address integrity) Vrf
emulates a shadow stack [68] for App’s reported CFLog.

VI. SECURITY ANALYSIS

ISC-FLAT security argument is two-part: (1) we show se-

curity when interrupts are disabled; and (2) we show that ISM

assures that CFLog-s produced by ISC-FLAT when interrupts
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are enabled are equivalent to those produced in case (1), when

interrupts are disabled.

A. Security Argument – CFA engine

Recall from Section V-A that Adv takes advantage of

vulnerabilities in the Normal World attempt forgery of CFA

reports. To attack the CFA engine without interrupts, Adv
must: (i) modify or forge CFLog; (ii) deactivate the CFA engine

by removing App’s instrumentation; or (iii) generate a CFA

report that is accepted by Vrf as authentic when it does not

correspond to a timely (i.e., after issuance of the latest Chl)
execution of App on Prv.

Forging CFLog. The trivial approach is directly modifying

CFLog in Prv’s memory. However, ISC-FLAT keeps CFLog

inside the Secure World, which is inaccessible to the Normal

World. Another possibility is to call the trampoline function

directly to add arbitrary entries to CFLog. However, the code

to perform these illegal trampoline calls cannot be injected in

App’s program memory, since this region is made immutable

by the Initialization Routine. Therefore, Adv must jump from

App to malicious code that calls the trampoline (outside of

App) by corrupting the destination of an indirect branch. Since

all indirect branches within App are instrumented, this attempt

would be appended to CFLog and thus detectable by Vrf.
Removing App instrumentation. Instrumentation integrity

is ensured through H(App), included in R(App). Once the

ISM Initialization Routine is called, before App execution, it

computes H(App). App’s binary is unmodifiable thereafter

(until ISM finalization routine execution) due to the NS-

MPU and SAU protections enforced by ISC-FLAT initial

configurations. Thus, any attempt to modify App must be

made before the ISM Initialization Routine call, resulting in

an incorrect H(AppAdv) value that is detected by Vrf.
Forging CFA Report (R(App)). Adv may attempt to

forge R(App) to reflect the expected execution of App when

that execution did not happen. This requires finding σAdv

such that V rfypk(σAdv) = (H(App)||H(CFLog)||Chl). sk
is securely stored within the Secure world. Therefore, this

forgery is computationally infeasible as long as (Sig, V rfy)
is implemented using a cryptographically secure signature.

B. Security Argument – Interrupt Safety Module

ISM supports the CFA engine by preserving the integrity of

CFA reports irrespective of interrupts. To bypass ISM, Adv
must (i) deactivate the ISM Dispatcher; (ii) replace an ISR

address in the Non-Secure IVT; or (iii) corrupt App’s data in

the Normal World stack.

Deactivating ISM Dispatcher. Adv could attempt to re-

move the dispatcher integrity checks that must occur for each

interrupt to safeguard App’s context. However, the Secure

World controls the NVIC interrupt configuration, which cannot

be altered by an Adv that compromises the Normal World.

Modifying Interrupt Control Flow. When the Dispatcher

redirects the execution to an untrusted ISR, it must eventually

receive the control back to resume App’s context and execu-

tion. Adv could attempt to modify the ISR’s return address and

redirect the control flow, instead of returning to the Dispatcher

or even add bogus entries to CFLog by calling the trampoline

function directly. ISC-FLAT disables logging of new entries

to CFLog (through the LAC flag) and blocks App’s stack to the

NS-World, pausing attestation until any ISRs return control to

the Dispatcher. While attestation is paused, nothing can affect

the App’s context. If the execution returns to the Dispatcher,

it will recover the App’s saved context and resume execution

appropriately. Otherwise, ISC-FLAT will not produce a signed

CFA report, and Vrf would conclude that App execution

failed.

Corrupting App Stack. When ISC-FLAT Dispatcher is

triggered (due to an ISR) while App executes in the Normal

World, a hardware routine pushes the contents of several

registers onto the Non-Secure stack. After the ISR execution

ends, the Dispatcher loads a specific value into the program

counter (PC) called EXEC RETURN. This particular value

triggers an “end of interrupt” routine, where the hardware

resumes the execution state to what it was before the interrupt

was triggered, including its return address. Since the Non-

Secure stack is accessible to the untrusted ISR, the saved return

address could be corrupted, leading the Dispatcher to return

to the wrong location. Adv could also change another context

in the stack, such as saved register values and variables. By

locking the Non-Secure stack belonging to App and ensuring

the integrity of the stack pointer, ISC-FLAT guarantees that

App’s context is appropriately resumed, including the ISR

return address and the App’s registers and data memory

values.

