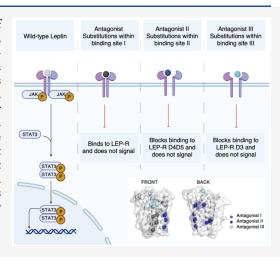


pubs.acs.org/JPCB Article

A Small Contribution to a Large System: The Leptin Receptor Complex

- 3 Published as part of The Journal of Physical Chemistry virtual special issue "Jose Onuchic Festschrift".
- 4 Jennifer M. Simien, Grace E. Orellana, Hoa T.N. Phan, Yao Hu, Emily A. Kurth, Christine Ruf,
- 5 Franz Kricek, Qian Wang, Alan V. Smrcka, and Ellinor Haglund*

Cite This: https://doi.org/10.1021/acs.jpcb.3c01090


ACCESS

III Metrics & More

Article Recommendations

3 Supporting Information

6 ABSTRACT: Obesity is a classified epidemic, increasing the risk of 7 secondary diseases such as diabetes, inflammation, cardiovascular disease, 8 and cancer. The pleiotropic hormone leptin is the proposed link for the gut-9 brain axis controlling nutritional status and energy expenditure. Research 10 into leptin signaling provides great promise toward discovering therapeutics 11 for obesity and its related diseases targeting leptin and its cognate leptin 12 receptor (LEP-R). The molecular basis underlying the human leptin receptor 13 complex assembly remains obscure, due to the lack of structural information 14 regarding the biologically active complex. In this work, we investigate the 15 proposed receptor binding sites in human leptin utilizing designed antagonist 16 proteins combined with AlphaFold predictions. Our results show that 17 binding site I has a more intricate role in the active signaling complex than 18 previously described. We hypothesize that the hydrophobic patch in this 19 region engages a third receptor forming a higher-order complex, or a new 20 LEP-R binding site inducing allosteric rearrangement.

21 INTRODUCTION

22 Over the last 30 years, obesity has become a major health crisis 23 in the United States. The rapid emergence of this public health 24 problem demonstrates that genetics is not a major determinant 25 in the onset and progression of this disease. It has been firmly 26 established that signaling occurs through interactions between 27 the hormone leptin, produced by adipose tissue, and the 28 cognate leptin receptor (LEP-R), which are key elements in 29 driving the balance between leanness and obesity. Despite its 30 important role, the mechanism by which leptin modulates cell 31 signaling is poorly understood. This is driven by an incomplete 32 understanding of their molecular composition and protein-33 protein interactions that underlie the assembly of the human 34 LEP-R complex. Comprehensive literature review revealed that 35 analogous to other cytokines, leptin is hypothesized to interact 36 with the receptor in a quaternary complex to activate the JAK/ 37 STAT phosphorylation cascade to suppress hunger.

Leptin folds into a four-helix bundle containing a pierced 39 lasso topology (PLT) where part of the polypeptide chain 40 pierces through a covalent loop formed by a single disulfide. 1,2 Hassed on structural superpositions with other cytokines, 3-6 human leptin (hLEP) is hypothesized to have three binding 43 sites with LEP-R: (i) binding site I in helix D (Q134, D135, 44 W138, and L142), (ii) binding site II in helix A and C (D9,

T12, K15, R20, Q75, D85, and L86), and (iii) binding site III 45 in loop 1 and/or 4 (L39, D40, F41, I42 and/or S120 and 46 T121). Extensive mutagenesis studies, domain deletion studies, 47 homology modeling, and structural determination combined 48 with molecular dynamics (MD) simulations indicate that 49 binding site II and III in leptin are essential for biological 50 activity, while mutation of binding site I marginally affected 51 leptin signaling. 3,4,6,7

There are two published structures for the LEP-R complex 53 (Figure 1A and B); (i) Carpenter et al. cocrystallized the 54 ft human LEP-R (hLEP-R) binding domains 4 and 5 (D4D5) 55 with a Fab fragment from a leptin blocking monoclonal 56 antibody. Leptin was modeled in utilizing a protein—protein 57 docking server⁸ (PDB ID: 3 V6O⁹) and (ii) Mancour et al. 58 solved the electron microscopy (EM) complex for leptin and 59 the extracellular domains of LEP-R using mouse leptin and 60 LEP-R (mLEP and mLEP-R). The crystal structure depicts 61

Received: February 16, 2023 Revised: February 28, 2023

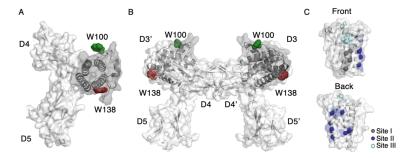


Figure 1. Cartoon representation of leptin bound to LEP-R. A) The crystal structure of the leptin binding domains, D4D5, in white (PDI ID: 3 V6O) cocrystallized with a FAB antibody. Leptin, in gray, is modeled utilizing a protein—protein docking server. B) The electron microscopy (EM) structure of four of the seven extracellular domains, depicting D3-D5 of mLEP bound to mLEP-R representing the 2:2 complex. Both LEP-R complexes show the binding interface with the receptor where the two tryptophans are highlighted as spheres, W100 in green and W138 in red, using the hLEP sequence (PDB ID: 1AX8). C) The crystal structure of hLEP highlighting binding sites I, II, and III.

62 the initial 1:1 complex while the EM structure depicts the 2:2
63 quaternary structure. Collectively, it is hypothesized that leptin
64 initially binds to LEP-R in a 1:1 stoichiometry; 3,11 followed by
65 a secondary binding sequence with an adjacent 1:1 complex.
66 This coordination induces a homodimerization of LEP-R
67 complex resulting in the 2:2 structure. 6,9-11 The formation of
68 the 1:1 complex occurs between D4D5 of LEP-R through
69 binding site II in leptin, initiating a large conformational
70 change for allosteric binding between site III in bound leptin
71 and domain 3 (D3) of a second LEP-R complex. This
72 describes the two major models of leptin signaling observed
73 experimentally. However, larger complexes have been
74 proposed where the LEP-R complex may form a 2:4 or 4:4
75 signaling complex. 4,6,10-12

Based on homology modeling of the hexameric interleukin 6 77 (IL-6) complex, Peelman et al. supports the formation of a 78 higher-order 2:4 complex. In this model, (i) binding site II in 79 leptin interacts with D4D5 of LEP-R, (ii) bound leptin then 80 interacts with an "empty" LEP-R, and (iii) the hexameric 81 complex is formed upon dimerization of the two 1:2 82 complexes. The higher-order complex is supported by 83 mutagenesis studies 13 and evolutionary sequence conserva-84 tion. 14 Though a leptin crystal structure was solved, many 85 leptin studies including the proposed hexameric complex are 86 based on mouse proteins, 4,6,10,11 due to the high aggregation 87 propensity of hLEP. 15 This discrepancy between mLEP and 88 hLEP is further highlighted by the 84.9% sequence identity. 89 Interestingly, binding site I in helix D is not conserved, and 90 O138 and V142 are replaced with the more hydrophobic 91 tryptophan and leucine residues in hLEP. Furthermore, the 92 difference between the hexameric complex of IL-6 and the 93 proposed complex with leptin is the truncated helix D in leptin. 94 This would allow for a closer proximity between the two LEP-95 Rs in the initial complex. Thus, the interaction via these 96 residues might differ between mLEP and hLEP.⁵

97 METHODS

Protein Expression and Purification. All antagonist 99 variants are based on the leptin pseudo wild-type protein, 100 substituting W100E. Thus, all data is compared to the 101 pseudo wild-type protein in this study. Site directed muta-102 genesis was performed with the Stratagene QuickChange site-103 directed mutagenesis kit and identity confirmed by sequencing 104 (Eton Bioscience Inc., San Diego, USA). The pET-3A vector 105 containing the leptin gene was transformed, overexpressed, and

purified as previously described, incorporating an anion 106 exchange (Cytiva Hi Prep QFF) chromatography step.

