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Abstract— The negative impact of measurement time skew on the 

static state estimation of the power grid has been exacerbated by 

increasing variation of system operating conditions. To mitigate 

the time skew problem, this paper proposes a regression model 

forecasting (RMF) method to forecast the time-skewed 

measurements, along with a confidence interval estimation (CIE) 

method to determine the weights associated with the forecasted 

measurements. The proposed RMF-CIE method is compared 

against several benchmark methods through Monte-Carlo 

simulation on the IEEE 16-machine, 68-bus model. It was 

observed that the proposed RMF-CIE consistently achieved more 

accurate state estimation on average. In addition, it was found 

that its estimation accuracy increases with the decrease of the 

skew time and variation levels. 

Index Terms—Forecasting, Regression analysis, State estimation, 

Time skew. 

I. INTRODUCTION 

State estimation plays a critical role in the efficient and 
reliable operation of the power grid [1]. To make a well-
informed decision, a power grid operator needs to obtain the 
complete and accurate operating status of a power grid. Yet, the 
measurements from a supervisory control and data acquisition 
(SCADA) system are often limited in their number and 
accuracy. To increase the monitoring accuracy and scope, static 
state estimation (SSE) has been widely adopted in the control 
center of utilities to monitor the operating conditions of the 
power grid by integrating SCADA measurement data together 
with power flow models [2].  

While the SSE may function well when operating 
conditions change very slowly, they often fail to converge when 
the grid experiences rapid changes because of time-skew 
problems [3]. SSE assumes that all the measurements are taken 
at the same time instant, but SCADA measurements are not 
synchronized and are taken at different instants [4]. The 
differences among the sampling time of the SCADA 
measurements are known as time-skew problems, which may 
lead to large estimation errors and even SSE divergence. With 
the accelerating penetration of renewable generation, the 
variation of the power grid will increase, which exacerbates the 
time-skew problem in the state estimation. As such, there is a 

need to address the time-skew problem in SSE when the power 
grid experiences rapid changes. 

To address these challenges, some initial studies have been 
carried out. In [4], Holt’s linear (HL) approach is used to 
forecast all SCADA measurements in the same time instant.  In 
[5], the Winter’s Multiplicative Seasonal Model and 
Autoregressive Moving Average (ARMA) techniques are used 
to mitigate the power mismatch of buses at the boundary of 
different network areas, some of which have a time delay on the 
order of several minutes. Reference [3] uses neighboring PMU 
buses to create pseudo-measurements for SCADA buses 
affected by time skew, then weighs the measurement’s 
covariance matrix entries according to the innovation analysis. 
In [6], an extended Kalman filter is developed to provide 
optimal estimates for systems with random measurement delay 
of either 0- or 1-time sample. A wealth of literature on the 
leveraging of hybrid state estimation schemes (SCADA/PMU) 
to mitigate the time-skew issue has also been presented [7]- [8]. 
Additionally, convolutional neural networks (CNNs) with long-
short term memory (LSTM) layers have been shown to excel at 
extracting spatial and temporal correlations respectively, and 
have been used to forecast power generation and consumption 
time series [9] [10]. These studies have laid a solid foundation 
for solving the time-skew problem. 

In the literature, an essential step in mitigating the negative 
impact of the time-skew problem is to create pseudo-
measurements at the estimation time. Yet, there lacks a 
systematic study in building an accurate forecasting model for 
pseudo-measurements. To bridge the gap, a regression model 
forecasting (RMF) method is proposed in this paper, which 
leverages both temporal and spatial correlation in the SCADA 
measurements to forecast the measurements into an aligned 
time instant. Leveraging the stepwise regression method [11], a 
two-step procedure is developed to establish the regression 
forecasting models to create the pseudo-measurements. The 
covariance entries are then updated based on the confidence 
interval estimate (CIE) of the measurement forecast. As a result, 
the estimation accuracy of SSE is improved. The proposed 
RMF-CIE method is compared with the persistence method 
[12], the RMF with Lin/Pan (RMF-LP) method [13] , and the 
long-short term memory convolutional neural network (LSTM-
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CNN) forecast method [9] [10], and is shown to be more 
accurate.  

