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Abstract— The negative impact of measurement time skew on the
static state estimation of the power grid has been exacerbated by
increasing variation of system operating conditions. To mitigate
the time skew problem, this paper proposes a regression model
forecasting (RMF) method to forecast the time-skewed
measurements, along with a confidence interval estimation (CIE)
method to determine the weights associated with the forecasted
measurements. The proposed RMF-CIE method is compared
against several benchmark methods through Monte-Carlo
simulation on the IEEE 16-machine, 68-bus model. It was
observed that the proposed RMF-CIE consistently achieved more
accurate state estimation on average. In addition, it was found
that its estimation accuracy increases with the decrease of the
skew time and variation levels.

Index Terms—Forecasting, Regression analysis, State estimation,
Time skew.

I. INTRODUCTION

State estimation plays a critical role in the efficient and
reliable operation of the power grid [1]. To make a well-
informed decision, a power grid operator needs to obtain the
complete and accurate operating status of a power grid. Yet, the
measurements from a supervisory control and data acquisition
(SCADA) system are often limited in their number and
accuracy. To increase the monitoring accuracy and scope, static
state estimation (SSE) has been widely adopted in the control
center of utilities to monitor the operating conditions of the
power grid by integrating SCADA measurement data together
with power flow models [2].

While the SSE may function well when operating
conditions change very slowly, they often fail to converge when
the grid experiences rapid changes because of time-skew
problems [3]. SSE assumes that all the measurements are taken
at the same time instant, but SCADA measurements are not
synchronized and are taken at different instants [4]. The
differences among the sampling time of the SCADA
measurements are known as time-skew problems, which may
lead to large estimation errors and even SSE divergence. With
the accelerating penetration of renewable generation, the
variation of the power grid will increase, which exacerbates the
time-skew problem in the state estimation. As such, there is a
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need to address the time-skew problem in SSE when the power
grid experiences rapid changes.

To address these challenges, some initial studies have been
carried out. In [4], Holt’s linear (HL) approach is used to
forecast all SCADA measurements in the same time instant. In
[5], the Winter’s Multiplicative Seasonal Model and
Autoregressive Moving Average (ARMA) techniques are used
to mitigate the power mismatch of buses at the boundary of
different network areas, some of which have a time delay on the
order of several minutes. Reference [3] uses neighboring PMU
buses to create pseudo-measurements for SCADA buses
affected by time skew, then weighs the measurement’s
covariance matrix entries according to the innovation analysis.
In [6], an extended Kalman filter is developed to provide
optimal estimates for systems with random measurement delay
of either 0- or 1-time sample. A wealth of literature on the
leveraging of hybrid state estimation schemes (SCADA/PMU)
to mitigate the time-skew issue has also been presented [7]- [8].
Additionally, convolutional neural networks (CNNs) with long-
short term memory (LSTM) layers have been shown to excel at
extracting spatial and temporal correlations respectively, and
have been used to forecast power generation and consumption
time series [9] [10]. These studies have laid a solid foundation
for solving the time-skew problem.

In the literature, an essential step in mitigating the negative
impact of the time-skew problem is to create pseudo-
measurements at the estimation time. Yet, there lacks a
systematic study in building an accurate forecasting model for
pseudo-measurements. To bridge the gap, a regression model
forecasting (RMF) method is proposed in this paper, which
leverages both temporal and spatial correlation in the SCADA
measurements to forecast the measurements into an aligned
time instant. Leveraging the stepwise regression method [11], a
two-step procedure is developed to establish the regression
forecasting models to create the pseudo-measurements. The
covariance entries are then updated based on the confidence
interval estimate (CIE) of the measurement forecast. As a result,
the estimation accuracy of SSE is improved. The proposed
RMF-CIE method is compared with the persistence method
[12], the RMF with Lin/Pan (RMF-LP) method [13] , and the
long-short term memory convolutional neural network (LSTM-



CNN) forecast method [9] [10], and is shown to be more
accurate.

The rest of the paper is organized as follows. In Section II,
conventional SSE is reviewed, and the time-skew problem is
defined. The proposed RMF-CIE method is discussed in
Section III. The simulation and case studies are presented in
Section V. Conclusions and future works are discussed in
Section VL.

