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ARTICLEINFO ABSTRACT

Associate Editor: Dr. E. Tekkaya In directed energy deposition (DED), local material microstructure and tensile strength are determined by the thermal history
experienced at each spatial location on the part. While prior research has investigated the effect of thermal history on
mechanical properties, a tensile strength prediction model that is physically interpretable and parsimonious with good
predictive accuracy is still needed. This paper investigates a data-driven predictive model with Shapley additive explanation
(SHAP)-based model interpretation to address this issue. First, physically meaningful thermal features translated from prior

experimental works are used as inputs to a neural network for tensile property prediction. SHAP values are then computed for
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the individual input features to quantify their respective influences on tensile property predictions and reduce model
complexity using the metric of cumulative relative variance (CRV). Prediction of experimentally acquired Inconel 718 (IN718)
tensile strength demonstrates that feature influences quantified by the developed method can be verified by findings from
prior works, confirming the physical interpretability of the neural network prediction logic. In addition, model complexity
reduction based on CRV has shown that fewer than 10% of the original features are required by the parsimonious model to
achieve the same predictive accuracy of tensile strength as reported in prior literature, thereby demonstrating the effectiveness
of SHAP-based feature reduction method in improving DED process characterization.

1. Introduction To ensure DED product quality, issues such as microstructure, porosity, and

residual stress need to be investigated. Notably, parts’ local microstructure and

Metal additive manufacturing (AM) has demonstrated its capability in
producing parts with complex geometries, unique properties, and versatile
applications in sectors including automotive, aeronautical, medical, and
natural resource extraction (Vafadar et al., 2021). As a popular metal AM
process, directed energy deposition, as illustrated in Fig. 1, has drawn broad
and continuing interest (Dass and Moridi, 2019). Unlike powder bed
processes, which are performed in an inert environment to prevent internal
oxidation, DED shields the melt pool from oxidation using a stream of inert
gas (Gibson et al., 2015). This process characteristic makes DED more flexible
in terms of its material choice and build volume than powder bed methods.

mechanical properties are determined by the thermal history experienced at
each on-part location during deposition. This history is characterized by
repeated heating, cooling, and phase transformation, leading to an intricate
process-property relationship and nonhomogeneous mechanical properties
(Seifi et al., 2016). While thermal history prediction has been investigated,
prediction of mechanical properties as a consequence of the thermal histories
is of high interest to the AM community (Ness et al., 2021).

Characterizing the effect of thermal histories on microstructure (Hejripour
et al., 2019) and directly predicting mechanical properties using thermal
history-based methods is an emerging research topic (Snow et al., 2022).
Complementing this is an ongoing influx of data-driven methods for mechanical
property prediction in metal AM due to the flexibility and efficiency that these
methods have demonstrated, as compared to model-based techniques (Qin et
al., 2022).

Based on thermal history data, it has been observed that metals’ local grain
size, which is a determinant of mechanical properties, is inversely proportional
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to local temperature gradient and solidification boundary speed (Kou, 2003).
High accuracy in tensile property prediction for Inconel 718 (IN718) has also
been reported (Xie et al., 2021). Spatially localized temperature time series
were extracted from in-situ infrared (IR) video of DED production and
converted to time-frequency images through wavelet transform. A
convolutional neural network (CNN) was then used to predict the material’s
tensile properties using wavelet scalograms as input to the network, with the
relative error of the test data at about 6%. Random forest models (Breiman,
2001) were used to observe that the durations for which the temperature
signal was within 654-857°C (cooling time) and 1260-1336 °C (solidification
time) during in-machine cooling were good predictors of local tensile
properties.

Similarly, a positive correlation between cooling time and tensile stresses
and a negative correlation between solidification time and tensile stresses have
been qualitatively observed (Glerum et al., 2021). The cooling and solidification
times were also related to part microstructure, furthering the understanding of
the DED process-structure-property relationship. Prior study (Bennett et al.,
2021) confirmed the results of Glerum et al. by using cooling and solidification
times to find quantitative correlations via an exponential equation.

To further improve the accuracy and robustness in DED tensile strength
prediction, a model whose outcome is physically interpretable and
parsimonious in its structure is desired. In the presented study,
“interpretability” means that the influence of features can be analyzed to
validate model behavior against physical findings from prior experimental
studies, whereas parsimony means that model performance can be optimized
while model complexity is simultaneously reduced (Salman and Liu, 2019).

Achieving physics-based interpretability enables users to assess a model for
physical validity, synthesize new physical relationships, and improve
understanding of model behavior (Guo et al., 2022). Specifically, if the
prediction logic of a predictive model is spurious and deviates from the laws of
physics, the model would learn physically insensible relationships and make
incorrect predictions of material properties outside of the training dataset.
Conversely, if model decision logic is consistent with known physics, new
fundamental relationships may be discovered that merit further experimental
verification for new knowledge generation (Sanchez et al., 2021).

Achieving model parsimony benefits the generation of a compact set of
control variables that facilitates real-time DED process control. It has been
shown that many different thermal characteristics may be used to predict
mechanical properties, including time-frequency content (Xie et al., 2021) and
time spent in certain temperature regions (Bennett et al., 2021). Further
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clarification on how these features compare to one another in terms of
predictive power would lead to better identification of the most relevant
predictors and a more compact set of influential thermal variables in DED.
Finally, achieving high accuracy is essential for predicting part quality and
system throughput in DED, as the above-described facets of interpretability
cannot come at the cost of substantial degradation of model accuracy.

The presented study aims to develop a DED part property prediction model
that meets these criteria. For this purpose, a neural network has been
developed to predict the ultimate tensile stress (UTS) and yield stress (YS),
collectively referred to as “tensile strength,” of thin-walled IN718 DED
components, using thermal history-based features, DED process physics, and
findings from prior experimental studies as the network inputs. In addition,
Shapley additive explanation (SHAP) values are investigated to quantify the
influence of each of the model input features and assess the model’s physical
interpretability and validity (Lundberg and Lee, 2017). Finally, the method of
cumulative relative variance (CRV) is investigated to efficiently remove less
influential input features based on their SHAP-quantified influence to achieve
model parsimony.

This study’s outcome is a prediction model that has six orders of magnitude
fewer parameters than the best model currently reported in the literature,
while achieving comparable or higher predictive accuracy. An overview of the
developed method is shown in Fig. 2, with the interconnection among the key
components of the method as well as the associated details of the key
components summarized.

The rest of this paper is organized as follows: Section 2 presents the
background and procedure of the developed method including an introduction
to SHAP values and their utility in model interpretation and feature pruning.
Section 3 describes a DED experiment to evaluate the method, using IN718 as
the test material. The result of model prediction, interpretation, and
complexity reduction (i.e., feature pruning) is discussed in Section 4. In Section
5, conclusions and directions for future work are provided.