Designed Leptin Variants. LEP-R antagonist leptin 108 variants I, II, and III were purchased from (GenScript, New 109 Jersey, USA). Antagonists I and II were designed to block 110 interactions within leptin binding sites I and II, respectively, as 111 reported⁶ (Figure 1C). Antagonist III was modeled to block 112 leptin binding site III with the addition of D23L, as Shpilman 113 et al. identified the substitution D23L in hLEP which enhanced 114 affinity for D4D5 by 60-fold in the 1:1 complex.¹⁷ The 115 substitutions are as follows: (*i*) antagonist I: Q134L/D135L/ 116 Q139L/L142A, (*ii*) antagonist II: D9L/T12 V/K15L/R20L/ 117 Q75L/D85L/L86A, (*iii*) antagonist III: D23L/L39A/D40A/ 118 F41A, (*iv*) antagonist I*: W138E. Additionally, two more 119 variants were designed, W138Y and W100/W138E.

Thermodynamic Experiments. Secondary structure 121 elements of variants were probed by collecting circular 122 dichroism (CD) spectra in near UV (190–240 nm) at 0.1 123 mg/mL protein concentration. Equilibrium titration measure- 124 ments were collected with CD monitoring fraction of 125 denatured protein between 219 and 223 nm using 0–10 M 126 Urea in 10 mM Mes buffer at pH 6.3 mM or 10 mM potassium 127 phosphate buffer at pH 7.4. Data was collected at 25 and 37 128 °C. The change in Gibbs free energy (ΔG) was quantified 129 using

$$\Delta G_{\rm D-N} = -RT \ln K = -2.3RT \log K \tag{1}$$

where the equilibrium constant (K) is the ratio between the 132 denatured state [D] and the native state [N], R is the gas 133 constant an T is the temperature in K.

The fraction of the observed species (F_{app}) is represented by 135 a two-state fit shown by 18

$$F_{\rm app} = \frac{Y_{\rm N} - Y}{Y_{\rm N} - Y_{\rm D}} = \frac{K}{1 + K}$$
 (2) ₁₃₇

where the Y is the CD signal for the specified species, the two 138 fractions [D] and [N]. The observed CD signal is plotted 139 against denaturant concentration. The sigmoidal curve is fitted 140 to a two-state fit according to

$$Y = Y_{\rm N} f_{\rm N} + Y_{\rm D} f_{\rm D} \tag{3}$$

The difficulty of measuring the equilibrium denaturation $_{143}$ titration curves is shown in the shift observed for the $m_{\rm D-N}$ $_{144}$ values for the antagonist proteins. We attribute the shifts to the $_{145}$

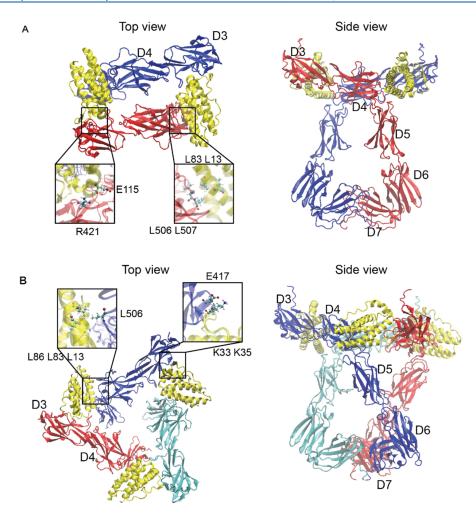


Figure 2. Computational model of hLEP:hLEP-R receptor complex. Leptins can bind to the LEP-R A) in a 2:2 stoichiometry or B) in a 3:3 stoichiometry. The figure depicts LEP (yellow), LEP-R I (red), LEP-R II (blue), and LEP-R III (cyan). Important residues in the binding interface are highlighted in each structure.

146 large number of amino acid substitutions which may introduce 147 ground state shifts due to denaturant effects. ¹⁹

Kinetic Measurements. Stopped-flow measurements were conducted on a SX20 stopped-flow spectrometer (Applied hotophysics, Leatherhead, U.K.). Excitation wavelength of 280 nm using a LED source, and emission was collected utilizing a 295 nm cutoff filter. The final protein concentration was 1 μ M. All measurements were conducted at 25 °C in 10 mM Mes, pH 6.3, using 0–10 M urea. Data was fitted to

$$\log k_{\text{obs}} = \log(k_{\text{f}} + k_{\text{u}})$$

$$= \log[10^{(\log k_{\text{f}}^{\text{H}_2\text{O}} + m_{\text{f}}(\text{Urea}))} + 10^{(\log k_{\text{u}}^{\text{H}_2\text{O}} + m_{\text{u}}(\text{Urea}))}]$$
155 (4

156 where $k_{\rm f}^{\rm H_2O}$ and $k_{\rm u}^{\rm H_2O}$ are the refolding and unfolding rates in 157 water, and $m_{\rm D-N}$ is the solvent exposed surface area calculated 158 from the $m_{\rm f}$ and $m_{\rm u}$. The linear relationship between the 159 concentration of denaturant and the logarithmic function of 160 the rate of folding is graphically represented with a chevron 161 plot.

Activity Assays in HEK293 Cell Lines. HEK293 cells were maintained in DMEM supplemented with 10% FBS and 164 1% Pen/Strep at 37 $^{\circ}$ C with 5% CO₂. Reverse transfection

using lipofectamine 2000 (Thermo Scientific) was adapted 165 from manufacturer's protocol. 200 ng LEP-R construct was 166 used at a DNA:lipofectamine 2000 ratio of 1:3 for transfection. 167 HEK293 cells in antibiotics free DMEM supplemented with 168 10% FBS were mixed with the DNA:lipofectamine 2000 in a 169 24 well plate at 50,000 cells/well. Approximately 24 h after 170 transfection, the media was replaced with DMEM supplemented with 0.5% FBS and 1% Pen/Strep at 37 °C with 5% 172 $\rm CO_2$ to serum starve the cells. The next day, cells were treated 173 with leptin-variants at indicated concentration, conducted in 174 technical replicates (n = 2 or n = 3).

