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Abstract

Flow modifications induced by wind turbine rotors on the incoming atmospheric

boundary layer (ABL), such as blockage and speedups, can be important factors

affecting the power performance and annual energy production (AEP) of a wind farm.

Further, these rotor-induced effects on the incoming ABL can vary significantly with

the characteristics of the incoming wind, such as wind shear, veer, and turbulence

intensity, and turbine operative conditions. To better characterize the complex flow

physics underpinning the interaction between turbine rotors and the ABL, a field

campaign was performed by deploying profiling wind LiDARs both before and after

the construction of an onshore wind turbine array. Considering that the magnitude

of these rotor-induced flow modifications represents a small percentage of the

incoming wind speed (≈ 3%), high accuracy needs to be achieved for the analysis of

the experimental data and generation of flow predictions. Further, flow distortions

induced by the site topography and effects of the local climatology need to be quan-

tified and differentiated from those induced by wind turbine rotors. To this aim, a

suite of statistical and machine learning models, such as k-means cluster analysis

coupled with random forest predictions, are used to quantify and predict flow modifi-

cations for different wind and atmospheric conditions. The experimental results show

that wind velocity reductions of up to 3% can be observed at an upstream distance

of 1.5 rotor diameter from the leading wind turbine rotor, with more significant

effects occurring for larger positive wind shear. For more complex wind conditions,

such as negative shear and low-level jet, the rotor induction becomes highly complex

entailing either velocity reductions (down to 9%) below hub height and velocity

increases (up to 3%) above hub height. The effects of the rotor induction on the

incoming wind velocity field seem to be already roughly negligible at an upstream dis-

tance of three rotor diameters. The results from this field experiment will inform

models to simulate wind-turbine and wind-farm operations with improved accuracy

for flow predictions in the proximity of the rotor area, which will be instrumental for

more accurate quantification of wind farm blockage and relative effects on AEP.
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1 | INTRODUCTION

The atmospheric boundary layer (ABL) is the source of the power harvested by wind turbines. Thus, a detailed characterization of ABL features, for

example, in terms of wind speed, wind direction, turbulence intensity, shear, and veer, is instrumental for the design of wind turbine rotor aerody-

namics and controls as well as the optimization of wind farm layouts. With the increase in wind turbine size and with the deployment of wind farms

encompassing a larger number of wind turbines, it has been recognized that mutual interactions arise between the pressure field induced by the wind

turbine rotors and the incoming wind field. Specifically, rotor-induced effects on the incoming ABL can entail velocity reductions typically occurring

in front of and approaching the turbine, which are referred to as induction zone for a single wind turbine1,2 and blockage encompassing cumulative

effects due to multiple wind turbines.3–5 Rotor-induced effects can also consist of flow deflections and speedups as the incoming wind field partially

circumvents the turbine rotor due to pressure field modifications associated with the thrust force exerted by the turbine rotor.6 Speedup regions

have been observed numerically and through wind tunnel experiments,7–10 while extensive field experimental evidence is still lacking.11,12

Regarding wind farm blockage, the comparison of wind speed measurements recently performed at the Lillgrund offshore wind farm before and

after the construction of the wind power plant highlighted a velocity decrease corresponding to a 2% reduction in annual energy production (AEP).11

Wind measurements performed with light detection and ranging (LiDAR) instruments for an offshore wind farm identified a large variability in wind

speed reduction based on atmospheric stability regime and operative conditions of the wind turbines,12 with the extreme scenarios observed during

stable atmospheric conditions leading to a velocity deficit of 4% of the freestream value at an upstream distance of 25 rotor diameters (D). For

onshore wind farms, the analysis of wind data collected before and after the construction of a wind power plant provided evidence of wind farm

blockage, which is quantified to be about 3.4% of the freestream velocity at an upstream distance of 2D, while reducing to 1.9% at 10D.13

Large-eddy simulations (LES) of a wind farm performed for different incoming wind shear with constant hub-height wind speed and turbulence

intensity, TI, aimed at simulating different levels of atmospheric stability, showed that at an upstream distance of 2.5D from the leading wind tur-

bine, the velocity reduction changed from 0.8% to 10% with increasing wind shear.14 Effects of the atmospheric stability on wind farm blockage

were also simulated by varying the ABL height, specifically by varying it from 300 m up to 500 m for the LES of an ideal wind turbine array.15 The

LES data indicated that the wind speed reduction ascribed to wind farm blockage reduced from 3% down to 1.25% at an upstream distance of 5D

with increasing ABL height. Nonetheless, caution should be paid to the setup and analysis of numerical simulations aiming at investigating wind

farm blockage. Indeed, a recent study showed significant variability in the estimates of wind turbine power capture for different levels of atmo-

spheric stratification, that is, ABL height, wind shear, and veer, by varying numerical domain size and grid resolution of the numerical setup.16

Wind tunnel experiments with down-scaled wind turbine models can also be informative to investigate wind farm blockage. Wind speed

reductions up to an upstream distance of 30D were measured through laboratory experiments.17 Similar results were obtained in Segalini &

Dahlberg 2020,18 where blockage effects on a turbine row induced by a downstream turbine row can become negligible only for streamwise spac-

ing larger than 30D, while wind farm blockage is estimated between 0.9% and 2.4% depending on wind turbine density over the array and number

of the wind turbine rows.

The challenges associated with investigations of mutual interactions between wind turbine rotors and the incoming wind field are connected

with the three-dimensionality and the non-stationarity of the ABL,19–21 and the variability in the settings of the wind turbine rotor, which leads to

different turbine thrust and power coefficients, and, thus, wake velocity fields.22–24 Further, the order of magnitude of the flow modifications cau-

sed by the rotor-induced effects is typically only a few percent of the freestream velocity. This is comparable to the variations in the freestream

flow that can arise from terrain effects, complex atmospheric features, and statistical uncertainty associated with the measurements. Therefore,

performing a thorough characterization of the site flow conditions and climatology is instrumental to the subsequent quantification of wind farm

blockage and speed up from site-specific flow patterns.

