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1. Introduction  

Metal additive manufacturing (AM) has demonstrated its capability in 

producing parts with complex geometries, unique properties, and versatile 

applications in sectors including automotive, aeronautical, medical, and 

natural resource extraction (Vafadar et al., 2021). As a popular metal AM 

process, directed energy deposition, as illustrated in  Fig. 1, has drawn broad 

and continuing interest (Dass and Moridi, 2019). Unlike powder bed 

processes, which are performed in an inert environment to prevent internal 

oxidation, DED shields the melt pool from oxidation using a stream of inert 

gas (Gibson et al., 2015). This process characteristic makes DED more flexible 

in terms of its material choice and build volume than powder bed methods.  

To ensure DED product quality, issues such as microstructure, porosity, and 

residual stress need to be investigated. Notably, parts’ local microstructure and 

mechanical properties are determined by the thermal history experienced at 

each on-part location during deposition. This history is characterized by 

repeated heating, cooling, and phase transformation, leading to an intricate 

process-property relationship and nonhomogeneous mechanical properties 

(Seifi et al., 2016). While thermal history prediction has been investigated, 

prediction of mechanical properties as a consequence of the thermal histories 

is of high interest to the AM community (Ness et al., 2021).  

Characterizing the effect of thermal histories on microstructure (Hejripour 

et al., 2019) and directly predicting mechanical properties using thermal 

history-based methods is an emerging research topic (Snow et al., 2022). 

Complementing this is an ongoing influx of data-driven methods for mechanical 

property prediction in metal AM due to the flexibility and efficiency that these 

methods have demonstrated, as compared to model-based techniques (Qin et 

al., 2022).  

Based on thermal history data, it has been observed that metals’ local grain 

size, which is a determinant of mechanical properties, is inversely proportional 
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to local temperature gradient and solidification boundary speed (Kou, 2003). 

High accuracy in tensile property prediction for Inconel 718 (IN718) has also 

been reported (Xie et al., 2021). Spatially localized temperature time series 

were extracted from in-situ infrared (IR) video of DED production and 

converted to time-frequency images through wavelet transform. A 

convolutional neural network (CNN) was then used to predict the material’s 

tensile properties using wavelet scalograms as input to the network, with the 

relative error of the test data at about 6%. Random forest models (Breiman, 

2001) were used to observe that the durations for which the temperature 

signal was within 654–857ºC (cooling time) and 1260–1336 ◦C (solidification 

time) during in-machine cooling were good predictors of local tensile 

properties.  

Similarly, a positive correlation between cooling time and tensile stresses 

and a negative correlation between solidification time and tensile stresses have 

been qualitatively observed (Glerum et al., 2021). The cooling and solidification 

times were also related to part microstructure, furthering the understanding of 

the DED process-structure-property relationship. Prior study (Bennett et al., 

2021) confirmed the results of Glerum et al. by using cooling and solidification 

times to find quantitative correlations via an exponential equation.  

To further improve the accuracy and robustness in DED tensile strength 

prediction, a model whose outcome is physically interpretable and 

parsimonious in its structure is desired. In the presented study, 

“interpretability” means that the influence of features can be analyzed to 

validate model behavior against physical findings from prior experimental 

studies, whereas parsimony means that model performance can be optimized 

while model complexity is simultaneously reduced (Salman and Liu, 2019).  

Achieving physics-based interpretability enables users to assess a model for 

physical validity, synthesize new physical relationships, and improve 

understanding of model behavior (Guo et al., 2022). Specifically, if the 

prediction logic of a predictive model is spurious and deviates from the laws of 

physics, the model would learn physically insensible relationships and make 

incorrect predictions of material properties outside of the training dataset. 

Conversely, if model decision logic is consistent with known physics, new 

fundamental relationships may be discovered that merit further experimental 

verification for new knowledge generation (Sanchez et al., 2021).  

Achieving model parsimony benefits the generation of a compact set of 

control variables that facilitates real-time DED process control. It has been 

shown that many different thermal characteristics may be used to predict 

mechanical properties, including time-frequency content (Xie et al., 2021) and 

time spent in certain temperature regions (Bennett et al., 2021). Further 

clarification on how these features compare to one another in terms of 

predictive power would lead to better identification of the most relevant 

predictors and a more compact set of influential thermal variables in DED. 

Finally, achieving high accuracy is essential for predicting part quality and 

system throughput in DED, as the above-described facets of interpretability 

cannot come at the cost of substantial degradation of model accuracy.  

The presented study aims to develop a DED part property prediction model 

that meets these criteria. For this purpose, a neural network has been 

developed to predict the ultimate tensile stress (UTS) and yield stress (YS), 

collectively referred to as “tensile strength,” of thin-walled IN718 DED 

components, using thermal history-based features, DED process physics, and 

findings from prior experimental studies as the network inputs. In addition, 

Shapley additive explanation (SHAP) values are investigated to quantify the 

influence of each of the model input features and assess the model’s physical 

interpretability and validity (Lundberg and Lee, 2017). Finally, the method of 

cumulative relative variance (CRV) is investigated to efficiently remove less 

influential input features based on their SHAP-quantified influence to achieve 

model parsimony.  

This study’s outcome is a prediction model that has six orders of magnitude 

fewer parameters than the best model currently reported in the literature, 

while achieving comparable or higher predictive accuracy. An overview of the 

developed method is shown in Fig. 2, with the interconnection among the key 

components of the method as well as the associated details of the key 

components summarized.  

The rest of this paper is organized as follows: Section 2 presents the 

background and procedure of the developed method including an introduction 

to SHAP values and their utility in model interpretation and feature pruning. 

Section 3 describes a DED experiment to evaluate the method, using IN718 as 

the test material. The result of model prediction, interpretation, and 

complexity reduction (i.e., feature pruning) is discussed in Section 4. In Section 

5, conclusions and directions for future work are provided.  

2. Theoretical background  

Given an initial set of thermal history-derived tensile strength predictors, 

i.e., input features, three steps are needed for developing an interpretable 

tensile strength prediction model: 1) regression modelling, 2) feature influence 

quantification, and 3) model complexity reduction.  

Each of these steps is formulated in the following subsections.  

 

Fig. 1. DED process diagram; part width in y direction is equivalent to one laser diameter, making the part “thin-walled”.  
adapted from DMG Mori, Optomec, and (Zhang et al., 2020)  
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Fig. 2. Interpretable tensile strength prediction for DED using machine learning and Shapley additive explanations.   

2.1. Regression modeling  

The objective of tensile strength prediction is to establish a regression 

model that predicts tensile strength with minimized deviation from 

experimentally measured values that serve as the ground truth. 