Gel electrophoresis and Western blotting were performed as 176 previously described. After transfer, the membrane was 177 incubated with TBS buffer supplemented with 0.1% Tween 20 178 (TBS-T) and 5% BSA at room temperature for 30 min on a 179 shaker, then probed with primary antibodies (pSTAT3 (Cell 180 Signaling D3A7), anti-anti-STAT3 (Cell Signaling 124H6) 181 diluted 1:1000 in TBS buffer supplemented with 0.1% Tween 182 20 and 3% BSA at 4 °C overnight. The membrane was washed 183 with TBS-T four times and probed with secondary antibody 184 (goat antirabbit IgG, DyLight 800 (invitrogen SAS35571) 185 IRDye 680RD Goat anti-Mouse IgG (LiCor 926-68070)) at 186 room temperature for 1 h. After another four washes with TBS-

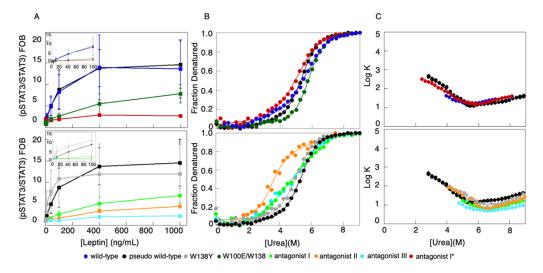


Figure 3. *In cell* and *in vitro* characterization of leptin variants. A) Activity assays of hLEP variants utilizing HEK293 cell lines containing LEP-R monitoring the phosphorylation of STAT3 (pSTAT3) as a probe for activity. This represents technical replicates (n = 2 or n = 3). Data points are the median result values with error bars indicated as standard deviation. B) and C) Thermodynamics and kinetics data for hLEP variants at pH 6.3 at 25 °C utilizing CD and fluorescence (wild-type (black), pseudo wild-type (blue), antagonist I (light green), antagonist II (orange), antagonist III (light blue), antagonist I* (red), W138Y (gray), and W100/W138E (green)).

188 T, protein bands on the membrane were visualized using Li-189 Cor Odyssey CLx and analyzed using StudioLite software.

In Vitro hLEP:hLEP-R Binding Studies. Surface Plasmon Resonance (SPR) measurements were performed on a Biacore 3000 instrument (Cytiva). Recombinant LEP-R protein (Sino Biological, Cat. No. 10322-H08H) was immobilized to two 194 flow cell 2 (FC2) of a Biacore CMS optical sensor chip by covalent amine coupling according to the protocol provided by 196 the Biacore Amine Coupling Kit. Flow cell 1 (FC1) was 197 activated by amidation of the free dextran-carboxyl groups and 198 used as a negative background binding control surface to allow 199 generation of background subtracted binding sensorgrams.

Leptin variants were prepared in 3 mM acetic acid, diluted 1:50 with 0.1 M HEPES, 1.5 M NaCl, 0.03 M EDTA and 0.5% v/v Surfactant P20 (HBS-EP) buffer and applied as analytes. Binding experiments were conducted at a flow rate of 30 μ L/min using the HBS-EP as a running buffer. Bound analyte was removed after each cycle by surface regeneration with 10 mM HCl. Reference flow cell (FC1) subtracted sensorgrams with additional correction by subtracting buffer (c = 0) sensorgrams (double referencing) were generated. For optimal comparative visualization sensorgrams presented as overlay were normalized to $y_{min} = 0$ RU and $y_{max} = 100$ RU.

Computational Modeling of the LEP-R Complex. 212 AlphaFold2.1.1-multimer²² was used to predict the structure 213 of the hLEP:hLEP-R complex in a 2:2 stoichiometry. The same 214 model was unsuccessful in predicting the formation of a 215 higher-order complex due to atom clashes. Instead, we were 216 able to build a higher-order complex in a 3:3 stoichiometry manually by enforcing symmetry restraints though a three-step 218 model. First, AlphaFold2.1.1-multimer²² was used to predict a 219 complex with a 2:1 stoichiometry. In this model, one leptin 220 binds to the D4 domain of the receptor, while the other leptin 221 binds to D3 of the same receptor. Second, leptin bound to D3 222 was slightly rotated 7 degrees around the X-axis and 1 degree 223 around the Y-axis to accommodate a second LEP-R in a perfect C3-symmetry. This rotation shifts the leptin binding site from 225 D3 to D3'. Third, we built the 3:3 complex by using the

binding interfaces D3' and D4. Specifically, this allows the first 226 leptin molecule (LEP I) to bind simultaneously to D4 of LEP- 227 R I and D3' of LEP-R II. Similarly, we let LEP II 228 simultaneously bind to D4 of LEP-R II and D3' of LEP-R 229 III. Finally, we docked LEP III to D4 of LEP-R III. The choice 230 of D3' mentioned above guarantees that LEP-R III automatically docks to D3' of LEP-R I, leading to C3-symmetry (Figure 232 f2 2).

RESULTS

Leptin signaling maintains cellular homeostasis through 235 interactions with LEP-R to regulate energy expenditure. 236 Unfortunately, the molecular basis underlying the assembly 237 of the biologically active LEP-R complex remains obscure, due 238 to the lack of the full-length hLEP-R structure. There are 239 several models for the complex where oligomeric formations of 240 the LEP:LEP-R complex are proposed, i.e., from a 1:1 to a 4:4 241 stoichiometry. The organization of ligand:receptor interaction 242 is dependent on three proposed binding sites in leptin, based 243 on studies utilizing mLEP or hLEP.

Binding Site I, II, and III of hLEP. To investigate the 245 formation of the active LEP-R complex, antagonist proteins 246 were designed: (i) antagonist I for binding site I, (ii) 247 antagonist II for binding site II, and (iii) antagonist III for 248 binding site III. The results from our activity assays, using 249 HEK293 cells containing LEP-R, with our designed antagonist 250 II and III proteins show no activity at physiological $_{251}$ concentrations <20 ng/mL 23,24 (Figure 3A). The results for $_{252}$ $_{13}$ antagonists II and III, substitutions made in binding sites II 253 and III preventing formation of the 2:2 complex, support 254 previously published results. This result is also supported by 255 the EM structure where binding site II and III are in direct 256 contact with D4D5 and D3 of LEP-R, respectively. 10 Our 257 antagonist III substitutes the proposed amino acids within loop 258 1, with the addition of D23L to enhance the binding affinity for 259 D4D5 in the 1:1 complex while inhibiting the formation of the 260 2:2 complex using D3 of a second LEP-R complex. Antagonist 261 II substitutes all amino acids in the proposed binding site II, 262