II. CONVENTIONAL SSE AND TIME-SKEW PROBLEM

To lay the ground for discussion, the conventional SSE is
reviewed under the condition of a time series of measurements,
and its associated time-skew problem is formulated.

A. Conventional State Estimation Goals and Methods

At the time instant of state estimation (#.), the objective
function of the conventional SSE problem for a power grid with
M measurements and N buses is often formulated into a
weighted least squared (WLS) problem (1).
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Here, zp,;,, denotes the m™ measurement at time tg, .
Symbols x, , = [0z, Ontse Vitse Vi tse]T are
the states to be estimated, in which 6,  and V,;  are the
voltage angles and magnitudes of bus n. Symbol hy, ;. (*) is

the measurement function, which relates the system states and

measurements according to the power flow model. Symbol

0.2, is the covariance of the measurement noise of Zm,tee-

Because Ay, ¢, (*) is often nonlinear, the solution to (1.b),
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found through iteratively solving its normal equations [1]. To

assess the estimation accuracy of the SSE, the total vector error
(TVE) defined by (2) is used.
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L0y, 1s the true value of the bus voltage phasor
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Here, V;,
at bus n, and I7n,t594§n,tse is its estimated value. A smaller
TVE indicates a more accurate estimate of the states.

B. Time-Skew Problem

Traditional SSE assumes that all the measurements (z,,) are
snapshots simultaneously taken at the same time instant #. In
reality, however, due to issues of synchrony and latency in the
communication network, the most recent data point from each
measurement channel is not from the same time instant [4]. This
means that the traditional SSE will be performed using
measurements of the system at different times which can be
detrimental to estimation accuracy, especially in the presence
of severe dynamics.

tse

To quantify the time-skew problem, let #; and # be the latest
sampling time of the i and j” measurement channel [14]
respectively. Then, skew time At can be defined as (3) and
illustrated in Fig. 1.

At = max (t;) — min (t;) 3)

The latest sampling time can be modeled as a random variable
T, which follows the uniform distribution as in (4).

T,,~U(min(t,,) , min(t,,) + At) “4)
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Fig. 1. Time-skew problem in measurements with z,, denoting the SCADA
data from the m™ measurement channel and red vertical lines denoting the
sampling times.
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Because many measurements are not available at the
moment of state estimation t = tg, due to the time-skew
problem, measurement z,, ;  needs to be estimated (Zy,,),
which is then used as a pseudo measurement in the
conventional SSE as in (5). Note that the major difference
between (1.a) and (5.a) is that z,,;_, is used in (1.a) whereas
Zm,ts, 18 used in (5.a).
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Denoting zp, 1., as the latest available measurements taken
at time instant T,,,, a simple estimation model that assumes no
change (known as the persistence method) can be used by
Setting Zp ¢, = Zmr,,- When the measured variables change,
the skew time At can incur the measurement time-skew errors
of AZm At = Zin,, — Zm,ts,» Which will be super-imposed to
the measurement noise. Note that Az, 5, is proportional to the
skew time At and system changing rate. Thus, when systems
significantly change during At, Az, o, will be significant and
can statistically degrade the estimation accuracy. Because the
persistence method is logically simple and computationally
cheap, most SSE deployed in control centers adopts this
method.



III. REGRESSION MODEL FORECASTING AND CONFIDENCE
INTERVAL COVARIANCE METHOD

To reduce the negative impacts of the time-skew problems
on the estimation accuracy of SSE, this section proposes the
RMF method to forecast Z,,;_,, and a CIE method to determine
its weight.

A. Forecasting Models of the RMF Method

The estimation accuracy of Z,, .  can be improved by
building a forecasting model. Leveraging the temporal and
spatial correlations among different measurements in the
power grid [14] [15], a general forecasting model can be
constructed for Z, ;. through (6).

Zmitee = Fn(Zigm il = 1, M; k; = 0, K;) (6)

Here, Fu(*) is the forecasting model. Symbol z;,; stands for
the latest (t;) value at measurement channel i, while X; is the
time window of the predictor. Assuming linear models, the
forecasting model of the RMF method can be built as a
multiple regression model in (7).
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Here, B, . are the coefficients of the multiple regression
model to be estimated. Because the correlation between
Zm,t,, and many of z; ;. can be trivial, including them as the
predictors may be detrimental to the forecasting accuracy of
the models. A systematic approach is thus needed to identify
the irrelevant predictors and remove them by directly setting
the corresponding coefficients to 0. At the same time, the
coefficients of the relevant predictors shall be estimated and
used in (7) to forecast Zp, ;. Note that the persistent model
discussed in the previous section is a special case of (7) if one
sets fBm,, = 1 and all the other coefficients Os.