Mathematically, such a tensile strength prediction model f can be formulated 

as:  

] 

∑N 

f(g[Ti(t, x,z)],w) = κ̂i | w = argmin‖̂κi–κi‖2 (1)  

 w N i=1 

where g is a feature extractor, Ti(t, x, z) is the ith time-varying and spatially 

localized temperature field acquired in the coordinate frame of Fig. 1 (see the 

“DED Process” block), w represents the optimizable parameters of f, k
̂
i and κi 

represent the predicted and measured tensile strength at location (x, z) 

corresponding to Ti, respectively, and N is the total number of measured 

tensile strength values in the experiment. Model f is therefore data-driven, 

since its w parameters are optimized based on training tuples (Ti, κi), and able 

to analyze thermal history features in DED, as extracted by g.  

To ensure that f’s prediction logic is consistent with physics to achieve 

physics-based model interpretability, the influence of each input feature in 

determining ̂κi needs to be assessed. This requires that known relationships 

between input variables and tensile strength predictions be maintained, and 

that a change in a feature’s value has a physically consistent effect on the 

model output. Examples include the direct proportionality between cooling 

time and YS reported in (Bennett et al., 2021) and (Glerum et al., 2021), as 

well as the proportionalities between temperature ranges and UTS reported 

in (Xie et al., 2021). Violation of these relationships indicates that f has not 

learned to obey the known physical mechanisms governing DED. Further 

discussion of this aspect of interpretability is provided theoretically in Section 

2.2 and experimentally in Section 4.2.  

Model parsimony is another reflection of model interpretability. A more 

parsimonious model will have fewer input features. Accordingly, fewer 

interactive effects among features need to be accounted for. In the presented 

study, model parsimony is achieved by the joint minimization of model error 

and input size as shown below:  

 ⎡ ⎤ 

fopt,gopt = argminf, g⎣⎢⎢⎢λ1⋅
N

1 ∑i=N1 ‖̂κi–κi‖2 + λ2⋅features⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅

⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅

⏟(g) ⎥⎦⎥⎥ (2)   

 ⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

⏟ input size 
model error 

where fopt and gopt are optimal f and g, λ1 and λ2 are weighting coefficients, and 

features(g) is the number of features extracted from thermal history data. The 

f and g resulting from (2) are, by definition, optimally parsimonious.  

2.2. SHAP-based model interpretation  

To understand model decision logic and achieve interpretability, the 

influence of each input feature on the outcome of model predictions needs to 

be quantified. This can be achieved by investigating the SHAP values 

corresponding to each input feature, and their variances.  

The concept of the SHAP algorithm (Lundberg and Lee, 2017) originates 

from game theoretic problems in economics, which determine how to fairly 

distribute “payout” for a team of players based on their respective contribution 

to the task outcome (Shapley, 1951). By analogy, the SHAP algorithm in the 

context of machine learning (ML) in general is to determine the “importance” 

of each of the ML model’s input variables based on their respective influence 

in affecting the model’s output. Knowing the “importance” of input variables 

allows for the interpretation and verification of the model predictive logic with 

empirical or physical knowledge, contributing to the acceptance of ML as a 

complement to physics-based reasoning by human experts (Roscher et al., 

2020).  

In the specific context of additive manufacturing, the input variables of 

interest are the features from in-situ IR sensing data (such as temperature 

variance and maximum temperature) that are envisioned to influence the 

model’s output (such as part ultimate tensile strength). Quantifying the 

“importance” of these input variables using SHAP allows for identifying the true 

influential variables, which then serves as the basis for process control and 

optimization, as well as for simplifying the predictive model by removing the 

“insignificant” ones.  

Define predictive model f, input vector xi, and feature j such that xi[j] 

represents the jth feature of the ith input sample. The influence of feature j on 

f(xi) can then be interpreted as the change in f(xi) caused by j. How specifically 

a feature j would change a model’s output depends on f’s learned decision logic 

and the nonlinear weighting, w(xi[j]) that is learned for each feature.  
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To observe feature influence, consider a simplified situation where features 

are incrementally considered by a model, as shown in Fig. 3. Before any feature 

is considered, the model prediction is the unconditioned expectation of the 

model output, E(f). With only the 1st feature known, the model takes its best 

guess with the information it has available at the time, i.e., the expected output 

conditioned on the 1st feature, E(f | j1). The influence of j1 can be quantified as 

the model change as a consequence of j1, E(f | j1) – E(f). This is true for 

subsequent features as well, e.g., the influence of j2 is E(f | j1, j2) – E(f | j1). Fig. 

3 also shows that low-influence terms, such as j5, will contribute little 

“correction” to the model’s output. If j5 was removed, the model prediction 

would deviate slightly from the full feature model, but the model would be 

simpler, have fewer free parameters, be less prone to overfitting, and 

computationally more efficient.  

To systematically determine the influences for every feature j and sample 

i, SHAP values are investigated. Assume a candidate input feature set F of size 

|F|, feature index j ∈ [1, |F|], feature subsets S ⊆ F \  

{j} and S* = S ∪ {j}, and predictive model f : ℝβ 
→ ℝ, where β is the size of the 

input to f that can vary depending on the number of features being 

considered. The SHAP value for feature j of sample i (ϕi[j]) determines j’s 

influence by finding the average change in model response caused by j, 

evaluated across all possible S to account for feature interaction effects.  

Mathematically, ϕi[j] is defined as:  

S,|S|,|F||F−| |S|  (3)   

where fS*(xi[S*]) – fS(xi[S]) is the change in model output induced by feature j 

(Young, 1985). Accordingly, ϕi[j] is the weighted average influence of feature 

j on f(xi) across all S, with weights given by the inverse multinomial coefficient 

in (3). SHAP values are found for a whole dataset by calculating (3) for all 

samples and feature combinations.  

Once SHAP values are computed for all samples and features using (3), 

model prediction f(xi) can be decomposed in the additive form (Shapley, 1951) 

as shown in (4):  

∑ f(xi) = E(f)+ ϕi[j] (4)  
j 

SHAP values for influential features will constitute most of this sum 

whereas weak features will contribute little to f(xi). As a result, feature 

importance for f(xi) can be quantified, model prediction logic can be 

interpreted, and noninfluential features can be removed. In addition, (3) 

holds for any f (Lundberg and Lee, 2017). As a result, SHAP values can 

transform the feature influence of any predictive model into the linear 

additive form as shown (4) to facilitate interpretability even if f is nonlinear, 

such as a neural network. However, direct computation of (3) requires training 

a different f for each possible S. This means the computational complexity of 

finding each ϕi[j] scales according to 2|F|, which rapidly becomes impractical. 

To overcome this, the Kernel SHAP method has been introduced for SHAP 

value approximation (Lundberg and Lee, 2017). This technique trains f once 

and then linearly approximates f(xi) at each xi to satisfy (4). Each linear 

approximation is found by repeatedly perturbing xi and fitting a linear model 

to the perturbed (xi, f(xi)) pairs. The coefficients of the fitted linear model 

approximate true SHAP values for xi. The computational complexity of Kernel 

SHAP is O(i) rather than O(2|F|) as in (3), making it computationally practical. 