263 inhibiting the formation of the 1:1 complex through D4D5 of 264 LEP-R. According to the EM structure, substitutions within 265 binding site I should not affect activity because this region is 266 solvent-exposed and not coordinated with a receptor in the 267 quaternary complex. 10 Antagonist I substitute all amino acids 268 in the proposed binding site I. This binding site is not 269 conserved across species, where hLEP contains a W138 and 270 L142 compared with Q138 and V142 in mLEP. The small 271 elongation between mLEP and hLEP of helix D, is relatively 272 insignificant in comparison to the size differences and the 273 electronic effect of the aromatic ring of the tryptophan to the 274 hydrophobic uncharged glutamine in mLEP. In comparison to 275 the pseudo wild-type protein, our antagonist I shows normal 276 activity <20 ng/mL and decreased activity >20 ng/mL. This 277 suggests that α -helix D may be of importance to the active 278 signaling LEP-R complex despite binding site I is solvent-279 exposed and not in contact with either LEP-Rs of the crystal 280 and EM complex. To test this further, the nonconserved 281 residue at position 138 was substituted with a glutamic acid in 282 hLEP (antagonist I*). In homologous leptin sequences, 283 glutamine, arginine, tryptophan, leucine, and valine are 284 permitted at position 138. This introduction of different 285 amino acids with various polar, steric, and charged properties 286 by nature has neglected the potential of a negative residue at 287 this position which may have evolutionary purpose for complex 288 formation. Though glutamic acid was used for the crystal 289 structure of hLEP, W100E, 16 it does not affect biological 290 activity. Human leptin has two tryptophan residues, W100 and 291 W138, while mouse protein has none. Both tryptophans in 292 hLEP are in the covalent loop formed by C96-C146, keeping 293 the PLT intact. Remarkably, substituting W100E has no effect 294 on activity (pseudo wild-type) while antagonist I* decreases 295 the activity at high protein concentrations, >20 ng/mL. We 296 attribute the lower activity of our antagonist I and I* to the 297 change in polarity in helix D, which may disrupt higher-order 298 complex formation. Antagonist I has a substitution close to 299 position 138, Q139L, substituting a positively charged amino 300 acids with a neutral amnio acid. Antagonist I* with the W100E 301 adds a negatively charged residue in the same region of helix D, 302 decreasing the biological activity further at elevated protein 303 concentrations. Neither W100 nor W138 are in contact with 304 LEP-R in the 2:2 complex (Figure 1). As a control for 305 antagonist I*, we reintroduce the tryptophan at position 100 306 while glutamic acid at position 138 remains (W100/W138E). 307 This variant has normal activity <20 ng/mL and moderate 308 activity compared to the wild-type >20 ng/mL (Figure 3A). 309 To investigate if this is due to a steric interaction, W138Y was 310 designed. This substitution also imitates evolutionary trends 311 allowing for aromatic noncharged residues at the C-terminus of 312 helix D. As expected, this variant has no effect on biological 313 activity (Figure 3A). Taken together, our result for antagonist 314 II and III agrees with previously published data^{3-6,11,14} while 315 manipulating charged amino acids in the C-terminal of helix D 316 influences biological activity at elevated protein concentrations 317 >20 ng/mL.

Biophysical Characterization of LEP-R Antagonists.
Biophysical Characterization of LEP-R Antagonists.
Biophysical Characterization of LEP-R Antagonists.
CEP-R complexes is greatly facilitated by the knowledge of their 3D-structure, thermodynamic, and kinetic behavior essential for biological function (Figures 2B and 2C). To investigate the biophysical properties of the leptin variants, we conducted thermodynamic and kinetics experiments utilizing CD and fluorescence. The biological activity of leptin depends

on the interaction between the LEP and LEP-R. This protein— 326 protein interaction may be affected by changes to the native 327 3D-structure and/or the global stability (ΔG). Amino acid 328 substitutions may perturb one of these biophysical characteristics, leading to observed changes in biological activity (Figure 330 3A). The near UV CD spectra depicts characteristic helical 331 protein signal with two minima at 208 and 222 nm. The 332 overlay between the pseudo wild-type protein shows no 333 perturbation of the secondary structure elements (Figure S1). 334 The thermodynamic and kinetic data for leptin demonstrates a 335 two-state behavior where no intermediate states are populated 336 on the folding free energy landscape, ²⁵ seen as one transition in 337 the sigmoidal behavior of the equilibrium curve and straight 338 limbs in the chevron plot (Figures 2B and C).

The thermodynamic behavior of leptin describes the two 340 populated states, the denatured- and native state defining the 341 global stability. The thermodynamic stability, pH 6.3 at 25 °C, 342 for pseudo wild-type leptin is -6.27 kcal/mol, while the lowest 343 stability is observed for antagonist II, ΔG -4.09 kcal/mol. This 344 is attributed to the high number of substitutions in antagonist 345 II, seven substitutions, while antagonists I and III have four 346 substitutions each, hence, a more stable ΔG of -5.81 and 347 -6.38 kcal/mol, respectively. Wild-type leptin is destabilized 348 by 1.16 kcal/mol while W100/W138E does not affect stability. 349 The surface-exposed area for our leptin variants is within the 350 experimental error for a four-helix bundle of about 16 kDa, 351 $m_{\rm D-N}$ with a value of 0.86. The trends are similar at different 352 temperature and pH (Figure S2–S3 and Table S1–S3).

The kinetics data of leptin describes the folding free energy 354 landscape where the unfolding $(k_{\rm u})$ and refolding $(k_{\rm f})$ rates are 355 observed. Plotting the logarithmic function of the kinetic rates 356 shows a liner relationship to the denaturant concentrations 357 producing a so-called a chevron plot. The ΔG and $m_{\rm D-N}$ 358 values from our chevron plots agrees well with our 359 thermodynamics data for the wild-type, pseudo wild-type, 360 and the W138Y proteins (Tables 1 and 2). The antagonist 361 tht2

Table 1. Thermodynamics Data for hLEP Variants at pH 6.3 and 25° C

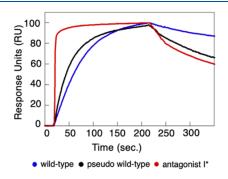
Protein	MP M	$m_{\text{D-N}}$ M^{-1}	ΔG kcal/mol	$\Delta\Delta G^a$ kcal/mol
wild-type	5.80	0.65	5.11 ± 0.11	1.16
pseudo wild-type	5.41	0.85	6.27 ± 0.03	
W100E/W138Y	5.19	0.89	6.29 ± 0.08	-0.03
antagonist I	5.01	0.85 ^b	5.81 ± 0.17	0.46
antagonist II	3.53	0.85 ^b	4.09 ± 0.17	2.18
antagonist III	5.51	0.85 ^b	6.38 ± 0.15	-0.11
antagonist I*	5.35	0.85 ^b	6.20 ± 0.04	0.07
W100/W138E	5.80	0.95	7.55 ± 0.05	-1.28

 $^a\Delta\Delta G$ is calculated based on pseudo wild-type. b Fitted with a fixed $m_{\text{D-N}}$ value based of the pseudo wild-type.

proteins are destabilized compared to the pseudo wild-type 362 proteins, as expected from our thermodynamic data (Tables 1 363 and 2). However, the midpoint (MP) and the compared values 364 are not in full agreement. We attribute the deviation between 365 the observed values from thermodynamics and kinetics to TS- 366 shifts seen as a change in β^{\ddagger} for all variants except antagonist 367 III, which displays ground state shifts. ²⁷

The effect of pH and temperature on various amino acids' 369 substitution are observed by thermodynamic data conducted at 370 pH 6.3 and pH 7.4 at 25 and 37 °C to mimic physiological 371

401


Table 2. Kinetics Data for hLEP Variants at 25° C, pH 6.3 in 10 mM Mes

	log	$m_{ m f}$	log	$m_{ m u}$		MP	$m_{\mathrm{D-N}}$	ΔG	$\Delta\Delta G^a$
	$k_{ m f}^{ m H_2O}$	M^{-1}	$k_{ m u}^{ m H_2O}$	M^{-1}	$oldsymbol{eta}^{\ddagger}$	M	M^{-1}	kcal/mol	kcal/mol
wild-type	4.28	-0.70	0.26	0.16	0.80	4.68	0.86	-5.41 ± 0.20	0.73
pseudo wild-type	4.74	-0.71	-0.23	0.21	0.77	5.42	0.92	-6.14 ± 0.08	
W100E/W138Y	4.10	-0.51	-1.88	0.39	0.56	6.69	0.89	-5.31 ± 0.21	0.83
antagonist I	4.22	-0.60	-1.17	0.27	0.69	6.20	0.86	-5.57 ± 0.27	0.57
antagonist II	4.53	-0.61	-1.43	0.31	0.66	6.43	0.93	-5.98 ± 0.21	0.16
antagonist III	3.54	-0.52	-0.58	0.17	0.75	5.86	0.71	-4.64 ± 0.18	1.50
antagonist I*	3.79	-0.51	-0.73	0.29	0.64	5.63	0.80	-4.74 ± 0.06	1.40
W100/W138E ^b	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

 $^a\Delta\Delta G$ is calculated based on pseudo wild-type. $^bW00/W138E$ is not determined due fluctuations in fluorescence detection.