VII. EVALUATION

We implement ISC-FLAT’s proof-of-concept prototype on a

NUCLEO-L552ZE-Q [4] development board that is equipped

with an STM32L552ZE MCU. This MCU is based on the

ARM Cortex-M33 (v8) architecture and operates at a clock

frequency of 110 MHz. The MCU does not feature a memory

cache and supports Arm TrustZone-M technology. Our imple-

mentation includes a python script to instrument the App’s

assembly code, as required by the CFA engine. The trusted

components, ISM and CFA engine, are implemented in C and

run in the Secure World. An interface module that facilitates

communication between the Secure and Normal World is also

implemented in C. The CFA verification engine, executed by

Vrf, is implemented in Python. In our experiments, we use a

fixed CFLog buffer of size 4096 Bytes, which is configurable

to match the App’s requirements and available resources.

Assuming a bare-metal system, our prototype features ISC-

FLAT running in the Secure World and App running in the

Normal World. In the Secure World, ISC-FLAT operates in the

Thread privileged mode, except for the Dispatcher, which runs

in the Handler mode. Within the Normal World, App runs in

the Thread privileged mode, while its interrupts operate in the

Handler mode. Section VIII provides additional information

on running App or ISC-FLAT using unprivileged mode within

the context of a Rich/Trusted OS context.

We evaluate ISC-FLAT prototype to (i) determine the time,
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memory and energy consumption overheads of each individual

ISC-FLAT module; (ii) determine what ISC-FLAT’s impact on

real applications is; and (iii) test the approach against possible

attacks.

A. Runtime Overhead

Four modules contribute to ISC-FLAT overhead: Four mod-

ules contribute to ISC-FLAT overhead: (1) ISM Initialization

Routine, to initialize attestation and hash the binary mem-

ory; (2) ISM Dispatcher, which handles interrupts during the

attested execution; (3) ISM finalization routine, to finalize

attestation and generate the CFA report; and (4) CFA engine,

which appends new entries to CFLog.

The runtime of each of the four modules is measured as

follows:

• ISM Initialization Routine: elapsed time measured from

the instruction that calls the attestation (ISM Initialization

Routine) until the point where the first instruction of App
is reached.

• ISM Finalization Routine: elapsed time measured from

App’s last instruction until the first instruction after

finishing attestation.

• CFA engine: elapsed time measured from when the

trampoline instruction is called until the execution of the

first instruction after returning to the Normal World.

The ISM Dispatcher module is evaluated using two different

metrics:

• Interrupt Latency: time between interrupt triggering and

execution of the corresponding ISR, including the trusted

dispatcher execution time.

• Interrupt Backtrip Latency: time to resume App execution

after an ISR returns, including the dispatcher execution

to assure App’s integrity and interrupt flag resets.

We measured the runtime of each ISC-FLAT module 105

times. The results are shown in Table I. The overhead due

to the initialization and finalization routines is fixed as these

modules are only executed once per attested execution. The

primary source of overhead in these modules is the cryp-

tographic operations (this cost can potentially be reduced

significantly on devices with hardware-accelerated crypto-

graphic instructions). The majority of the runtime in the ISM

Initialization Routine comes from the hash computation of

H(App). In our measurements, we employed the blake2s[1]

hash function and measured that a binary size of 1 KByte

required 211864 CPU cycles, while the finalization routine

took approximately 843816 CPU cycles for a CFLog of size

4kBytes. The combined runtime of both modules increases

linearly with the total size of CFLog plus the binary (App)

size at a rate of 182103 CPU cycles per additional 1 KByte.

This cost is associated to the hash and signature operations

used to generate the CFA report.