The rest of the paper is organized as follows. In Section II, 
conventional SSE is reviewed, and the time-skew problem is 
defined. The proposed RMF-CIE method is discussed in 
Section III. The simulation and case studies are presented in 
Section V. Conclusions and future works are discussed in 
Section VI. 

II. CONVENTIONAL SSE AND TIME-SKEW PROBLEM 

To lay the ground for discussion, the conventional SSE is 
reviewed under the condition of a time series of measurements, 
and its associated time-skew problem is formulated.  

A. Conventional State Estimation Goals and Methods 

At the time instant of state estimation (tse), the objective 
function of the conventional SSE problem for a power grid with 
M measurements and N buses is often formulated into a 
weighted least squared (WLS) problem (1). 
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Here, ��,���  denotes the mth measurement at time #$% . 

Symbols ���� = &'�,��� ⋯ '),��� *�,��� ⋯ *),���+,  are 

the states to be estimated, in which '-,��� �./ *-,���  are the 

voltage angles and magnitudes of bus n. Symbol ℎ�,���(∗)  is 

the measurement function, which relates the system states and 
measurements according to the power flow model.  Symbol 
����

  is the covariance of the measurement noise of ��,��� .  

Because ℎ�,���(∗) is often nonlinear, the solution to (1.b), 

����� = 3'4�,��� ⋯ '4-,��� *4�,��� ⋯ *4-,���56
, is often 

found through iteratively solving its normal equations [1]. To 

assess the estimation accuracy of the SSE, the total vector error 

(TVE) defined by (2) is used.  

7*8��� = ∑ :*4-,���∠'4-,��� − *-,���∠'-,���:)-��
∑ :*-,���∠'-,���:)-��

 (2) 

Here, *-,���∠'-,���  is the true value of the bus voltage phasor 

at bus n, and  *4-,���∠'4-,���  is its estimated value. A smaller 

TVE indicates a more accurate estimate of the states. 

B. Time-Skew Problem 

Traditional SSE assumes that all the measurements (zm) are 
snapshots simultaneously taken at the same time instant tse. In 
reality, however, due to issues of synchrony and latency in the 
communication network, the most recent data point from each 
measurement channel is not from the same time instant [4]. This 
means that the traditional SSE will be performed using 
measurements of the system at different times which can be 
detrimental to estimation accuracy, especially in the presence 
of severe dynamics. 

To quantify the time-skew problem, let ti and tj be the latest 
sampling time of the ith and jth measurement channel [14] 
respectively. Then, skew time <#  can be defined as (3) and 
illustrated in Fig. 1. 

<# = max?∈&�,�+(#?) − minA∈&�,�+�#A� (3) 

The latest sampling time can be modeled as a random variable 

Tm, which follows the uniform distribution as in (4). 

7�~C(min(#�) , min(#�) + Δ#)  (4) 

 
Fig. 1. Time-skew problem in measurements with zm denoting the SCADA 

data from the mth measurement channel and red vertical lines denoting the 

sampling times. 

Because many measurements are not available at the 

moment of state estimation # = #$%  due to the time-skew 

problem, measurement ��,��� needs to be estimated (�̂�,���), 

which is then used as a pseudo measurement in the 

conventional SSE as in (5). Note that the major difference 

between (1.a) and (5.a) is that ��,��� is used in (1.a) whereas 

�̂�,��� is used in (5.a). 
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Denoting ��,6I as the latest available measurements taken 

at time instant 7�, a simple estimation model that assumes no 

change (known as the persistence method) can be used by 

setting �̂�,��� = ��,6I. When the measured variables change, 

the skew time <# can incur the measurement time-skew errors 

of  Δ��,J� = ��,6I − ��,���, which will be super-imposed to 

the measurement noise. Note that Δ��,J� is proportional to the 

skew time <# and system changing rate. Thus, when systems 

significantly change during <#,  Δ��,J� will be significant and 

can statistically degrade the estimation accuracy. Because the 

persistence method is logically simple and computationally 

cheap, most SSE deployed in control centers adopts this 

method.  



