

Journal of Manufacturing Systems 71 (2023) 298–308

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

A R T I C L E I N F O A B S T R A C T

Keywords:
Physics-informed neural network
Ensemble
Partial differential equation
Error homogenization Allen-Cahn

equation

Physics-informed neural networks (PINNs) have demonstrated effectiveness in solving partial differential equations (PDEs)

associated with manufacturing scenarios, due to their physically interpretable training logic. One limitation has been that PINNs

often exhibit heterogenous error maps and high-error “hot spots” throughout the solution domain, which reduce not only the

solutions’ accuracy but also their overall consistency with the physical laws. This study addresses this limitation by presenting

an efficient and error-aware PINN ensembling technique for error homogenization in solving manufacturing problems.

Specifically, a PINN is first established by constraining its training process through a manufacturing specific PDE and

corresponding boundary conditions to ensure physical consistency. Next, the loss landscape in the neighborhood of three

PINNs trained with varying network parameter initialization is sampled to generate a PINN ensemble. Finally, the outputs of

the ensemble members are combined through an inverse error-weighted average to yield the prediction of the PDE solution.

Evaluation using the Allen-Cahn PDE, which describes phase separation in the solidification of metallic alloys, shows that the

developed method reduces the average prediction error by 63% and error standard deviation by 30% across the solution space,

demonstrating its effectiveness for PINN error reduction and homogenization. Additionally, the method has also demonstrated

96% reduction in the computational time as compared to conventional ensembling methods.

1. Introduction

To facilitate digitization as an essential element of the cyber-physical

manufacturing systems, accurate and robust solution of partial differential

equations (PDEs) that govern manufacturing systems and processes such as

heat transfer, chemical diffusion, and material flow, etc., has attracted

increasing attention [1–3]. Representative PDEs shown in Fig. 1 illustrate the

broad applicability of PDEs on shop floors, as well as how the prediction of

upstream PDE solutions cascades into subsequent processes and the final

product throughout the manufacturing system. This implies that ensuring

accurate solution of PDEs at each of the production steps can lead to reduced

error propagation in the entire system, more robust production planning, a

priori identification of noncompliant product and production bottlenecks,

simultaneous optimization of product quality and production time, and,

ultimately, avoidance of facility-wide operational disruptions caused by part

rework [4]. Given this motivation, recent scientific literature has shown a

variety of PDE modeling approaches that support new manufacturing

paradigms such as digital twinning [5].

Standard PDE solution methods rely on analytical or numerical techniques

such as finite element analysis (FEA) and computational fluid dynamics (CFD),

which exhibit good agreement with experimental observations and a robust

connection to the underlying process physics [6, 7]. However, these benefits

come at the cost of a generally high computational complexity as additional

dimensions or nodes are considered, inability in handling real-world process

disturbances, and spatiotemporal resolution constrained by the meshing

scheme and/or element size [8,9]. Concurrent with the rise of industrial big

data and increased computing power, data-driven approaches to solving PDEs

have been investigated to overcome these drawbacks [10, 11].

Data-driven modeling refers to the adaptive learning of input-output

relationships using system observations through neural networks and/or other

methods [14,15]. Compared to analytical methods, data-driven methods have

several advantages. First, they have lower computational complexity as a

function of the dimensionality and number of nodes when compared to the

typically exponential growth of analytical solutions. This makes them an

attractive choice for solving higher-dimensional PDEs where a high resolution

is desired [16].

Second, due to their mesh-free nature, data-driven models enable unique

inference at all points of the PDE solution domain rather than being

constrained to a grid of simulation nodes and the associated interpolation

between them. This allows data-driven methods to predict future PDE behavior

without simulating all time steps up to the time of interest. Third, data-driven

models can consider process disturbances as model input and learn to express

* Corresponding author.

E-mail address: robert.gao@case.edu (R.X. Gao).

https://doi.org/10.1016/j.jmsy.2023.09.013

Received 2 July 2023; Received in revised form 26 August

2023; Accepted 23 September 2023
Available online 29 September 2023
0278-6125/© 2023 The Society of Manufacturing Engineers.

Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jmsy.2023.09.013
https://doi.org/10.1016/j.jmsy.2023.09.013
https://doi.org/10.1016/j.jmsy.2023.09.013
http://www.sciencedirect.com/science/journal/02786125

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

299

the effects of disturbances in the model output, making them responsive to

real-world manufacturing scenarios.

Numerous studies on data-driven techniques have been conducted in

recent years, demonstrating their success in manufacturing contexts [17–19].

Nonetheless, one limitation of these techniques is the general lack of

compliance with physical domain laws. This is because neither their training

processes nor prediction logic (e.g., forward computation in a neural network)

is constrained by physics, which leads to the possibility of incorrect predictions

outside of the training data range arising from spurious prediction logic

obtained during training [20]. A recent example is illustrated in [21], wherein a

data-driven COVID-19 detection algorithm learned to predict infection based

on benign geometric features of chest radiographs rather than lung tissue

damage, resulting in poor performance on never-before-seen data and

potentially compromised diagnostic outcomes. Issues such as these are

becoming increasingly relevant given that explainable artificial intelligence,

which encapsulates data-driven modeling, has been codified in law [22,23], and

is becoming commonplace within scientific literature in order to verify

prediction logic and synthesize new knowledge about the systems being

characterized [24,25]. In order for data-driven methods to be accepted by the

manufacturing community as trustworthy, it must be assured that domain

knowledge is respected in the solutions provided by data-driven models.

A promising approach to enforcing domain knowledge in PDE solutions is

the physics-informed neural network (PINN) [26]. Initially developed to solve

nonlinear PDEs, PINNs penalize network predictions that violate constraints on

the PDE and correspondingly guide the training procedure towards model

parameters which minimize deviation between PDE constraints and PINN

output. This physically interpretable training logic of PINNs has demonstrated

success in solving PDEs and is gaining traction in the manufacturing community

as a reliable tool for physics-driven modeling [27]. Although competing

machine learning-based methods of solving PDEs have been published, they

lack either explicit connection to the PDE physics or require training data which

may not be available. For example, neural process (NP) has been proposed for

PDE modeling given its high modeling accuracy and built-in uncertainty

quantification [28]. This approach is useful in situations wherein simulated or

experimental data is available to train the NP encoder and decoder to

accurately model the system under study. However, this may not always be the

case due to, e.g., high computational cost of simulation, difficulty in observing

the phenomenon of interest (such as alloy solidification in casting operations

as discussed in this study), or the phenomenon of interest occurring

infrequently and yielding little data for training. In comparison, such data

availability issues do not apply to PINNs since PINNs model known system

dynamics based on a priori physical understanding, with or without additional

system observations.

PINN-based PDE solutions include the modeling of hyperelastic stress,

which dictates the fabrication of elastomers and biological tissues, with 0.09 Pa

root mean squared error as compared to 0.18 Pa using a non-PINN method

[29]. A PINN was used to identify material parameters, including Young’s

modulus and Poisson’s ratio, for a structural health monitoring application

based on material deformation PDEs, which successfully identified the

parameters of interest within 1% error [30]. Meanwhile Chen et al. successfully

predicted natural convection temperature evolution using a PINN with less

than 0.1% error, with implications for heat treatment prediction as well as

chemical processing in manufacturing [31]. Liao et al. modeled the

temperature evolution of an additively manufactured part using a PINN and

observed 47 K root mean squared error as compared to experimental data [32].