As depicted in Table I, each control flow logging event

generated by the CFA engine requires approximately 491

CPU cycles, primarily due to the context switches between

the Normal and Secure World. The CFA engine is triggered

every time the execution reaches an instrumentation point

TABLE I
RUNTIME AND ENERGY MEASUREMENTS OF ISC-FLAT

Module
CPU

Cycles
Mean Std Max

ISM Initialization Routine 211865 13 211878
ISM Finalization Routine 843816 13 843831
CFA engine 491 8 502
Without Dispatcher
Interrupt Latency 29 2 32
Interrupt Latency Backtrip 405 8 415
With Dispatcher
Interrupt Latency 103 5 110
Interrupt Latency Backtrip 452 8 463

(the beginning or end of each CFG node). Consequently, the

relative overhead (%) is proportional to the ratio between

branching and non-branching instructions. Instructions that do

not branch do not require instrumentation and thus do not incur

additional execution time. Thus, a greater number of non-

branching instructions reduces the relative execution overhead.

The worst case execution time (WCET) for the CFA engine

occurs when all of the instructions are branching instructions

(a theoretical case that would not occur in real programs). This

case would introduce an overhead of 491 CPU cycles for each

instruction.

To assess the efficiency of the ISM Dispatcher, we measured

the interrupt latency with and without it. Our results show

that the interrupt latency introduced by the ISM Dispatcher

was approximately 103 CPU cycles, which results in 74 CPU

cycles overhead compared to the baseline interrupt. However,

we believe that this overhead is acceptable for most applica-

tions, considering the typical application latency requirements

outlined in [50]. Additionally, the interrupt backtrip latency

was around 452 CPU cycles, which represents an increase

of 46 CPU cycles over the baseline. These values are not

affected by the ISR code size or execution time, as they

occur before and after the ISR execution. Therefore, the total

runtime overhead introduced by ISC-FLAT during an attested

execution of App depends on the frequency of interrupts. The

expected overhead generated by the Dispatcher and the WCET

for different interrupt frequencies are shown in Figure 6.

(a) Interrupt Latency (b) Interrupt Backtrip Latency

Fig. 6. ISC-FLAT Dispatcher runtime vs. interrupt frequency

B. TCB Size

Table 1 presents the number of lines of C/Assembly code

(calculated using ”cloc v1.90”) implemented for each ISC-

FLAT module and the corresponding compiled binary size

(optimization flag ”-O0”) that is incorporated into the TCB
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(including dependencies). ISC-FLAT implementation in the

Secure World is written in a total of 542 lines of code (in-

cluding an external Blake2s Library). As anticipated, the CFA

engine is a small portion of the App binary due to its limited

role of adding new entries to CFLog. On the other hand, the

ISM Initialization and Finalization have larger code sizes, as

they implement a range of operations, including cryptographic

functions and register assignments. The Dispatcher, with an

intermediate code size, performs fewer system configurations.

For a reference point, OAT [67] reports 916 lines of C and

assembly code.
TABLE II

TCB SIZE OF ISC-FLAT MODULES.

Module Lines
of Code

Binary Size
(Kb)

ISM Initialization Routine 242 6.31
ISM Finalization Routine 73 1.78
ISM Dispatcher 32 1.22
CFA engine 20 0.38
Blake2s Library 177 3.34
Total 562 13.03

C. Energy Consumption

To evaluate the energy consumption of ISC-FLAT, we

used a X-NUCLEO-LPM01A [9] evaluation board. This board

powers the MCU with 3.3V, isolating it from the energy source

of the other components on the MCU prototyping board. It

measures the MCU’s current usage with a 100kHz acquisition

rate. To determine the energy consumption introduced by the

Dispatcher at varying interrupt frequencies, we measured the

MCU’s current consumption during 100s of “Sleep Mode”

with active interrupts. The “Sleep Mode” is deactivated when

the interrupt handler executes and reactivated when it ends.

We consider three configurations for the experiment: (i) no

interrupts, (ii) with a single interrupt at different frequencies,

and (iii) with the Dispatcher activated. The results of setups

(ii) and (iii) are shown in Figure 7b. To isolate the Dispatcher

overhead, we subtracted the consumption of setup (i) (without

interrupts) from setups (ii) and (iii). The increment in (iii)

compared to (ii) is shown in Figure 7a. Our results indicate that

ISC-FLAT introduces an overhead of 29% at low-frequency

interrupts, which increases to 167.7% as the frequency ap-

proaches 90kHz.It is important to note that the results in this

subsection offer a micro-level perspective of interrupt energy

consumption. The broader impact on the overall system will

be assessed through case studies in Section VII-D.

(a) ISM Dispatcher (b) Sleep Mode Consumption

Fig. 7. ISM Dispatcher energy consumption.