III. REGRESSION MODEL FORECASTING AND CONFIDENCE 

INTERVAL COVARIANCE METHOD 

To reduce the negative impacts of the time-skew problems 

on the estimation accuracy of SSE, this section proposes the 

RMF method to forecast �̂�,���, and a CIE method to determine 

its weight.  

A. Forecasting Models of the RMF Method 

The estimation accuracy of �̂�,���  can be improved by 

building a forecasting model. Leveraging the temporal and 

spatial correlations among different measurements in the 

power grid [14] [15], a general forecasting model can be 

constructed for �̂�,��� through (6).  

�̂�,��� = K���?,�LM NL:O = 1, ⋯ , Q; S? = 0, ⋯ , U?�   (6) 

Here, Fm(*) is the forecasting model. Symbol �?,�L  stands for 

the latest (#?) value at measurement channel i, while Ki is the 

time window of the predictor. Assuming linear models, the 

forecasting model of the RMF method can be built as a 

multiple regression model in (7).  

�̂�,��� = 	 	 �?,�LMNLV?,�LMNL

WL

NL�X

�

?��
+ V�,X (7) 

Here, V∗,∗  are the coefficients of the multiple regression 

model to be estimated. Because the correlation between 

��,��� and many of �?,�LMNL  can be trivial, including them as the 

predictors may be detrimental to the forecasting accuracy of 

the models. A systematic approach is thus needed to identify 

the irrelevant predictors and remove them by directly setting 

the corresponding coefficients to 0. At the same time, the 

coefficients of the relevant predictors shall be estimated and 

used in (7) to forecast �̂�,���. Note that the persistent model 

discussed in the previous section is a special case of (7) if one 

sets V�,�I = 1 and all the other coefficients 0s. 

B. Variable Selection for the RMF Method  

To build a reliable and accurate forecasting model of (7), a 

two-step approach is used to identify the important predictors 

from many candidate variables for the RMF method.  

In the first step, a long list of candidate predictors is 

selected by applying the users’ engineering judgment. The 

following criteria are proposed based on the authors’ 

experience and used to identify the candidate predictors, which 

may be able to make significant contributions to the 

forecasting model in explaining response variables: 

(i) If �̂�,��� is for real power, only real power measurements 

will be selected as candidate predictors because real 

power and reactive power/voltage magnitudes are often 

decoupled. A similar rule is applied for reactive power. 

(ii) Only the 12 most up-to-date measurement channels shall 

be considered for the model building to ensure that the 

model will produce forecasts for times as close to the SE 

time as possible. The channel number 12 was chosen 

heuristically based on a tradeoff between the lower TVE 

and greater execution time observed as the channel 

number increased. 

(iii) Only variables within the time windows that have the 

same topology as �̂�,���  will be included as candidates 

because different topology may lead to different 

correlation models.  

The first step is important because it can significantly 

reduce the size of candidate predictors based on the knowledge 

and experience accumulated by an experienced engineer. 

While a machine learning approach could be used in selecting 

predictors, the required training data size and computation 

expenses will grow exponentially with the number of 

candidate predictors, and the approach could become 

prohibitively complex. 

The variables in the long list are further trimmed down 

using the stepwise regression method [16] to form a short list 

of the key predictors. The stepwise-regression method adopts 

an iterative procedure to identify the key predictors by adding 

and removing the predictors in the long list, then comparing 

the resulting coefficients of determination, Y�� , defined in (8). 

