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The number of Electric Vehicles (EVs) on the roads is expected to dramatically rise within the next
few years. This is poised to substantially increase the total electricity demand due to EV charging.
The key question is whether today’s distributions systems can handle this increased charging demand.
Our central hypothesis is that coordinated charging is a must to enable wide scale deployment of EV
chargers. Coordinated charging refers to scheduling, and possibly optimizing, the charging action of
EVs so that charging is more focused during grid off-peak hours. Due to the importance of charging
incentives, the objective of this paper is to take a step back and obtain real data that help gauge EV
drivers’ level of acceptance to charging scheduling incentives. Using New York City as a living lab, a
case study was carried out to analyze the effectiveness of those incentives. The results of a survey,
taken by 119 New Yorkers, shed light on people’s response to charging incentives. For instance, 85%
of the survey respondents chose to travel longer for a cheaper EVSE instead of heading to a near EVSE

at a higher cost.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction stations is increasingly becoming a key obstacle (NYC, 2021b).

Therefore, several States have set mandates to deploy more EV

According to the US department of energy, in 2020, the US
imported about 3% of the petroleum it consumed. The trans-
portation sector accounted for 26% of the total energy demand
and 29% of greenhouse gas emissions (GHG) (NYC, 2021a). In
urban regions, the problem is further exacerbated. For instance,
the transportation sector is responsible for 36% of GHG in New
York City (NYC). Therefore, to combat global warming, there is
an imperative to replace conventional internal combustion engine
vehicles with EVs. In NYC, the goal is to place 400,000 of EVs on
the roads by 2030 (NYC, 2021a).

The barriers against widescale EV deployment have histori-
cally been cost and range anxiety. Recently, thanks to advances in
electric machines, power electronic switching devices, and energy
storage systems, the cost of EVs has fallen and the range improved
(~520 miles) (Wallace, 2021). However, lack of fast charging
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charging stations in the near future.

EV charging stations represent a major load on the power grid.
In some estimates, the load resulting from widescale deployment
of EV charging stations may be equivalent to the current load
demand (Groom and Bellon, 2021; Hafez and Bhattacharya, 2021).
With the aim of mitigating the impact of EV charging on the
power grid, several articles in the literature proposed charging
scheduling algorithms (Han et al., 2018; Alinia et al., 2022; Tang
et al,, 2016).

In Luo et al. (2017), a charging coordination framework was
developed based on the gradient boosting regression tree method.
Scalability was not adequately evaluated. However, the results
showed good coordination performance and local solar produc-
tion was taken into consideration. In Hafez and Bhattacharya
(2021), a game theory (Mean Field Game) method was used
for charging coordination. The proposed solution is scalable to
large systems and robust against single-point failures since it
relies on distributed control. On the other hand, a centralized
controller based on Internet of Things was proposed in Chen
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et al. (2019). This work took into consideration distributed energy
resources that may be connected to the same charging infras-
tructure, as well as the communication infrastructure required to
enable coordinated operation.

These articles, and others in the literature, often assume that
an EV owner will inevitably be willing to shift their charging
time. To the best of our knowledge, there has been no effort to
evaluate people’s response to charging incentives and this, in our
review, represents a research gap in the literature that this paper
is attempting to fill.

In this paper, EV drivers’ response to scheduling incentives
has been evaluated. Specifically, we relied on two approaches:
(1) directly surveying current and potential EV drivers; and (2)
simulating the impact of charging scheduling incentives, using a
NYC-based case study. We focus on public charging stations and
their influence and dependence on the power grid.

The main contributions of this paper are as follows:

1. A survey gauging New Yorkers’ willingness to change their
normal EV charging behavior in response to incentives

2. Simulation of the impact of EV charging incentives on the
power grid using a New York based case study

3. Open-source codes to reproduce the results of this study
and replicate the work for other regions

The rest of the paper is organized as follows. In Section 2, our
hypothesis and methodology will be presented. In Section 3, the
case studies will be discussed. The results and discussion will be
presented in Section 4. Finally, some of the conclusions that can
be derived from this study will be presented in Section 5.