2.3. Feature pruning and model complexity reduction  

After acquiring SHAP values, the aggregate influence of feature j on f can be 

quantified as the variance of j’s SHAP values across all input samples, 

represented as σ2[j]. If σ2[j] → 0, feature j has the same influence on f no matter 

the value of xi[j], so the feature influence can be thought of as a constant. In 

many regression models, including neural networks, incorporating such a 

constant is equivalent to learning a bias term. Therefore, if feature j is removed 

and f is retrained, a bias term can be learned in place of the removed feature.  

To rank the features’ influence, SHAP value relative variance (RV) is 

calculated, which is defined as:  

/ 

RV  (5)   

where the numerator is the jth feature’s SHAP value variance and the 

denominator is the sum of SHAP value variances of every feature in the full 

feature set. Features with the lowest SHAP RV are removed from the feature 

set and converted to bias terms because they contribute the least variety to 

the model output and are therefore well-suited to become learned biases 

instead of inputs. Because of this ordered feature removal rule (always remove 

the feature with the lowest RV), the number of feasible feature subsets is 

reduced from 2|F| to |F|.  

While using RV rankings reduces the number of feature subsets to |F|, 

searching through these subsets may still be impractical if |F| is large or if f is 

time-consuming to optimize. For example, if |F| = 20 and f requires 5 min to 

train, then exhaustive feature subset exploration would take 20 feature subsets 

× 5 min/subset = 100 min. To expedite the feature reduction process, a coarse 

search strategy is developed by considering the subsets’ ratio of SHAP value 

variance to the size of the subset.  

Optimal feature subsets (Sopt) should contain features that explain as much 

of the SHAP value variance as possible (maximizing predictive power) while also 

minimizing the number of features needed to achieve that explanation 

(maximizing parsimony). Considering that two subsets with similar explained 

variance (e.g., 90% vs. 89%) should theoretically have similar prediction 

performance, the amount of explained variance should be coarsely varied 

during the search over the |F| remaining feature sets. Specifically, finding Sopt 

for K ≪ |F| coarsely spaced levels of explained variance will give K feature 

subsets with varying performance-parsimony tradeoffs while further reducing 

the feature subset search space size from |F| to K.  

The optimal feature subset Sopt for explained SHAP variance percentage ℓ is 

defined as:  

 Sopt, ℓ = argmaxS CRV
|S|(S) s.t. CRV(S) ≥ ℓ  

∑ 

CRV(S) = RV[j] (6)   

 

Fig. 3. Example of model output change as a measure of feature influence.   
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j∈S 

where cumulative relative variance (CRV) ∈ [0,1] is the sum of RV values for 

all features in feature subset S. By definition, CRV(S) is the proportion of SHAP 

value variance explained by S. Because of the argmax operation in (6), Sopt 

must contain the |S| features with the largest RV values and no others. In the 

presented study, a total of K CRV values that are logarithmically spaced are 

chosen to expedite the search process through the |F| feature subsets 

remaining after the RV ranking process. Logarithmic spacing is chosen based 

on experimentally observed CRV curves. These K feature subsets can then be 

compared on the bases of parsimony and performance.  

There are several alternative methods to CRV that can quantify the 

“importance” of a feature in predictive model:   

1) Mean SHAP value is chosen as the importance metric in (Marcilio and Eler, 

2020), namely, features with higher mean SHAP values are considered 

more “influential” than the ones with lower mean SHAP values. However, 

in our predictive model, the mean SHAP value of each input features is 

shown to hover around zero, indicating a bidirectional influence from each 

of these features on the part property. As a result, the overall “magnitude” 

of the feature’s influence cannot be reflected by its mean value. In 

contrast, the variance as reflected in the CRV of SHAP values shows such 

“magnitude” of influence, as larger variance indicates more change in the 

part property can be induced by the change in the corresponding feature 

as compared to the feature with smaller variance.   

2) Maximum SHAP value is used to assess feature importance in (Mokdad et 

al., 2015), with a higher maximum indicating a more important feature. 

While this approach indicates the upper bound of each feature’s influence, 

it is highly sensitive to outlying SHAP values and neglects to consider the 

expected influence of each feature.   

3) Constructing “neighborhoods” of candidate feature sets based on their 

SHAP values is proposed in (Chen et al., 2021). In this method, p random 

feature subsets are first used to train p predictive models. The model with 

the highest average SHAP value across all features has a “neighborhood” 

of feature sets built around it by adding or removing a feature. However, 

determination of the best candidate required training and testing of 

separate models defined for every feature set in the neighborhood, which 

can be computationally impractical. In contrast, CRV can be directly 

obtained from raw SHAP values, and does not require additional model 

training and testing.  

Based on the above discussion, CRV is chosen as the metric for determining 

the optimal feature set in this study.  

It is noted that bidirectional step-wise regression techniques (Hocking, 

1976) have been traditionally used for feature selection in predictive models, 

where exactly 1 feature is added or removed at a time. Compared to SHAP-

based selection, step-wise techniques have the following limitations:   

1) Computational efficiency. At each iteration, the bidirectional step- wise 

regression is required to evaluate the model and quantify the contribution 

for each candidate input variable individually to determine which variable 

is added to or removed from the model for the next iteration. As the 

number of features increases linearly, the number of input variables can 

increase exponentially when interactions among multiple features are 

considered. Since the feature screening process generally involves a large 

set of candidate features at the beginning, using bidirectional step-wise 

regression is expected to result in significant computational cost (Zoga
˙ 

ła-

Siudem and Jaroszewicz, 2021).   

2) Global optimum. As only one input variable can be added or removed at 

each iteration, the bidirectional step-wise regression is a “greedy” 

algorithm by nature (i.e., the optimality is determined only by the 

immediate, local improvement resulted from the addition or removal of an 

input variable, rather than globally by accounting for all remaining 

iterations down the road). As a result, the algorithm may characterize only 

a small subset of all combinations of input variables and miss the global 

optimal combination.  

In contrast, SHAP implicitly and simultaneously characterizes all possible 

feature interactions to determine globally the “importance” of each feature as 

SHAP value variance, which only requires the model to be evaluated once.  

2.4. Comparing CRV-generated feature sets  

After generating K feature subsets at K logarithmically spaced CRV levels as 

described above, an additive utility function (Malakooti, 2014) is investigated 

to find which subset of the features best balances parsimony and predictive 

accuracy. The best candidate is the solution to the motivating simultaneous 

optimization problem as described in (2). Additive utility functions take the 

form shown in (7):  

 〈 ′ 〉 ⃒P 

⃒
(7)  where k ∈ [1, K] is the Uk = η,mk 

index of the CRV-generated feature subset being considered, U is a measure of 

utility to be maximized, η is a P-length vector of weights, and m′
k is a P-length 

vector of standardized performance metrics for feature subset k. Eq. (7) allows 

for k different prediction models to be compared on the bases of P different 

performance metrics simultaneously; the model with the highest U value is the 

best. Additionally, weight vector η allows each metric to be assigned its own 

weight or “importance” in the utility calculation. This approach therefore gives 

a systematic way of comparing models while considering disparate 

performance criteria in tandem. Such a system is necessary to solve the 

optimization problem posed in (2).  