Y�� = 1 − ∑ ���,��� − �̂�,�����
��� ∈ �Z[?-?-\ $%�

∑ ���,��� − ��̅,�����
��� ∈ �Z[?-?-\ $%�

 (8) 

Here, �̂�,��� is the forecasted value of ��,��� while ��̅,��� is 

the mean value of ��,��� . The Y��  represents how well a 

forecasting model explains the variation of the response 

variable. Thus, adding a predictor into an existing forecasting 

model usually increases Y�� . The amount of the increase is 

proportional to how significantly the added predictor 

contributes to the forecasting model.  Readers are referred to 

[16] for more details on the stepwise regression. Its procedure 

is briefly reviewed as follows.  

(i) Initiate the short list with a linear term and intercept for 

each predictor in the long list. 

(ii) If �?,�LMNL  was not in the short list, its contribution to the 

forecasting model is evaluated by comparing the Y�� -

values before and after adding it to the forecasting model. 

If its contribution is significant (i.e., the increase of the 

Y�� -value after adding it to the model  is greater than or 

equal to a pre-selected threshold, e.g., %̂-�%Z = 0.10 ), 

�?,�LMNL  shall be added to the short list. 

(iii) If �?,�LMNL  was in the short list, check its contribution by 

comparing the Y�� -values before and after removing it 

from the forecasting model. If its contribution is not 

significant (i.e., its Y�� -value decrease is smaller than a 

pre-selected threshold, e.g., Ẑ%�`a% = 0.05 ), �?,�LMNL  
shall be removed from the short list.  

Steps (ii) and (iii) shall be looped through O =
1, 2, ⋯ , Q; S? = 0, 1, ⋯ , U?  for the variables in the long list. 

Then, the procedure shall be repeated until no variable is added 

or removed from the short list.  

With the short list of key predictors identified, the 

forecasting model of the RMF method can be denoted by (9) 

by removing the irrelevant terms in (7). In (9), Q� is the total 

number of key predictors de = 31 ��f ⋯ ��gI 56
 in the 

short list. Symbol he = 3V�i V�f ⋯ V�gI 56
is the 

coefficient vector, which is estimated through (10) by applying 



the least squared method on the training set.  Let T be the total 

number of forecasting instances that can be constructed from 

the training data.  In (10), dje,,�� = &�̂�,$%� �̂�,$%� ⋯ �̂�,$%6+6  

is the response vector while ke = &de,l de,m ⋯ de,,+6 

is the measurement matrix whose rows are the regressor vector 

de  in the training data at time instants of 1, 2, …,T.  Once 

formed, the RMF forecasting model (9) was used to output the 

dependent variables’ predicted response to the remainder of 

the predictor data, up to tse. The latest projected response was 

then used as �̂�,��� when performing SSE using (5.a). 

�̂�,��� = 	 ��nV�n

�I

A��
+ V�i = de, he (9) 

he = (ke, ke)Mlke, dje,,��  (10) 

C. CIE Method 

To perform SSE, the uncertainty of forecasted measurement 
�̂�,��� needs to be quantified and translated into the covariance 

of ����  in (5). Following the CIE method in [17], the regressor 
vector for  channel m at tse can be defined as de,��� =
31 ��f,��� ⋯ ��gI,o��56

. The 100(1-α) percent 

confidence interval (CI) on �̂�,��� can be computed using (11).  

pq�,�Mr = #r
�,6M�IM�s�j�� de,���

6 (ke, ke)M� de,���  (11) 

Here, #t
u,6M�IM�  is the inverse of Student’s t cumulative 

distribution function with degree of freedom of 7 − Q� − 1 at 

the significant level of α/2. �j�� = �dje,,��Mkehe�v�dje,,��Mkehe�
6M�IM�  

is the mean squared error (MSE) of the forecast using the 
training data set.  The estimated 95% confidence interval, i.e., 
CIm,1-0.05, is used as the covariance of ����  to set up the weight 
for the forecasted measurement �̂�,���.  