While the PINNs from these studies exhibit good average error over the

solution space, it has also been observed that these PINNs exhibit regions of

high local error, or “hot spots,” throughout the solution domain [32–34]. This

means that moving a small distance away from the solution point in a space or

time may cause large changes in the error magnitude and thus reflects an

unstable model output that diminishes user confidence in the PINN

predictions. Often underreported in literature, such instability is also difficult

to compensate for using typical error correction techniques such as

spatiotemporally-aware bias terms. As such, PINNs remain prone to

heterogenous error distributions and methods of alleviating the error hot spots

are needed.

A promising method of accomplishing this homogenization is ensembling

methods such as model averaging reduce the prediction variance (a proxy

measure of error heterogeneity) and, for nonlinear models, the average error

[35,36]. However, training a set of individual neural networks to achieve

ensembling benefits can be computationally expensive, as neural networks

often require several minutes, hours, or days to train [37]. The presented study

Fig. 1. Common partial differential equations in a CPS where solution accuracy of each process affects error propagation throughout the system and the final product. PDEs selected from

[3,12,13].

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

300

is motivated by this observation and proposes an efficient ensemble-based

method of PINN error homogenization. Specifically, three PINNs are first

trained to define a loss landscape, from which new PINNs are sampled rather

than trained from scratch. A sampling procedure is then defined based on the

loss landscape to allow for the control of anticipated ensemble member error,

and correspondingly, the accuracy of the ensemble as a whole. The PDE

solution prediction is subsequently found as a weighted average of ensemble

member outputs, with the weights being inversely proportional to each

member’s loss. The expected reduction in the error heterogeneity is shown to

be dependent on the average pairwise correlation between ensemble member

outputs. An overview of the proposed method is shown in Fig. 2.

The presented study has made the following contributions:

1) Established an efficient ensembling method for PINNs, which yields as many

unique models as desired after training only three networks using the

standard training process,

2) Developed a systematic and error-aware PINN sampling procedure based

on the loss landscape topography with a tunable parameter controlling the

expected error of the newly sampled PINNs,

3) Demonstrated the error homogenization of the proposed PDE solving

method by comparing the ensemble error distribution with that of a single

PINN using the Allen-Cahn equation for modeling alloy solidification in

casting as an example.

The rest of this paper is organized as follows: Section 2 introduces the

theoretical background of PINNs, the proposed computationally- efficient

ensembling method through loss landscape sampling, and the weighted

aggregation of ensemble members. Section 3 describes the experimental

validation of the proposed method using the Allen-Cahn equation and outlines

the PINN training procedure. Section 4 presents and discusses the results of

the proposed sampling and ensembling method in solving the Allen-Cahn

equation and demonstrates the pairwise correlation between sampled PINNs

that yielded the ensemble performance as shown. Conclusions from this study

and future research directions are discussed in Section 5.

2. PINN theoretical background

The structure of a PINN for the case of a one-dimensional PDE, u(t,x), is

shown in Fig. 3. Spatiotemporal coordinates t and x are passed as inputs to a

fully-connected neural network, f, which outputs a proposed PDE solution ̃u as

a function of the inputs and the network weight and bias parameters, θ. The

forward calculation is represented in (1):

̃u(t,x; f) = f(t, x;θ)∀t ∈ [t↓,t↑],x ∈ [x↓,x↑] (1)

Where the ↓ and ↑ subscripts denote lower and upper bounds, respectively.

A PINN is considered physics-informed because of its multi-term loss

function, L :

L (̃u) = ωuL u(̃u)+ωbL b(̃u)+ωdL d(̃u
)
(2) where L u is proportional to the PINN’s

deviation from the PDE

Fig. 3. Physics-informed neural network architecture for 1-D PDE with spatiotemporal input

coordinates t and x and ground-truth solution u. The network output ̃u replicates the

ground-truth solution at each coordinate pair. Adherence to the PDE is assured during the

model training process through physics-informed backpropagation, with the overall

network loss comprised of terms that consider deviations from the PDE equations,

boundary conditions, and experimental data, respectively.

constraints at non-boundary or “colocation” points, L b is proportional to the

PINN’s deviation from the PDE constraints on the spatial and temporal

boundaries, L d is proportional to the difference between the PINN prediction

and any experimentally observed datapoints, and each ω⋆ is a weighting term.

The losses are expressed as:

1 ∑Nu

L u(̃u) = |F (̃u(ti,xi;f))| (3)

 nu i=1

1 ∑Nb

L b(̃u) = |B (u(ti,xi))− B (̃u(ti,xi;f))| (4)

 nb i=1

1 ∑N
d

Fig. 2. Overview of proposed error homogenization methodology: a) illustration of metal alloy casting governed by the Allen-Cahn PDE; b) loss landscape visualization and sampling

method to retrieve PINN parameters (θnew) after training only three models using conventional backpropagation; c) inverse error-weighted ensembling using θnew sampled from loss

surface and comparison of single-PINN and PINN ensemble solutions to ground-truth solution found by numerical simulation.
Casting image adapted from [38,39].

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

301

L d(̃u) = nd i=1 |di − ̃u(ti,xi;f)| (5) where F is the nonlinear differential

operator for the PDE [38], B represents the boundary conditions, di is the ith

experimental observation of PDE-governed system, and n⋆ is the number of

interior, boundary, or observed points in the PINN training batch. When used

as the scalar loss term during backpropagation, the sum of these terms

enforce that the PINN-predicted PDE solution respects the governing physics

at the colocation points, on the boundaries, and with respect to experimental

observations [26], [40].

In general, the PINN is trained by sampling a training set of colocation and

boundary (t,x), calculating L for the sampled locations plus any available

experimental observations, and repeatedly backpropagating any error to

iteratively find the parameters which minimize the loss on the training data,

θ∗:

θ∗ = argminL (6)
θ

Using PINNs to solve PDEs has several advantages over numerical methods

and conventional supervised machine learning approaches:

1) PINNs can be expanded to accommodate higher-dimensional PDEs with

moderate increase in computational complexity. It has been shown that

the complexity of numerical methods grows exponentially while PINN

complexity growth is sub-exponential [41], making PINNs relatively

lightweight from the perspectives of runtime and parameter storage

requirements as compared to numerical approaches.

2) PINNs do not require experimental data for training. Because the

derivative terms in the loss function are found using automatic

differentiation, L u and L b can be obtained without observational data [42].

This is an advantage of PINNs over conventional supervised learning

paradigms in situations where data is scarce or difficult to simulate.

3) PINNs have physically interpretable training logic. Because PINN weights

are adjusted to minimize violations of the governing PDE and boundary

conditions, the training process of PINN is more physically interpretable as

compared to purely data-driven supervised learning, which relies on

observational data alone. This contributes to improved trustworthiness of

the obtained prediction logic of PINNs.

4) PINN gradients are exact. The gradients found using automatic

differentiation are exact within machine precision [43]. This contrasts with

numerical methods, where finite difference approximations of derivatives

are used that introduce error into the model and may degrade the quality

of the final solution.

5) PINNs have infinitesimal spatiotemporal resolution. Unlike numerical

methods, PINNs are mesh-free. As a result, the (t,x) locations queried for

training and inference can be more flexibly selected in the input domain

and do not have to be equally spaced. This enables PINNs to generate PDE

solutions in a continuous manner both spatially and temporally, while

numerical solutions are constrained

to interpolating on the node mesh generated prior to executing the

simulation.

While standalone PINNs exhibit these advantages and have demonstrated

good performance as reported in recent studies [44,45], one noted limitation

is the variability in their error maps. This can render a PINN unreliable as

moving a small distance in space or time may cause unstable model behavior

and error to increase by orders of magnitude, as shown for a single PINN in Fig.