To fairly compare the P metrics, they must be standardized to the same 

scale. This is to prevent metrics with large magnitudes of (101
–103, e.g., 

absolute error) from dominating metrics with small magnitudes (10-3
–100, e.g., 

percent error) in the calculation of each U. Standardized metric vector m′
n is 

found from unstandardized performance metric vector mn:  

⎧ 

′ ⎪⎪⎪⎨ maxmP(nm[pn][−p])min− minP(mPn([mp])n[p]) if mn[p] to 

be maximized mn[p] = 

⎪⎪⎪⎩ ( − mn[p]) − minP( − mn[p]) if mn[p] to be minimized maxP( − 

mn[p]) − minP( − mn[p]) 

(8)  

where p ∈ [1, P] is the index of the metric being normalized, mn[p] is the pth 

element of mn, minP(⋅) is the minimum of performance metric values across all 

P, and maxP(⋅) is the maximum of performance metric values across all P. This 

standardization process ensures that all metrics are on the same [0,1] scale and 

can be fairly compared to one another regardless of unscaled metric 

magnitude.  

The need for maximization or minimization via (8) is dependent on the 

metric being considered. For instance, error metrics such as mean absolute 

error should be minimized since lower error indicates more accurate 

predictions. On the other hand, metrics such as correlation coefficient should 

be maximized since higher correlation indicates more accurate predictions.  

Finally, the elements of η are application dependent. Different applications 

have different priorities, e.g., interpretability, accuracy, computation time, and 

these priorities are reflected in the weights and the selection of performance 

metrics used in m′
n. The prediction model and feature subset which maximize 

U given η and m′
n are the f and g that satisfy (2).  

In summary, SHAP values from Kernel SHAP, feature rankings from CRV, and 

the utility function of (8) work in tandem to solve (2) and identify the tensile 

strength prediction model and corresponding feature subset with the best 
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tradeoff between performance and interpretability. 3. Experiment, feature 

extraction, and model fitting  

This section presents the DED part production and data acquisition 

experiment that involves tensile testing, feature extraction, and model fitting.  

3.1. DED and tensile testing  

Twelve thin walls of IN718 were deposited on a substrate of SS304 using a 

DMG MORI LaserTec 65 3D DED machine, as illustrated in the process 

schematic of Fig. 1. All walls were 60 mm tall. Three of the walls were 80 mm 

long whereas the other nine were 120 mm long. The powdered material’s 

granule diameters were between 50 and 150 µm and were delivered to the 

laser-generated melt pool at 18 g/min using an argon gas stream with 7 L/min 

flow. The 1800 W laser’s spot diameter was 3 mm. It traversed the walls at 17 

mm/s.  

Three deposition techniques were investigated: 1) continuous, 2) dwell, and 

3) melt pool control. In continuous deposition, the laser traversed the length 

of the walls with no pauses and no changes to the deposition parameters. The 

dwell technique deactivated the laser and powder delivery systems for 5 s after 

each layer before depositing the next one. Melt pool control modulated the 

laser power during deposition to keep the melt pool size constant. A coaxial 

CCD camera with a resolution of 180 × 250 pixels and pixel size 30 µm2 was used 

to view the melt pool and count the number of pixels with intensity greater 

than a user-defined threshold. A PID controller then modulated the laser power 

to keep the number of pixels above the threshold, representing the melt pool 

size, between user-specified bounds (Bennett et al., 2018).  

The time-varying temperature field of each wall (Ti) was monitored 

perpendicular to the scanning direction using a FLIR A655sc IR camera, as seen 

in Fig. 4. The camera’s 640 × 480 pixel resolution captured a 128 × 96 mm field 

of view, resulting in a pixel size of 200 × 200 µm. Prior to the experiment, the 

recorded IR temperatures were calibrated to match the real temperatures 

using the methodology detailed in (Bennett et al., 2021). Essentially, the 

measured IR values were corrected by observing the liquidus-solidus transition 

point in the IR data using the data’s 2nd derivative and setting this transition 

point equal to the known liquidus-solidus transition temperature of IN718. 

Following deposition, 135 miniaturized tensile coupons were cut from the walls 

using electrical discharge machining (EDM). The coupons were then tested on 

a Sintech 20 G tensile test machine at a strain rate of 0.02 mm/s until fracture 

occurred, and their UTS and YS values were recorded. The samples were tested 

as-built, no heat treatment was applied. Thermal features, as described in 

Section 3.2 and shown on the right side of Fig. 4, were calculated from the IR 

video at the center of each tensile coupon. These were then processed to 

become predictive model inputs as described in the following section.  

3.2. Feature selection  

To extract information embedded in the DED temperature fields measured 

by the IR camera for tensile strength prediction, a set of predictors is first 

formulated to generate a comprehensive feature set based on knowledge 

gained in previous work. Subsequently, the feature set is pruned using the 

SHAP value relative variance method as discussed before. The outcome of the 

process is that only the predictors of high relevance to tensile strength are 

retained. The process also enables a direct comparison of the influence of the 

IN718 tensile strength predictors as studied in previous experiments.  

To determine the initial feature set from T, physical validity and DED process 

controllability are considered. Notably, thermal evolution in DED can be 

characterized by extracting the 1) first and 2) second spatial derivatives of the 

temperature field of each wall with respect to the x- direction, z-direction, and 

time (t). These partial derivatives are represented as the set Δ(T) = {∂T/∂x, 

∂T/∂z, ∂T/∂t, ∂2T/∂x2, ∂2T/∂z2, ∂2T/∂t2}. Derivatives in the y-direction are not 

considered due to the symmetric heat flux about the thin wall’s y-axis as seen 

in Fig. 1. Since the elements of Δ(T) determine the material properties of the 

DED parts after production (Bennett et al., 2018), they are expected to provide 

both predictive power and physical interpretability of the predictive model 

developed in this study.  

Since the tensile testing provided the mechanical properties at the center 

of each coupon, 10 pixel × 10 pixel regions of interest (ROIs) at each coupon 

center were established as shown by the blue dots in Fig. 4. Average signals for 

T and Δ(T) were then found for each ROI. This was done to reduce error in 

temperature measurement caused by emissivity changes due to roughness of 

the surface parallel to the camera (Bennett et al., 2018).  

3.2.1. First partial derivatives  

First partial derivatives (∂T/∂x, ∂T/∂z, and ∂T/∂t) are considered because 

they are inherently related to local grain size (d) and shape, which in turn affect 

the tensile strength. As the grain size d decreases, a material experiences more 

internal friction and tensile strength increases (Callister and Rethwisch, 2012). 

In (9), the relationship between d and the first partial derivatives is summarized 

(Kou, 2003):  

d∝(GR)− 1  

 
G ∂x ∂z ∂t ∂x ∂z ∂t (9)  where G is the spatial temperature gradient in the x-z 

plane (ºC/m) and R is the cooling rate (ºC/s). Additionally, grain shape is 

determined by the ratio of G/R. A high G/R induces planar grains whereas low 

G/R induces equiaxed dendritic grains (Kou, 2003). This morphology 

subsequently determines tensile properties in that higher planarity is 

associated with higher ductility and reduced UTS and YS (Gockel et al., 2014).  