2. Hypothesis and methodology

In megacities, such as NYC, EV mobility is heavily impacted
by factors, such as road congestion, construction, charging prices,
weather, etc. Due to its dense population, urban regions may have
multiple Electric Vehicle Supply Equipment (EVSE) within close
geographic proximity. In addition, the distribution grid is highly
meshed. Therefore, some EVSEs, although geographically close to
each other may be fed from, hence impacting, different electricity
distribution feeders. While this can be viewed as a challenge, it
also provides a unique opportunity for urban regions. With proper
incentives, a driver can be influenced (e.g., through dynamic
charging prices) to slightly shift their targeted EVSE and go charge
at another one, which is located in a less energy-constrained
power network.

We assume that EVSEs will be collectively represented by
a local virtual aggregator. There will be coordination between
the EVSE aggregator and the distribution grid. We presented
a detailed example of this form of coordination in Mohamed
(2019a). This coordination can potentially take multiple forms,
e.g., demand response. When the grid is faced with a challenging
condition (e.g., a constrained feeder/branch), it will incentivize EV
owners to charge at other EVSEs that are fed by less constrained
power networks.

Our central thesis is that EV owners will change their targeted
EVSE in response to incentives as long as the distance towards
the new EVSE and the incentive itself are reasonable. The def-
inition of “reasonable” is to be tackled in this work. The key
research questions include what a proper incentive can be, what
EV owners care more about, and to what extent can incentives
mitigate charging impact on the power grid? Our implementation
approach to tackle the research questions includes a survey of
current and potential EV owners and simulation of a realistic case
study.
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3. Survey

We developed a survey that was answered by 119 takers, both
in-person and hybrid formats. About two thirds of the survey
takers currently own EVs. The survey covered different neigh-
borhoods in New York City. The purpose of this survey was to
gauge people’s response to the following parameters: charging
cost, distance to the charging station, charging time, crowdedness
of the charging station and impact on the power grid. The survey
questions were the follows.

1. Do you own an electric vehicle?

Response: Among 119 people, 67.23% of them have EVs, while
32.77% do not have EV. Later for questions 2, 3, 4, 5, 8, and 9,
we will distinguish the responses for both groups.

2. What factors/parameters would you consider for selecting a

charging station to go to?
Response: It was found that people currently owning EVs care
more about distance, followed by cost to the charging station,
charging time, and crowdedness of the charging station. Similar
trends can also be seen among non-EV owners, as shown in
Fig. 1a and b, respectively. However, current EV owners seem
more aware and cautious of the effect of EV charging on the
power grid. This is evident by 58.75% current EV owners who
selected the effect on the power grid as a deciding factor, as
compared with 23.08% for non-EV owners.

3. If your car is near a charging station with high charging cost,

and there is another charging station which is 6-7 blocks far from
you with cheaper charging cost, which one will you choose to charge
your car? (Nearer/Farther)
Response: For the third question, almost 15% of the people chose
the nearer charging station and around 85% chose the far charging
station. The majority of respondents seem to prioritize mone-
tary savings. There was a negligible difference observed between
responses of EV owners versus non-EV owners (i.e., 15.38% and
84.62%, respectively).

4. Following up to the previous question, what if the farther EVSE

is in a power constrained area (may cause problems to the power
grid), which one will you choose to go? (Nearer/Farther)
Response: For the fourth question, the majority of survey respon-
dents chose the nearer charging station, to decrease the impact
on the power grid. Some differences between the responses of
EV owners and non-EV owners were observed. While 86.25%
of current EV owners changed their preference to the nearer
station, only 67.57% of non-EV owners did. This aligns with the
observation related to question 2 that current EV owners seem
to generally be more aware of the impact of EV charging on the
power grid.

5. If the far charging station is cheaper but located in a crowded

area, which one will you go to? (Nearer/Farther)
Response: most current EV owners prioritized cost over crowd-
edness (82.50% vs. 17.50%). On the other hand, non-EV owners,
there was a less significant difference between the two choices,
with 42.11% choosing the far EVSE (cheaper) and 57.89% choosing
the near EVSE.

6. If you are at equal distance from two charging stations, one of

them is fast and expensive, the other one is slow and cheap, which of
them will you choose to go to? (Fast and expensive/Slow and cheap/It
does not make any difference)
Response: the majority of survey takers preferred the faster charg-
ing station even though it is more expensive. This was the case
for both EV owners and non-EV owners, as shown in Fig. 2a and
b, respectively. Non-EV owners seem more acceptable to slow
charging (33%) as compared with current EV owners (10%).
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Fig. 1. A summary of responses on question 2: (a) EV owners; and (b) non-EV
owners.