D. Case Study Applications

In this section, we evaluate the performance of ISC-FLAT

interrupts on real embedded applications, aiming to demon-

strate the effects of ISC-FLAT overhead due to the ISM mod-

ule. ISC-FLAT is the first interrupt-safe CFA, thus there are

no approaches that achieve the same functionality. Therefore,

we compare it to regular CFA to account for the additional

cost of supporting interrupts safely. Our evaluation considers

the overhead introduced by the CFA engine (required by any

TEE-based CFA method, irrespective of interrupt-safety) over

the baseline application without any ISC-FLAT modules. Most

importantly, it isolates the overhead due to the ISM module

(our main contribution) over the baseline CFA engine. Finally,

we also experiment with ISC-FLAT defenses against different

interrupt attack modes.

In order to assess ISC-FLAT in real-world scenarios, we

customized three open-source applications commonly utilized

for evaluating previous research on CFA. These include: [E1]
a Syringe Pump [5] that manages a fluid injection medical

device, [E2] an Ultrasonic Ranger [8] used to measure the

proximity of obstacles for parking assistance applications, and

[E3] a Fire Sensor [6] implemented based on a combination

of temperature and humidity measurements.

In our experiments, we incorporated a timer interrupt that

operates independently from the application. This interrupt

retrieves the sensor readings at a frequency of f , and stores

them in a buffer. For each frequency of f = 100Hz, 1kHz,

10kHz, 30kHz, 50kHz, 70kHz, we repeated the experiment

100 times. For each test, we evaluated the performance of

the three applications, measuring their runtime and energy

consumption under different conditions: without any CFA

(baseline), with the CFA engine only, and with both the

ISM and CFA engines activated. Afterward, we calculated

the overall time and energy consumption overhead incurred

by the modules compared to the baseline experiment. Table

III presents the results of our experiments. Consult [58] as a

reference on the worst-case interrupt frequency across various

real-life applications.

Runtime Overhead. The CFA engine incurs non-negligible

runtime overhead primarily due to the frequent invocations

of the Secure World (twice per execution of a CFG node).

The overhead observed for the CFA engine is consistent with

prior research on TEE-based CFA. On the other hand, the

ISM overhead added atop the CFA engine is negligible when

utilizing low interrupt frequencies (ranging from 10 to 1kHz).

Our results show an overhead of < 0.1%. The overhead

becomes noticeable when the frequency reaches 10kHz, where

it slowly rises from a range of 0.4% (E3) to 1.4% (E1) and

reaches a maximum overhead between 5.1 % (E2) to 6.4%

(E1) at around 70kHz. In sum, these results indicate that ISC-

FLAT is well-suited for systems with low-frequency interrupt

requirements (below 10kHz) and incurs modest overhead at

higher frequencies.

Energy Consumption Overhead. The energy usage of

each application is evaluated using the same configuration and
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TABLE III
OVERHEAD GENERATED BY ISC-FLAT MODULES OVER THE BASELINE.

E1 – Syringe Pump E2 – UltrasonicRanger E3 – Fire Sensor
CFA

Engine
CFA Engine

+ ISM
CFA

Engine
CFA Engine

+ ISM
CFA

Engine
CFA Engine

+ ISM
Interrupt

Frequency
Runtime Energy Runtime Energy Runtime Energy Runtime Energy Runtime Energy Runtime Energy

100Hz 19.3% 9.1% 19.3% 9.1% 4.5% 2.4% 4.5% 2.4% 10.2% 4.9% 10.2% 4.9%
1kHz 19.3% 9.1% 19.3% 9.1% 4.5% 2.4% 4.5% 2.4% 10.2% 4.9% 10.3% 4.9%
10kHz 19.5% 9.2% 20.9% 10.1% 4.6% 2.4% 5.7% 2.6% 10.5% 4.9% 10.9% 5.1%
30kHz 21.3% 9.7% 25.2% 12.9% 6.5% 3.6% 8.4% 3.7% 11.7% 5.4% 13.1% 6.7%
50kHz 24.8% 11.5% 29.6% 14.7% 10.3% 5.1% 16.1% 6.4% 13.0% 6.1% 18.8% 8.6%
70kHz 28.7% 14.0% 35.1% 17.5% 13.7% 6.3% 18.8% 9.0% 15.8% 7.3% 21.6% 9.9%

board as specified in Section VII-C. As shown in Table III, the

relative energy consumption overhead is roughly half of the

runtime overhead. These findings demonstrate the suitability

of ISC-FLAT for systems with low frequency (below 10kHz)

and low-power devices while still allowing an acceptable

energy expenditure for a diverse range of applications on high

interrupt frequency settings.