 

Fig. 4. Thermal history monitoring and data dimensions, adapted from 

(Glerum et al., 2021).  
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3.2.2. Second partial derivatives The second derivatives ∂2T/∂x2 and ∂2T/∂z2 are 

considered because they represent local material density (ρ), as reflected in 

the heat equation (Moran, 2003( ) as expressed in (10): ) 

∂∂T = Ω ∂∂2xT2 + ∂∂2zT2 t 

 (10)  

Interstitial defects which reduce tensile strength, such as pores and lack of 

fusion, will manifest themselves as lower local density, which is detectable 

using the derivative-based approach of (10). Given that material density is 

positively correlated with UTS and YS (Sun et al., 2016), ∂2T/∂x2 and ∂2T/∂z2 are 

expected to be positively correlated with UTS and YS as well.  

Finally, the second time derivative ∂2T/∂t2 is also calculated since it is an 

indicator of the liquidus-solidus transition in DED (Bennett et al., 2018), which 

also affects the tensile strength.  

3.2.3. Tabular representation of time series signals  

The above-described feature selection process yields a total of seven model 

input features for each coupon: T and the six elements of Δ(T) given by {∂T/∂x, 

∂T/∂z, ∂T/∂t, ∂2T/∂x2, ∂2T/∂z2, ∂2T/∂t2}. However, each of these features are 

time-varying signals. Considering that signals with long duration pose a 

challenge to recurrent prediction models and that incorporating temporal 

attention into a predictive model (Bai et al., 2018) to avoid forgetting 

information would rapidly increase the number of model parameters and lead 

to overfitting, the seven model input features are characterized using low-

dimensional statistical representations such as mean and variance. This 

simplifies feature influence interpretation since the time dimension is 

eliminated and thus influence will not vary as a function of time.  

Five statistical measures are calculated for T and Δ(T): maximum, mean, 

variance, skewness, and kurtosis (Everitt and Skrondal, 2010). Prior study has 

found that maximum temperature is a determinant of subsurface porosity in 

metal AM (Paulson et al., 2020). Therefore, maxima are calculated for T and the 

elements of Δ(T) and included in the prediction model to achieve the same 

predictive power as seen in literature. As for the other statistics, since skewness 

is used to scalarize time-varying signals, it can be interpreted as a measure of 

time spent away from the signal mean. Positive skewness indicates that a 

signal’s value is predominantly above the mean, and vice-versa for a negative 

skewness. Similarly, kurtosis represents the time spent at extreme values. Low 

kurtosis indicates that the signal consistently remained near its mean value 

whereas high kurtosis indicates more time around extremes.  

The moment statistics are calculated during the final cooling phase (T ̃) as 

shown in Fig. 5, considering that this phase predominantly  

 

determines the final part microstructure (Kou, 2003). Microstructures formed 

prior to this phase become irrelevant because they are “reset” by 

reliquification of the ROI, whereas temperatures after this phase are not high 

enough to induce microstructural changes (Bennett et al., 2021). This means 

that the temperature signal outside of this phase does not have a lasting effect 

on tensile strength and should not be considered by the mean, variance, 

skewness, and kurtosis. T ̃is defined by the liquidus temperature, TL, and lower 

critical temperature, TA (Clarke, 2014), as shown in Fig. 4. For IN718, TL = 1364 

ºC and TA = 654 ºC (Bennett et al., 2021).  

3.2.4. Additional features  

In addition to the 35 statistical features described above (7 signals × 

5 statistics), the cooling and solidification times as defined in (Xie et al., 2021) 

are found for T̃ to comprehensively compare tensile strength predictors 

proposed in (Kou, 2003) and (Farshidianfar et al., 2016). These works 

elucidated the significance of the cooling and solidification times in 

determining part microstructure and mechanical properties in AM, namely that 

fast solidification results in material with higher strength while more cooling 

time in the specified temperature range (Xie et al., 2021) strengthens the 

material by allowing more time for δ-phases to merge and break the brittle 

Laves phase.  

Finally, to encode the three deposition control strategies, i.e., continuous, 

dwell, and melt pool control, a three-element one-hot vector is used. If 

temperature field Ti is a result of deposition type v ∈ {1, 2, 3}, the vth element 

of the one-hot vector is set to 1 while all other elements are set to 0. This 

vector, when appended to the 35 statistical measures for T and Δ(T) along with 

cooling and solidification times, results in 40 tabular features to be used as 

inputs to tensile strength predictive model. These inputs are shown in Table 1.  

3.3. Model training  

A multilayer perceptron (MLP) was investigated as the tensile strength 

prediction model, f, since it is generally suited for approximating non-affine and 

continuous functions with arbitrary precision (Cybenko, 1989). Optimizing 

parameters w of f, as defined in (1), is achieved via backpropagation.  

Two MLPs were trained using all 40 tabular features: one for UTS and one 

for YS, respectively. The 135 tensile coupons were split into training and testing 

sets (95 and 40 coupons, respectively). These datasets were stratified based on 

the spatial location of the tensile coupons (a–l) specified in Fig. 4, as well as the 

three deposition types. Each model was trained until testing loss did not 

decrease for 500 consecutive epochs, at which point the MLP weight matrices 

associated with the lowest recorded testing loss were restored.  

MLP hyperparameters which yielded low prediction error were obtained via 

search over the following hyperparameter ranges: 1) 4–8 hidden layers, 2) 2–5 

nodes per layer, 3) leaky ReLU (Maas et al., 2013) and swish (Ramachandran et 

al., 2017) activation functions, 4) ||⋅||1 and ||⋅||2 weight regularizers, 5) ω = 

0.3–0.7, 6) 1 × 10-5
–1 × 10-3 initial learning rate, 7) 50,000–200,000 decay steps, 

8) Adamax (Kingma and Ba, 2017) and Nadam (Dozat, 2016) optimizers, and 9) 

batch sizes of 4, 8, and 16, respectively.  

Fig. 5. Temperature signal truncation (T → T̃) during final cooling phase.   

The number of hidden layers and nodes/layer were bounded based on trial-and-error experimental observations: models smaller than 4 layers × 2 

nodes/layer failed to learn mappings from the thermal features to tensile properties and models larger than 8 layers × 5 nodes/ layer consistently overfit the 

training data. A similar process was used to set the bounds for the weight regularization factor (ω), initial learning rate, and the number of learning rate 

decay steps. Learning was sluggish if ω was greater than 0.7, the initial learning rate was less than 1 × 10-5, or the number of decay steps was below 50,000. 

On the opposite end of the spectrum, learning was unstable and tended towards exploding gradients if ω was less than 0.3, the initial learning rate was 

greater than 1 × 10-3, or the number of decay steps was greater than 200,000.  