D. Summary on the proposed RMF-CIE method 

In summary, the procedure of the SSE using the proposed 

RMF-CIE method to reduce the negative impacts of the time-

skew problem can be executed as follows: 

(i) Build a training dataset using historical measurements. 

(ii) Determine the structure of an RMF model (9) using the 

proposed two-step procedure based on the stepwise 

regression method. 

(iii) Estimate the coefficients of the RMF model using (10). 

(iv) Apply the RMF model to generate pseudo-measurements 

�̂�,���. 

(v) Estimate the CIm,1-0.05 of �̂�,��� using (11) 

(vi) Solve (5) using �̂�,���  as measurements and CIm,1-0.05 as 

the covariance to estimate the states.  

Finally, the TVE defined in (2) shall be used to evaluate the 

accuracy of the estimates. 

IV. CASE STUDY 

In this section, the proposed RMF-CIE method is applied to 
estimate the static states of the IEEE 16-machine, 68-bus test 
system shown in Fig. 2 [18].The system’s dynamic responses 

to the fault were simulated using power system toolbox (PST) 
in MATLAB [19]. To trigger the dynamic responses, a three-
phase fault was triggered on line 11 (from bus 5 to bus 8) at 5.1 
s and cleared at 5.2 s by tripping off the line. An example line 
power profile for the time interval is shown in Fig. 3. Real and 
reactive power flow was measured on each of the 86 lines for 
forward and backward flows, as well as real and reactive power 
injection at each bus for a total of 480 unique measurements. 
The magnitude and angle of each bus voltage needs to be 
estimated and, subtracting a reference bus angle, leads to 135 
states to be estimated. Also, a random Gaussian variable with 
variance �� = 9 × 10My  was added to measurements to 
simulate measurement noise. To build the training dataset, the 
measuring units sampled from the PST simulation, leveraging 
data only from after the fault is cleared. 
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Fig. 2. IEEE 16-machine, 68-bus test system with the faulty line marked out. 

 

 
Fig. 3. Real power of Line 15. Note the transient response to the fault at 5.1 s 

and the relaxation to the new steady state. 

To study the impacts of the time-skew problem on 
estimation accuracy, the initial conditions of the state estimator 
were set to a flat start (i.e., bus voltage magnitudes of one p.u. 
and angles of zero). To apply the stepwise regression method, 
the thresholds for adding and removing a predictor are set 

%̂-�%Z = 0.10 and Ẑ%�`a% = 0.05, respectively. Considering 
the randomness of the measurement noise, a Monte Carlo 
approach was used to evaluate the estimation accuracy statistic 
metrics with 100 iterations completed for each simulation 
configuration. To evaluate the estimation accuracy of the SSE, 
whisker plots are used to express the TVE data collected from 
100 instances of the Monte Carlo simulation for each 
configuration.  



A. Benchmark Methods 

To assess its advantages and disadvantages, the proposed 
RMF-CIE method is compared with the persistence model [12], 
the RMF-LP method, and the LSTM-CNN method [20] under 
different time skew scenarios. As the persistence method has 
been reviewed in section II, the LSTM-CNN method and the 
RMF-LP method are briefly reviewed in this subsection to 
make this paper self-contained. 

1) LSTM-CNN Method 

      A thorough treatment of the theory of LSTM-CNNs can be 

found in [9] [10]. In this study, a convolutional neural network 

with a long-short term memory layer was trained on the set of 

time series measurements that occurred after the fault at 5.1s 

(the same set given to the proposed RMF model). The network 

architecture consists of an input layer, a LSTM layer with 400 

hidden units, a dropout layer with probability 0.5 (to avoid 

overfitting), a convolutional layer with 32 filters of size 12 and 

zero padding at the sequence start, another dropout layer with 

probability 0.2, a normalization layer, a rectified linear unit 

activation layer, a fully connected layer, and a regression layer 

for output. An adaptive moment estimation optimizer was 

used, with a batch size of 32 and initial learning rate of 0.01. 