B. Variable Selection for the RMF Method

To build a reliable and accurate forecasting model of (7), a
two-step approach is used to identify the important predictors
from many candidate variables for the RMF method.

In the first step, a long list of candidate predictors is
selected by applying the users’ engineering judgment. The
following criteria are proposed based on the authors’
experience and used to identify the candidate predictors, which
may be able to make significant contributions to the
forecasting model in explaining response variables:

(i) If Zp,,, is for real power, only real power measurements
will be selected as candidate predictors because real
power and reactive power/voltage magnitudes are often
decoupled. A similar rule is applied for reactive power.
Only the 12 most up-to-date measurement channels shall
be considered for the model building to ensure that the
model will produce forecasts for times as close to the SE
time as possible. The channel number 12 was chosen
heuristically based on a tradeoff between the lower TVE
and greater execution time observed as the channel
number increased.

(i)

(iii) Only variables within the time windows that have the
same topology as Z, ., will be included as candidates
because different topology may lead to different
correlation models.

The first step is important because it can significantly
reduce the size of candidate predictors based on the knowledge
and experience accumulated by an experienced engineer.
While a machine learning approach could be used in selecting
predictors, the required training data size and computation
expenses will grow exponentially with the number of
candidate predictors, and the approach could become
prohibitively complex.

The variables in the long list are further trimmed down
using the stepwise regression method [16] to form a short list
of the key predictors. The stepwise-regression method adopts
an iterative procedure to identify the key predictors by adding
and removing the predictors in the long list, then comparing
the resulting coefficients of determination, R2,, defined in (8).
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Here, Z,,;, is the forecasted value of z, ; , while Z,, . is
the mean value of z,, . The R2, represents how well a
forecasting model explains the variation of the response
variable. Thus, adding a predictor into an existing forecasting
model usually increases R%,. The amount of the increase is
proportional to how significantly the added predictor
contributes to the forecasting model. Readers are referred to
[16] for more details on the stepwise regression. Its procedure
is briefly reviewed as follows.

(1) Initiate the short list with a linear term and intercept for
each predictor in the long list.
If z; ;,—i; was not in the short list, its contribution to the
forecasting model is evaluated by comparing the R2 -
values before and after adding it to the forecasting model.
If its contribution is significant (i.e., the increase of the
R2,-value after adding it to the model is greater than or
equal to a pre-selected threshold, e.g., Popier = 0.10),
Zj t;-k; shall be added to the short list.
If z; i, was in the short list, check its contribution by
comparing the RZ -values before and after removing it
from the forecasting model. If its contribution is not
significant (i.e., its R%-value decrease is smaller than a
pre-selected threshold, e.g., Bemove = 0.05), Zj¢,
shall be removed from the short list.
Steps (i) and (iii) shall be looped through i=
1,2,-,M; k; =0,1, -+, K; for the variables in the long list.
Then, the procedure shall be repeated until no variable is added
or removed from the short list.

With the short list of key predictors identified, the
forecasting model of the RMF method can be denoted by (9)
by removing the irrelevant terms in (7). In (9), M,, is the total

number of key predictors z,,, = [1 Zm, ZmMm]T in the

short list. Symbol B = [Bm, Bm, Bruy ] is  the
coefficient vector, which is estimated through (10) by applying

(i)

(iii)



the least squared method on the training set. Let 7 be the total
number of forecasting instances that can be constructed from
the training data. In (10), Z, 7., = [Zmser  Zmsez Zmser]”
is the response vector while Z,, = [Zm1  Zm,2 Zyr]T
is the measurement matrix whose rows are the regressor vector
Z,, in the training data at time instants of /, 2, ...,7. Once
formed, the RMF forecasting model (9) was used to output the
dependent variables’ predicted response to the remainder of
the predictor data, up to z.. The latest projected response was
then used as Z,, ; , when performing SSE using (5.a).