Table 1  
Inputs to tensile strength prediction model.   
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Partial Derivatives mean(T̃)  variance(T̃)  skewness(T̃)  kurtosis(T̃)  
 mean(∂T̃/∂x)  variance(∂T̃/∂x)  skewness(∂T̃/∂x)  kurtosis(∂T̃/∂x)  
max( T̃/ z) mean(∂T̃/∂z) variance(∂T̃/∂z) skewness(∂T̃/∂z) kurtosis(∂T̃/∂z) max(∂T̃/∂t) mean(∂T̃/∂t) variance(∂T̃/∂t) skewness(∂T̃/∂t) 

kurtosis(∂T̃/∂t) max(∂
2T̃/∂x2) mean(∂

2T̃/∂x2) variance(∂
2T̃/∂x2) skewness(∂

2T̃/∂x2) kurtosis(∂
2T̃/∂x2)  

 )  mean(∂2T̃/∂z2)  variance(∂2T̃/∂z2)  skewness(∂2T̃/∂z2) 

 kurtosis(∂
2T̃/∂z2)  

 mean(∂2T̃/∂t2)  variance(∂2T̃/∂t2)  skewness(∂2T̃/∂t2)  kurtosis(∂2T̃/∂t2)  

Other  cooling time  solidification time  ν1  ν2  ν3   

 
Finally, batch sizes smaller than 4 yielded unstable training that failed to 

converge whereas batch sizes larger than 16 yielded models with tendencies 

to get stuck in local minima of the loss function and exhibit suboptimal 

prediction accuracy.  

The remaining hyperparameter candidates were selected based on the 

success studies reported in previous literature. For example, LeakyReLU was 

chosen as an activation based on its improved performance over the previous 

gold standard ReLU activation as shown in previous literature (Maas et al., 

2013). The swish function was chosen for similar reasons, as it too has 

demonstrated improved results over ReLU (Ramachandran et al., 2017). As 

Leaky ReLU and swish have not yet been comprehensively compared in the 

literature, we elected to investigate and compare them for the tensile strength 

prediction learning task in DED. A similar thought process was followed for the 

weight regularizers: ||⋅||1 and ||⋅||2 regularizers have both been shown to 

improve generalization performance of neural networks, i.e., by making 

training and testing error more consistent with one another, but there is not a 

definitive answer as to which one is best, so we elected to investigate both 

(Larsen and Hansen, 1994). Finally, Nadam and Adamax were previously shown 

to be the top two optimizers for learning tasks on large datasets, including 

fashion MNIST and natural images (Dogo et al., 2018). While the learning task 

and network architecture of this study is different, there is a lack of 

comparative research on optimizer behaviors for MLP models and so Nadam 

and Adamax were compared in this study.  

To search over the hyperparameter ranges in a computationally tractable 

way, 5000 combinations are uniformly sampled from the hypercube defined by 

the nine hyperparameters of interest. In other words, discrete 

hyperparameters (#1, 2, 3, 4, 8, and 9) are independently sampled from 

discrete uniform distributions whereas the continuous hyperparameters (#5, 

6, 7) are independently sampled from continuous uniform distributions. To 

avoid redundancy, none of the 5000 sampled combinations were identical. 

Each combination of hyperparameters is used to retrain the MLP and the 

hyperparameter combinations which yielded the highest average coefficient of 

determination (R2) on the UTS and YS testing data are chosen for this study. 

Total MLP training time across all 5000 hyperparameter combinations was 166 

h (average of approximately 2 min/model) on a single-threaded 2.6 GHz CPU. 

The MLP design and hyperparameter optimization process is illustrated in  Fig. 

6.  

4. Results and discussion  

The prediction outcomes of the ultimate tensile stress and yield stress for 

the 135 thin-walled thermal coupons of IN718 are analyzed using the method 

developed in this study.  

4.1. Baseline prediction results  

Baseline MLP prediction results for UTS and YS are shown in Fig. 7. The 

scatterplots in the top half of the figure are aggregated over 10 network 

reinitializations, each with stratified and randomly chosen testing data and 

randomly initialized weights. To quantify model performance and compare 

with results published in prior literature (Xie et al., 2021), which serves as 

benchmark for the comparison, four performance metrics are evaluated: root 

mean squared error (RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE), and R2 (Everitt and Skrondal, 2010). As evidenced by 

the similar bar heights in Fig. 7, the developed MLP has achieved comparable 

results to the benchmark, which was obtained by an 18-layer CNN and 

represents the best results in the current literature.  

For a more rigorous comparison, two one-sided Welch’s t-tests are 

performed on each performance metric to quantify performance differences 

(Everitt and Skrondal, 2010). The null hypothesis of the first test  

(H1
0) is that the MLP performance is comparable to or worse than the CNN (i.e., 

higher RMSE, MAE, MAPE; lower R2). The null hypothesis of the second test 

(H2
0) is that the MLP performance is comparable to or better than the CNN. If 

H0 is not rejected in either test, then the only possible explanation is that the 

MLP and CNN performances are statistically equivalent. However, if H1
0 is 

rejected while H2
0 is not, then the most likely explanation is that the MLP metric 

is statistically better than the CNN metric.  

 

Fig. 6. Illustration of MLP design and hyperparameters optimization process.   
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Fig. 7. Comparison of UTS and YS baseline models (MAPE* = MAPE × 10 for legibility); benchmark results are average of validation and testing results weighted by  
validation and testing proportions (0.44 and 0.56, respectively).  

The Welch tests’ significance level of α = 0.05 means that there is a 5% 

chance of mistakenly rejecting H0 when it is true. This rejection occurs when 

the p-value (p) is less than α, where p is the probability of observing the 

performance differences between the MLP and CNN assuming H0 is true. A low 

p suggests that the observations are not well- explained by H0 whereas a high 

p supports H0. Welch’s t-test is selected due to the different number of samples 

in each group (5 in benchmark vs. 10 in this study).  

As seen in Table 2, all p > > 0.05 for H1
0 so there is not enough evidence to 

reject H1
0 for any metric. Additionally, p > 0.05 for H2

0 except for UTS RMSE, 

thereby confirming statistical equivalence between the MLP and CNN for all 

metrics except UTS RMSE, which is statistically better than the benchmark 

study with 99% confidence (pUTS,2 = 0.01).  

In terms of computational efficiency, the MLP model requires 379 floating 

point operations (FLOPs) for a forward pass, as compared with 1.8 × 109 FLOPs 

for the ResNet-18 CNN (He et al., 2015) model used by the benchmark study. 

Therefore, for a fixed rate of FLOP/s, the MLP reduces computation time by a 

factor of more than 4.7 × 106. This is illustrated by the computational 

performance when predicting UTS and YS for all the 135 ROIs used in this study: 

the computational time needed for the prediction was approximately 1.2 μs 

for the MLP model when tested on a laptop with a single-threaded i7 CPU at 

2.6 GHz. The time was about 5.8 s when using the CNN model. When scaling 

up the computation for analyzing larger ROI sample sizes, e.g., to characterize 

an entire DED built part, the difference in computational performance 
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becomes much more significant and affects the practicality of the 

implementation. These results clearly indicate that the MLP models developed 

in this study can achieve comparable or better predictive  

Table 2  

accuracy while being much faster and therefore more scalable to a DED 

production environment.  