372 conditions for *in cell* and *in vitro* kinetic experiments (Figures 373 3B, S2 and Tables 1, S1–S3).

Binding Studies between hLEP:hLEP-R. To investigate 375 the association between hLEP:hLEP-R, we conducted surface 376 plasmon resonance (SPR) binding experiments between the 377 soluble hLEP-R and three hLEP variants, i.e., wild-type, pseudo 378 wild-type, and antagonist 1* proteins. The hLEP-R was 379 covalently coupled as ligand to the sensor chip surface, and 380 hLEP variants were used as analytes (Figure 4). Overlay

Figure 4. hLEP:hLEP-R binding monitored by Surface Plasmon Resonance (SPR). The comparative sensorgrams were generated at 250 nM analyte concentration and normalized to $y_{\min} = 0$ RU and $y_{\max} = 100$ RU as described and represent an example from experiments carried out with serial analyte dilutions. The sensorgram overlay shows that wild-type (blue), pseudo wild-type (black), and antagonist I* (red) bind to LEP-R and indicate differences in binding kinetics with antagonist I* displaying a substantially higher association rate than the wild-type protein.

381 comparison of normalized sensorgrams qualitatively shows that 382 W138E affects target binding kinetics leading to faster 383 association compared to wild-type. This difference is less 384 pronounced between wild-type and pseudo wild-type leptin, 385 which also have similar biological activities. Antagonist 1*, 386 which binds to LEP-R with no biological activity at 387 physiological concentrations (Figure 2A), displays substantially 388 different binding sensorgrams characterized by fast association 389 to the target receptor, which may correlate with antagonist 1* 390 acting as an antagonist for LEP-R.

Our results suggest that the change observed in the 392 biological activity for the leptin variants is not affected by 393 the folded native state, as seen in the congruent CD spectra of 394 pseudo wild-type and leptin variants (Figure S1). Furthermore, 395 it is also not an effect of the observed destabilization, i.e., as the 396 only one variant, antagonist II, shows a significant decrease in 397 the ΔG . Taken together, the observed change in biological

activity, independent of the position of substitution in all three 398 proposed binding sites, suggest that the active signaling 399 complex is not achieved without binding site I, II, or III. 400

DISCUSSION

The LEP-R complex is a potential drug target important in 402 human health. However, the lack of structural information on 403 the full hLEP-R complex and the hypothesized complexity of 404 its assembly prevents further advances in leptin research. In 405 this study, we designed different hLEP variants to test the 406 proposed binding sites for hLEP-R. LEP binding sites II and III 407 are in direct contact with LEP-R while binding site I is solvent 408 exposed (Figure 1). Substitutions within binding site I has a 409 lower activity than previously reported at physiological 410 concentrations 3,17 (Figure 2A). Thus, binding site I plays an 411 important role in leptin signaling. We hypothesize that the 412 assembly of the complex may require (i) the formation of a 413 higher-order complex, or (ii) allosteric rearrangement of the 414 LEP-R upon binding.

The substitution W138E adds a negative charge which 416 inhibits formation of the active signaling complex. This region 417 is predominantly hydrophobic with two negative charges, 418 D135 and D141. Antagonist I* introduces a third negative 419 charge on the surface of helix D, which may disrupt the 420 hydrophobic interaction required for receptor assembly. 421 Despite these unfavorable interactions induced by W138E, 422 the variant W100/W138E partially rescues biological activity. 423 W100 is in a predominantly hydrophobic and dynamic loop 424 region which may rescue the active complex, resulting in a 425 moderately active signaling complex. Flexibility in the binding 426 interface and required sequence of events establishes a more 427 intricate model that needs investigation.

The Formation of a Higher-Order Complex. The two 429 experimentally solved structures of the complex show a 1:1 and 430 2:2 ligand-receptor stochiometry. 9,10 There are no significant 431 biophysical perturbations observed from the substitutions 432 made in our antagonist variants (Figures 3, S1-S2, Tables 1, 433 2, S1-S3). Thus, our results challenges the current view of the 434 hLEP:hLEP-R assembly. 4,6,10,11 To investigate this further, we 435 utilized AlphaFold2.1.1-multimer²² to predict the 2:2 hLE- 436 P:hLEP-R complex (Figure 2A) previously observed. 9,10 The 437 predicted structure agrees with previously published structures. 438 To investigate the possibility of a higher-order complex, we 439 built a docking-model based on AlphaFold2.1.1-multimer²² 440 with symmetry restraints where the sequence of binding 441 depends on the formation of a novel 2 ligand and 1 LEP-R 442 (2:1) complex. This model utilizes the receptor D4D5, and 443 binding site II in leptin, as observed by Mancour et al. 10 A 444 second leptin is docked to the 1:1 complex through D3 and 445 446 binding site III forming the 2:1 complex. A conformational 447 change shifts the second ligand from binding site D3 to bind to 448 D3', accommodating the addition of an another LEP-LEP-R 449 complex to achieve a perfect C3-symmetry. Specifically, this 450 allows the first leptin molecule (LEP I) to bind simultaneously 451 to D4 of LEP-R I and D3' of LEP-R II. Similarly, we let LEP II 452 simultaneously bind to D4 of LEP-R II and D3' of LEP-R III. 453 Finally, we docked LEP III to D4 of LEP-R III (Figure 2B). 454 The designed model allows for the formation of higher-order 455 complexes.