2c. To overcome this limitation, it is desired to generate an ensemble of PINNs

and combine their unique predictions together to homogenize the prediction

error.

3. Proposed ensembling and PINN error homogenization scheme

Conventional generation of neural network ensembles is time- consuming

since each model must be retrained from scratch. For instance, an N-member

ensemble wherein each member is trained for 10,000 epochs will require

10,000N total epochs of training. If each epoch is performed in 0.03 s as in this

study, each additional ensemble member adds 5 min to the ensemble training

time. Thus, even a modestly-sized 50-member ensemble will require over 4 h

to train. Considering this substantial computational cost, an efficient

ensembling method based on the concept of loss landscape sampling is

developed, which can efficiently yield unique PINNs for the cost of only three

training sessions.

3.1. Loss landscape definition

Consider conventionally trained PINNs f1, f2, and f3 with vectorized

parameters 2 and , respectively. The vectorization is done by

concatenating all weights and biases into a single vector. When projected into

a two-dimensional space, these three points in parameter space define a plane

where each in-plane point represents a unique set of parameters,
→

θ new. Such

a projection is represented as:

̂
j (7)

 →∗ →∗ ̂j = (→θ 3∗ − →θ 1∗) − cos(̂i, (→θ ∗3 − →θ 1∗))⋅ ̂i, and

where ̂i = θ 2 − θ 1,

cos(a,b) is the cosine of the angle between a and b [45]. The cosine term

appears in the equation for (∗ ∗)
̂
j in order to remove the component of

→
θ 3 −

→
θ 1 which is parallel to

̂
i, thus ensuing that the

̂
i and

̂
j bases are orthogonal

and relationship between each (α,β) and
→

θ new is bijective. Once
→

θ new is

found, it can be substituted directly into the weight and bias terms of f for

making predictions.

3.2. PINN parameter sampling from loss landscape

With the loss landscape defined for the three-PINN neighborhood, low-loss

regions of S can be identified and θnew sampled from them, with each new set

of parameters corresponding to a new PINN to be ensembled. Loss surface S is

first transformed into 2-D empirical PDF p defined for region α ∈ [α↓,α↑] × β ∈

[β↓,β↑] via (8):

p c[max(S)− (S (α,β)− min(S))] (8)

dβ

where c > 0 is a concentration factor inversely proportional to the spread of the

sampled
→

θ new away from 2 and , and the denominator converges

so long as S is finite within the integrated region. A large value of c will cause

the newly sampled parameter vectors to be close to trained PINNs in the (α,β)

plane and the opposite is true for small values of c. This is because a large c

exponentially scales the peaks of the PDF at each
→

θ
∗ to be much larger than

the surrounding probabilities, making it more likely to draw samples from the

peak locations. Additionally, since a small c encourages samples to be taken

further away from the loss minima and these samples correspond to high loss,

c is inversely proportional to the expected ensemble loss.

Parameter vectors are sampled from p by vectorizing the PDF to find the

cumulative density function (CDF) and using the inverse CDF to convert N

samples, k ∼ U(0,1), to (α,β) locations and the corresponding θnew. Since the

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

302

parameters of each of the N ensemble PINNs are sampled in constant time, the

serialized ensemble generation time is O(1) ∗ N = O(N). The same is true of the

ensemble prediction complexity since each of the N PINNs has O(1)

computation time. The PINN sampling and computation processes each require

approximately 1 μs on a 2.6 GHz CPU, meaning that the runtimes of the

sampling and prediction process for the whole ensemble are each on the order

of N μs. If the sampling and prediction processes are performed in parallel on

nc cores, the complexity of each process is reduced to O(max[N/nc,1]), and so

O(1), or 1 μs, ensemble generation time and run time is achieved for the

ensemble so long as nc ≥ N.

3.3. Inverse error-weighted ensembling

Once N new sets of parameters are sampled from the loss surface, the

corresponding PINNs are assembled into an ensemble, Q. The PDE solution

outputted by Q is the weighted average of each of the constituent PINNs, with

weights inversely proportional to the model’s loss as shown in (9):

 ∑N ()

̃u(t,x;Q) = Q(t,x;f1,f2,…,fN) = fi t,x;θnew,i ⋅wi
i=1

p(αi,βi;S)

wi = ∑p(αi,βi;S) (9)
i

This weighting ensures that
∑

wi = 1, and an ensemble member with a

smaller loss value will have a larger wi than the PINN with a larger loss value.

As a result, the most accurate PINNs have more influence over the final result

to keep the prediction error low while still allowing the other PINNs to

contribute and homogenize the error via their unique prediction

distributions.

3.4. Reduction in PINN error heterogeneity due to ensembling

Assuming that the error maps of the PINNs in the ensemble have mean

pairwise Pearson correlation coefficient ρ ≥ 0 [46,47], the expected standard

deviation of the ensemble error is estimated as:

√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑ σQ =

 wiwjCij

i,j

Cij = ρ⋅σL (̃u(t,x;fi))⋅σL (̃u(t,x;fj)) (10) where σ⋆ denotes the standard

deviation of ⋆ and Cij is the estimated covariance of the error of ensemble

members fi and fj as a fraction (ρ) of the maximum covariance,
σ

L (̃u(t,x;fi))⋅
σ

L

(̃u(t,x;fj)) [48]. For PINNs sampled from the low-loss regions of S , the assumption

of positive error correlation is deemed reasonable given the close proximity

of the sampled parameter vectors and thus close proximity of the model

outputs [46]. In the worst possible scenario, all sampled PINNs are exactly

correlated, leading to ρ = 1 and σQ = σfi = σfj ∀i,j, i.e., no reduction in error

standard deviation via ensembling. However as ρ → 0, σQ → 0, indicating that

lower average pairwise correlation represents lower variability in the

prediction error. As the standard deviation of the prediction error is

decreased, the ensemble’s error homogeneity is increased.

4. Experimental evaluation

To evaluate the proposed ensembling method for PINN error

homogenization, metal casting is chosen as a representative case study. With

over $110B in economic impact and nearly 500k employees in the United

States alone, metal casting represents one of the world’s largest and most

diverse manufacturing sectors [49]. It is also one of the most critical

foundations of manufacturing operations, since nearly 90% of all manufactured

durable goods rely on cast parts as either functional components or in-process

tools [50]. Given this reach, rigorous quality standards for castings are

obligatory in order to ensure product conformity and end-user safety. Of cast

parts’ myriad quality dimensions, microstructural composition is the most

critical since it determines several key performance characteristics such as

tensile strength, creep resistance, corrosion susceptibility, and fatigue life, as

predicted by the process-structure-property-performance (PSPP) paradigm

[51–53]. Therefore, if cast parts’ microstructure can be accurately

characterized, conformity to design can be verified, part performance

measures can be predicted accurately and reliably without the need for large-

scale destructive testing, saving material resources.

Phase separation in casting operations, which has a strong influence on

mechanical properties, is governed by the Allen-Cahn equation. Depicted in Fig.

4, the equation describes reaction-diffusion systems, including phase

separation in multi-component alloy systems with order-disorder transitions. It

has become a tool to model and study phase transitions and interfacial

dynamics in materials science and is often used to model alloy composition at

the molecular level and thus serves as a basis for digital twinning of bulk

deformation processes in manufacturing, such as forging and casting [54].