In this work, we investigate the effects induced by wind turbine rotors on the incoming ABL for different wind and atmospheric conditions,

and, more specifically, for different levels of shear (either positive or negative shear) and during the occurrence of low-level jets as well. This study

is performed through a field experiment encompassing wind LiDAR profile measurements collected before and after the construction of an

onshore wind turbine array to differentiate the spatial wind field variability due to the site topography for different wind/atmospheric conditions

from the subtle effects on the incoming ABL associated with the rotor thrust force. To identify these rotor-induced effects, meticulous procedures

have been developed and implemented, such as using k-means cluster analysis and random forest predictions, to ensure adequate accuracy on

the data post-processing of LiDAR data simultaneously collected at different distances from the leading wind turbine rotor, both before and after

the construction of the wind turbine array under investigation. The comparative analysis of these two data sets is aimed at differentiating the flow

spatial variability associated with the site topography from the effects induced by the wind turbine rotors.

For this experiment, vertical profiles of horizontal wind speed, wind direction, and velocity dispersion were collected with four profiling wind

LiDARs (PLs hereinafter) distributed over the site under investigation, both before and after the construction of an onshore array composed of

four wind turbines. In particular, one profiling LiDAR (hereinafter named PL04) was located 10D upstream of the turbine array along the prevailing

wind direction (West-South-West), thus it will be used to retrieve reference velocity profiles for the free-stream unperturbed condition. Nonethe-

less, previous works showed that wind speed could be affected by wind farm blockage even at such an upstream distance under stable atmo-

spheric conditions.12 The pre-construction data are first analyzed statistically and through the k-means cluster and random forest algorithms to
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characterize the site climatology. Subsequently, the profiles of the velocity difference between the various profiling wind LiDARs and PL04 are

investigated. Finally, the variability of the velocity difference measured before and after the construction of the turbine array will enable the dif-

ferentiation of the spatial flow variability due to the site topography from the rotor-induced effects on the incoming ABL due to the wind turbine

array.

The remainder of the paper is organized as follows. The site and experimental setup are described in Section 2, while the climatology survey

of the site under investigation is provided in Section 3. The quantification of the rotor-induced effects through the profiling LiDAR measurements

is reported in Section 4, then concluding remarks are provided in Section 5.

2 | SITE AND LiDAR FIELD CAMPAIGN

To investigate flow distortions on the incoming ABL due to the thrust force induced by wind turbine rotors, four Windcube V2 profiling wind

LiDARs were deployed at an onshore wind farm located over relatively flat terrain in the northwest of the United States. The wind turbines under

investigation have a rotor diameter, D, of 127 m, a hub height, H, of 89 m, and a rated power of 2.5 MW. Supervisory control and data acquisition

(SCADA) data are provided as 10-min average and standard deviation of the hub-height wind speed, temperature, active power, thrust, generator

RPM, and generator RPM set point. The positions of the four wind turbines considered in this work (T06–T09) and the locations of the profiling

LiDARs (PL01-PL04) are reported in Figure 1A, while in Figure 1B, the wind rose measured at hub height with the profiling LiDAR PL04 shows the

predominance of West-South-West wind directions, indicating that the profiling wind LiDARs are typically located upstream of the turbine array

for the prevailing wind direction.

The four Windcube V2 profiling wind LiDARs were deployed to perform Doppler beam swinging (DBS) scans using a scanning cone half-angle

of 28� from the vertical to generate 10-min-averaged profiles of the wind speed, direction, and velocity dispersion at the heights of 40 m, 64, m,

89 m (hub height), 114 m, 153 m, 160 m, 180 m, and 200 m. The dispersion parameter is an output of the LiDAR measurements quantifying the

variability of the radial wind speed within each range gate. Therefore, under isotropic and homogeneous flow conditions, it can be considered a

surrogate parameter for wind turbulence intensity. The LiDAR PL04 is devoted to characterizing the nearly unperturbed wind conditions having

a distance of about 10D for the prevailing wind direction, while the other LiDARs might be affected more significantly by the rotor-induced flow

modifications. Measurements were performed both before (from June 18, 2020, until August 11, 2020) and after (from December 15, 2020, to

June 14, 2021) the construction of the wind farm, hereafter named “Phase 1” and “Phase 3,” respectively. Between these two phases of the pro-

ject, namely, during “Phase 2,” all the profiling wind LiDARs were co-located to assess their calibrations and measurement accuracy. The linear

regression analysis performed for the radial velocity data collected with all the profiling LiDARs co-located and measuring with the same settings

at the same height, not shown here for the sake of brevity, returned an average percentage error smaller than 0.2%, a correlation coefficient

always larger than 0.998, and intercept smaller than 0.2 m/s.6

F IGURE 1 Experimental site: (A) Layout of the wind turbines and profiling wind LiDARs; (B) wind rose retrieved from the hub-height
measurements collected from the PL04 profiling wind LiDAR normalized by the turbine rated wind speed of 10 m/s.
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3 | SITE CLIMATOLOGY

To investigate the climatology of the site through a k-means cluster analysis25 and random-forest predictions,26,27 we consider data collected

from the profiling LiDAR PL04 both during the pre-construction phase (Phase 1) and the post-construction phase (Phase 3) of the project. The ini-

tial data set comprises 8065 and 26,209 data samples for Phases 1 and 3, respectively, which are then reduced to 6826 and 13,260 after remov-

ing time stamps when not all the data were simultaneously available, for a total of 20,086 samples available for the climatology study.

The statistics of the velocity profiles from PL04 are reported in a dimensional form in Figure 2A, and in Figure 2B made non-dimensional with

the horizontal velocity measured at 200-m height, which is referred to as U∞, and assumed as the unperturbed free-stream velocity being above

rotor heights and at a distance of about 10D from the turbines under investigation. The variability around the mean of the PL04 velocity profiles

F IGURE 2 Statistics of the velocity profiles from the profiling LiDAR PL04: (A) dimensional form; (B) non-dimensional form with U∞ measured
from PL04 at 200-m-height. The grey zone represents the 25–75 percentile range, while the square and circle markers report median and mean
values, respectively. The dashed lines indicate the bottom and top tips of the wind turbine rotor.