Comparing two structures, the binding interface between 457 leptin and the D4 of LEP-R remains unchanged. The binding 458 interface is stabilized by hydrophobic interactions between 459 residue L506 in D4 of LEP-R and L13 and L83 in helix A and 460 helix C of binding site II of leptin. In contrast, the interface on 461 the D3 varies at different ratios of leptin to receptor. For the 462 2:2 stoichiometry, the binding is stabilized by electrostatic 463 interactions between R421 of D3 of LEP-R and E115 in loop 4 464 of binding site III of leptin. For the 3:3 stoichiometry, the 465 binding interface is stabilized by interactions between E417 in 466 D3 of LEP-R and K33 and K35 in loop 1 of binding site III of 467 leptin (Figure 2B). In both models, W138 is not in direct 468 contact with LEP-R. Thus, the electrostatic effect within the C-469 terminus of helix D may not be captured by AlphaFold. The 470 flexible binding interface establishes different orders of 471 architectures with the possibility of forming even higher-472 order complexes of LEP:LEP-R than observed in this model 473 supporting the hypothesis of a higher-order complex. 4,6,10,11

Allosteric Rearrangement of the hLEP-R Complex. 475 The concept of allosteric control required for biological 476 activity, from simple conformational changes to dynamic 477 allostery, is evolving with the advancements of technology and 478 methodology,²⁸ leading to new allosteric mechanisms even 479 among well-researched systems.²

Following the 2:2 complex model, binding site II in LEP is 481 in the interface of domains 4 and 5 (D4D5) of LEP-R and 482 binding site III is in the interface of domain 3 (D3, Figure 1). 483 This suggests that our designed antagonist II and III proteins 484 inhibit the quaternary complex formation, in agreement with 485 previously published results.^{3,30} The decreased activity 486 observed for antagonist I and I*, suggests that there is a 487 more complex sequence of binding/rearrangement required for 488 leptin signaling. This rearrangement could include an allosteric 489 event where the LEP-R moieties wrap around the ligand 490 interacting with binding site I, recruiting a third region of the 491 receptor utilizing hydrophobic interactions. Allosteric control 492 through hydrophobic cavities far removed from the active site 493 have been previously proposed for other systems.³¹ For 494 example, a similar allosteric rearrangement is seen upon insulin 495 binding to its cognate insulin receptor³² and class I cytokine 496 receptors homologous to LEP-R.3

Leptin in Vivo. The abundant expression of LEP-R and 498 truncated isoforms across different cell types³⁴ adds complexity 499 to the biological role of leptin. The different LEP-R isoforms 500 may have different assemblies with LEP depending on their 501 biological function in vivo.

Leptin is expressed by adipose tissue³⁵ and gastric mucus³⁶ 503 and secreted to the extracellular matrix. The full length LEP-R 504 (LEP-Rb) is found in the hypothalamus and throughout the 505 central nervous system (CNS) which is responsible for 506 controlling energy expenditure. The LEP-R can be divided 507 into three segments, (i) the extracellular N-terminal, (ii) the 508 transmembrane helix, (iii) and the cytoplasmic tail. The

extracellular N-terminal is composed of a N-terminal domain 509 (NTD), and seven extracellular domains (D1-D7). There are 510 five splice variants, truncations of the cytosolic tail and 511 transmembrane regions, of LEP-R. The shortest isoform (LEP- 512 Re) lacks the transmembrane region and circulates the 513 extracellular matrix. Although binding studies revealed that 514 both 1:1 and 2:2 complexes assemble via similar thermody- 515 namic binding profiles and affinities in vitro, the association 516 with the cell membrane in vivo may greatly affect the binding of 517 leptin due to the lower degrees of freedom.³⁷ Sandowski et al. 518 showed that the binding affinity for LEP-R was lower in vivo 519 than what has been observed in vitro.³⁸ They attribute the 520 increased affinity in vivo to formation of oligomeric complexes 521 on the membrane. Furthermore, membrane bound LEP-Rb 522 and LEP-Ra exists mostly as preformed homodimer on the cell 523 surface without bound leptin. This may form clusters with 524 more than two receptors per active complex in vivo³⁹ 525 supporting the formation of a higher-order LEP-R complex 526

Many studies focus on the activity of leptin in the 528 hypothalamus which requires diffusion through the blood- 529 brain barrier (BBB). The mechanism of leptin crossing from 530 blood to the CNS remains elusive, 40 but studies suggest that 531 leptin transport is driven by tanycytes-expressed LEP-R. This 532 demonstrates that LEP-Rb plays a pleiotropic role outside of 533 controlling energy expenditure in the hypothalamus.

A noncanonical leptin signaling pathway was recently found 535 in tanycytes, 41 where LEP-R demonstrated promiscuity by 536 binding to other receptors and ligands. Duquenne et al. found 537 that coexpression of LEP-R in the presence of leptin forms a 538 complex with epidermal growth factor receptor (EGFR) both 539 in vitro and in vivo. Moreover, the complex is formed between 540 the LEP-R complex and the EGFR and its ligand, epidermal 541 growth factor (EGF), suggesting the formation of a quaternary 542 complex between LEP:LEP-R:EGFR:EGF in tanycytes is 543 essential for leptin diffusion through the BBB for ERK 544 activation. 41 Furthermore, LEP-R and EGFR is abundantly 545 expressed in similar tissues which may support the formation 546 of the crosstalk and complex formation of the quaternary 547 LEP:LEP-R:EGFR:EGF in other cells than tanycytes.³ Additionally, it was demonstrated that EGFR affects leptin- 549 induced activation of JAK/STAT in cancer cells. 42 Docking 550 studies by Song et al. proposed that another EGFR ligand, 551 epiregulin (EREG), interacts with the LEP-R complex in the 552 hypothalamus.⁴³ These studies further support the complexity 553 of leptin signaling and the possible role of binding site I in 554 leptin. More profound insight into these aspects will not only 555 aid in understanding the canonical signaling of LEP-R in detail 556 and but lead to new findings: (i) as leptin is a pleiotropic 557 signaling hormone; the potential existence of a binding site I in 558 leptin, (ii) the oligomerization of LEP-R, (iii) and/or potential 559 promiscuous interactions may all have unknown roles in leptin 560 biology. The determination of higher resolution structures for 561 hLEP-R complexes remains a major challenge for the future. 562

CONCLUSIONS

Understanding ligand-receptor interactions are essential in 564 understanding biological activity of signaling proteins. In this 565 work, we investigated the possibility binding sites of leptin. 566 Our results show that binding site I in leptin, in particular 567 residue 138 plays an essential role in leptin signaling. Further 568 structural determination is required to identify key residues 569 essential for the stoichiometry, sequence of binding, and 570

634

571 allosteric rearrangement of the hLEP-R complex for the 572 fundamental principles governing leptin signaling and its role 573 in human health.

Before we can tap the enormous potential for controlling s75 chronic human disease, more research is required to s76 understand the structural architecture of the leptin ligand—s77 receptor interaction.

578 ASSOCIATED CONTENT

579 Supporting Information

580 The Supporting Information is available free of charge at 581 https://pubs.acs.org/doi/10.1021/acs.jpcb.3c01090.

CD scan between 200 and 240 nm, pH 6.3 at 25 °C for the leptin variants; thermodynamics data for leptin variants at A) pH 6.3 at 37 °C, B) pH 7.4 at 25 °C, and C) pH 7.4 at 37 °C; thermodynamics data for hLEP variants at pH 6.3 and 37 °C; thermodynamics data for hLEP variants at pH 7.4 and 25 °C; thermodynamics data for hLEP variants at pH 7.4 and 37 °C (PDF)

589 AUTHOR INFORMATION

OCOTION CONTROL OF THE PROPERTY OF THE PROPERT

Ellinor Haglund — Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; orcid.org/0000-0002-6629-2793; Phone: +1(808) 956-5163; Email: ellinorh@hawaii.edu

595 Authors

582

583

584

585

586

587

588

591

592

593

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

Jennifer M. Simien — Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; orcid.org/0000-0002-4591-3036

Grace E. Orellana – Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States Hoa T.N. Phan – Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States

Yao Hu – Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Emily A. Kurth – Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States

Christine Ruf – NBS-C BioScience & Consulting GmbH, Vienna 1230, Austria

Franz Kricek – NBS-C BioScience & Consulting GmbH, Vienna 1230, Austria

Qian Wang — Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; orcid.org/0000-0002-9908-4317

Alan V. Smrcka — Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States

618 Complete contact information is available at:

619 https://pubs.acs.org/10.1021/acs.jpcb.3c01090

620 Notes

621 The authors declare no competing financial interest.

622 **ACKNOWLEDGMENTS**

623 We thank Dr. Matthew Brody, Department of Pharmacology, 624 University of Michigan for STAT3 and pSTAT3 antibodies. 625 Research reported in this publication was supported by the 626 National Science Foundation award number CHE2145906, 627 Hawaii Community Foundation award number HCF40846 (013357-00002), the National Institute of General Medical 628 Science under National Institute of Health award number 629 P20GM125508, and the National Institute of Health award 630 number NIHR35GM127303. Q. Wang thanks the funding 631 support from the National Natural Science Foundation of 632 China (32000882).