Security Tests. We design malicious interrupts to launch

control flow hijacks, including the examples presented in

Section 3, within the Syringe Pump execution and validate

the effectiveness of ISC-FLAT by analyzing its measurements.

Specifically, we analyzed the following attack vectors:

– Attacking the return address to redirect interruptions:
our malicious interrupts attempt to redirect the interrupts by

changing the IRS return address and the Dispatcher address.

When it tries to modify the Dispatcher return addresses, a fault

exception is generated due to illegal MPU area access. By

changing the return address of the ISR, we could redirect the

execution. However, Adv is unable to resume App execution.

Therefore, it can not generate a signed CFA report and it runs

in a different context, unrelated to App.

– Deactivating ISC-FLAT configurations: This case attempts

to misconfigure the MPU and the NS-IVT to bypass ISC-

FLAT. This case always generates a fault exception due to an

illegal access to a Secure World region and illegal access to

MPU-protected region, respectively.

Unfortunately, there are no public/widely used benchmarks

for this kind of attack yet. Thus we were unable to perform

an independent analysis and had to implement our own attack

vectors. Nonetheless, we hope that these attack vectors serve

as a proof of concept to show ISC-FLAT security in practice.

They are also included in our public release of ISC-FLAT’s

implementation [3].

VIII. DISCUSSION & LIMITATIONS

Memory and Performance Optimization. CFA ap-

proaches may generate large CFLog-s, depending on App’s

behavior. Instrumenting every node in App can also lead to

many TrustZone calls and added runtime overhead. The CFA

engine in ISC-FLAT is generic and replaceable. Therefore,

new techniques to optimize CFLog construction can be merged

into ISC-FLAT without interfering with the interrupt-safety

provided by ISM. In this work, we do not focus on optimizing

the CFA engine. We refer the reader to [67] for a comprehen-

sive treatment of optimization issues.

Non-Control Data Attacks. CFA detects and reports all

control flow deviations. Nonetheless, non-control data-only

attacks [25], [36] can exploit specific vulnerabilities to corrupt

application data without modifying App’s control flow path.

While these attacks require less likely vulnerabilities (e.g.,

“write anywhere” bugs), they are still possible. To detect such

cases, future work should consider interrupt-safe attestation of

both control and data flows.

Coexistence with RTOS. It is worth noting that RTOS-

s rely on interrupts to control task scheduling. Thus, by

isolating App against interrupts, ISC-FLAT can isolate App
from other concurrent applications (or the RTOS) on the same

device. The dispatcher would consider interrupts from the

RTOS as untrusted ISRs and preserve App state across them.

Nonetheless, to support ISC-FLAT implementation along with

an RTOS, certain compatibility challenges must be addressed.

The simplest version of ISC-FLAT precludes the (Normal-

World) OS from reconfiguring NS-MPU during the attested

process execution. In this case, the (Normal-World) OS should

request NS-MPU re-configuration to the Secure-World. Fur-

thermore, the initialization interface must account for OS-

specific process management policies.

Coexistence with Trusted OS. ISC-FLAT’s proof-of-

concept prototype currently runs on bare-metal. However, it

could also be implemented within a Secure-World firmware

or operating system, such as TF-M [7]. If implemented as

a software module, ISC-FLAT would become part of the

trusted firmware’s or operating system’s TCB, increasing its

size accordingly. Alternatively, running ISC-FLAT as a trusted

service or application in an unprivileged Thread mode would

avoid increasing the TCB size but could potentially result in

increased runtime overhead due to limited access to resource

for the Dispatcher.
IX. CONCLUSION

This paper characterizes the conflict between real-time

application needs and existing TEE-based CFA methods. We

also demonstrate interrupt-based attacks on typical CFA de-

signs. Motivated by this problem, we propose ISC-FLAT: a

TEE-based interrupt-safe CFA scheme. ISC-FLAT protects

the integrity of interrupted attested programs against vul-

nerable/malicious interrupts. It tracks and controls interrupt

access within the TEE’s secure world to ensure that interrupt

service routines cannot tamper with the integrity of CFA

reports. We implement and evaluate ISC-FLAT and make its

implementation publicly available.
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