F IGURE 3 Histograms of the parameters obtained from the profiling LiDAR PL04 data: (A) Local time of the day; (B) hub-height wind speed
normalized by the turbine rated wind speed; (C) wind direction at hub height; (D) shear; (E) veer; (F) velocity dispersion.

4 MOSS ET AL.
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(quantified in Figure 2 by the gray region, encompassing the 25th to 75th percentile area) shows wide ranges of wind speed, and shear for the

wind field occurring over this site, thus deserving a more in-depth analysis.

The velocity profiles collected from PL04 are classified through the local time of the day, hub-height wind speed, wind direction, shear, veer,

and LiDAR velocity dispersion. The shear is quantified here through the fitting of the shear exponent, α, on each velocity profile28–30:

α¼ log U=URð Þ
log z=zRð Þ , ð1Þ

where U and z are horizontal wind speed and height, respectively, while the subscript “R” refers to reference values, which are assumed at the

lowest available height. For the dataset under investigation, fitting of velocity profiles showing a canonical trend with positive shear can produce

mean R2 values as high as 0.91, while velocity profiles exhibiting a low level jet or negative shear have smaller R2 values (minimum value 0.58).

Veer is quantified as the slope of the linear variation of wind direction with height calculated from each vertical profile of the wind direction. The

histograms of the above-mentioned parameters are reported in Figure 3.

This preliminary climatology analysis indicates some site-specific features, such as the occurrence of two peaks in the histogram of the hub-

height wind speed in Figure 3B. Specifically, the hub-height wind speed normalized by the rated wind speed of the wind turbines (10 m/s), Unorm
hub ,

with the highest occurrence is around 0.3, while a second peak is detected at around 0.9. The histogram of the wind direction (Figure 3C) confirms

the prevalence of westerly winds for this site, which is a favorable wind sector to investigate blockage according to the layout of the LiDAR wind

profilers depicted in Figure 1. Interestingly, the histograms for shear and veer in Figure 3D and 3E, respectively, show roughly symmetric probabil-

ity of occurrence of positive and negative events. Finally, in Figure 3F, the LiDAR velocity dispersion shows a peak around 0.3 and a gradually

decreasing occurrence for values larger than 1.5.

More details on the site climatology are obtained from the two-dimensional histograms for coupled parameters reported in Figure 4. From

Figure 4A, it is noticed that events with large positive shear (α>0:02) generally occur for Unorm
hub larger than 0.5, while for Unorm

hub <0:5 there is a

roughly equal probability to observe ABL flows with either positive and negative shear. A similar feature is observed for veer in Figure 4B, namely,

conditions with both positive and negative veer can occur for Unorm
hub < 0:5, while veer is generally non-negative for higher wind speeds.

F IGURE 4 2D histograms of the parameters from the velocity profiles of PL04: normalized hub-height wind speed versus (A) shear, (B) veer,
and (D) local time of the day; shear versus (C) veer, and (E) local time of the day; (F) local time of the day versus veer. The histograms have
10 evenly-spaced levels of the iso-contours (brighter colors for higher occurrence counts).
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Figure 4E and 4F show that events with significant shear (α>0:1) and veer (>0.1 deg/m), respectively, typically occur at nighttime, which

might be associated with stable atmospheric conditions. Nonetheless, Figure 4C suggests that the correlation between shear and veer is roughly

negligible (correlation coefficient equal to �0.08), which indicates that high-shear conditions can occur with negligible veer and vice versa.

The characterization of the typical wind profiles occurring over this site is performed through the cluster analysis of the normalized velocity

profiles collected from the profiling LiDAR PL04 during Phases 1 and 3 of the experiment. This task is performed through the k-means algorithm

F IGURE 5 Dendrogram of the velocity profiles from the profiling LiDAR PL04. For each cluster, data are reported similarly to Figure 2B
where the parameter on the x-axis is the normalized wind speed, U=U∞, and on the y-axis the normalized height, z=H, while the dendrogram label,
the final cluster label, and the percentage occurrence are reported as well.

6 MOSS ET AL.
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with the dendrogram approach,23,31 for which clusters are generated based on their inertia value; the latter is an output of the k-means

algorithm indicating the statistical significance of each cluster. Once the clusters are generated, each cluster is considered a “node” of the dendro-

gram, and it is further partitioned into sub-clusters to generate a cluster analysis following a tree-like structure, namely, the dendrogram.

For each cluster, a silhouette analysis is performed to reject samples that might be ascribed to a specific cluster without high statistical signifi-

cance.32 The silhouette coefficient can assume values between �1 and 1, and non-positive values indicate samples that might belong to the inter-

face among adjacent clusters and, thus, are rejected for further analyses. For the data set under investigation, 90.4% of the initial dataset is

retained.

Following the dendrogram approach, 14 clusters are generated from the normalized profiles of PL04, which are shown in the dendrogram of

Figure 5 by reporting mean and median profiles within each cluster of the normalized velocity, U=U∞, the 25th–75th percentile region with a grey

area, the initial label assigned to the clusters based on the dendrogram, for example, Cabcd, the final label of the cluster from C0 up to C13, and

the percentage occurrence. These velocity statistics are reported versus height normalized by the wind-turbine hub height, H. This climatology

survey performed through a cluster analysis allows highlighting the occurrence of a broad variety of velocity profiles with different levels of wind

shear, both positive and negative. It is noteworthy that mean velocity profiles for some clusters can be adequately modeled with the power law

of Equation (1) (e.g., C1, C3, C4, C6, and C7). In contrast, other velocity profiles, such as for C2, C11-C13, the value of the shear exponent can

only provide bulk information on wind shear even though fitting with the power law is relatively poor.