4. Simulations: Influence graph

With the increasing numbers of EVs on the roads, the power
grid and the traffic network are becoming more interdependent
than ever. The EV charging demand affects the flow of power,
and hence must be taken into consideration while operating and
planning the power grid. With proper incentives, stemming from
grid impacts of EV charging, EV owners may opt to travel a longer
distance to charge at a cheaper charging station. The survey
results presented earlier in this paper support this conclusion.
One can view this two-way dependency as an opportunity to op-
timize both networks. In other words, using proper incentives, the
power grid can discourage EVs from charging at EVSEs that exist
in energy constraints portions of the power grid. This can be done
by raising the price of charging at those EVSEs. Similarly, EVs can
be diverted from roads with congested traffic by raising the price
of charging within those roads. This multi-objective optimization
problem requires coordination between the distribution power
grid operator and the transportation operator. A detailed example
of this coordination was presented by the author in Mohamed
(2019a).

In this section, we simulate the impact of charging incen-
tives on EV drivers’ decisions using a case study at Gowanus,
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Fig. 2. A summary of responses on question 6: (a) EV owners; and (b) non-EV
owners.

Brooklyn, New York City. We assume that this area has two
charging stations and 70 EVs. The EVs start at random origins
and normally head to their destination EVSE based on a shortest
path problem. This represents the base case. We assume that
one of the EVSEs is in an energy constrained region (Mohamed,
2019a). We then evaluate to what extent incentives will be able
to reduce the number of EVs arriving to charge at that EVSE and
choosing to go to the EVSE which exists in a more relaxed energy
network. We also show how traffic flow will be affected due to
this arrangement.

For visualization we will rely on influence graphs (Mohamed,
2019b). Modeling the Gowanus area as a complex network would
normally entail translating the streets into nodes and street junc-
tions into links. In influence graphs, on the other hand, the links
do not represent the topological connection between the nodes
(i.e., the streets) but the probability that the sink node fails fol-
lowing failure of the source node, while the nodes are the streets.
Failure here refers to street congestion/closure. We will simulate
a base case when EVs are departing their origins and arriving their
targeted destinations. Then, many cases will be simulated when
roadblocks are placed in the network. EVs that were originally
supposed to flow through those blocked streets on their shortest
path would now need to use an alternative route. The added
traffic on the new links, which got affected by this rerouting,
is attributed to link failure. Hence, running a large enough set
of simulations with random roadblocks and diverse origins and
destination, one can develop an understanding on how likely it
is that failure of any link will impact other links in the network.
The Gowanus area under study is depicted in Fig. 3. We looked
into two scenarios with varying distance between the two EVSEs.
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Fig. 3. Map of Gowanus area (OpenStreetMap tile style): (a) Coordinate set A; and (b) Coordinate set B.

Fig. 4 presents a flowchart summarizing the process of obtain-
ing the influence graphs. All the codes that the authors developed
are released as open source (Smart Grid, 2022). It can be observed
from the flowchart that a traffic routing problem needs to be
solved recursively under various cases and scenarios. To achieve
this, we used the Here routing API (here, 2022). To incorporate
energy related incentives into Here routing, the routing cost func-
tion is modified by an energy factor, as in (1). This energy factor
is to come from the distribution power grid operator based on
optimal power flow analysis (locational marginal price of energy)
as described in (Mohamed, 2019a,b).

Cr = 2 (7: (Vm Csm)) + @En(Ec (Vm Csm)

NCSp, .
+ T [$2dise (dist (Vy, CSm)) + g1 (T (Vi, CS))]) (1
where

Cr: total cost from vehicle V,, to charging
station CSp,

NCS, number of vehicles currently visiting charging
station CS,

dist distance factor

o duration factor

$En energy factor

dist (Va, CSm)

distance between vehicle V, and charging
station CS,, in meters

T (Vh, CSm) travel duration of the route between vehicle
Vih and charging station CSy,, including real
time traffic, in seconds