REFERENCES

(1) Haglund, E.; Sulkowska, J. I.; He, Z.; Feng, G. S.; Jennings, P. A.; 635 Onuchic, J. N. The unique cysteine knot regulates the pleotropic 636 hormone leptin. *PloS one* **2012**, *7* (9), e45654.

(2) Haglund, E.; Pilko, A.; Wollman, R.; Jennings, P. A.; Onuchic, J. 638 N. Pierced Lasso Topology Controls Function in Leptin. J. Phys. 639 Chem. B 2017, 121 (4), 706–718.

(3) Peelman, F.; Van Beneden, K.; Zabeau, L.; Iserentant, H.; 641 Ulrichts, P.; Defeau, D.; Verhee, A.; Catteeuw, D.; Elewaut, D.; 642 Tavernier, J. Mapping of the leptin binding sites and design of a leptin 643 antagonist. *J. Biol. Chem.* **2004**, 279 (39), 41038–41046.

(4) Iserentant, H.; Peelman, F.; Defeau, D.; Vandekerckhove, J.; 645 Zabeau, L.; Tavernier, J. Mapping of the interface between leptin and 646 the leptin receptor CRH2 domain. J. Cell Sci. 2005, 118 (11), 2519—647 2527.

(5) Peelman, F.; Iserentant, H.; De Smet, A. S.; Vandekerckhove, J.; 649 Zabeau, L.; Tavernier, J. Mapping of binding site III in the leptin 650 receptor and modeling of a hexameric leptin.leptin receptor complex. 651 *J. Biol. Chem.* **2006**, 281 (22), 15496–15504. 652

(6) Peelman, F.; Zabeau, L.; Moharana, K.; Savvides, S. N.; 653 Tavernier, J. 20 years of leptin: insights into signaling assemblies of 654 the leptin receptor. *J. Endocrinol* **2014**, 223 (1), T9–23.

(7) López-Hidalgo, M.; Caro-Gómez, L. A.; Romo-Rodríguez, R.; 656 Herrera-Zuñiga, L. D.; Anaya-Reyes, M.; Rosas-Trigueros, J. L.; 657 Benítez-Cardoza, C. G. Atomistic mechanism of leptin and leptin- 658 receptor association. *J. Biomol Struct Dyn* **2022**, 1–18.

(8) Tovchigrechko, A.; Vakser, I. A. GRAMM-X public web server 660 for protein-protein docking. *Nucleic Acids Res.* **2006**, 34 (Web Server 661 issue), W310–W314.

(9) Carpenter, B.; Hemsworth, G. R.; Wu, Z.; Maamra, M.; 663 Strasburger, C. J.; Ross, R. J.; Artymiuk, P. J. Structure of the human 664 obesity receptor leptin-binding domain reveals the mechanism of 665 leptin antagonism by a monoclonal antibody. *Structure* **2012**, 20 (3), 666 487–497.

(10) Mancour, L. V.; Daghestani, H. N.; Dutta, S.; Westfield, G. H.; 668 Schilling, J.; Oleskie, A. N.; Herbstman, J. F.; Chou, S. Z.; Skiniotis, G. 669 Ligand-induced architecture of the leptin receptor signaling complex. 670 Mol. Cell 2012, 48 (4), 655–661.

(11) Moharana, K.; Zabeau, L.; Peelman, F.; Ringler, P.; Stahlberg, 672 H.; Tavernier, J.; Savvides, S. N. Structural and mechanistic paradigm 673 of leptin receptor activation revealed by complexes with wild-type and 674 antagonist leptins. *Structure* **2014**, 22 (6), 866–877.

(12) Biener, E.; Charlier, M.; Ramanujan, V. K.; Daniel, N.; 676 Eisenberg, A.; Bjørbaek, C.; Herman, B.; Gertler, A.; Djiane, J. 677 Quantitative FRET imaging of leptin receptor oligomerization kinetics 678 in single cells. *Biol. Cell* **2005**, 97 (12), 905–919.

(13) Niv-Spector, L.; Raver, N.; Friedman-Einat, M.; Grosclaude, J.; 680 Gussakovsky, E. E.; Livnah, O.; Gertler, A. Mapping leptin-interacting 681 sites in recombinant leptin-binding domain (LBD) subcloned from 682 chicken leptin receptor. *Biochem. J.* **2005**, 390 (2), 475–484.

(14) Zabeau, L.; Lavens, D.; Peelman, F.; Eyckerman, S.; 684 Vandekerckhove, J.; Tavernier, J. The ins and outs of leptin receptor 685 activation. FEBS Lett. 2003, 546 (1), 45–50.

(15) Ricci, M. S.; Pallitto, M. M.; Narhi, L. O.; Boone, T.; Brems, D. 687 N. Mutational approach to improve physical stability of protein 688 therapeutics susceptible to aggregation. Role of altered conformation 689 in irreversible precipitation. In *Misbehaving proteins: protein (Mis)* 690 folding, aggregation, and stability; Murphy, R. M., Tsai, A. M., Eds.; 691 Springer: New York, 2006; pp 331–350.

(16) Zhang, F.; Basinski, M. B.; Beals, J. M.; Briggs, S. L.; Churgay, 693 L. M.; Clawson, D. K.; DiMarchi, R. D.; Furman, T. C.; Hale, J. E.; 694