2. Theoretical background

Given an initial set of thermal history-derived tensile strength predictors,
i.e., input features, three steps are needed for developing an interpretable
tensile strength prediction model: 1) regression modelling, 2) feature influence
quantification, and 3) model complexity reduction.

Each of these steps is formulated in the following subsections.
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Fig. 1. DED process diagram; part width in y direction is equivalent to one laser diameter, making the part “thin-walled”.

adapted from DMG Mori, Optomec, and (Zhang et al., 2020)
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Fig. 2. Interpretable tensile strength prediction for DED using machine learning and Shapley additive e

2.1. Regression modeling

The objective of tensile strength prediction is to establish a regression
model that predicts tensile strength with minimized deviation from
experimentally measured values that serve as the ground truth.
Mathematically, such a tensile strength prediction model f can be formulated
as:

1 ]
SN
flglTilt, x,2),w) <ki | w = (1)

argmin{lk—«i|2
w N i=1

where g is a feature extractor, Ti(t, x, z) is the " time-varying and spatially
localized temperature field acquired in the coordinate frame of Fig. 1 (see the

“DED Process” block), w represents the optimizable parameters of f, kiand k;
represent the predicted and measured tensile strength at location (x, 2)
corresponding to Tj, respectively, and N is the total number of measured
tensile strength values in the experiment. Model f is therefore data-driven,
since its w parameters are optimized based on training tuples (T;, ki), and able
to analyze thermal history features in DED, as extracted by g.

To ensure that fs prediction logic is consistent with physics to achieve
physics-based model interpretability, the influence of each input feature in

determining ki needs to be assessed. This requires that known relationships

between input variables and tensile strength predictions be maintained, and
that a change in a feature’s value has a physically consistent effect on the
model output. Examples include the direct proportionality between cooling
time and YS reported in (Bennett et al., 2021) and (Glerum et al., 2021), as
well as the proportionalities between temperature ranges and UTS reported
in (Xie et al., 2021). Violation of these relationships indicates that f has not
learned to obey the known physical mechanisms governing DED. Further
discussion of this aspect of interpretability is provided theoretically in Section
2.2 and experimentally in Section 4.2.

Model parsimony is another reflection of model interpretability. A more
parsimonious model will have fewer input features. Accordingly, fewer
interactive effects among features need to be accounted for. In the presented
study, model parsimony is achieved by the joint minimization of model error
and input size as shown below: _|
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where foprand goptare optimal f and g, A1and Az are weighting coefficients, and
features(g) is the number of features extracted from thermal history data. The
fand g resulting from (2) are, by definition, optimally parsimonious.

2.2. SHAP-based model interpretation

To understand model decision logic and achieve interpretability, the
influence of each input feature on the outcome of model predictions needs to
be quantified. This can be achieved by investigating the SHAP values
corresponding to each input feature, and their variances.

The concept of the SHAP algorithm (Lundberg and Lee, 2017) originates
from game theoretic problems in economics, which determine how to fairly
distribute “payout” for a team of players based on their respective contribution
to the task outcome (Shapley, 1951). By analogy, the SHAP algorithm in the
context of machine learning (ML) in general is to determine the “importance”
of each of the ML model’s input variables based on their respective influence
in affecting the model’s output. Knowing the “importance” of input variables
allows for the interpretation and verification of the model predictive logic with
empirical or physical knowledge, contributing to the acceptance of ML as a
complement to physics-based reasoning by human experts (Roscher et al.,
2020).

In the specific context of additive manufacturing, the input variables of
interest are the features from in-situ IR sensing data (such as temperature
variance and maximum temperature) that are envisioned to influence the
model’s output (such as part ultimate tensile strength). Quantifying the
“importance” of these input variables using SHAP allows for identifying the true
influential variables, which then serves as the basis for process control and
optimization, as well as for simplifying the predictive model by removing the
“insignificant” ones.

Define predictive model f, input vector xi, and feature j such that xi[j]
represents the jt" feature of the i" input sample. The influence of feature j on
f(xi) can then be interpreted as the change in f(xi) caused by j. How specifically
a feature j would change a model’s output depends on f’s learned decision logic
and the nonlinear weighting, w(xi[j]) that is learned for each feature.
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To observe feature influence, consider a simplified situation where features
are incrementally considered by a model, as shown in Fig. 3. Before any feature
is considered, the model prediction is the unconditioned expectation of the
model output, E(f). With only the 1st feature known, the model takes its best
guess with the information it has available at the time, i.e., the expected output
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and then linearly approximates f(xi) at each xi to satisfy (4). Each linear
approximation is found by repeatedly perturbing xiand fitting a linear model
to the perturbed (xi, f(xi)) pairs. The coefficients of the fitted linear model
approximate true SHAP values for xi. The computational complexity of Kernel
SHAP is O(i) rather than O(2/¥/) as in (3), making it computationally practical.

Influence

1 Features with low absolute influence may

be removed if increased error is acceptable

E(f) ‘\ Feature 1 changes model output 0 1 2 3 4 I?I b Feshre
substantially- large influence Next Feature
» Considered
o ik h s by Model +

Fig. 3. Example of model output change as a measure of feature influence.

conditioned on the 1st feature, E(f | j1). The influence of j1can be quantified as
the model change as a consequence of ji, E(f | j1) — E(f). This is true for

subsequent features as well, e.g., the influence of j2is E(f | j1, j2) — E(f | j1). Fig.
3 also shows that low-influence terms, such as js, will contribute little
“correction” to the model’s output. If js was removed, the model prediction
would deviate slightly from the full feature model, but the model would be
simpler, have fewer free parameters, be less prone to overfitting, and
computationally more efficient.

To systematically determine the influences for every feature j and sample
i, SHAP values are investigated. Assume a candidate input feature set F of size
|F|, feature index j € [1, | F/], feature subsets S € F \

{j} and $* = S U {j}, and predictive model f: R® -5 R, where 8 is the size of the

input to f that can vary depending on the number of features being

considered. The SHAP value for feature j of sample i (¢hi[j]) determines j's

influence by finding the average change in model response caused by j,

evaluated across all possible S to account for feature interaction effects.
Mathematically, ¢ilj] is defined as:

#ili - Z( ) o (aIS'T) — 5]

L |sL1FI1F-1 1] — 1 (3)

where fs«(xi[S*]) — fs(xi[S]) is the change in model output induced by feature j
(Young, 1985). Accordingly, ¢ilj] is the weighted average influence of feature
jon f{xi) across all S, with weights given by the inverse multinomial coefficient
in (3). SHAP values are found for a whole dataset by calculating (3) for all
samples and feature combinations.