The generated clusters are subsequently sorted based on their percentage occurrence, as reported in Figure 6 with their final label. For

Figures 6,7, and 8, statistics for each cluster are reported with the same color to facilitate the interpretation of the data analysis presented. The

representativeness of the cluster center, that is, the mean velocity profile within each cluster, is quantified through the mean absolute percentage

error (MAPE), which is reported in Table 1 for the various clusters together with other statistical parameters. The first five clusters have a MAPE

smaller than 6% while the median MAPE across all the clusters is 5.95%, which indicates a good level of classification and predictability of the data

set through the k-means cluster analysis.

The first five clusters, C0–C4, encompass a total occurrence of about 72% of the entire dataset (see Table 1). The first two clusters with the

largest occurrence, that is, C0 and C1, are typical boundary layer velocity profiles with positive shear (median shear equal to 0.05 and 0.20,

respectively), while C2, which has a percentage occurrence of 10.7%, has a negative median shear of �0.04, which is not a canonical wind condi-

tion for the ABL. The occurrence of velocity profiles with negative shear (total occurrence of about 20% of the selected data set), which is not

F IGURE 6 Statistics of the velocity profiles from PL04 for the various clusters. The representation is similar to Figure 2B. The limits on the
horizontal axis are different for the various panels.

MOSS ET AL. 7
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only associated with cluster C2 but also with other clusters (such as C8 and C10), corresponds typically to relatively low wind speeds of the

incoming wind field, that is, with Unorm
hub ≾0:4.

Other clusters with different levels of positive and negative shear are identified as well. It is noteworthy that C9 is associated with a low-level

jet condition occurring with its nose just above the top tip of the turbines with an occurrence of 1.4% over the entire data set. The last two clus-

ters (C12 and C13), with a total occurrence of 0.8%, represent peculiar wind conditions with shear switching from negative to positive with

increasing height across the rotor area. These wind conditions, even if infrequently, occur with very low hub height wind speed (median

TABLE 1 Cluster parameters.

Cluster Number Label Occurrence [%] Unorm
hub Shear Veer [�/m] Dispersion MAPE [%]

C0 Caaaba 33.2 0.77 0.05 0.002 1.20 2.0

C1 Caabba 13.6 0.91 0.20 0.063 0.77 3.4

C2 Caaaa 10.7 0.35 �0.04 0.047 0.49 5.5

C3 Caaabbaa 7.9 0.71 0.09 0.017 1.00 1.5

C4 Caaabbab 7.1 0.97 0.14 0.045 0.84 1.5

C5 Caba 5.0 0.30 �0.21 0.091 0.32 10.2

C6 Caabbb 4.1 0.36 0.35 0.046 0.42 5.7

C7 Caabaa 2.6 0.23 0.60 �0.056 0.37 8.1

C8 Cabb 1.8 0.28 �0.44 0.093 0.33 14.5

C9 Caaabbb 1.4 0.48 0.26 0.0053 0.42 4.4

C10 Cb 1.2 0.25 �0.70 0.042 0.32 32.6

C11 Caabac 1.0 0.13 0.61 �0.210 0.39 13.1

C12 Caabab 0.5 0.11 �0.19 �0.190 0.27 16.1

C13 Caaabbac 0.3 0.22 �0.13 0.190 0.29 6.2

Note: Wind parameters are reported as median values calculated within each cluster.

F IGURE 7 Histograms of the local time for the various clusters of the PL04 data.

8 MOSS ET AL.
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Unorm
hub of 0.11 and 0.22, respectively), and with significant veer yet with opposite signs (median veer of �0.19 and 0.19 for C12 and C13,

respectively).

We can now investigate the effects of the cluster analysis on other parameters for the wind profiles measured by the LiDAR PL04, namely,

the time of the day, hub-height wind speed, and shear, which were not provided directly as inputs of the k-means algorithm. For instance, in

Figure 7, the histograms of the time of the day for the various clusters show that clusters C0, C2, and C3 are mainly associated with daytime oper-

ations, while the remaining ones, except C13, show a majority of occurrences during nighttime. This result indicates that the daily cycle of atmo-

spheric stability can significantly drive the variability in wind conditions, especially in terms of wind shear. Furthermore, the typical daytime

conditions represented by the cluster centers of C0, C2, and C3 show a better level of predictability than nighttime wind conditions. Indeed, with

only three clusters a total occurrence of about 52% is captured, while a larger number of clusters is needed to represent the typical wind condi-

tions measured at nighttime. This analysis is corroborated by the median MAPE of the velocity profiles with respect to their cluster center

reported in the last column of Table 1. The clusters C0, C2, and C3 all have median MAPE below 6%, while larger values are estimated for most of

the remaining clusters.

The histograms of the hub-height wind speed normalized by the turbine rated wind speed, Unorm
hub , calculated for the various clusters are

reported in Figure 8. It is noteworthy that the only clusters that occur for a wide range of wind speeds, namely, both below and above the wind

turbine rated wind speed, are clusters C0, C1, C3, C4, and C9, for a total occurrence of about 63% of the entire data set. This means that the main

variability, and thus lower likelihood to make predictions with good accuracy, in the incoming velocity profiles is mainly associated with relatively

low wind speeds. The clusters with higher hub-height wind speed have typically positive wind shear; however, cluster C9 is associated with the

presence of low-level jets.

We now investigate the capability of predicting the velocity profiles measured by the LiDAR PL04 by providing as inputs the background flow

parameters, such as time of the day, hub-height wind speed, wind direction, shear, veer, and velocity dispersion. These predictions are performed

with the random forest algorithm available from the Scikit-learn package in Python.33 The input data set is split into 90% portion for training and

10% for testing. For the random forest, a maximum depth of 50 and a learning rate of 0.3 are selected upon a preliminary sensitivity study on the

accuracy of the random forest predictions (weakly affected though by the model parameters). The output generated from the random forest is

the most probable cluster associated with the provided inputs. The accuracy of the random forest predictions is then assessed through the per-

centage of true predictions on the cluster number associated with each velocity profile within each cluster and for the entire data set. The results

of the random forest predictions of the PL04 velocity profiles are summarized in Table 2 for the various models tested.