A total of 1500 steps were allowed for the training, at which 

point the root MSE settled to a fairly static value. The trained 

network was then used to forecast each measurement channel 

up to the state estimation time. The last forecasted value was 

used in the state estimation along with the same static 

covariance used in the persistence forecast.  

2) RMF-LP Method 

Like the CIE method, the LP method is an approach of 

estimating the covariance of forecasted measurement �̂�,��� 

[13]. Because the forecasting errors often increase with the 

increase of forecasting horizon, a data processing approach 

developed by Lin and Pan in [13] was modified into (12) to 

weigh the covariance of the forecasted pseudo-measurement 

according to the time between measurement and estimation.  

�′��� = ���� z{�|}�  (12) 

where #[  is the age of the measurement when the state is 

estimated, and <# is the skew time. Eq (10) effectively puts 

less “trust” in the forecasted value from older measurements. 

The LP method can work together with the RMF method for 

the SSE, which is named RMF-LP method. 

B. Impact of Skew Time 

To evaluate the estimation accuracy of SSE using the 
proposed RMF-CIE method under different skew time Δt, the 
TVEs of the estimated states were summarized in Fig. 4. The 
TVE results were obtained by setting the SE time #$% = 10 ~ 
and varying the skew time Δ# = 0.8: 0.8: 3.2 .  It can be 
observed that the TVEs increased with the increase of skew 
time Δ# , which indicated that Δ#  negatively influenced the 
estimation accuracy. Also shown in Fig. 4 were the TVEs of the 
SSE using the LSTM-CNN method, the persistence (Pers) 
method, RMF-LP method. It can be observed that the proposed 
RMF-CIE method had smaller TVEs than the other three 
benchmark methods.  

C. Impact of Variation Levels 

To evaluate the estimation accuracy of SSE using the 
proposed RMF-CIE under different variation levels, the SE 
time (tse) was varied from 8 to 10 s while fixing the skew time 
at Δ# = 2.0 ~. It can be observed in Fig. 3 that the variation 
levels decreased as tse increased because the oscillations from 
dynamical responses were damped out. The variation levels 
were quantified using the normalized standard deviation (STD) 
of the measurements and was plotted in Fig. 5. The normalized 
STD was obtained by subtracting the median from the 
measurements, dividing each signal by its standard deviation, 
then taking the standard deviation of that data set.  

  
Fig. 4. TVEs of the SSE using the proposed RMF-CIE and other benchmark 

methods for different skew times (Δt). 

 
Fig. 5. TVEs of the SSE using the proposed RMF-CIE and other benchmark 

methods for different estimation time (���), which corresponds to different 
variation levels of the dynamic responses. (Note that SE close to the fault at 

5.1 s was more burdened by system transients). Omitted from this figure for 
ease of visual comparison are two outliers at roughly 20 and 28 from the 

LSTM-CNN method at ��� = � �. 

It can be observed that for the same estimation method, the 
TVE decreased with the decrease of variation levels, which 
indicated that the variation levels of measurements exacerbate 
the time-skew problem in the accuracy of SSE. Also observe 
that the SSE using the proposed RMF-CIE method had smaller 
TVEs than the other three benchmark methods. 



V. CONCLUSIONS AND FUTURE WORK 

It can be concluded from this study that the estimation errors 
of SSE increased with the increase of skew time during the 
transient responses of the system. Leveraging the temporal and 
spatial correlations, the proposed RMF method outperformed 
the persistence method and the LSTM-CNN method in 
constructing more accurate pseudo measurements at state 
estimation time through forecasting, resulting in smaller TVEs 
in SSE. Within the RMF method, the proposed RMF-CIE 
method produces smaller TVE than the RMF-LP method. In the 
future, the time skew that spans over a topology change will be 
studied, and a more systematic approach will be proposed to 
quantify forecasting errors under a statistical framework. 
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