The general form of the Allen-Cahn equation is expressed as:

∂u ∂t = ϵΔu− g(u) (11)

where ϵ is a constant, Δ is the Laplace operator denoting the sum of all unmixed

2nd-order partial derivatives in the spatial coordinates, and g is an arbitrary

function of u. This study uses the 1-D form of (11) with periodic Dirichlet and

Neumann boundary conditions as studied in [26] to maintain comparability

with PINN literature:

∂u ∂2u (3)

 = 0.0001 − 5u +5u ;x ∈ [− 1,1],t ∈ [0,1]

Fig. 4. Allen-Cahn equation-governed microstructural evolution of a cast steel alloy at a

phase boundary. The initial phase distribution immediately after pouring is highly mixed

and disorderly but quickly separates into larger and well-defined regions of each solid

phase according to the equation as time progresses.
Adapted from [37, 55].

 ∂u ∂u

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

303

u (12)

To find the ground truth solution to (12), i.e., u, the PDE is simulated using

the Chebfun package for MATLAB [56]. The solution surface is depicted for a

μm-ns scale in Fig. 5 and serves as the PDE solution which the singleton PINN

and PINN ensemble will aim to replicate as ̃u(t,x;f) and ̃u(t, x;Q), respectively.

The value of u is an indicator variable reflecting the material state as either

phase A or phase B, and is thus unitless. Intermediate values indicate finely

mixed phases as shown as umolten in Fig. 4, however these values disappear as

time progresses and the material solidifies, thereby reflecting the

instantaneous stepwise changes between phases in a solid material. As t→∞,

u becomes comprised of entirely step functions with discrete domain u ∈ {−

1,1} and the intermediate values disappear.

4.1. PINN architecture and training

The PINN architecture in this study comes from [26] and is defined as a 5-

layer fully-connected neural network with 100 neurons per hidden layer,

hyperbolic tangent activation, Adam optimization, 0.001 initial learning rate,

and loss function as defined in (2) with ωu = ωb = 0.5 and ωd = 0 since

experimental data was not used for training given the difficulties of observing

phase separation in real-time. The network receives (t,x) tuples from the

domain defined in (12) as input and outputs ̃u(t,x;f) as described in (1).

The PINN training procedure is initialized by sampling 1000 boundary and

50,000 colocation points from the (t,x) domain using the Latin Hypercube

sampling strategy [57]. The sampled points are then split into 16 stratified

batches of equal size and used to perform mini-batch gradient descent for

10,000 epochs. Batching was used in order to broaden the “valleys” of the loss

minima found during training, leading to better model generalization and larger

low-loss regions from which to sample ensemble members compared to full-

batch training [58]. At the end of training, the model parameters which yielded

the lowest loss are stored as θi
∗ for the ith trained PINN.

The three PINNs needed to explore the loss surface are each trained with

random parameter initializations and unique training datasets. Training each

model took approximately 5 min on a single-threaded 2.6 GHz CPU.

4.2. Error quantification and homogenization measurement

To measure the overall accuracies of the singleton PINN and PINN

ensemble, the physics-informed loss as defined in (2) is evaluated on a

validation dataset comprised of 500 boundary and 25,000 colocation points of

the PDE input domain which are disjoint from the training data. A lower loss

value corresponds to a less error-prone prediction of the PDE solution.

Error homogeneity for a given ̃u, denoted ξ, is quantified as the standard

deviation of the error at each of the validation coordinates as described in (13):

 √̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[2]

ξ(⋆) = Eν (L (̃u(t,x;⋆) − Eν[L (̃u(t,x;⋆))]) (13) where ν represents the validation

dataset. A lower value of ξ indicates a predictive model with greater error

homogeneity and fewer error hot spots in the solution domain.

5. Results and discussion

5.1. PINN training and loss landscape visualization

The training and validation losses for PINNs f1, f2, and f3 are shown in Fig. 6.

The average loss (L) decay over time, as calculated across all training data,

indicates that the physics-informed model training procedure asymptotically

guided the PINN parameters θ1, θ2, and θ3 to achieve loss minima and thus

good agreement with the PDE constraints. The similarities of the colocation and

boundary losses indicate good replication of the PDE solution over the entire

solution domain, and the similarities between the training and validation losses

shows the PINNs are not overfit.

Note that the noise in the loss curves is due to the mini-batch training. Since

the model parameters are updated each time a batch is processed, some

parameter updates may be backpropagated that bolster the prediction

accuracy on one batch while worsening the accuracy of others. If the average

loss across all mini-batches at the end of an epoch is greater than the previous

epoch, the loss shown in the plot will increase. The effects of this phenomenon

are negligible, however, since the overall loss trend is asymptotic, and the

training procedure is developed to capture the best network parameters

achieved at any point during training. The mini-batches therefore help ensure

broad loss minima as discussed in [58] with little degradation of final model

accuracy.

Fig. 7 depicts the training loss landscape S near the three trained networks.

The deep craters represent θ1
∗, θ2

∗, and θ3
∗
 and every other point represents a

linear combination of these three parameters. The loss surface is notably

smooth throughout the (α,β) domain, with loss rapidly increasing in the vicinity

of the trained models and even further near the edges of the plot. The effects

of this loss topography on the PINN parameter sampling procedure are

investigated relative to the sampling concentration factor in the following

section.

Fig. 5. Simulated 1-D Allen-Cahn equation solution. Vertical axis represents instantaneous

phase denoted by − 1 (phase A) or + 1 (phase B) with intermediate values occurring during

phase transition. x axis denotes spatial location, t axis denotes time since phase separation

began.

5.2. Effect of sampling parameters on parameter selection and

ensemble loss

The relationship between concentration factor and sampling density is

depicted for three values of c in Fig. 8a-c. It is seen that a small concentration

factor deemphasizes the loss value when sampling (α,β) and leads to samples

being taken all over the loss landscape, including from high-loss regions. This

corresponds to a large distance between points, as well as a large distance

from each point to the nearest trained PINN, as shown in Fig. 8d. Conversely,

as c is increased, the peaks of the PDF near the trained models grows

exponentially taller according to (8) and the sampled (α,β) move closer to the

loss minima generated by the trained PINNs. As c→∞, the sampled models will

grow increasingly closer to the trained models, as quantified in Fig. 8d.

To simultaneously observe the relationship between c, N, and L , the

ensemble’s average loss is evaluated on a grid of (c,N) points and visualized in

Fig. 9. Relatively high loss values are observed for low concentration factors

and model counts, shown by the blue region in the

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

304

Fig. 6. Training and validation loss curves for: a) f1, b) f2, and c) f3 showing that each conventionally trained PINN converged during training.

lower left corner. While increasing N generally reduces the ensemble loss, a low concentration factor consistently degrades ensemble performance, as

prominently observed in the small blue region between N = 20 and N = 40 on the left

axis where c is small. This evidence suggests

Fig. 7. Loss

landscape near θ1
∗, θ2

∗, and θ3
∗
 evaluated on an (α,β) grid. The height and corresponding color

denote the average loss value of the resulting PINN at each (α,β) point. The deep craters shown in

dark red represent the three trained models, with f1 at (0,0), f2 at (1,0) and f3 at approximately (0.6,

1.

Fig. 9. Loss value as a function of concentration factor and number of models sampled for

ensemble.

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

305

Fig. 8. Effect of concentration factor on PINN parameter sampling shown at a) c = 1, b) c = 105, and c) c = 1017. Depicted in d) is average distance of sampled points to nearest conventionally

trained model and to all other points over range of c; shading indicates one standard deviation.

the theoretical inverse relationship between c and L holds in practice. For

the given search space, the loss minimum occurs at (c = 2 ×1016, N

= 80), where L = 0.014025. These ensembling parameters are used to

produce the ideal ensemble solution for comparison to the singleton PINN.