Once SHAP values are computed for all samples and features using (3),
model prediction f(xi) can be decomposed in the additive form (Shapley, 1951)
as shown in (4):

2 flxi) = B{f)+ @il (4)

SHAP values for influential features will constitute most of this sum
whereas weak features will contribute little to f(xi). As a result, feature
importance for f(xi) can be quantified, model prediction logic can be
interpreted, and noninfluential features can be removed. In addition, (3)
holds for any f (Lundberg and Lee, 2017). As a result, SHAP values can
transform the feature influence of any predictive model into the linear
additive form as shown (4) to facilitate interpretability even if f is nonlinear,
such as a neural network. However, direct computation of (3) requires training
a different f for each possible S. This means the computational complexity of
finding each ¢i[j] scales according to 2!¥l, which rapidly becomes impractical.
To overcome this, the Kernel SHAP method has been introduced for SHAP
value approximation (Lundberg and Lee, 2017). This technique trains f once

2.3. Feature pruning and model complexity reduction

After acquiring SHAP values, the aggregate influence of feature j on f can be
quantified as the variance of j's SHAP values across all input samples,

represented as g?[j]. If g®[j] = 0O, feature j has the same influence on f no matter
the value of xi[j], so the feature influence can be thought of as a constant. In
many regression models, including neural networks, incorporating such a
constant is equivalent to learning a bias term. Therefore, if feature j is removed
and fis retrained, a bias term can be learned in place of the removed feature.

To rank the features’ influence, SHAP value relative variance (RV) is
calculated, which is defined as:

/
j=e > ol

RV icF (5)

where the numerator is the jth feature’s SHAP value variance and the
denominator is the sum of SHAP value variances of every feature in the full
feature set. Features with the lowest SHAP RV are removed from the feature
set and converted to bias terms because they contribute the least variety to
the model output and are therefore well-suited to become learned biases
instead of inputs. Because of this ordered feature removal rule (always remove
the feature with the lowest RV), the number of feasible feature subsets is
reduced from 2/flto | F|.

While using RV rankings reduces the number of feature subsets to |F|,
searching through these subsets may still be impractical if | F| is large or if fis
time-consuming to optimize. For example, if |F| = 20 and f requires 5 min to
train, then exhaustive feature subset exploration would take 20 feature subsets
x 5 min/subset = 100 min. To expedite the feature reduction process, a coarse
search strategy is developed by considering the subsets’ ratio of SHAP value
variance to the size of the subset.

Optimal feature subsets (Sop:) should contain features that explain as much
of the SHAP value variance as possible (maximizing predictive power) while also
minimizing the number of features needed to achieve that explanation
(maximizing parsimony). Considering that two subsets with similar explained
variance (e.g., 90% vs. 89%) should theoretically have similar prediction
performance, the amount of explained variance should be coarsely varied
during the search over the |F| remaining feature sets. Specifically, finding Sopt
for K << [F| coarsely spaced levels of explained variance will give K feature
subsets with varying performance-parsimony tradeoffs while further reducing
the feature subset search space size from |F| to K.

The optimal feature subset Sop: for explained SHAP variance percentage £ is
defined as:

Sopt, ¢ = argmaxs —M519s.t. CRV(S) > £
2

CRV(S) = RV[j] (6)
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where cumulative relative variance (CRV) € [0,1] is the sum of RV values for
all features in feature subset S. By definition, CRV(S) is the proportion of SHAP
value variance explained by S. Because of the argmax operation in (6), Sopt
must contain the | S| features with the largest RV values and no others. In the
presented study, a total of K CRV values that are logarithmically spaced are
chosen to expedite the search process through the |F| feature subsets
remaining after the RV ranking process. Logarithmic spacing is chosen based
on experimentally observed CRV curves. These K feature subsets can then be
compared on the bases of parsimony and performance.
There are several alternative methods to CRV that can quantify the

“importance” of a feature in predictive model:

1) Mean SHAP value is chosen as the importance metric in (Marcilio and Eler,
2020), namely, features with higher mean SHAP values are considered
more “influential” than the ones with lower mean SHAP values. However,
in our predictive model, the mean SHAP value of each input features is
shown to hover around zero, indicating a bidirectional influence from each
of these features on the part property. As a result, the overall “magnitude”
of the feature’s influence cannot be reflected by its mean value. In
contrast, the variance as reflected in the CRV of SHAP values shows such
“magnitude” of influence, as larger variance indicates more change in the
part property can be induced by the change in the corresponding feature
as compared to the feature with smaller variance.

2) Maximum SHAP value is used to assess feature importance in (Mokdad et
al., 2015), with a higher maximum indicating a more important feature.
While this approach indicates the upper bound of each feature’s influence,
it is highly sensitive to outlying SHAP values and neglects to consider the
expected influence of each feature.

3) Constructing “neighborhoods” of candidate feature sets based on their
SHAP values is proposed in (Chen et al., 2021). In this method, p random
feature subsets are first used to train p predictive models. The model with
the highest average SHAP value across all features has a “neighborhood”
of feature sets built around it by adding or removing a feature. However,
determination of the best candidate required training and testing of
separate models defined for every feature set in the neighborhood, which
can be computationally impractical. In contrast, CRV can be directly
obtained from raw SHAP values, and does not require additional model
training and testing.

Based on the above discussion, CRV is chosen as the metric for determining
the optimal feature set in this study.

It is noted that bidirectional step-wise regression techniques (Hocking,
1976) have been traditionally used for feature selection in predictive models,
where exactly 1 feature is added or removed at a time. Compared to SHAP-
based selection, step-wise techniques have the following limitations:

1) Computational efficiency. At each iteration, the bidirectional step- wise
regression is required to evaluate the model and quantify the contribution
for each candidate input variable individually to determine which variable
is added to or removed from the model for the next iteration. As the
number of features increases linearly, the number of input variables can
increase exponentially when interactions among multiple features are
considered. Since the feature screening process generally involves a large
set of candidate features at the beginning, using bidirectional step-wise

regression is expected to result in significant computational cost (Zoga ta-
Siudem and Jaroszewicz, 2021).

2) Global optimum. As only one input variable can be added or removed at
each iteration, the bidirectional step-wise regression is a “greedy”
algorithm by nature (i.e., the optimality is determined only by the
immediate, local improvement resulted from the addition or removal of an
input variable, rather than globally by accounting for all remaining
iterations down the road). As a result, the algorithm may characterize only
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a small subset of all combinations of input variables and miss the global
optimal combination.

In contrast, SHAP implicitly and simultaneously characterizes all possible
feature interactions to determine globally the “importance” of each feature as
SHAP value variance, which only requires the model to be evaluated once.