F IGURE 8 Histograms of the normalized hub-height wind speed for the various clusters of the PL04 data.
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The predictions obtained with random forest by providing a single input parameter do not seem highly satisfactory. Nonetheless, the highest

percentage of true predictions is achieved when using wind shear as the input parameter, namely, 61.4% of true predictions, while a few clusters

are predicted with an accuracy larger than 70%. The clusters predicted by varying wind shear between the 5th and 95th percentile of the values

measured by the LiDAR PL04 during the field campaign are reported in Figure 9. For wind shear lower than �0.2, the predicted velocity profile is

TABLE 2 Percentage of true predictions for the velocity profiles of the LiDAR PL04 through random forest.

Inputs C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total

Time 85 58 0 0 0 0 0 0 0 0 0 0 0 0 44.2

Uhub 96 2 11 1 2 8 2 6 0 0 4 11 23 0 43.6

Wind Dir. 89 34 10 3 8 11 2 5 4 0 2 1 0 0 45.5

Shear 76 73 54 23 52 63 38 65 18 3 70 0 0 0 61.4

Veer 87 37 19 3 4 18 4 15 5 1 7 22 40 2 46.8

Dispersion 96 10 3 0 0 3 0 1 0 0 0 4 0 0 43.1

Time, Uhub 85 58 26 7 18 34 15 24 15 6 17 28 50 0 52.7

Time, Wind Dir. 86 61 18 11 20 22 30 27 14 14 14 8 7 0 53.1

Time, Shear 79 75 54 27 52 61 47 67 29 4 64 8 5 0 63.6

Time, Veer 84 61 28 10 20 24 16 22 14 5 15 27 43 2 53.0

Time, Dispersion 88 60 19 6 16 19 13 7 9 2 5 9 7 2 51.8

Uhub , Wind Dir. 86 48 44 20 29 42 29 34 20 4 23 28 43 3 57.1

Uhub , Shear 79 78 57 32 45 64 51 74 24 5 67 29 33 5 65.1

Uhub , Veer 85 57 35 10 18 31 16 25 19 4 21 38 55 2 54.1

Uhub , Dispersion 84 44 26 10 14 32 16 20 16 4 9 22 25 2 50.0

Wind Dir., Shear 78 75 57 33 56 60 45 68 43 10 64 8 5 2 64.9

Wind Dir., Veer 90 74 61 38 45 58 49 47 39 27 43 44 55 7 69.8

Wind Dir., Dispersion 84 48 23 9 17 26 23 21 18 9 15 9 5 2 50.4

Shear, Veer 79 79 56 32 47 65 48 73 31 7 58 47 50 5 65.4

Shear, Dispersion 79 73 54 28 46 62 47 61 31 14 67 4 3 0 63.4

Veer, Dispersion 85 51 28 6 11 32 16 22 12 5 12 31 50 0 51.4

Uhub , Wind Direction, Shear 86 84 70 54 67 71 69 79 58 34 75 60 58 20 76.6

Uhub , Wind Direction, Veer 92 82 75 54 61 73 68 68 59 48 59 66 71 27 78.9

Time, Wind Direction, Shear 92 90 83 74 81 83 82 84 79 70 88 63 50 36 86.3

Time, Wind Direction, Veer 93 87 79 72 76 76 78 75 68 72 70 69 77 46 84.6

Uhub , Wind Direction, Shear, Veer 93 93 85 79 85 86 85 87 79 73 88 83 81 51 88.7

Time, Wind Direction, Shear, Veer 93 92 83 74 82 84 83 84 76 67 86 78 75 44 87.0

Time, Uhub , Shear, Veer 93 92 83 74 82 84 83 84 76 67 86 78 75 44 89.4

Time, Uhub , W.D., Shear, Veer 93 94 87 82 86 88 88 89 81 78 91 83 87 64 90.0

Time, Uhub , W.D., Shear, Veer, Disp. 94 93 87 82 87 88 90 90 83 78 89 82 89 66 90.3

F IGURE 9 Cluster prediction with random forest by using as input wind shear.
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that associated with C5 (see Figure 6), which is indeed characterized by a low median shear of �0.21. This is not the mean velocity profile with

the lowest wind shear, yet the only one with an occurrence larger than 2%, which makes it the most probable. For slightly negative wind shear,

the velocity profile of C2 is predicted (occurrence of 10.7%), which has a median shear of �0.04. Switching to conditions with positive shear, the

clusters C0, C4, C1, and C9 are predicted with increasing shear. Finally, the velocity profile predicted for the largest shear values is C6, which has

a median shear of 0.35.

To increase accuracy in the predictions of the freestream velocity profiles with random forest, we provide two input parameters. Indeed, the

true prediction percentage increases from 43% to 61% (median 44.8%) for single-input models to 50% to 70% range (median 54.1%) for two-input

models (cf., with Table 2). The highest accuracy for the two-input models is achieved using wind direction and veer (69.8%), followed by the model

using wind shear and veer (65.4%). By increasing the model inputs to three, we achieve the most significant improvement in the percentage of

true predictions (between 77% and 86%). The highest accuracy is achieved by using time of the day, wind direction, and shear. By gradually

increasing the number of inputs, the model accuracy keeps increasing, up to a maximum of 90.3% when all six wind parameters are used.

In summary, we have been able to characterize with good accuracy the climatology of the site under investigation through cluster analysis. A

total of 14 clusters is deemed to be sufficient to reproduce the variability of the ABL velocity profiles, including conditions with various positive

shear, negative shear, low-level jets, and even flows with negative shear close to the ground and positive shear aloft. The representation of the

ABL profiles through the cluster mean profiles leads to a median MAPE below 6% within each cluster, which indicates that using the velocity pro-

files associated with the various cluster centers is a good strategy for developing a potential surrogate model to predict the incoming wind field

from a few freestream parameters. Indeed, it has been shown that accurate predictions of the most probable freestream mean velocity profile can

be achieved with random forest by providing as input various background flow parameters. Specifically, only providing incoming wind shear, a

very good prediction accuracy of 61.4% is already achieved. Overall, the results show a high level of repeatability and predictability of the incom-

ing wind velocity profile for different wind conditions.