- 695 Hsiung, H. M.; et al. Crystal structure of the obese protein leptin-696 E100. *Nature* **1997**, 387 (6629), 206–209.
- 697 (17) Shpilman, M.; Niv-Spector, L.; Katz, M.; Varol, C.; Solomon, 698 G.; Ayalon-Soffer, M.; Boder, E.; Halpern, Z.; Elinav, E.; Gertler, A. 699 Development and characterization of high affinity leptins and leptin 700 antagonists. *J. Biol. Chem.* **2011**, 286 (6), 4429–4442.
- 701 (18) Harder, M. E.; Deinzer, M. L.; Leid, M. E.; Schimerlik, M. I. 702 Global analysis of three-state protein unfolding data. *Protein Sci.* **2004**, 703 13 (8), 2207–2222.
- 704 (19) Ferguson, N.; Fersht, A. R. Φ-Value Analysis of Protein Folding 705 Transition States. In *Protein Engineering Handbook*; Lutz, S.; Born-706 acheuer, U., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp 81–707 120.
- 708 (20) Fersht, A. R. Structure and Mechanism in Protein Science: A 709 Guide to Enzyme Catalysis and Protein Folding; W.H. Freeman and 710 Co.,: New York, 1999.
- 711 (21) Phan, H. T. N.; Kim, N. H.; Wei, W.; Tall, G. G.; Smrcka, A. V. 712 Uveal melanoma-associated mutations in PLCbeta4 are constitutively 713 activating and promote melanocyte proliferation and tumorigenesis. 714 Sci. Signal 2021, 14 (713), eabj4243.
- 715 (22) Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, 716 M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. 717 Highly accurate protein structure prediction for the human proteome. 718 *Nature* **2021**, *596* (7873), *590*—*596*.
- 719 (23) Kazmi, A.; Sattar, A.; Hashim, R.; Khan, S. P.; Younus, M.; 720 Khan, F. A. Serum leptin values in the healthy obese and non-obese 721 subjects of Rawalpindi. *J. Pak Med. Assoc* **2013**, *63* (2), 245–248.
- 722 (24) Al Maskari, M. Y.; Alnaqdy, A. A. Correlation between Serum 723 Leptin Levels, Body Mass Index and Obesity in Omanis. *Sultan* 724 *Qaboos Univ Med. J.* **2006**, *6* (2), 27–31.
- 725 (25) Fersht, A. R.; Matouschek, A.; Serrano, L. The folding of an 726 enzyme. I. Theory of protein engineering analysis of stability and 727 pathway of protein folding. *J. Mol. Biol.* **1992**, 224 (3), 771–782.
- 728 (26) Fersht, A. R. Optimization of rates of protein folding: the 729 nucleation-condensation mechanism and its implications. *Proc. Natl.* 730 *Acad. Sci. U. S. A.* **1995**, 92 (24), 10869–10873.
- 731 (27) Hedberg, L.; Oliveberg, M. Scattered Hammond plots reveal 732 second level of site-specific information in protein folding: phi' (beta+733 +). *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101* (20), 7606–7611.
- 734 (28) Smith, C. A.; Ban, D.; Pratihar, S.; Giller, K.; Paulat, M.; 735 Becker, S.; Griesinger, C.; Lee, D.; de Groot, B. L. Allosteric switch 736 regulates protein-protein binding through collective motion. *Proc.* 737 Natl. Acad. Sci. U. S. A. 2016, 113 (12), 3269–3274.
- 738 (29) Banerjee-Ghosh, K.; Ghosh, S.; Mazal, H.; Riven, I.; Haran, G.; 739 Naaman, R. Long-Range Charge Reorganization as an Allosteric 740 Control Signal in Proteins. *J. Am. Chem. Soc.* **2020**, *142* (48), 20456–741 20462.
- 742 (30) Niv-Spector, L.; Gonen-Berger, D.; Gourdou, I.; Biener, E.; 743 Gussakovsky, E. E.; Benomar, Y.; Ramanujan, K. V.; Taouis, M.; 744 Herman, B.; Callebaut, I.; et al. Identification of the hydrophobic 745 strand in the A-B loop of leptin as major binding site III: implications 746 for large-scale preparation of potent recombinant human and ovine 747 leptin antagonists. *Biochem. J.* 2005, 391 (2), 221–230.
- 748 (31) Liu, J.; Nussinov, R. Allostery: An Overview of Its History, 749 Concepts, Methods, and Applications. *PLoS Comp Biol.* **2016**, 12 (6), 750 e1004966.
- 751 (32) Scapin, G.; Dandey, V. P.; Zhang, Z.; Prosise, W.; Hruza, A.; 752 Kelly, T.; Mayhood, T.; Strickland, C.; Potter, C. S.; Carragher, B. 753 Structure of the insulin receptor-insulin complex by single-particle 754 cryo-EM analysis. *Nature* **2018**, *556* (7699), 122–125.
- 755 (33) Pang, X.; Zhou, H. X. A common model for cytokine receptor 756 activation: combined scissor-like rotation and self-rotation of receptor 757 dimer induced by class I cytokine. *PLoS Comp Biol.* **2012**, 8 (3), 758 e1002427.
- 759 (34) Fagerberg, L.; Hallström, B. M.; Oksvold, P.; Kampf, C.; 760 Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; 761 Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-762 specific expression by genome-wide integration of transcriptomics and

- antibody-based proteomics. *Mol. Cell Proteomics* **2014**, 13 (2), 397–763 406.
- (35) Flier, J. S. Leptin expression and action: new experimental 765 paradigms. Proc. Natl. Acad. Sci. U. S. A. 1997, 94 (9), 4242-4245. 766
- (36) Cammisotto, P. G.; Bendayan, M. Leptin secretion by white 767 adipose tissue and gastric mucosa. *Histol Histopathol* **2007**, 22 (2), 768 199–210.
- (37) Wu, Y.; Vendome, J.; Shapiro, L.; Ben-Shaul, A.; Honig, B. 770 Transforming binding affinities from three dimensions to two with 771 application to cadherin clustering. *Nature* **2011**, 475 (7357), 510–772 513
- (38) Sandowski, Y.; Raver, N.; Gussakovsky, E. E.; Shochat, S.; Dym, 774 O.; Livnah, O.; Rubinstein, M.; Krishna, R.; Gertler, A. Subcloning, 775 expression, purification, and characterization of recombinant human 776 leptin-binding domain. *J. Biol. Chem.* **2002**, 277 (48), 46304–46309. 777
- (39) Zabeau, L.; Defeau, D.; Van der Heyden, J.; Iserentant, H.; 778 Vandekerckhove, J.; Tavernier, J. Functional analysis of leptin 779 receptor activation using a Janus kinase/signal transducer and 780 activator of transcription complementation assay. *Mol. Endocrinol.* 781 **2004**, *18* (1), 150–61.
- (40) Malik, K. F.; Young, W. S. Localization of binding sites in the 783 central nervous system for leptin (OB protein) in normal, obese (ob/ 784 ob), and diabetic (db/db) C57BL/6J mice. *Endocrinology* **1996**, *137* 785 (4), 1497–1500.
- (41) Duquenne, M.; Folgueira, C.; Bourouh, C.; Millet, M.; Silva, A.; 787 Clasadonte, J.; Imbernon, M.; Fernandois, D.; Martinez-Corral, I.; 788 Kusumakshi, S.; et al. Leptin brain entry via a tanycytic LepR-EGFR 789 shuttle controls lipid metabolism and pancreas function. *Nat. Metab* 790 **2021**, 3 (8), 1071–1090.
- (42) Shida, D.; Kitayama, J.; Mori, K.; Watanabe, T.; Nagawa, H. 792 Transactivation of epidermal growth factor receptor is involved in 793 leptin-induced activation of janus-activated kinase 2 and extracellular 794 signal-regulated kinase 1/2 in human gastric cancer cells. *Cancer Res.* 795 **2005**, 65 (20), 9159–9163.
- (43) Song, N. J.; Lee, A.; Yasmeen, R.; Shen, Q.; Yang, K.; Kumar, S. 797 B.; Muhanna, D.; Arnipalli, S.; Noria, S. F.; Needleman, B. J.; et al. 798 Epiregulin as an Alternative Ligand for Leptin Receptor Alleviates 799 Glucose Intolerance without Change in Obesity. *Cells* **2022**, *11* (3), 800 425.