2.4. Comparing CRV-generated feature sets

After generating K feature subsets at K logarithmically spaced CRV levels as
described above, an additive utility function (Malakooti, 2014) is investigated
to find which subset of the features best balances parsimony and predictive
accuracy. The best candidate is the solution to the motivating simultaneous
optimization problem as described in (2). Additive utility functions take the
form shown in (7):

¢ nelo, 1]”,21]
Uc = nmg (7) where k € [1, K] is the
index of the CRV-generated feature subset being considered, U is a measure of
utility to be maximized, n is a P-length vector of weights, and m'is a P-length
vector of standardized performance metrics for feature subset k. Eq. (7) allows
for k different prediction models to be compared on the bases of P different
performance metrics simultaneously; the model with the highest U value is the
best. Additionally, weight vector n allows each metric to be assigned its own
weight or “importance” in the utility calculation. This approach therefore gives
a systematic way of comparing models while considering disparate
performance criteria in tandem. Such a system is necessary to solve the
optimization problem posed in (2).
To fairly compare the P metrics, they must be standardized to the same

m €[0,1] |r

scale. This is to prevent metrics with large magnitudes of (10-103, e.g.,

absolute error) from dominating metrics with small magnitudes (103-10°, e.g.,

percent error) in the calculation of each U. Standardized metric vector mh is
found from unstandardized performance metric vector ms:

| H_{Wlﬁl_ﬂ_ﬂ_m—pmin— mine(men([mp])a[p]) if malp] to

be maximized ma[p] =

| | | L ( = mn[p]) = mine( — ma[p]) if mn[p] to be minimized maxp( -
ma[p]) - ming( - ma[p])
(8)

where p € [1, P] is the index of the metric being normalized, mn[p] is the pt"
element of mn, ming(-) is the minimum of performance metric values across all
P, and maxe(+) is the maximum of performance metric values across all P. This
standardization process ensures that all metrics are on the same [0,1] scale and
can be fairly compared to one another regardless of unscaled metric
magnitude.

The need for maximization or minimization via (8) is dependent on the
metric being considered. For instance, error metrics such as mean absolute
error should be minimized since lower error indicates more accurate
predictions. On the other hand, metrics such as correlation coefficient should
be maximized since higher correlation indicates more accurate predictions.

Finally, the elements of n are application dependent. Different applications
have different priorities, e.g., interpretability, accuracy, computation time, and
these priorities are reflected in the weights and the selection of performance
metrics used in m'n. The prediction model and feature subset which maximize
U given n and mhare the fand g that satisfy (2).

In summary, SHAP values from Kernel SHAP, feature rankings from CRV, and

the utility function of (8) work in tandem to solve (2) and identify the tensile

strength prediction model and corresponding feature subset with the best
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tradeoff between performance and interpretability. 3. Experiment, feature

extraction, and model fitting

This section presents the DED part production and data acquisition
experiment that involves tensile testing, feature extraction, and model fitting.

3.1. DED and tensile testing

Twelve thin walls of IN718 were deposited on a substrate of SS304 using a
DMG MORI LaserTec 65 3D DED machine, as illustrated in the process
schematic of Fig. 1. All walls were 60 mm tall. Three of the walls were 80 mm
long whereas the other nine were 120 mm long. The powdered material’s
granule diameters were between 50 and 150 pm and were delivered to the
laser-generated melt pool at 18 g/min using an argon gas stream with 7 L/min
flow. The 1800 W laser’s spot diameter was 3 mm. It traversed the walls at 17
mm/s.

Three deposition techniques were investigated: 1) continuous, 2) dwell, and
3) melt pool control. In continuous deposition, the laser traversed the length
of the walls with no pauses and no changes to the deposition parameters. The
dwell technique deactivated the laser and powder delivery systems for 5 s after
each layer before depositing the next one. Melt pool control modulated the
laser power during deposition to keep the melt pool size constant. A coaxial
CCD camera with a resolution of 180 x 250 pixels and pixel size 30 um?was used
to view the melt pool and count the number of pixels with intensity greater
than a user-defined threshold. A PID controller then modulated the laser power
to keep the number of pixels above the threshold, representing the melt pool
size, between user-specified bounds (Bennett et al., 2018).

The time-varying temperature field of each wall (Ti) was monitored
perpendicular to the scanning direction using a FLIR A655sc IR camera, as seen
in Fig. 4. The camera’s 640 x 480 pixel resolution captured a 128 x 96 mm field
of view, resulting in a pixel size of 200 x 200 pum. Prior to the experiment, the
recorded IR temperatures were calibrated to match the real temperatures
using the methodology detailed in (Bennett et al., 2021). Essentially, the
measured IR values were corrected by observing the liquidus-solidus transition
point in the IR data using the data’s 2nd derivative and setting this transition
point equal to the known liquidus-solidus transition temperature of IN718.
Following deposition, 135 miniaturized tensile coupons were cut from the walls

Coupon
6.3

Fig. 4. Thermal history monitoring and data dimensions, adapted from

(Glerum et al., 2021).

using electrical discharge machining (EDM). The coupons were then tested on
a Sintech 20 G tensile test machine at a strain rate of 0.02 mm/s until fracture
occurred, and their UTS and YS values were recorded. The samples were tested
as-built, no heat treatment was applied. Thermal features, as described in
Section 3.2 and shown on the right side of Fig. 4, were calculated from the IR
video at the center of each tensile coupon. These were then processed to
become predictive model inputs as described in the following section.

3.2. Feature selection

To extract information embedded in the DED temperature fields measured
by the IR camera for tensile strength prediction, a set of predictors is first

In Situ Thermal History Acquisition
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formulated to generate a comprehensive feature set based on knowledge
gained in previous work. Subsequently, the feature set is pruned using the
SHAP value relative variance method as discussed before. The outcome of the
process is that only the predictors of high relevance to tensile strength are
retained. The process also enables a direct comparison of the influence of the
IN718 tensile strength predictors as studied in previous experiments.

To determine the initial feature set from 7, physical validity and DED process
controllability are considered. Notably, thermal evolution in DED can be
characterized by extracting the 1) first and 2) second spatial derivatives of the
temperature field of each wall with respect to the x- direction, z-direction, and
time (t). These partial derivatives are represented as the set A(T) = {0T/0x,

0T/0z, OT/0t, 9*T/0x?, 3°T/0z?, 3°T/0t?}. Derivatives in the y-direction are not
considered due to the symmetric heat flux about the thin wall’s y-axis as seen
in Fig. 1. Since the elements of A(T) determine the material properties of the
DED parts after production (Bennett et al., 2018), they are expected to provide
both predictive power and physical interpretability of the predictive model
developed in this study.

Since the tensile testing provided the mechanical properties at the center
of each coupon, 10 pixel x 10 pixel regions of interest (ROIs) at each coupon
center were established as shown by the blue dots in Fig. 4. Average signals for
T and A(T) were then found for each ROI. This was done to reduce error in
temperature measurement caused by emissivity changes due to roughness of
the surface parallel to the camera (Bennett et al., 2018).