5.3. Comparison of predicted PDE solutions

Predicted PDE solutions and error maps for a common validation dataset

are shown in Fig. 10 for f1, which exhibited the lowest post- training validation

loss, and the PINN ensemble with optimal c and N as identified above. Visual

inspection indicates that the ensemble has better error homogeneity than the

singleton as shown by the reduced number of error hot spots in the solution

space and decreased intensity of coloration in these regions. Furthermore,

there is less error “waviness” in the ensemble solution, especially for t < 0.8

and x ∈ [− 0.5, 0.5]. This leads to more stable predictions and error estimates

in this region compared to the single model.

While the ensemble generally outperforms the singleton in terms of error

presence and intensity, both approaches yield high error at x

= ± 0.5 for t > 0.8, which is where the PDE solution becomes “sharp” as

depicted in Fig. 5. This inability to accurately model sharp regions of PDEs is a

well-documented shortcoming of PINNs and is inherited by the ensemble [59].

This behavior is believed to be caused by inadequately fine sampling along

steep gradients of the PDE solution, which impedes the network’s ability to

accurately reconstruct such regions. As such, the error hot spots in the sharp

regions of the PDE solution may be mitigated through the use of adaptive

sampling methods when training the ensemble PINNs, such as residual-based

adaptive refinement wherein sharp regions of the PDE solution are

automatically detected via their loss values and subsequently oversampled to

improve PINN performance in these regions [60,61].

The average prediction loss and loss standard deviation agrees with visual

inspection. As depicted in Table 1, the ensemble prediction has 62.7% lower

loss and 29.6% lower loss standard deviation than the single model, indicating

that the ensemble is both more accurate than the singleton and has greater

error homogeneity. An analysis of the ensemble follows in the subsequent

section to better understand the source of these performance improvements.

To observe the robustness of the proposed method’s stochastic parameter

selection for the ensemble’s PINN members, 100 ensembles are sampled

independently from the loss landscape defined in Fig. 7 using the proposed

loss landscape sampling technique with c and N
Table 1
Error comparison between singleton PINN and PINN ensemble.

Model Average Error (L) Error Std. Deviation (ξ)

Single PINN 0.0379 0.0287

PINN Ensemble 0.0141 0.0202

Absolute Difference -0.0238 -0.0085
Relative Difference -62.7% -29.6%

parameters as identified in Fig. 9 and assessed on the PDE solution domain.

The distributions of average error, L , and error standard deviation, ξ, are

shown in Fig. 11 along with the global means of each parameter across the 100

ensembles.

Fig. 11. Histograms of ensemble average errors and error standard deviations for 100

ensembles sampled from loss surface defined by θ1
∗, θ2

∗, and θ3
∗with c = 2 × 1016 and N =

80. The green line plot depicts the cumulative probability of sampling an ensemble with

an L or ξ value (X) lower than the corresponding value along the horizontal axis. As

shown by the cumulative probability, there is a 62% chance that an ensemble will have a

below-average L and a 76% chance that an ensemble will have a below-average ξ.

Both distributions are approximately centered about their means as

evidenced by the clear peaks located near the vertical black lines. Additionally,

both distributions are light-tailed as well, with less than a

1% chance of sampling an ensemble with L or ξ more than + 3 standard

deviations from the mean. The means themselves are in good agreement with

the results shown in Table 1. The L global mean is observed to be 0.0153, which

is 8.5% higher than single ensemble’s L of 0.0141. Meanwhile the ξ global

mean is observed to be 0.0205, or 1.4% higher than the single ensemble’s ξ.

These discrepancies are to be expected since, as evidenced by the cumulative

probabilities shown in green, there is a greater than 60% chance that an

ensemble drawn at random will have a below-average error or standard

Fig. 10. Error comparison of single PINN and PINN ensemble solving Allen-Cahn equation specified in (12).

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

306

deviation. Overall, these results suggest the ensemble member sampling

procedure is probabilistically unlikely to yield detrimental outliers and instead

prefers models with L and ξ at or below the global means of these metrics.

5.4. Ensemble member error map correlation

Average pairwise correlations of the ensemble member error maps are

plotted as a histogram in Fig. 12. As desired in (10), the mean correlation is far

from unity, at 0.06, indicating that the models do not reinforce one another’s

error and, when aggregated, tend towards zero error heterogeneity.

Additionally, the maximum pairwise correlation is only 0.24, indicating very

little error reinforcement in even the worse- case scenario amongst the

sampled models. 15 of the 80 models (18.8%) have negative average pairwise

correlations, indicating error correction capabilities via error map

anticorrelation.

Overall, the small pairwise correlations of the ensemble members support

the reduction in mean loss and loss standard deviation. It should be noted that

the experimental error standard deviation (71% of single PINN) does not match

the theoretical error standard deviation based on the average pairwise

correlation (6% of single PINN). This is likely because (10) assumes

independent PINNs whereas the PINNs used in this study are not independent

due to the clustered sampling procedure used, which preferred models nearer

the trained PINNs. Further investigation of this relationship is identified as a

promising area for future work in fast neural network ensembling.

6. Conclusions

The presented study aims to fill an existing research gap for solving PDEs in

manufacturing using PINNs: heterogenous error distributions over the PDE

solution space. By leveraging the mathematical properties of ensembling, an

efficient ensembling scheme and model parameter sampling procedure have

been developed to homogenize PINN prediction errors while also reducing the

mean error across the solution space. At the cost of only three trained models,

unique PINNs have been generated to form an ensemble, and the expected

error of which is controlled by the concentration factor of the loss surface-

derived PDF.

It is shown that the expected reduction in error variance is inversely

proportional to the average pairwise correlation between ensemble member

outputs. Verification of the method using the Allen-Cahn PDE shows strong

error homogenization and reduction capabilities, which reduced error

standard deviation by 29.6% and average error by 62.7%. This is due to near-

zero average pairwise correlation within the 80-member ensemble used for

prediction, which leads to increased homogeneity of the ensemble error

compared to a singleton PINN. Further, the ensemble is built using only 15 min

of model train time (3 trained models), compared to 400 min if conventional

ensembling is used (80 trained models), representing a 96% reduction in the

computational time.

The key findings of this study are summarized as:

1) The error hot-spot phenomenon exhibited by singleton PINNs has been

effectively reduced through aggregative ensembling. Specifically, the

average error and error standard deviation have shown to be reduced by

62.7% and 29.6%, respectively, by a PINN ensemble as compared to a single

conventionally trained PINN.

2) Loss landscape sampling of PINN parameters is an effective and

computationally efficient replacement for conventional PINN training, with

the ensemble formation time being reduced by 96% in this study when

compared to conventional network training.

3) The developed inverse error-weighted parameter sampling and model

aggregation methods enable the ensemble error to be controlled during

the ensemble formation process. This control been demonstrated by

observing the relationship between ensemble error, concentration factor,

and the number of ensemble members sampled.

These findings are envisioned to help improve the trustworthiness and

feasibility of PINNs as a modeling tool for manufacturing processes and

systems that are characterized by the increasingly interconnected operations.

By improving the prediction error homogeneity as evidenced by the

ensemble’s reduced error standard deviation and increasing prediction

accuracy, more reliable modeling predictions with greater stability in each of

the spatiotemporal directions can be expected. Such increased model

reliability contributes to greater confidence in the modeling outcome, more

robust production forecasts, and reduced waste of material and human capital

arising from the unexpected machine downtime and related noncompliant

quality issues.