4 | BLOCKAGE ANALYSIS FROM PROFILING WIND LiDAR DATA

The strategy used in this work to investigate rotor-induced effects on the incoming wind field consists in analyzing the instantaneous difference

between the velocity profile measured by the LiDAR PL04, which is located at an upstream distance of about 10D for the prevailing wind sector

(217 ∘ ≤ θw ≤247 ∘ ), and the other profiling LiDARs, which are located in the proximity of the wind turbines and, thus, can be affected by the pres-

sure field induced by the turbine rotors. The variation of the velocity difference among different LiDARs and LiDAR PL04 measured before (Phase

1) and after (Phase 3) the construction of the turbine array should enable the differentiation of the wind variability associated with site climatol-

ogy and terrain characteristics from that induced by the wind turbine rotors. Nonetheless, it is worth remembering that considering the small

number of wind turbines comprised in the wind farm under investigation, it is difficult to differentiate between the velocity modifications associ-

ated with single-turbine induction and cumulative blockage effects of the wind farm.

Based on the climatology study presented in Section 3, wind conditions with normalized hub-height wind speed lower than 0.5 (recorded

from the SCADA at the turbines T07 or T08) are disregarded for this analysis to avoid non-canonical conditions with large shear or with either

positive or negative veer values (see Figure 4). Further, selected operating conditions of the wind turbines T07 and T08, which have active pitch

control, are disregarded because of the smaller thrust coefficients for the turbine rotors (e.g., see previous works23,24,34) and, thus, smaller block-

age effects on the incoming wind field.3,10,12 This criterion is implemented by rejecting wind turbine operations of turbines T07 and T08 with a

normalized hub-height wind speed recorded by the SCADA larger than 0.8.

During Phase 3 of the project, the wind turbines were often de-rated due to grid constraints; these operative conditions are disregarded as

well. Finally, quality control of the SCADA and LiDAR data is also performed by selecting only time stamps when SCADA, LiDAR PL04, and the

other selected LiDAR under investigation are simultaneously available and quality controlled. For instance, for the simultaneous analysis of

the LiDARs PL04 and PL01, from an initial availability of 8065 and 26,209 samples for Phase 1 and 3, respectively, we down-selected 2544 and

4732 samples, respectively, for the wind sector 217� ≥ θw ≥247� investigated for wind farm blockage, then down to 1861 and 202 for Phase

1 and Phase 3, respectively, by applying the above-mentioned filters and the quality control process. The large reduction in data availability for

the Phase-3 data set is mainly associated with the de-rating of the wind turbines, as shown in Figure 10. Specifically, to down-select operative

conditions with a roughly constant thrust coefficient, Ct, the normalized hub-height wind speed is constrained as 0:5≤Unorm
hub ≤0:8 and de-rated

conditions disregarded, which correspond to the red points in Figure 10A for turbine T07. For the selected samples, also the power coefficient is

approximately close to its maximum and with small variability, as shown in Figure 10B. Finally, the power and thrust of the initial and down-

selected data set are reported in Figure 10C and 10D, respectively.

Histograms of the most representative parameters down-selected for both Phase 1 and Phase 3 are reported in Figure 11. Besides the much

larger number of data available for Phase 1 than for Phase 3, both data sets show a large predominance of nighttime conditions, though wind

shear does not have a clear offset. Indeed, the median values for wind shear are equal to 0.12 and 0.05 for Phase 1 and Phase 3, respectively. In

MOSS ET AL. 11
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contrast, the majority of the down-selected wind profiles measured by the profiling LiDAR PL04 have positive veer (median values of 0.12 and

0.10 for Phase 1 and Phase 3, respectively).

To characterize the incoming ABL velocity profile, while avoiding potential misinterpretations by only using wind shear due to the occurrence

of wind conditions showing both positive and negative shear at different heights or low-level jets (see, e.g., Figure 6), we define the following

velocity parameter for the data measured from the profiling LiDAR PL04:

Upeak ¼�max
zi

jUðziÞ=U∞�1jf g, ð2Þ

where the sign � associates + (�) in case the identified maximum corresponds to a positive (negative) value of ðU=U∞�1Þ. If Upeak ¼0, then the

velocity profile measured by PL04 has zero shear and the wind velocity is constant over the measured heights (within the limit of the accuracy

considered). If Upeak <0, then we can expect a velocity deficit with respect to the freestream condition aloft and, thus, a velocity profile with a

general positive shear; the more negative is Upeak , the larger the wind shear. In contrast, if Upeak >0 then, we can observe velocity excess with

respect to the freestream condition aloft and, thus, a velocity profile with generally negative shear or a low-level jet.

F IGURE 10 Raw (black) and down-selected (red) SCADA data for turbine T07: (A) Thrust coefficient; (B) power coefficient; (C) normalized
power; (D) normalized thrust.

F IGURE 11 Histograms of the parameters for the data sets down-selected from Phase 1 (top row) and Phase 3 (bottom row) of the
experiment from the profiling LiDAR PL04 and SCADA.
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Histograms of the parameter Upeak are reported in Figure 11 for both Phase 1 and Phase 3. Events with either positive or negative Upeak are

embedded in the data sets, specifically with median values of �0.18 and �0.08 for Phase 1 and Phase 3, respectively. On the histograms of Upeak

reported in Figure 11G and 11H, the vertical dashed lines indicate bins that will be used in the following to calculate the velocity profile statistics,

which were selected to ensure sufficient statistical significance for the data related to Phase 3.