3.2.1. First partial derivatives

First partial derivatives (0T/0x, 0T/0z, and OT/0t) are considered because
they are inherently related to local grain size (d) and shape, which in turn affect
the tensile strength. As the grain size d decreases, a material experiences more
internal friction and tensile strength increases (Callister and Rethwisch, 2012).
In (9), the relationship between d and the first partial derivatives is summarized
(Kou, 2003):

do<(GR)-1

ar ar _ aT ar or ar\""

x—, —; Rox— dx (—, —, —)

G Ox 0z Ot Ox 0z Ot (9) where G is the spatial temperature gradient in the x-z

Thermal Feature Extraction

plane (°C/m) and R is the cooling rate (°C/s). Additionally, grain shape is
determined by the ratio of G/R. A high G/R induces planar grains whereas low
G/R induces equiaxed dendritic grains (Kou, 2003). This morphology
subsequently determines tensile properties in that higher planarity is

associated with higher ductility and reduced UTS and YS (Gockel et al., 2014).
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3.2.2. Second partial derivatives The second derivatives d2T/0x?and 02T/0dz%are
considered because they represent local material density (p), as reflected in

the heat equation (Moran, 2003 ) as expressed in (10): )
00T = Q 00Tz + 0022T2 t

].(BZT azr)/(ar)
. Qup -+ xp
2 2 i d d d (10)

Interstitial defects which reduce tensile strength, such as pores and lack of
fusion, will manifest themselves as lower local density, which is detectable
using the derivative-based approach of (10). Given that material density is
positively correlated with UTS and YS (Sun et al., 2016), 0?T/0x?and 0%T/02? are
expected to be positively correlated with UTS and YS as well.

Finally, the second time derivative 02T/0tis also calculated since it is an
indicator of the liquidus-solidus transition in DED (Bennett et al., 2018), which
also affects the tensile strength.

3.2.3. Tabular representation of time series signals

The above-described feature selection process yields a total of seven model
input features for each coupon: T and the six elements of A(T) given by {07/0x,
0T/0z, OT/0t, 2T/0x2, 2T/022, 02T/0t?}. However, each of these features are
time-varying signals. Considering that signals with long duration pose a
challenge to recurrent prediction models and that incorporating temporal
attention into a predictive model (Bai et al., 2018) to avoid forgetting
information would rapidly increase the number of model parameters and lead
to overfitting, the seven model input features are characterized using low-
dimensional statistical representations such as mean and variance. This
simplifies feature influence interpretation since the time dimension is
eliminated and thus influence will not vary as a function of time.

Five statistical measures are calculated for T and A(T): maximum, mean,
variance, skewness, and kurtosis (Everitt and Skrondal, 2010). Prior study has
found that maximum temperature is a determinant of subsurface porosity in
metal AM (Paulson et al., 2020). Therefore, maxima are calculated for Tand the
elements of A(T) and included in the prediction model to achieve the same
predictive power as seen in literature. As for the other statistics, since skewness
is used to scalarize time-varying signals, it can be interpreted as a measure of
time spent away from the signal mean. Positive skewness indicates that a
signal’s value is predominantly above the mean, and vice-versa for a negative
skewness. Similarly, kurtosis represents the time spent at extreme values. Low
kurtosis indicates that the signal consistently remained near its mean value
whereas high kurtosis indicates more time around extremes.

The moment statistics are calculated during the final cooling phase (7) as
shown in Fig. 5, considering that this phase predominantly
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Fig. 5. Temperature signal truncation (T - T) during final cooling phase.
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determines the final part microstructure (Kou, 2003). Microstructures formed
prior to this phase become irrelevant because they are “reset” by
reliquification of the ROI, whereas temperatures after this phase are not high
enough to induce microstructural changes (Bennett et al., 2021). This means
that the temperature signal outside of this phase does not have a lasting effect
on tensile strength and should not be considered by the mean, variance,
skewness, and kurtosis. Tis defined by the liquidus temperature, T;, and lower
critical temperature, Ta(Clarke, 2014), as shown in Fig. 4. For IN718, T, = 1364
°C and Ta= 654 °C (Bennett et al., 2021).

3.2.4. Additional features

In addition to the 35 statistical features described above (7 signals x
5 statistics), the cooling and solidification times as defined in (Xie et al., 2021)
are found for T to comprehensively compare tensile strength predictors
proposed in (Kou, 2003) and (Farshidianfar et al.,, 2016). These works
elucidated the significance of the cooling and solidification times in
determining part microstructure and mechanical properties in AM, namely that
fast solidification results in material with higher strength while more cooling
time in the specified temperature range (Xie et al., 2021) strengthens the
material by allowing more time for 6-phases to merge and break the brittle
Laves phase.

Finally, to encode the three deposition control strategies, i.e., continuous,
dwell, and melt pool control, a three-element one-hot vector is used. If
temperature field T;is a result of deposition type v € {1, 2, 3}, the vt"element
of the one-hot vector is set to 1 while all other elements are set to 0. This
vector, when appended to the 35 statistical measures for T and A(T) along with
cooling and solidification times, results in 40 tabular features to be used as
inputs to tensile strength predictive model. These inputs are shown in Table 1.

3.3. Model training

A multilayer perceptron (MLP) was investigated as the tensile strength
prediction model, f, since it is generally suited for approximating non-affine and
continuous functions with arbitrary precision (Cybenko, 1989). Optimizing
parameters w of f, as defined in (1), is achieved via backpropagation.

Two MLPs were trained using all 40 tabular features: one for UTS and one
for YS, respectively. The 135 tensile coupons were split into training and testing
sets (95 and 40 coupons, respectively). These datasets were stratified based on
the spatial location of the tensile coupons (a-/) specified in Fig. 4, as well as the
three deposition types. Each model was trained until testing loss did not
decrease for 500 consecutive epochs, at which point the MLP weight matrices
associated with the lowest recorded testing loss were restored.

MLP hyperparameters which yielded low prediction error were obtained via
search over the following hyperparameter ranges: 1) 4-8 hidden layers, 2) 2-5
nodes per layer, 3) leaky ReLU (Maas et al., 2013) and swish (Ramachandran et

al., 2017) activation functions, 4) ||| |1and ||-||2 weight regularizers, 5) w =
0.3-0.7, 6) 1 x 10°_1 x 103initial learning rate, 7) 50,000—200,000 decay steps,

8) Adamax (Kingma and Ba, 2017) and Nadam (Dozat, 2016) optimizers, and 9)
batch sizes of 4, 8, and 16, respectively.

The number of hidden layers and nodes/layer were bounded based on trial-and-error experimental observations: models smaller than 4 layers x 2
nodes/layer failed to learn mappings from the thermal features to tensile properties and models larger than 8 layers x 5 nodes/ layer consistently overfit the
training data. A similar process was used to set the bounds for the weight regularization factor (w), initial learning rate, and the number of learning rate

decay steps. Learning was sluggish if w was greater than 0.7, the initial learning rate was less than 1 x 10, or the number of decay steps was below 50,000.