4.2. Baseline model interpretation  

For a physically consistent model, when a feature’s value changes, the 

change should have a physically consistent effect on the tensile property. This 

is verified via the MLPs’ SHAP values.  

The SHAP values for the two baseline MLP models for the UTS and YS 

analysis are shown in Fig. 8. For each feature, the x-axis location and color of 

each dot represent the quantified influence of the feature and the normalized 

value of the feature itself, respectively. In addition, each dot represents a 

tensile coupon in the test dataset and there are 40 dots per row since each test 

dataset coupon yielded one SHAP value per feature. Features are shown in 

descending order of the SHAP CRV values, and Z- scores are used to normalize 

the differing scale of features.  

As seen in Fig. 8, the top-three influential features for predicting UTS and 

YS are: 1) temperature variance within the truncated region (see Figs. 5), 2) the 

maximum temperature experienced by the DED part during the build process, 

and 3) the cooling time. Longer cooling times have been previously shown to 

increase the UTS and YS (Glerum et al., 2021). Additionally, solidification time 

is in the top five features for the UTS and YS models and is inversely 

proportional to both UTS and YS, as reflected in the coloration of the points 

along the solidification time rows in Fig. 8. These findings are again consistent 

with previous literature (Glerum et al., 2021). Furthermore, higher maximum 

temperature is seen to lead to low YS, which is consistent with reported 

literature where a positive correlation between maximum temperature and  

Welch’s one-sided t-test results for test data metrics at significance level α= 0.05.   

 

Fig. 8. Test dataset SHAP values for 10 most influential features of the MLP models with the highest R2 values.   

subsurface porosity was observed (Paulson et al., 2020). These results indicate 

that the feature influences learned by the MLP models from the data, without 

specialized architecture or training, are validated by physical relationships for 

UTS and YS prediction as reported in prior works.  

In addition to known physics, Fig. 8 also reveals new possible tensile 

strength predictors. For example, temperature variance is the most influential 

feature in both models and retains a consistent inverse proportionality to UTS 

and YS, which has not been reported previously. Similarly, UTS is observed to 

be directly proportional to the maximum temperature, which is an unreported 

phenomenon. While further study is necessary to reveal the underlying 

physical root causes of the feature rankings, many of the influential features 

identified by SHAP in Fig. 8 are supported by previous literature and thus lend 

credence to other unconfirmed predictors.  

To better visualize how each SHAP-identified feature characterizes the 

tensile properties of the three deposition methods, SHAP values are color-

coded according to their deposition type in Fig. 9. Two notable details emerge 

from these plots:   

1) The mean and variance of the melt pool control specimens is consistently 

lower than the other two deposition methods. For the temperature 

variance feature in particular, the average normal, dwell, and melt pool 

control SHAP values in the UTS model are  

− 153 ± 125 MPa, 253 ± 200 MPa, and − 102 ± 62.1 MPa, respectively, where 

the uncertainty reflects 1 standard deviation. For the YS model, these 

ranges are − 20.3 ± 18.9 MPa, 22.6 ± 17.5 MPa, and − 10.7 ± 6.4 MPa. For 

the UTS model, the temperature variance feature’s SHAP value variance is 

27813 for the normal and dwell data (on average) and 3856 for the melt 

pool control data. For the YS model, these variances are 332 and 41, 

respectively. In other words, the SHAP value variance of the normal and 

dwell models is, on average, 7.2 times larger for the UTS model and 8.1 

Metric  pUTS,1  Reject H1
0?  pUTS,2  Reject H2

0?  pYS,1  Reject H1
0?  pYS,2  Reject H2

0?  

RMSE   0.99  No   0.01  Yes   0.65  No   0.35  No  

MAE   0.94  No   0.06  No   0.29  No   0.71  No  
MAPE   
R2   

0.92  
0.90  

No   
No   

0.08  
0.10  

No   
No   

0.53  
0.69  

No   
No   

0.47  
0.31  

No No   
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times larger for the YS model. These variances, along with the lower 

average magnitude of the melt pool control SHAP values, suggests that the 

melt pool control predictions are reliant on more features than 

temperature variance, unlike the normal and dwell specimens which get 

most of the prediction “pushing power” from this one feature.   

2) The normal and dwell SHAP values tend to exist on opposite sides of the 

plot for each feature, with melt pool control specimens occupying the 

middle. This suggests large statistical differences and easy distinguishability 

between the normal and dwell deposition types, which may be useful if 

automated deposition type recognition is required.  

It should be noted that temperature variance, while having shown to 

provide a statistical predictor for tensile strength, is not physically validated as 

yet in this study. Specifically, different thermal histories can yield the same 

temperature variance, and the same temperature variance may lead to 

different tensile properties. Additionally, it is not yet established if temperature 

variance is a causal factor of tensile strength or rather an indicator of 

deposition type. As shown in Fig. 9, normal, melt pool control, and dwell 

specimen groups are discernable along the horizontal axis for both UTS and YS, 

indicating that the value of temperature variance discriminates between 

deposition types. Previous studies have shown that deposition type has a 

strong influence on tensile properties as it determines in-place heat treatment 

and precipitate formation characteristics, which are directly causal to tensile 

properties (Glerum et al., 2021). It is unknown if temperature variance encodes 

these characteristic differences or if temperature variance provides additional 

information beyond that of the deposition method. These findings indicate 

that further investigations involving physical models and specimen fabrication 

are needed to understand the role that temperature variance plays in affecting 

material properties and its potential utility as a tensile property predictor.  

4.3. Feature removal and effects  

The top row of Fig. 10 shows how SHAP CRV varies as a function of the 

number of inputs to the UTS and YS models. Each MLP was retrained using the 

minimum number of features necessary to achieve the CRV thresholds as 

specified by the legends in Fig. 10. These thresholds were representatively 

chosen to expedite the search for an optimal feature set, as discussed in 

Section 2.3. The steep curves in the top row of Fig. 10 show that most of the 

SHAP value variance can be explained with only a few features in both models. 

This is an indicator that significant feature pruning is possible to improve the 

computational efficiency and model interpretability. Feature pruning is 

illustrated in the bottom row of Fig. 10, which shows that model performance 

on the test dataset is largely unaffected by feature removal, with 100% and 

75% SHAP CRV models differing in performance by metrics no more than 10%.  

To determine which model of Fig. 10 has the optimal performance- 

interpretability tradeoff, (2) is solved via the additive utility function defined in 

(7). As such, the metrics of interest are defined as m = [RMSE, MAE, MAPE, R2, 

number of input features] with the weights being η = [.125,.125,.125,.125,.50] 

to evenly balance performance metrics with parsimony via a 50/50 weighting 

scheme. The selected error metrics (RMSE, MAE, MAPE, R2) were considered 

such that the outcome of this study can be compared with the published 

literature (Xie et al., 2021) to demonstrate the improvement of the developed 

method, whereas the number of input features was selected for the utility 

function such that model parsimony could be balanced against model 

performance, which is one of the main motivators of this study.  