The conditional statistics of the velocity profiles measured by PL04 are calculated by using the above-mentioned bins of Upeak indicated with

vertical dashed lines in Figure 11, both for Phase 1 and Phase 3. The binned statistics of the PL04 velocity profiles are reported in Figure 12 in

terms of mean (lines) and intervals between the 25th and 75th percentile (shaded areas) for both Phase 1 (red) and Phase 3 (blue). For this figure,

each measured velocity profile is made non-dimensional with U∞, namely, the wind velocity measured at the highest location of 200 m. It is evi-

dent that these binned statics enable capturing the variability in wind shear for the site under investigation, ranging from large positive shear (bin

center Upeak ¼�0:3 in Figure 12), to roughly zero shear (bin center Upeak ¼�0:03 in Figure 12), to large negative shear (bin center Upeak ¼1:2 in

Figure 12). A larger variability within each bin is observed for those characterized by Upeak >0 (Figure 12), while the velocity profiles with Upeak <0

are very similar. Regarding Figure 12, it is noteworthy that in general for each cluster, the statistics of the velocity profiles measured by the LiDAR

PL04 are very similar for Phase 1 and Phase 3 of the experiment, especially for the clusters with negative values of Upeak . This feature indicates

that no noticeable bias, such as wind seasonal variability, is present in the data sets collected before and after the construction of the turbine array

under investigation.35

A similar statistical analysis based on Upeak is now performed for the instantaneous difference of the velocity profiles measured by the LiDARs

PL04 and PL01, with the latter located 1.5D upstream of turbine T07 for the prevailing wind direction (see Figure 1A) and, thus, assumed within

the induction zone. The velocity data are made non-dimensional with the turbine rated wind speed, Urated, and the obtained results are shown in

Figure 13. Starting from the wind conditions with Upeak <0 (top row of Figure 13), it is evident that the mean profiles and the 25th to 75th percen-

tile interval related to Phase 3 (blue symbols) generally indicate lower velocity values than their respective statistics for Phase 1 (red symbols). This

feature might indicate a general velocity reduction over the rotor area due to the presence of the rotor of turbine T07. To separate the velocity

difference that can occur between the locations of the LiDARs PL01 and PL04 due to topography for different climatological conditions and the

velocity modification associated with turbine induction or wind farm blockage, the difference between Phase 3 and Phase 1 of the median profiles

of the velocity difference between LiDAR PL01 and LiDAR PL04 is calculated for each bin and reported in Figure 14A (please note that in

Figure 13 only the mean profiles are reported). This analysis shows a general velocity reduction occurring over rotor heights due to the installation

F IGURE 12 Binned statistics of the normalized velocity profiles measured by the LiDAR PL04. The bin centers are indicated as the title of
each panel in terms of Upeak . The shaded areas represent the interval between the 25th and 75th percentile, while the lines are the mean values.
Red and blue data correspond to Phase 1 and Phase 3, respectively. The horizontal dashed lines delimit the rotor heights. Limits of the horizontal
axis are different for the various panels.
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of the wind turbines. These velocity reductions range values between 3% and 1.3%, while they are more prominent over the top half of the rotor.

These results are in general agreement with previous investigations on wind farm blockage.13,16

For the data bin corresponding to the mean velocity profile with the smallest shear (Upeak ¼�0:03 in Figure 14), besides the velocity reduc-

tion observed over the rotor heights, a slight velocity increase is observed above the rotor top tip (z=H≈1:71). It is noteworthy that this flow fea-

ture is also shared by the wind conditions characterized by Upeak >0. Indeed, the difference of the median profiles between Phase 3 and Phase

1 data in Figure 14A shows that this velocity increase above the top tip is enhanced by increasing Upeak . Further, for wind conditions with

Upeak > 0, a strong velocity decrease is measured below hub height, which increases with reducing height. Velocity reductions between �6% and

�9% of the turbine rated wind speed are measured for the last two bins with the largest values of Upeak . On the other hand, a velocity increase is

observed above hub height, with maximum values close to 3% of the turbine rated wind speed at the rotor top tip. Therefore, this analysis shows that

rotor-induced effects on the incoming wind field are typically uniform across the rotor heights for wind conditions with positive wind shear, with typ-

ical values ranging from 3% down to 1% of the turbine rated wind speed with reducing shear. However, for incoming wind profiles with negative

shear or low-level jet (Upeak >0), the effects due to the rotor induction can be highly complex and, specifically, entailing significant velocity reduc-

tions in the lower half of the rotor with intensities increasing with reducing height, while speedups are observed on the upper half of the rotor.

An analogous binning analysis is now performed for the wind velocity data collected from the profiling LiDAR PL02, which is located at an

upstream distance of about 3D from turbine T07 for the prevailing wind direction considered for this analysis, which is about twice the distance

of the profiling LiDAR PL01. The statistics of the instantaneous difference of the profiles measured by the LiDAR PL02 and PL04 for Phase 1 (red)

and Phase 3 (blue) data sets, which are reported in Figure 15, show that at this larger upstream distance from turbine T07, the velocity reduction

is smaller than what was observed with the LiDAR PL01 at an upstream distance of 1.5D. For more quantitative analysis, the difference between the

median profiles obtained from Figure 15 indicates that the velocity reduction over the rotor heights is practically negligible (Figure 14B). The only signifi-

cant effect connected with the induction of the wind turbine rotors is detected for the two bins with the largest values of Upeak . Indeed, velocity reduc-

tion and increase are still observed below and above hub height, respectively, yet with a much lower magnitude (maximum around 1.5% of Urated).

Finally, the same statistical analysis is performed for the data set collected by the profiling LiDAR PL03, which is located within the transverse

area separating turbines T07 and T08 for the prevailing wind sector considered for this analysis (see Figure 1). The statistics from this LiDAR,

reported in Figure 16, firstly indicate a larger variability within each bin with respect to the other LiDARs, and for several bins, the mean values

reported with the dot-lines are significantly different from their respective median values, namely, the center of the 25th to 75th percentile inter-

val (shaded areas). This suggests that this analysis might be more uncertain, especially for the data collected during Phase 1. This data variability

might be associated with the mutual induction induced by both turbines T07 and T08, and their variability with wind direction and atmospheric

F IGURE 13 Binned statistics of the instantaneous difference between the velocity profiles measured by the LiDARs PL01 and PL04.
Representations are analogous to those in Figure 12.
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F IGURE 14 Difference of the median between Phase 3 and Phase 1 of the binned instantaneous difference between the velocity profiles
measured by the LiDARs located in the proximity of the wind turbines and PL04: (A) Profiling wind LiDAR PL01; (B) profiling wind LiDAR PL02;
(C) profiling wind LiDAR PL03.