On the opposite end of the spectrum, learning was unstable and tended towards exploding gradients if w was less than 0.3, the initial learning rate was
greater than 1 x 103, or the number of decay steps was greater than 200,000.

Table 1
Inputs to tensile strength prediction model.
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max(T)
max(dT70x)

Partial Derivatives mean(T)
mean(d7/0x)
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variance(T)
variance(97/0x)

skewness(T)
skewness(07/0x)

kurtosis(T)
kurtosis(dT/0x)

a d max( T/ z) mean(dT/0z) variance(07/0z) skewness(d7/0z) kurtosis(07/0z) max(0T/0t) mean(0T/0t) variance(dT/0t) skewness(dT/0t)

kurtosis(07/0t) max(327/0x%) mean(32T/0x?) variance(d?T/0x?) skewness(d2T/0x?) kurtosis(32T/0x%)

max(dj' TV oz
max(T7dt%) )
kurtosis(927/02%)
mean(327/0t%)
Other cooling time solidification time

mean(3%7/02%) variance(327/0z%) skewness(3%7/02%)
variance(3%7/0t?) skewness(92T/0t%) kurtosis(327/0t?)
vy vy V3

Finally, batch sizes smaller than 4 yielded unstable training that failed to
converge whereas batch sizes larger than 16 yielded models with tendencies
to get stuck in local minima of the loss function and exhibit suboptimal
prediction accuracy.

The remaining hyperparameter candidates were selected based on the
success studies reported in previous literature. For example, LeakyReLU was
chosen as an activation based on its improved performance over the previous
gold standard RelLU activation as shown in previous literature (Maas et al.,
2013). The swish function was chosen for similar reasons, as it too has
demonstrated improved results over ReLU (Ramachandran et al., 2017). As
Leaky ReLU and swish have not yet been comprehensively compared in the
literature, we elected to investigate and compare them for the tensile strength
prediction learning task in DED. A similar thought process was followed for the
weight regularizers: ||| |1and ||-] ]2 regularizers have both been shown to
improve generalization performance of neural networks, i.e., by making
training and testing error more consistent with one another, but there is not a
definitive answer as to which one is best, so we elected to investigate both
(Larsen and Hansen, 1994). Finally, Nadam and Adamax were previously shown
to be the top two optimizers for learning tasks on large datasets, including
fashion MNIST and natural images (Dogo et al., 2018). While the learning task
and network architecture of this study is different, there is a lack of
comparative research on optimizer behaviors for MLP models and so Nadam
and Adamax were compared in this study.

To search over the hyperparameter ranges in a computationally tractable
way, 5000 combinations are uniformly sampled from the hypercube defined by
the nine hyperparameters of interest. In other words, discrete
hyperparameters (#1, 2, 3, 4, 8, and 9) are independently sampled from
discrete uniform distributions whereas the continuous hyperparameters (#5,
6, 7) are independently sampled from continuous uniform distributions. To
avoid redundancy, none of the 5000 sampled combinations were identical.
Each combination of hyperparameters is used to retrain the MLP and the
hyperparameter combinations which yielded the highest average coefficient of
determination (R?) on the UTS and YS testing data are chosen for this study.
Total MLP training time across all 5000 hyperparameter combinations was 166

h (average of approximately 2 min/model) on a single-threaded 2.6 GHz CPU.
The MLP design and hyperparameter optimization process is illustrated in Fig.
6.

4. Results and discussion

The prediction outcomes of the ultimate tensile stress and yield stress for
the 135 thin-walled thermal coupons of IN718 are analyzed using the method
developed in this study.

4.1. Baseline prediction results

Baseline MLP prediction results for UTS and YS are shown in Fig. 7. The
scatterplots in the top half of the figure are aggregated over 10 network
reinitializations, each with stratified and randomly chosen testing data and
randomly initialized weights. To quantify model performance and compare
with results published in prior literature (Xie et al., 2021), which serves as
benchmark for the comparison, four performance metrics are evaluated: root
mean squared error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R? (Everitt and Skrondal, 2010). As evidenced by
the similar bar heights in Fig. 7, the developed MLP has achieved comparable
results to the benchmark, which was obtained by an 18-layer CNN and
represents the best results in the current literature.

For a more rigorous comparison, two one-sided Welch’s t-tests are
performed on each performance metric to quantify performance differences
(Everitt and Skrondal, 2010). The null hypothesis of the first test
(H%) is that the MLP performance is comparable to or worse than the CNN (i.e.,
higher RMSE, MAE, MAPE; lower R?). The null hypothesis of the second test
(H?%) is that the MLP performance is comparable to or better than the CNN. If
Hois not rejected in either test, then the only possible explanation is that the
MLP and CNN performances are statistically equivalent. However, if H' is
rejected while H%is not, then the most likely explanation is that the MLP metric
is statistically better than the CNN metric.

Activation Function
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Fig. 6. lllustration of MLP design and hyperparameters optimization process.
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validation and testing proportions (0.44 and 0.56, respectively).

The Welch tests’ significance level of a = 0.05 means that there is a 5%
chance of mistakenly rejecting Howhen it is true. This rejection occurs when
the p-value (p) is less than a, where p is the probability of observing the
performance differences between the MLP and CNN assuming Hois true. A low
p suggests that the observations are not well- explained by Howhereas a high
p supports Ho. Welch's t-test is selected due to the different number of samples
in each group (5 in benchmark vs. 10 in this study).

As seen in Table 2, all p > 5 0.05 for H% so there is not enough evidence to

reject H', for any metric. Additionally, p > 0.05 for H?% except for UTS RMSE,
thereby confirming statistical equivalence between the MLP and CNN for all

metrics except UTS RMSE, which is statistically better than the benchmark
study with 99% confidence (purs2=0.01).

In terms of computational efficiency, the MLP model requires 379 floating
point operations (FLOPs) for a forward pass, as compared with 1.8 x 10° FLOPs
for the ResNet-18 CNN (He et al., 2015) model used by the benchmark study.
Therefore, for a fixed rate of FLOP/s, the MLP reduces computation time by a
factor of more than 4.7 x 10°. This is illustrated by the computational
performance when predicting UTS and YS for all the 135 ROls used in this study:
the computational time needed for the prediction was approximately 1.2 us
for the MLP model when tested on a laptop with a single-threaded i7 CPU at
2.6 GHz. The time was about 5.8 s when using the CNN model. When scaling
up the computation for analyzing larger ROl sample sizes, e.g., to characterize
an entire DED built part, the difference in computational performance

9
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becomes much more significant and affects the practicality of the
implementation. These results clearly indicate that the MLP models developed

in this study can achieve comparable or better predictive

Table 2

accuracy while being much faster and therefore more scalable to a DED

production environment.