Eq. (8) is then used to find m’ for each metric based on the results shown 

in Fig. 10. The utility values, U, for the UTS and YS models are shown in Table 

3. They indicate that 75% is the optimal SHAP CRV threshold for both models 

since the utility is maximized.  

The 75% SHAP CRV threshold corresponds to 3-feature and 2-feature 

models for UTS and YS, respectively. Based on the feature rankings in Fig. 8, 

the optimal UTS model uses variance(T̃), max(T), and cooling time as its inputs 

and the optimal YS model uses only variance(T ̃) and max(T), leading to two 

parsimonious predictive models with good model performance. These features 

are identified since they are at the top of each plot in Fig. 8, which is sorted in 

descending order of RV. Since the optimal UTS and YS feature sets were made 

using the CRV heuristic, it is known that each pruned model’s features are 

selected in descending order of RV and thus the features at the top of Fig. 8 

were chosen before any others.  

Using the 3-feature model, UTS prediction metrics are shown to be 

worsened by 6.0% on average whereas YS metrics improved by an average of 

5.6% using the 2-feature model. These performance alterations are 

accompanied by 92.5% and 95% reductions in input feature set size, 

respectively. The UTS result is expected and agrees with machine learning 

literature, which suggests a tradeoff between interpretability and performance 

(Dziugaite et al., 2020). On the other hand, the YS result is an indicator of a 

better fitted YS model. The discrepancy between the training and testing YS 

metrics was 1/4th as large as the full YS model in Fig. 7. The pruned YS model 

therefore experienced less overfitting than the full-feature model and thus is 

more robust when predicting never-before-seen YS data, such as the test 

dataset. Such a reduction in overfitting is attributable to the reduced input size 

of the pruned model, which resulted in 114 fewer free parameters (− 30%) and 

significantly less overparameterization when predicting YS.  

The performance of the 3- and 2-feature MLPs for UTS and YS is compared 

against 40 different regression models including k-nearest neighbors, boosted 

regressors, bagged regressors, tree- and forest-based models, support vector 

machines, Gaussian process, generalized linear models, and step-wise 

methods such as LASSO, ridge, ElasticNet, LARS, and orthogonal matching 

pursuit regression. The full list is shown in (Shankar, 2022). Each model is fit on 

the features used to train the maximally parsimonious MLP. After the initial 

fitting process, the top 5 models, as measured by the average R2 across UTS 

and YS, are fine tuned to maximize their predictive accuracy, and then 

compared to the MLP results. As shown in Fig. 11, none of the fine-tuned 

models are shown to outperform the MLP in terms of R2. This confirms the 

strength of the developed prediction model as compared to other modelling 

approaches.  

5. Conclusions  

The presented study aims to fill an existing research gap in interpretable 

process-property predictive modeling of DED. An efficient feature extraction 

methodology and corresponding machine learning models have been 

developed to exploring the tensile strength- determining physics embedded in 

the DED thermal history. Experimental data analysis has demonstrated that, 

compared with prior published results as the benchmark, the developed MLP 

models have comparable or better prediction accuracy for DED built IN718 UTS 

and  

 

Fig. 9. SHAP values color-coded per deposition type for top 4 most influential features of MLP model; vertical jitter has been added for visual clarity.   
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Fig. 10. Cumulative relative variance plots (top) and effects of feature removal on test dataset results (bottom) for UTS and YS models.   
Table 3  
Standardized performance metrics (h), weights (η), utility (U), and rankings for MLP models at varying SHAP CRV levels, evaluated on the test dataset.    

SHAP CRV  m’[1]  m’[2]  m’[3]  m’[4]  m’[5]  m’[2]  m’[3]  m’[4]  m’[5]  
50.00%   0.04   0.01   0.13   0.00   1.00  0.52  5  0.00  0.00  0.00  0.00  1.00  0.50  5  
65.00%   0.00   0.00   0.00   0.11   0.97  0.50  T6  N/A  N/A  N/A  N/A  N/A  N/A  N/A  
75.00%   0.68   0.84   0.94   0.74   0.95  0.87  1  0.97  0.86  0.86  0.96  0.97  0.96  1  
90.00%   0.59   0.79   0.94   0.63   0.92  0.83  2  0.95  0.87  0.86  0.96  0.90  0.92  2  
99.00%   0.72   0.79   0.81   0.79   0.69  0.73  3  1.00  1.00  1.00  1.00  0.77  0.90  3  
99.99%   0.80   0.96   1.00   0.84   0.38  0.64  4  0.87  0.86  0.91  0.87  0.36  0.64  4  
100.00%   1.00   1.00   1.00   1.00   0.00  0.50  T6  0.72  0.75  0.77  0.75  0.00  0.39  6  
η   0.125   0.125   0.125   0.125   0.5  -  -  0.125  0.125  0.125  0.125  0.5  -  -   

 

 

Fig. 11. Comparison of this study’s parsimonious MLP and comparable statistical models showing that the MLP yields the highest R2 value; LR: linear regression, RF: random forest, XGB: 

extreme gradient boosting; the AdaBoost (Freund and Schapire, 1995), Bagging (Aslam et al., 2008), RF (Breiman, 2001), and XGB (Chen and Guestrin, 2016) ensemble methods each 

used decision trees as their ensemble members.  

YS with significantly reduced model complexity (by a 4.7 ×106 reduction factor). 

This complexity reduction was made possible by a novel feature pruning 

method. SHAP values of the model input features were investigated to confirm 

the models’ consistency with physical principles underlying the DED process as 

reported in published literature. Note that this work uses the discovery of the 

importance of cooling time on tensile strength obtained from the neural 

network in Xie et al. as one feature, and the analysis of this work confirms its 

relevant importance. The success of this work indicates that similar knowledge 

from the traditional heat treatment field can be and should be used in feature 

definition to reduce model complexity in physics-informed machine learning.  

Additionally, previously unreported predictors such as temperature 

variance are observed in the presented study, which can enable new DED 

optimization strategies. For instance, temperature variance has been shown to 

be a possible predictor of tensile strength, pending further experimental 

verification. Furthermore, the robustness of the developed methods to 

changes in machine settings and material will also need to be analyzed.  

More investigation into the SHAP CRV-based feature selection method is 

also needed. For brevity, the presented study did not explore possible 

inefficiency induced by reducing the number of possible feature subsets from 

2|F| to |F| to N ≪|F|. Furthermore, why feature removal made the YS MLP 

perform better than the 40-feature full model, as seen in Fig. 10, needs further 

investigation. These tasks will be necessary to fully understand the method’s 

behavior. Finally, a comprehensive, microstructural interpretation of every 

variable remaining in the reduced models is needed. This will help gain insight 

into the DED physics in the context of established material science and 

synthesize additional relationships between thermal history and tensile 

properties that may not have been revealed yet. Overall, the presented study 

constitutes a significant step towards physics-informed and parsimonious 
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machine learning modeling of DED and other metal powder-based additive 

manufacturing processes.  
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