M
ZAm,tse = Z ijﬁmj + ﬁmo = Zglﬁm (9)
j=1
Bm = (Zglzm)_lzglzm,Tse (10)

C. CIE Method

To perform SSE, the uncertainty of forecasted measurement
Zpm,t,, N€eds to be quantified and translated into the covariance
of 62, in (5). Following the CIE method in [17], the regressor
vector for channel m at #. can be defined as z,, , =
[1 Zmy tee ZmMm,tse]T The 100(1-o) percent
confidence interval (CI) on Z,, ; , can be computed using (11).

an

is the inverse of Student’s ¢ cumulative
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distribution function with degree of freedom of T — M,,, — 1 at
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the significant level of 0/2. 6% = (s ~ZmPm)_(Zm7se~Zmfim)
T—Myp—1

is the mean squared error (MSE) of the forecast using the
training data set. The estimated 95% confidence interval, i.e.,
Cl, 1005, is used as the covariance of 6,5, to set up the weight
for the forecasted measurement Zy,, ¢ .

Here, t%,T_ M

D. Summary on the proposed RMF-CIE method

In summary, the procedure of the SSE using the proposed
RMF-CIE method to reduce the negative impacts of the time-
skew problem can be executed as follows:

(i) Build a training dataset using historical measurements.
(i) Determine the structure of an RMF model (9) using the
proposed two-step procedure based on the stepwise
regression method.
Estimate the coefficients of the RMF model using (10).
Apply the RMF model to generate pseudo-measurements

(i)
(iv)
Zim e

Estimate the Cly,1-0.05 of Zp, ¢, using (11)

Solve (5) using Zy, ., as measurements and Cly,1-0.05 as

the covariance to estimate the states.
Finally, the TVE defined in (2) shall be used to evaluate the
accuracy of the estimates.

IV. CASE STUDY

In this section, the proposed RMF-CIE method is applied to
estimate the static states of the IEEE 16-machine, 68-bus test
system shown in Fig. 2 [18].The system’s dynamic responses

)
(vi)

to the fault were simulated using power system toolbox (PST)
in MATLAB [19]. To trigger the dynamic responses, a three-
phase fault was triggered on line 11 (from bus 5 to bus 8) at 5.1
s and cleared at 5.2 s by tripping off the line. An example line
power profile for the time interval is shown in Fig. 3. Real and
reactive power flow was measured on each of the 86 lines for
forward and backward flows, as well as real and reactive power
injection at each bus for a total of 480 unique measurements.
The magnitude and angle of each bus voltage needs to be
estimated and, subtracting a reference bus angle, leads to 135
states to be estimated. Also, a random Gaussian variable with
variance 02 =9x 10™* was added to measurements to
simulate measurement noise. To build the training dataset, the
measuring units sampled from the PST simulation, leveraging
data only from after the fault is cleared.

Fig. 2. IEEE 16-machine, 68-bus test system with the faulty line marked out.
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Fig. 3. Real power of Line 15. Note the transient response to the fault at 5.1 s
and the relaxation to the new steady state.

To study the impacts of the time-skew problem on
estimation accuracy, the initial conditions of the state estimator
were set to a flat start (i.e., bus voltage magnitudes of one p.u.
and angles of zero). To apply the stepwise regression method,
the thresholds for adding and removing a predictor are set
Popter = 0.10 and Preppove = 0.05, respectively. Considering
the randomness of the measurement noise, a Monte Carlo
approach was used to evaluate the estimation accuracy statistic
metrics with 100 iterations completed for each simulation
configuration. To evaluate the estimation accuracy of the SSE,
whisker plots are used to express the TVE data collected from
100 instances of the Monte Carlo simulation for each
configuration.



A. Benchmark Methods

To assess its advantages and disadvantages, the proposed
RMF-CIE method is compared with the persistence model [12],
the RMF-LP method, and the LSTM-CNN method [20] under
different time skew scenarios. As the persistence method has
been reviewed in section II, the LSTM-CNN method and the
RMF-LP method are briefly reviewed in this subsection to
make this paper self-contained.