Given the broad applicability of PDEs in manufacturing systems,

which encompasses topics ranging from material flow to machining, heat

treatment, finishing, inspection, and shipping, the developed model ensemble

method is envisioned to especially benefit the communities consisting of

diverse small- and medium-sized manufacturers (SMMs) where each of the

SMMs is specialized in a particular manufacturing process. The result is a

unified modeling solution across the spectrum of diverse manufacturing

processes that fosters collaboration across SMMs to collectively improve

material and energy efficiencies and optimize operation in a coordinated,

global manner. The synergy will enhance SMMs’ productivity and promote the

development of smart and connected communities in which they reside,

promoting continued growth and sustainability.

Future research will adapt the ensembling method to reduce prediction

error in the sharp regions of the PDE solution using location- aware

aggregation methods. Research will also be undertaken to better characterize

Fig. 12. Average inter-model prediction error correlation for ensemble of 80 PINNs sampled from loss landscape.

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

307

the effect of experimental observations on the ensemble accuracy and

homogenization capacity. The root causes of the PINN error hot spots outside

of the sharp PDE regions will also be comprehensively investigated from

theoretical and experimental perspectives such that improved PINN training

procedures can be developed and the hot spots can be avoided altogether.

Finally, acceleration of the PINN training procedure will be investigated so that

the initial model training cost is reduced.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests

or personal relationships that could have appeared to influence the work

reported in this paper.

Acknowledgments

C. Cooper acknowledges support from the National Science Foundation

(NSF) Graduate Research Fellowship under grant No. 1937968. R. Gao and J.

Zhang acknowledge support for this research by the NSF under grant No. CNS-

2125460, CMMI-2040288, and the NSF Engineering Research Center (ERC,

HAMMER) under grant No. EEC- 2133630.

References

[1] Xu X, Lu Y, Vogel-Heuser B, Wang L. Industry 4.0 and Industry 5.0—Inception, conception

and perception. J Manuf Syst 2021;vol. 61:530–5. https://doi.org/

10.1016/j.jmsy.2021.10.006.
[2] Leng J, Wang D, Shen W, Li X, Liu Q, Chen X. Digital twins-based smart manufacturing

system design in Industry 4.0: a review. J Manuf Syst 2021;vol. 60: 119–37.

https://doi.org/10.1016/j.jmsy.2021.05.011.
[3] Van Den Berg R, Lefeber E, Rooda K. Modeling and control of a manufacturing flow line

using partial differential equations. IEEE Trans Contr Syst Technol 2008;vol.
16(1):130–6. https://doi.org/10.1109/TCST.2007.903085.

[4] Sahoo S, Lo C-Y. Smart manufacturing powered by recent technological advancements: a

review. J Manuf Syst . 2022;vol. 64:236–50. https://doi.org/ 10.1016/j.jmsy.2022.06.008.
[5] Shojaeinasab A, et al. Intelligent manufacturing execution systems: a systematic review. J

Manuf Syst . 2022;vol. 62:503–22. https://doi.org/10.1016/j. jmsy.2022.01.004.
[6] Knapp GL, Coleman J, Rolchigo M, Stoyanov M, Plotkowski A. Calibrating uncertain

parameters in melt pool simulations of additive manufacturing. Comput Mater Sci

2023;vol. 218:111904. https://doi.org/10.1016/j.
commatsci.2022.111904.

[7] Liao S, Golgoon A, Mozaffar M, Cao J. Efficient GPU-accelerated thermomechanical solver

for residual stress prediction in additive manufacturing. Comput Mech 2023.

https://doi.org/10.1007/s00466-023-02273-3.
[8] Gawade V, Singh V, Guo W “Grace”. Leveraging simulated and empirical data- driven

insight to supervised-learning for porosity prediction in laser metal deposition. J Manuf

Syst 2022;vol. 62:875–85. https://doi.org/10.1016/j.
jmsy.2021.07.013.

[9] Michopoulos JG, Iliopoulos AP, Steuben JC, Birnbaum AJ, Lambrakos SG. On the

multiphysics modeling challenges for metal additive manufacturing processes. Addit

Manuf 2018;vol. 22:784–99. https://doi.org/10.1016/j.addma.2018.06.019.
[10] Guo S, et al. Machine learning for metal additive manufacturing: towards a physics-

informed data-driven paradigm. J Manuf Syst . 2022;vol. 62:145–63. https://doi.

org/10.1016/j.jmsy.2021.11.003.
[11] Hu S, Li X, He H, Cui S, Parashar M. Big data for cyber-physical systems. IEEE Trans Big Data

2020;vol. 6(4):606–8. https://doi.org/10.1109/TBDATA.2020.3033101.
[12] Wang Z, Li Y, Yu T, Zhao J, Wen PH. Prediction of 3D grinding temperature field based on

meshless method considering infinite element. Int J Adv Manuf Technol 2019;vol. 100(9–

12):3067–84. https://doi.org/10.1007/s00170-018-2801-4.
[13] Armbruster D. The production planning problem: clearing functions, variable lead times,

delay equations and partial differential equations. In: Armbruster D, Kempf KG, editors.

Decision policies for production networks. London: Springer London; 2012. p. 289–302.

https://doi.org/10.1007/978-0-85729-644-3_12.
[14] Wang J, Ma Y, Zhang L, Gao RX, Wu D. Deep learning for smart manufacturing: methods

and applications. J Manuf Syst . 2018;vol. 48:144–56. https://doi.org/

10.1016/j.jmsy.2018.01.003.
[15] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;vol. 521(7553):436–44.

https://doi.org/10.1038/nature14539.
[16] Berner J, Grohs P, Kutyniok G, Petersen P. The modern mathematics of deep learning. First

ed.. In: Grohs, Kutyniok G, editors. Mathematical aspects of deep learning. Cambridge

University Press; 2022. p. 1–111. https://doi.org/10.1017/
9781009025096.002. 1st ed

[17] Gao RX, Wang L, Helu M, Teti R. Big data analytics for smart factories of the future.
CIRP Ann 2020:1–25. https://doi.org/10.1016/j.cirp.2020.05.002.

[18] Ding H, Gao RX, Isaksson AJ, Landers RG, Parisini T, Yuan Y. State of AI-based monitoring in

smart manufacturing and introduction to focused section. IEEE/ ASME Trans Mechatron

2020;vol. 25(5):2143–54. https://doi.org/10.1109/ TMECH.2020.3022983.
[19] Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial Intelligence in advanced

manufacturing: current status and future outlook. J Manuf Sci Eng 2020;vol. 142

(11):110804. https://doi.org/10.1115/1.4047855.
[20] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. hysics-informed machine

learning. Nat Rev Phys 2021;vol. 3(6):422–40. https://doi.org/10.1038/ s42254-021-

00314-5.
[21] DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-19 detection selects shortcuts

over signal. Nat Mach Intell 2021. https://doi.org/10.1038/s42256-021- 00338-7.
[22] Goodman B, Flaxman S. European union regulations on algorithmic decision- making and

a ‘Right to explanation. AI Mag 2017;vol. 38(3):50–7.
[23] European Commission, 2021. Proposal for a regulation of the European Parliament and of

the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence

Act) and amending certain union legislative acts. 2021.
[24] Ahmed I, Jeon G, Piccialli F. From artificial intelligence to explainable artificial intelligence

in industry 4.0: a survey on what, how, and where. IEEE Trans Ind Inf 2022.

https://doi.org/10.1109/TII.2022.3146552. pp. 1–1.
[25] Cooper C, Zhang J, Huang J, Bennett J, Cao J, Gao RX. Tensile strength prediction in directed

energy deposition through physics-informed machine learning and Shapley additive

explanations. J Mater Process Technol 2023;vol. 315:117908.

https://doi.org/10.1016/j.jmatprotec.2023.117908.
[26] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep learning

framework for solving forward and inverse problems involving nonlinear partial

differential equations. J Comput Phys . 2019;vol. 378:686–707. https://doi.
org/10.1016/j.jcp.2018.10.045.