4.2. Baseline model interpretation

For a physically consistent model, when a feature’s value changes, the
change should have a physically consistent effect on the tensile property. This

is verified via the MLPs’ SHAP values.

The SHAP values for the two baseline MLP models for the UTS and YS
analysis are shown in Fig. 8. For each feature, the x-axis location and color of
each dot represent the quantified influence of the feature and the normalized
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value of the feature itself, respectively. In addition, each dot represents a
tensile coupon in the test dataset and there are 40 dots per row since each test
dataset coupon yielded one SHAP value per feature. Features are shown in
descending order of the SHAP CRV values, and Z- scores are used to normalize
the differing scale of features.

As seen in Fig. 8, the top-three influential features for predicting UTS and
YS are: 1) temperature variance within the truncated region (see Figs. 5), 2) the
maximum temperature experienced by the DED part during the build process,
and 3) the cooling time. Longer cooling times have been previously shown to
increase the UTS and YS (Glerum et al., 2021). Additionally, solidification time
is in the top five features for the UTS and YS models and is inversely
proportional to both UTS and YS, as reflected in the coloration of the points
along the solidification time rows in Fig. 8. These findings are again consistent
with previous literature (Glerum et al., 2021). Furthermore, higher maximum
temperature is seen to lead to low YS, which is consistent with reported
literature where a positive correlation between maximum temperature and

Metric puTS 1 Reject H'y? puTS 2 Reject H%? pys1 Reject H'y? pys2 Reject H%,?
RMSE 0.99 No 0.01 Yes 0.65 No 0.35 No
MAE 0.94 No 0.06 No 0.29 No 0.71 No
MAPE 0.92 No 0.08 No 0.53 No 0.47 No No
R 0.90 No 0.10 No 0.69 No 031
Welch'’s one-sided t-test results for test data metrics at significance level a= 0.05.
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Fig. 8. Test dataset SHAP values for 10 most influential features of the MLP models with the highest R?values.

subsurface porosity was observed (Paulson et al., 2020). These results indicate
that the feature influences learned by the MLP models from the data, without
specialized architecture or training, are validated by physical relationships for
UTS and YS prediction as reported in prior works.

In addition to known physics, Fig. 8 also reveals new possible tensile
strength predictors. For example, temperature variance is the most influential
feature in both models and retains a consistent inverse proportionality to UTS
and YS, which has not been reported previously. Similarly, UTS is observed to
be directly proportional to the maximum temperature, which is an unreported
phenomenon. While further study is necessary to reveal the underlying
physical root causes of the feature rankings, many of the influential features
identified by SHAP in Fig. 8 are supported by previous literature and thus lend
credence to other unconfirmed predictors.

To better visualize how each SHAP-identified feature characterizes the
tensile properties of the three deposition methods, SHAP values are color-

coded according to their deposition type in Fig. 9. Two notable details emerge
from these plots:

1) The mean and variance of the melt pool control specimens is consistently
lower than the other two deposition methods. For the temperature
variance feature in particular, the average normal, dwell, and melt pool
control SHAP values in the UTS model are
—-153 £ 125 MPa, 253 £ 200 MPa, and - 102 £+ 62.1 MPa, respectively, where
the uncertainty reflects 1 standard deviation. For the YS model, these
ranges are — 20.3 + 18.9 MPa, 22.6 + 17.5 MPa, and - 10.7 + 6.4 MPa. For
the UTS model, the temperature variance feature’s SHAP value variance is
27813 for the normal and dwell data (on average) and 3856 for the melt
pool control data. For the YS model, these variances are 332 and 41,
respectively. In other words, the SHAP value variance of the normal and
dwell models is, on average, 7.2 times larger for the UTS model and 8.1
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times larger for the YS model. These variances, along with the lower
average magnitude of the melt pool control SHAP values, suggests that the
melt pool control predictions are reliant on more features than
temperature variance, unlike the normal and dwell specimens which get
most of the prediction “pushing power” from this one feature.

2) The normal and dwell SHAP values tend to exist on opposite sides of the
plot for each feature, with melt pool control specimens occupying the
middle. This suggests large statistical differences and easy distinguishability
between the normal and dwell deposition types, which may be useful if
automated deposition type recognition is required.

It should be noted that temperature variance, while having shown to
provide a statistical predictor for tensile strength, is not physically validated as
yet in this study. Specifically, different thermal histories can yield the same
temperature variance, and the same temperature variance may lead to
different tensile properties. Additionally, it is not yet established if temperature
variance is a causal factor of tensile strength or rather an indicator of
deposition type. As shown in Fig. 9, normal, melt pool control, and dwell
specimen groups are discernable along the horizontal axis for both UTS and YS,
indicating that the value of temperature variance discriminates between
deposition types. Previous studies have shown that deposition type has a
strong influence on tensile properties as it determines in-place heat treatment
and precipitate formation characteristics, which are directly causal to tensile
properties (Glerum et al., 2021). It is unknown if temperature variance encodes
these characteristic differences or if temperature variance provides additional
information beyond that of the deposition method. These findings indicate
that further investigations involving physical models and specimen fabrication
are needed to understand the role that temperature variance plays in affecting
material properties and its potential utility as a tensile property predictor.

4.3. Feature removal and effects

The top row of Fig. 10 shows how SHAP CRV varies as a function of the
number of inputs to the UTS and YS models. Each MLP was retrained using the
minimum number of features necessary to achieve the CRV thresholds as
specified by the legends in Fig. 10. These thresholds were representatively
chosen to expedite the search for an optimal feature set, as discussed in
Section 2.3. The steep curves in the top row of Fig. 10 show that most of the

Ultimate Tensile Stress
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function such that model parsimony could be balanced against model
performance, which is one of the main motivators of this study.

Eq. (8) is then used to find m’ for each metric based on the results shown
in Fig. 10. The utility values, U, for the UTS and YS models are shown in Table
3. They indicate that 75% is the optimal SHAP CRV threshold for both models
since the utility is maximized.

The 75% SHAP CRV threshold corresponds to 3-feature and 2-feature
models for UTS and YS, respectively. Based on the feature rankings in Fig. 8,
the optimal UTS model uses variance(T), max(7), and cooling time as its inputs
and the optimal YS model uses only variance(T) and max(T), leading to two
parsimonious predictive models with good model performance. These features
are identified since they are at the top of each plot in Fig. 8, which is sorted in
descending order of RV. Since the optimal UTS and YS feature sets were made
using the CRV heuristic, it is known that each pruned model’s features are
selected in descending order of RV and thus the features at the top of Fig. 8
were chosen before any others.