1) LSTM-CNN Method

A thorough treatment of the theory of LSTM-CNNs can be
found in [9] [10]. In this study, a convolutional neural network
with a long-short term memory layer was trained on the set of
time series measurements that occurred after the fault at 5.1s
(the same set given to the proposed RMF model). The network
architecture consists of an input layer, a LSTM layer with 400
hidden units, a dropout layer with probability 0.5 (to avoid
overfitting), a convolutional layer with 32 filters of size 12 and
zero padding at the sequence start, another dropout layer with
probability 0.2, a normalization layer, a rectified linear unit
activation layer, a fully connected layer, and a regression layer
for output. An adaptive moment estimation optimizer was
used, with a batch size of 32 and initial learning rate of 0.01.
A total of 1500 steps were allowed for the training, at which
point the root MSE settled to a fairly static value. The trained
network was then used to forecast each measurement channel
up to the state estimation time. The last forecasted value was
used in the state estimation along with the same static
covariance used in the persistence forecast.

2)  RMF-LP Method

Like the CIE method, the LP method is an approach of
estimating the covariance of forecasted measurement Z,
[13]. Because the forecasting errors often increase with the
increase of forecasting horizon, a data processing approach
developed by Lin and Pan in [13] was modified into (12) to
weigh the covariance of the forecasted pseudo-measurement
according to the time between measurement and estimation.

(12)

where t, is the age of the measurement when the state is
estimated, and At is the skew time. Eq (10) effectively puts
less “trust” in the forecasted value from older measurements.
The LP method can work together with the RMF method for
the SSE, which is named RMF-LP method.

B. Impact of Skew Time

To evaluate the estimation accuracy of SSE using the
proposed RMF-CIE method under different skew time A¢, the
TVEs of the estimated states were summarized in Fig. 4. The
TVE results were obtained by setting the SE time t;, = 10 s
and varying the skew time At = 0.8:0.8:3.2. It can be
observed that the TVEs increased with the increase of skew
time At, which indicated that At negatively influenced the
estimation accuracy. Also shown in Fig. 4 were the TVEs of the
SSE using the LSTM-CNN method, the persistence (Pers)
method, RMF-LP method. It can be observed that the proposed
RMF-CIE method had smaller TVEs than the other three
benchmark methods.
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C. Impact of Variation Levels

To evaluate the estimation accuracy of SSE using the
proposed RMF-CIE under different variation levels, the SE
time (%) was varied from 8 to 10 s while fixing the skew time
at At = 2.0 s. It can be observed in Fig. 3 that the variation
levels decreased as . increased because the oscillations from
dynamical responses were damped out. The variation levels
were quantified using the normalized standard deviation (STD)
of the measurements and was plotted in Fig. 5. The normalized
STD was obtained by subtracting the median from the
measurements, dividing each signal by its standard deviation,
then taking the standard deviation of that data set.

TVE vs Skew Time
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Fig. 4. TVEs of the SSE using the proposed RMF-CIE and other benchmark
methods for different skew times (At).
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Fig. 5. TVEs of the SSE using the proposed RMF-CIE and other benchmark
methods for different estimation time (£,,), which corresponds to different
variation levels of the dynamic responses. (Note that SE close to the fault at
5.1 s was more burdened by system transients). Omitted from this figure for
ease of visual comparison are two outliers at roughly 20 and 28 from the
LSTM-CNN method at tg, = 8 s.

It can be observed that for the same estimation method, the
TVE decreased with the decrease of variation levels, which
indicated that the variation levels of measurements exacerbate
the time-skew problem in the accuracy of SSE. Also observe
that the SSE using the proposed RMF-CIE method had smaller
TVEs than the other three benchmark methods.



V. CONCLUSIONS AND FUTURE WORK

It can be concluded from this study that the estimation errors
of SSE increased with the increase of skew time during the
transient responses of the system. Leveraging the temporal and
spatial correlations, the proposed RMF method outperformed
the persistence method and the LSTM-CNN method in
constructing more accurate pseudo measurements at state
estimation time through forecasting, resulting in smaller TVEs
in SSE. Within the RMF method, the proposed RMF-CIE
method produces smaller TVE than the RMF-LP method. In the
future, the time skew that spans over a topology change will be
studied, and a more systematic approach will be proposed to
quantify forecasting errors under a statistical framework.
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