[27] S. Cuomo, V.S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, 2022. Scientific

Machine Learning through Physics-Informed Neural Networks: Where we are and What’s

next. arXiv, Jun. 07, 2022. Accessed: Nov. 17, 2022. [Online].
Available: 〈http://arxiv.org/abs/2201.05624〉.

[28] Wang Y, Wang K, Cai W, Yue X. NP-ODE: neural process aided ordinary differential

equations for uncertainty quantification of finite element analysis. IISE Trans 2021; vol.

54(3):211–26. https://doi.org/10.1080/24725854.2021.1891485.
[29] D.W. Abueidda, S. Koric, E. Guleryuz, and N.A. Sobh, 2022. “Enhanced physics- informed

neural networks for hyperelasticity.” arXiv, May 24, 2022. Accessed: Jun.
07, 2022. [Online]. Available: 〈http://arxiv.org/abs/2205.14148〉.

[30] D. Anton and H. Wessels, 2023. “Physics-Informed Neural Networks for Material Model

Calibration from Full-Field Displacement Data.” arXiv, Dec. 15, 2022.
Accessed: Jan. 11, 2023. [Online]. Available: 〈http://arxiv.org/abs/2212.07723〉.

[31] Chen W, Wang Q, Hesthaven JS, Zhang C. Physics-informed machine learning for reduced-

order modeling of nonlinear problems. J Comput Phys 2021;vol. 446:
110666. https://doi.org/10.1016/j.jcp.2021.110666.

[32] Liao S, Xue T, Jeong J, Webster S, Ehmann K, Cao J. Hybrid thermal modeling of additive

manufacturing processes using physics-informed neural networks for temperature

prediction and parameter identification. Comput Mech 2023. https://

doi.org/10.1007/s00466-022-02257-9.
[33] S. Basir, 2002. “Investigating and Mitigating Failure Modes in Physics-informed Neural

Networks (PINNs).” arXiv, Sep. 20, 2022. Accessed: Sep. 27, 2022.
[Online]. Available: 〈http://arxiv.org/abs/2209.09988〉.

[34] A.S. Krishnapriyan, A. Gholami, S. Zhe, R.M. Kirby, and M.W. Mahoney, 2022.

“Characterizing possible failure modes in physics-informed neural networks.” arXiv, Nov.

11, 2021. Accessed: Dec. 07, 2022. [Online]. Available: 〈http://arxiv.
org/abs/2109.01050〉.

[35] Breiman L. Bagging predictors. Mach Learn 1996;vol. 24(2):123–40. https://doi.

org/10.1007/BF00058655.
[36] J. Nixon, D. Tran, and B. Lakshminarayanan, 2020. “Why Aren’t Bootstrapped Neural

Networks Better?,” in Proceedings of NeurIPS 2020, Vancouver, BC, Canada, 2020.
[37] Z. Fang, S. Wang, and P. Perdikaris, 2023. “Ensemble learning for Physics Informed Neural

Networks: a Gradient Boosting approach.” arXiv, Feb. 25, 2023. Accessed: Mar. 02, 2023.

[Online]. Available: 〈http://arxiv.org/abs/2302.13143〉.
[38] “Additional Casting Methods,” Kovatch Castings Knowledge Base, Mar. 2019. 〈htt

ps://www.kovatchcastings.com/knowledge-base/additional-casting-methods/〉

(accessed Jun. 27, 2023).
[39] S. Fuˇcík and A. Kufner, 1980. Nonlinear differential equations. in Studies in applied

mechanics, no. 2. Amsterdam; New York: New York: Elsevier Scientific Pub. Co.;

distribution for the USA and Canada, Elsevier/North-Holland, 1980.
[40] Rojas R. The Backpropagation Algorithm. Neural Networks. Berlin, Heidelberg: Springer

Berlin Heidelberg,; 1996. p. 149–82. https://doi.org/10.1007/978-3-642- 61068-4_7.
[41] P.A. Cioica-Licht, M. Hutzenthaler, and P.T. Werner, 2022. “Deep neural networks overcome

the curse of dimensionality in the numerical approximation of semilinear partial

differential equations.” arXiv, May 28, 2022. Accessed: Jun. 07, 2022.
[Online]. Available: 〈http://arxiv.org/abs/2205.14398〉.

[42] Bartholomew-Biggs M, Brown S, Christianson B, Dixon L. Automatic differentiation of

algorithms. J Comput Appl Math . 2000;vol. 124(1–2):171–90. https://doi.org/

10.1016/S0377-0427(00)00422-2.

[43] Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic differentiation in machine

learning: a survey. J Mach Learn Res 2018;vol. 18(153):1–43.
[44] Sharma P, Chung WT, Akoush B, Ihme M. A review of physics-informed machine learning

in fluid mechanics. Energies . 2023;vol. 16(5):2343. https://doi.org/ 10.3390/en16052343.

https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1109/TCST.2007.903085
https://doi.org/10.1016/j.jmsy.2022.06.008
https://doi.org/10.1016/j.jmsy.2022.06.008
https://doi.org/10.1016/j.jmsy.2022.06.008
https://doi.org/10.1016/j.jmsy.2022.01.004
https://doi.org/10.1016/j.jmsy.2022.01.004
https://doi.org/10.1016/j.commatsci.2022.111904
https://doi.org/10.1016/j.commatsci.2022.111904
https://doi.org/10.1016/j.commatsci.2022.111904
https://doi.org/10.1007/s00466-023-02273-3
https://doi.org/10.1007/s00466-023-02273-3
https://doi.org/10.1016/j.jmsy.2021.07.013
https://doi.org/10.1016/j.jmsy.2021.07.013
https://doi.org/10.1016/j.addma.2018.06.019
https://doi.org/10.1016/j.addma.2018.06.019
https://doi.org/10.1016/j.jmsy.2021.11.003
https://doi.org/10.1016/j.jmsy.2021.11.003
https://doi.org/10.1016/j.jmsy.2021.11.003
https://doi.org/10.1016/j.jmsy.2021.11.003
https://doi.org/10.1109/TBDATA.2020.3033101
https://doi.org/10.1007/s00170-018-2801-4
https://doi.org/10.1007/978-0-85729-644-3_12
https://doi.org/10.1007/978-0-85729-644-3_12
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1038/nature14539
https://doi.org/10.1017/9781009025096.002
https://doi.org/10.1017/9781009025096.002
https://doi.org/10.1017/9781009025096.002
https://doi.org/10.1016/j.cirp.2020.05.002
https://doi.org/10.1109/TMECH.2020.3022983
https://doi.org/10.1109/TMECH.2020.3022983
https://doi.org/10.1109/TMECH.2020.3022983
https://doi.org/10.1115/1.4047855
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42256-021-00338-7
https://doi.org/10.1038/s42256-021-00338-7
https://doi.org/10.1038/s42256-021-00338-7
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref22
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref22
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref22
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref22
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref22
https://doi.org/10.1109/TII.2022.3146552
https://doi.org/10.1109/TII.2022.3146552
https://doi.org/10.1016/j.jmatprotec.2023.117908
https://doi.org/10.1016/j.jmatprotec.2023.117908
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2201.05624
https://doi.org/10.1080/24725854.2021.1891485
http://arxiv.org/abs/2205.14148
http://arxiv.org/abs/2205.14148
http://arxiv.org/abs/2205.14148
http://arxiv.org/abs/2205.14148
http://arxiv.org/abs/2212.07723
http://arxiv.org/abs/2212.07723
http://arxiv.org/abs/2212.07723
http://arxiv.org/abs/2212.07723
https://doi.org/10.1016/j.jcp.2021.110666
https://doi.org/10.1016/j.jcp.2021.110666
https://doi.org/10.1007/s00466-022-02257-9
https://doi.org/10.1007/s00466-022-02257-9
http://arxiv.org/abs/2209.09988
http://arxiv.org/abs/2209.09988
http://arxiv.org/abs/2209.09988
http://arxiv.org/abs/2209.09988
http://arxiv.org/abs/2109.01050
http://arxiv.org/abs/2109.01050
http://arxiv.org/abs/2109.01050
http://arxiv.org/abs/2109.01050
http://arxiv.org/abs/2109.01050
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
http://arxiv.org/abs/2302.13143
http://arxiv.org/abs/2302.13143
http://arxiv.org/abs/2302.13143
http://arxiv.org/abs/2302.13143
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://www.kovatchcastings.com/knowledge-base/additional-casting-methods/
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1007/978-3-642-61068-4_7
http://arxiv.org/abs/2205.14398
http://arxiv.org/abs/2205.14398
http://arxiv.org/abs/2205.14398
http://arxiv.org/abs/2205.14398
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
http://refhub.elsevier.com/S0278-6125(23)00195-4/sbref32
https://doi.org/10.3390/en16052343
https://doi.org/10.3390/en16052343
https://doi.org/10.3390/en16052343