F IGURE 15 Binned statistics of the instantaneous difference between the velocity profiles measured by the LiDARs PL02 and PL04.
Representations are analogous to those in Figure 12.
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stability regime. Also at this position aside from the wind turbine rotors, the induction effects seem to be relatively small, with only significant

effects for the more complex wind conditions with Upeak >0 (Figure 14C).

5 | CONCLUSIONS

In this work, wind velocity measurements collected by four profiling wind LiDARs before and after the construction of an onshore wind turbine

array have been analyzed to investigate rotor-induced effects on the incoming wind field. For the prevailing wind direction, the array mainly con-

sists of a single row facing the incoming wind, with three profiling LiDARs located in front of the rotor of one of the turbines at the upstream dis-

tances of 1.5, 3, and 10 rotor diameters, D. The latter is regarded as a freestream unperturbed wind condition considering that at this location a

maximum deviation from the freestream velocity of 0.4% was estimated through a modeling approach.35 Another profiling wind LiDAR is located

along the transverse distance between two consecutive wind turbines. SCADA data of the wind turbines are also available.

In the first part of the paper, the wind data collected by the most upstream profiling wind LiDAR have been interrogated to perform a clima-

tology survey of the site under investigation. The study has been performed through a cluster analysis with the k-means algorithm and dendro-

gram approach, while the accuracy in the predictions of the wind climatology has been estimated through a random forest algorithm. This study

has shown a good level of repeatability and predictability of the observed wind conditions with wind shear as a main driving wind parameter. This

result is favorable to ensure the significance of the result obtained.

Besides expected wind conditions with different levels of positive shear, incoming wind profiles characterized by negative shear and low-level

jet are also frequent for the site under investigation, specifically with occurrence rates of 14.5% and 1.4%, respectively, of the entire duration of

the experiment. Furthermore, wind conditions with hub-height (89 m) wind speed smaller than 5 m/s are characterized by non-canonical wind

profiles with large shear and/or veer with either positive or negative values. These conditions have been disregarded for further analysis.

The investigation of rotor-induced effects on the incoming wind field has been based on the analysis of the instantaneous difference of the

incoming velocity profiles (measured at an upstream distance of about 10D, even though previous works showed that wind farm blockage might

extend even up to 30D upstream12) and the velocity profile measured by the other three LiDARs located at streamwise distances of 1.5D, 3D and

10D, respectively, with the latter placed between two wind turbines. The variation of the difference in the velocity profiles measured by the

upstream LiDAR characterizing the incoming wind velocity field and those measured by another LiDAR occurring between the pre- and post-

F IGURE 16 Binned statistics of the instantaneous difference between the velocity profiles measured by the LiDARs PL03 and PL04.
Representations are analogous to those in Figure 12.
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construction phases of the turbine array is investigated to separate effects due to the site topography for different climatological conditions and

those associated with turbine induction and wind farm blockage.

Starting from the LiDAR located at an upstream distance of about 1.5D, velocity reductions up to 3% of the turbine rated wind speed have

been quantified over the rotor heights for wind conditions with positive shear. The observed velocity reductions become smaller with reducing

shear. For more unusual wind conditions with negative shear or low-level jet, a certain velocity increase is observed in the proximity of the top tip

of the turbine rotor. This velocity increase is enhanced for wind conditions with more significant negative shear with values up to 3% of the tur-

bine rated wind speed. For these wind conditions, increased velocity is measured over the top half of the turbine rotor, while velocity reduction is

measured below, which is enhanced with reducing height (between �6% and �9%). Therefore, we infer that the rotor-induced effects for cases

with negative shear and low-level jets are highly complex and consist of both velocity reductions and increases below and above hub height,

respectively. These results suggest that more investigations should be needed to have a more detailed characterization of the velocity modifica-

tions induced by the wind turbine rotors for different operative conditions of the wind turbines and of the incoming wind, especially wind shear

and, thus, atmospheric stability.

Data collected by the LiDAR located at an upstream distance of 3D have shown negligible effects associated with turbine rotor induction.

The only noticeable effects are detected for wind conditions with negative shear, even if with a much smaller amplitude compared to the closer

upstream location of 1.5D. Similar results have been obtained for the LiDAR located along the transverse direction between two turbines yet with

larger statistical uncertainty due to the mutual inductions induced by the two wind turbines and their variability associated with variations of wind

direction and atmospheric stability regime.

In summary, this study has provided evidence to confirm the occurrence of rotor-induced effects on the incoming wind field with typical

values of about 3% of the turbine rated wind speed at an upstream distance of 1.5D. The rotor induction is more significant with increasing posi-

tive shear. For unusual wind conditions with negative shear or with the occurrence of low-level jets, these flow distortions are highly three-

dimensional and become relatively complex. In this case, both velocity reduction and increase can be observed below and above hub height,

respectively. It is noteworthy that, considering the small number of turbines comprised in the array under investigation, it is difficult to identify

from the above-mentioned rotor-induced effects on the incoming wind the contribution associated with single-turbine induction from the cumu-

lative effects due to wind farm blockage. Investigations for larger wind farms installed on different sites both onshore and offshore seem instru-

mental to enabling a more in-depth understanding of these wind farm phenomena.

This experiment has also provided the opportunity to confirm the extreme importance of the accuracy of the wind data collected, data quality

control and down-selection, as well as the duration of the experiments to ensure a good statistical convergence of the data. Given the small mag-

nitude of the flow modifications associated with wind farm blockage, the highly variable nature of the atmospheric wind field, and the variability

of the wind turbine settings, field investigations of wind farm blockage are largely more challenging than other wind-turbine-related experiments,

such as those related to wakes and power performance. It seems that synergistic work encompassing field experiments, laboratory

experiments, and numerical simulations is going to be extremely beneficial in drawing a better picture of the physical processes associated with

wind farm blockage, which is going to spur a breadth of future research activities.
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