Ec (Vy, CSm) factor reflecting the charging price at the

destination station and estimated energy
consumed along the route between

vehicle V,, and charging station CS,, given a
vehicle speed consumption model in kilowatt
hours
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The code starts with defining the coordinates of charging sta-
tions (two different sets), followed by defining coordinates for the
origins of the vehicles. The Gowanus map is then imported and
visualized. The cost function is then developed. The Here API is
called by the code to solve the routing problem, implement road-
blocks, parts of the visualization, distance, duration, and energy.
Each vehicle was assigned the route with the least cost, given all
the possible roadblocks. However, prior to creating routes with
roadblocks, a base case was created with no roadblocks for refer-
ence. The roadblocks in Here API were defined as bounding boxes
of areas you wish to avoid. We defined them using their upper
left point and lower right point. To ensure proper distribution of
roadblocks in each run, a dictionary was created to store all the
roadblocks that have been used in a previous run. A value of 0
indicates that a roadblock has not been placed in that street. If the
value is —1, a roadblock does not exist. Otherwise, it will count
the number of times that the roadblock was used.

After all runs, the influence graph is calculated as a probability
matrix by, (1) counting the number of runs where a block in
a given street, led a vehicle to take another street (this will be
the count); (2) counting the number of times blockage of that
street repeated in the runs (this will be the denominator); and
(3) calculating the matrix as the ratio.

5. Results and discussion
5.1. Influence graphs

Figs. 5 and 6 present the influence graphs for Coordinate
Sets A and B, respectively. The graph shows for each potentially
blocked street (x-axis: Link with possible roadblock) what the
probability is (z-axis: Probability) that the EV will reroute to other
links (y-axis: Alternative link). It can be observed that Coordinate
Set A results in a more clustered scatter plot as compared with
Coordinate Set B, since the two EVSEs are in closer geographic
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Fig. 5. Influence graph with coordinates set A.

proximity. With Coordinate Set B, the graph is more dispersed
since more available possible routes exist.
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Figs. 7 and 8 depict influence graphs for Coordinate Sets A
and B, when cost of charging is incorporated into the routing
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Fig. 7. Influence graph with coordinates set A with charging cost included.

problem. As can be seen from the probability matrix, there is
a substantial change in the results. With one of the two EVSEs
set to be more expensive than the other, Figs. 7 and 8 start to
exhibit more clustering around specific regions on the 3-d plot.
These regions correspond to routes that lead to the cheaper EVSE.
This shows indicates that some drivers will change their initially
targeted EVSE to another EVSE based on cost (incorporated into
the routing problem as described earlier).
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5.2. Tracing individual EV behavior

Influence graphs holistically show the effect of incentives on
the system. In this subsection, we trace the trip of an individ-
ual randomly selected EV. This EV changed its destination EVSE
based on charging incentive. The EVSE that is not in an energy
constrained area is labeled with O while the other EVSE, which
is in an energy constrained area, is labeled with 1. The Origin of
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Table 1

Results for sample EV without energy charging incentive vs. with incentive.
Run 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
No Incentive EVSE o o o 1 1 1 0 1T 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0
Incentive 0 0 1.0 0 01 1 0 0 O 0 1 0 0 0 0 0 0 1 0

the vehicle is at {40.68154, —73.994016} coordinates, i.e., union
street at smith street. Table 1 summarizes the route in both cases.
It can be seen that in many cases the EV changed its initial des-
tination EVSE, which is closer geographically, in response to the
energy-related incentive. A closer look is also depicted in Fig. 9.

6. Conclusion

This paper evaluated the effectiveness of cost incentives as a
means to mitigate the impact of EV charging on the power grid. A
literature survey was conducted and taken by 119 New Yorkers.
The survey showed that EV charging price can be an effective
way to influence drivers’ decisions and mobility, with 85% of
respondents choosing to travel longer for a cheaper EVSE instead
of heading to a near EVSE at a higher cost. The survey also showed
current EV owners care more about the impact of EV charging on
the power grid as compared with non-EV owners, with about 59%
of respondents indicating impact on the power grid as a decisive
factor when selecting an EVSE as compared with about 23% for
non-EV owners. This assumes that information about grid status
is provided to EV owners while making the decision. Interdepen-
dence between the power grid and the transportation network
was demonstrated using a case study focused on the Gowanus
area, Brooklyn. The case study demonstrated the use of energy-
related incentives, embedded into the standard routing problem,
assuming coordination between the power grid operator and the
transportation network operator. The case study showed how
some EVs were diverted from an EVSE that is located in an energy
constrained area of the power grid and rerouted to another one.
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Supplementary materials

The source codes of the software developed in this work can
be downloaded at: https://github.com/TamerSobhy/EV-Charging-

Scheduling.
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