C. Cooper et al. Journal of Manufacturing Systems 71 (2023) 298–308

308

[45] Fernandez de la Mata F, Gij´ on A, Molina-Solana M, G´ omez-Romero J. Physics- ´

informed neural networks for data-driven simulation: advantages, limitations, and

opportunities. Phys A: Stat Mech Appl 2023;vol. 610:128415. https://doi.org/

10.1016/j.physa.2022.128415.
[46] T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, and A.G. Wilson, 2023. “Loss

Surfaces, Mode Connectivity, and Fast Ensembling of DNNs.” arXiv, Oct. 30, 2018.

Accessed: Jan. 11, 2023. [Online]. Available: 〈http://arxiv.org/abs/1802.10026〉. [47] B. Everitt

and A. Skrondal, 2021. The Cambridge dictionary of statistics. 2010. Accessed: Dec. 08, 2021.

[Online]. Available: 〈http://www.books24×7.com/marc.
asp?bookid=36106〉.

[48] Schmelling M. Averaging correlated data. Phys Scr . 1995;vol. 51(6):676–9.

https://doi.org/10.1088/0031-8949/51/6/002.
[49] U.S , 2019. Metalcasting Industry Impact on U.S. Jobs & The Economy - Economic Impact

Table,” American Foundry Society, 2019.
[50] U.S , 2019. Metalcasting Industry Impact on U.S. Jobs & The Economy - Economic Impact

Report,” American Foundry Society, 2019.
[51] Olson GB. Computational design of hierarchically structured materials. Science .

1997;vol. 277(5330):1237–42. https://doi.org/10.1126/science.277.5330.1237.
[52] Zhao M-C, Liu M, Song GL, Atrens A. Influence of microstructure on corrosion of As-cast

ZE41. Adv Eng Mater . 2008;vol. 10(1–2):104–11. https://doi.org/

10.1002/adem.200700246.
[53] R.W. Armstrong, “Hall-Petch Relationship: Use in Characterizing Properties of Aluminum

and Aluminum Alloys,” p. 30.
[54] Hussain S, Shah A, Ayub S, Ullah A. An approximate analytical solution of the Allen-Cahn

equation using homotopy perturbation method and homotopy analysis method. Heliyon

2019;vol. 5(12):e03060. https://doi.org/10.1016/j.
heliyon.2019.e03060.

[55] Nils Berglund, 2023. “Tool to create videos of particles or waves in different 2D domains.”

Apr. 30, 2023. Accessed: Jun. 27, 2023. [Online]. Available: 〈htt

ps://github.com/nilsberglund-orleans/YouTube-simulations〉.
[56] Platte RB, Trefethen LN. Chebfun: a new kind of numerical computing,” in progress in

industrial mathematics at ECMI 2008. In: Fitt AD, Norbury J, Ockendon H,
Wilson E, editors. in Mathematics in Industry, vol. 15. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2010. p. 69–87. https://doi.org/10.1007/978-3-642-12110-4_5.
[57] Stein M. Large sample properties of simulations using latin hypercube sampling.

Technometrics 1987;vol. 29(2):143–51. https://doi.org/10.1080/

00401706.1987.10488205.
[58] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P.T.P. Tang, 2021. “On Large-

Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” Feb. 09, 2017.

Accessed: Jun. 14, 2021. [Online]. Available: 〈http://arxiv. org/abs/1609.04836〉.
[59] Mao Z, Jagtap AD, Karniadakis GE. Physics-informed neural networks for high- speed flows.

Comput Methods Appl Mech Eng 2020;vol. 360:112789. https://doi.

org/10.1016/j.cma.2019.112789.
[60] Z. Mao and X. Meng, 2023. “Physics-informed neural networks with residual/ gradient-

based adaptive sampling methods for solving PDEs with sharp solutions.” arXiv, Feb. 15,

2023. Accessed: Feb. 23, 2023. [Online]. Available: 〈http://arxiv. org/abs/2302.08035〉

.
[61] Lu L, Meng X, Mao Z, Karniadakis GE. DeepXDE: a deep learning library for solving

differential equations. SIAM Rev 2021;vol. 63(1):208–28. https://doi.org/

10.1137/19M1274067.

https://doi.org/10.1016/j.physa.2022.128415
https://doi.org/10.1016/j.physa.2022.128415
https://doi.org/10.1016/j.physa.2022.128415
http://arxiv.org/abs/1802.10026
http://arxiv.org/abs/1802.10026
http://arxiv.org/abs/1802.10026
http://arxiv.org/abs/1802.10026
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
http://www.books24x7.com/marc.asp?bookid=36106
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1126/science.277.5330.1237
https://doi.org/10.1126/science.277.5330.1237
https://doi.org/10.1002/adem.200700246
https://doi.org/10.1002/adem.200700246
https://doi.org/10.1002/adem.200700246
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1016/j.heliyon.2019.e03060
https://github.com/nilsberglund-orleans/YouTube-simulations
https://github.com/nilsberglund-orleans/YouTube-simulations
https://github.com/nilsberglund-orleans/YouTube-simulations
https://github.com/nilsberglund-orleans/YouTube-simulations
https://github.com/nilsberglund-orleans/YouTube-simulations
https://doi.org/10.1007/978-3-642-12110-4_5
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
http://arxiv.org/abs/2302.08035
http://arxiv.org/abs/2302.08035
http://arxiv.org/abs/2302.08035
http://arxiv.org/abs/2302.08035
http://arxiv.org/abs/2302.08035
http://arxiv.org/abs/2302.08035
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067