Using the 3-feature model, UTS prediction metrics are shown to be
worsened by 6.0% on average whereas YS metrics improved by an average of
5.6% using the 2-feature model. These performance alterations are
accompanied by 92.5% and 95% reductions in input feature set size,
respectively. The UTS result is expected and agrees with machine learning
literature, which suggests a tradeoff between interpretability and performance
(Dziugaite et al., 2020). On the other hand, the YS result is an indicator of a
better fitted YS model. The discrepancy between the training and testing YS
metrics was 1/4th as large as the full YS model in Fig. 7. The pruned YS model
therefore experienced less overfitting than the full-feature model and thus is
more robust when predicting never-before-seen YS data, such as the test
dataset. Such a reduction in overfitting is attributable to the reduced input size
of the pruned model, which resulted in 114 fewer free parameters (- 30%) and
significantly less overparameterization when predicting YS.

The performance of the 3- and 2-feature MLPs for UTS and YS is compared
against 40 different regression models including k-nearest neighbors, boosted
regressors, bagged regressors, tree- and forest-based models, support vector
machines, Gaussian process, generalized linear models, and step-wise
methods such as LASSO, ridge, ElasticNet, LARS, and orthogonal matching
pursuit regression. The full list is shown in (Shankar, 2022). Each model is fit on
the features used to train the maximally parsimonious MLP. After the initial
fitting process, the top 5 models, as measured by the average R? across UTS
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Fig. 9. SHAP values color-coded per deposition type for top 4 most influential features of MLP model; vertical jitter has been added for visual clarity.

SHAP value variance can be explained with only a few features in both models.
This is an indicator that significant feature pruning is possible to improve the
computational efficiency and model interpretability. Feature pruning is
illustrated in the bottom row of Fig. 10, which shows that model performance
on the test dataset is largely unaffected by feature removal, with 100% and
75% SHAP CRV models differing in performance by metrics no more than 10%.

To determine which model of Fig. 10 has the optimal performance-
interpretability tradeoff, (2) is solved via the additive utility function defined in
(7). As such, the metrics of interest are defined as m = [RMSE, MAE, MAPE, R?,

number of input features] with the weights being n = [.125,.125,.125,.125,.50]
to evenly balance performance metrics with parsimony via a 50/50 weighting
scheme. The selected error metrics (RMSE, MAE, MAPE, R?) were considered
such that the outcome of this study can be compared with the published
literature (Xie et al., 2021) to demonstrate the improvement of the developed
method, whereas the number of input features was selected for the utility

and YS, are fine tuned to maximize their predictive accuracy, and then
compared to the MLP results. As shown in Fig. 11, none of the fine-tuned
models are shown to outperform the MLP in terms of R% This confirms the
strength of the developed prediction model as compared to other modelling
approaches.

5. Conclusions

The presented study aims to fill an existing research gap in interpretable
process-property predictive modeling of DED. An efficient feature extraction
methodology and corresponding machine learning models have been
developed to exploring the tensile strength- determining physics embedded in
the DED thermal history. Experimental data analysis has demonstrated that,
compared with prior published results as the benchmark, the developed MLP
models have comparable or better prediction accuracy for DED built IN718 UTS
and
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Fig. 10. Cumulative relative variance plots (top) and effects of feature removal on test dataset results (bottom) for UTS and YS models.
Table 3
Standardized performance metrics (h), weights (1), utility (U), and rankings for MLP models at varying SHAP CRV levels, evaluated on the test dataset.
Ultimate Tensile Stress Yield Stress
U Rank m.[1] U Rank
SHAP CRV m’[1] m’[2] m’[3] m’[4] m’[5] m’[2] m’[3] m’[4] m’[5]
50.00% 0.04 0.01 0.13 0.00 1.00 0.52 5 0.00 0.00 0.00 0.00 1.00 0.50 5
65.00% 0.00 0.00 0.00 0.11 0.97 0.50 T6 N/A N/A N/A N/A N/A N/A N/A
75.00% 0.68 0.84 0.94 0.74 0.95 0.87 1 0.97 0.86 0.86 0.96 0.97 0.96 1
90.00% 0.59 0.79 0.94 0.63 0.92 0.83 2 0.95 0.87 0.86 0.96 0.90 0.92 2
99.00% 0.72 0.79 0.81 0.79 0.69 0.73 3 1.00 1.00 1.00 1.00 0.77 0.90 3
99.99% 0.80 0.96 1.00 0.84 0.38 0.64 4 0.87 0.86 0.91 0.87 0.36 0.64 4
100.00% 1.00 1.00 1.00 1.00 0.00 0.50 T6 0.72 0.75 0.77 0.75 0.00 0.39 6
n 0.125 0.125 0.125 0.125 0.5 - - 0.125 0.125 0.125 0.125 0.5 - -
Ultimate Tensile Stress Yield Stress
0.8
oy 0.71
.7 . %
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Fig. 11. Comparison of this study’s parsimonious MLP and comparable statistical models showing that the MLP yields the highest R?value; LR: linear regression, RF: random forest, XGB:
extreme gradient boosting; the AdaBoost (Freund and Schapire, 1995), Bagging (Aslam et al., 2008), RF (Breiman, 2001), and XGB (Chen and Guestrin, 2016) ensemble methods each

used decision trees as their ensemble members.
YS with significantly reduced model complexity (by a 4.7 x10¢reduction factor).
This complexity reduction was made possible by a novel feature pruning
method. SHAP values of the model input features were investigated to confirm
the models’ consistency with physical principles underlying the DED process as
reported in published literature. Note that this work uses the discovery of the
importance of cooling time on tensile strength obtained from the neural
network in Xie et al. as one feature, and the analysis of this work confirms its
relevant importance. The success of this work indicates that similar knowledge
from the traditional heat treatment field can be and should be used in feature
definition to reduce model complexity in physics-informed machine learning.
Additionally, previously unreported predictors such as temperature
variance are observed in the presented study, which can enable new DED
optimization strategies. For instance, temperature variance has been shown to
be a possible predictor of tensile strength, pending further experimental

verification. Furthermore, the robustness of the developed methods to
changes in machine settings and material will also need to be analyzed.

More investigation into the SHAP CRV-based feature selection method is
also needed. For brevity, the presented study did not explore possible
inefficiency induced by reducing the number of possible feature subsets from
2lflto |F| to N «|F|. Furthermore, why feature removal made the YS MLP
perform better than the 40-feature full model, as seen in Fig. 10, needs further
investigation. These tasks will be necessary to fully understand the method’s
behavior. Finally, a comprehensive, microstructural interpretation of every
variable remaining in the reduced models is needed. This will help gain insight
into the DED physics in the context of established material science and
synthesize additional relationships between thermal history and tensile
properties that may not have been revealed yet. Overall, the presented study
constitutes a significant step towards physics-informed and parsimonious
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machine learning modeling of DED and other metal powder-based additive
manufacturing processes.
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