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ARTICLEINFO ABSTRACT

Keywords: Physics-informed neural networks (PINNs) have demonstrated effectiveness in solving partial differential equations (PDEs)
Physics-informed neural network associated with manufacturing scenarios, due to their physically interpretable training logic. One limitation has been that PINNs
Ensemble

often exhibit heterogenous error maps and high-error “hot spots” throughout the solution domain, which reduce not only the
solutions’ accuracy but also their overall consistency with the physical laws. This study addresses this limitation by presenting
an efficient and error-aware PINN ensembling technique for error homogenization in solving manufacturing problems.
Specifically, a PINN is first established by constraining its training process through a manufacturing specific PDE and
corresponding boundary conditions to ensure physical consistency. Next, the loss landscape in the neighborhood of three
PINNs trained with varying network parameter initialization is sampled to generate a PINN ensemble. Finally, the outputs of
the ensemble members are combined through an inverse error-weighted average to yield the prediction of the PDE solution.
Evaluation using the Allen-Cahn PDE, which describes phase separation in the solidification of metallic alloys, shows that the
developed method reduces the average prediction error by 63% and error standard deviation by 30% across the solution space,
demonstrating its effectiveness for PINN error reduction and homogenization. Additionally, the method has also demonstrated

Partial differential equation
Error homogenization Allen-Cahn
equation

96% reduction in the computational time as compared to conventional ensembling methods.

1. Introduction

To facilitate digitization as an essential element of the cyber-physical
manufacturing systems, accurate and robust solution of partial differential
equations (PDEs) that govern manufacturing systems and processes such as
heat transfer, chemical diffusion, and material flow, etc., has attracted
increasing attention [1-3]. Representative PDEs shown in Fig. 1 illustrate the
broad applicability of PDEs on shop floors, as well as how the prediction of
upstream PDE solutions cascades into subsequent processes and the final
product throughout the manufacturing system. This implies that ensuring
accurate solution of PDEs at each of the production steps can lead to reduced
error propagation in the entire system, more robust production planning, a
priori identification of noncompliant product and production bottlenecks,
simultaneous optimization of product quality and production time, and,

connection to the underlying process physics [6, 7]. However, these benefits
come at the cost of a generally high computational complexity as additional
dimensions or nodes are considered, inability in handling real-world process
disturbances, and spatiotemporal resolution constrained by the meshing
scheme and/or element size [8,9]. Concurrent with the rise of industrial big
data and increased computing power, data-driven approaches to solving PDEs
have been investigated to overcome these drawbacks [10, 11].

Data-driven modeling refers to the adaptive learning of input-output
relationships using system observations through neural networks and/or other
methods [14,15]. Compared to analytical methods, data-driven methods have
several advantages. First, they have lower computational complexity as a
function of the dimensionality and number of nodes when compared to the
typically exponential growth of analytical solutions. This makes them an
attractive choice for solving higher-dimensional PDEs where a high resolution
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ultimately, avoidance of facility-wide operational disruptions caused by part
rework [4]. Given this motivation, recent scientific literature has shown a
variety of PDE modeling approaches that support new manufacturing
paradigms such as digital twinning [5].

Standard PDE solution methods rely on analytical or numerical techniques
such as finite element analysis (FEA) and computational fluid dynamics (CFD),
which exhibit good agreement with experimental observations and a robust
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is desired [16].

Second, due to their mesh-free nature, data-driven models enable unique
inference at all points of the PDE solution domain rather than being
constrained to a grid of simulation nodes and the associated interpolation
between them. This allows data-driven methods to predict future PDE behavior
without simulating all time steps up to the time of interest. Third, data-driven
models can consider process disturbances as model input and learn to express
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the effects of disturbances in the model output, making them responsive to
real-world manufacturing scenarios.

Numerous studies on data-driven techniques have been conducted in
recent years, demonstrating their success in manufacturing contexts [17-19].
Nonetheless, one limitation of these techniques is the general lack of
compliance with physical domain laws. This is because neither their training
processes nor prediction logic (e.g., forward computation in a neural network)
is constrained by physics, which leads to the possibility of incorrect predictions
outside of the training data range arising from spurious prediction logic
obtained during training [20]. A recent example is illustrated in [21], wherein a
data-driven COVID-19 detection algorithm learned to predict infection based
on benign geometric features of chest radiographs rather than lung tissue
damage, resulting in poor performance on never-before-seen data and
potentially compromised diagnostic outcomes. Issues such as these are
becoming increasingly relevant given that explainable artificial intelligence,
which encapsulates data-driven modeling, has been codified in law [22,23], and
is becoming commonplace within scientific literature in order to verify
prediction logic and synthesize new knowledge about the systems being
characterized [24,25]. In order for data-driven methods to be accepted by the
manufacturing community as trustworthy, it must be assured that domain
knowledge is respected in the solutions provided by data-driven models.

A promising approach to enforcing domain knowledge in PDE solutions is
the physics-informed neural network (PINN) [26]. Initially developed to solve
nonlinear PDEs, PINNs penalize network predictions that violate constraints on
the PDE and correspondingly guide the training procedure towards model
parameters which minimize deviation between PDE constraints and PINN
output. This physically interpretable training logic of PINNs has demonstrated
success in solving PDEs and is gaining traction in the manufacturing community
as a reliable tool for physics-driven modeling [27]. Although competing
machine learning-based methods of solving PDEs have been published, they
lack either explicit connection to the PDE physics or require training data which
may not be available. For example, neural process (NP) has been proposed for
PDE modeling given its high modeling accuracy and built-in uncertainty
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case due to, e.g., high computational cost of simulation, difficulty in observing
the phenomenon of interest (such as alloy solidification in casting operations
as discussed in this study), or the phenomenon of interest occurring
infrequently and yielding little data for training. In comparison, such data
availability issues do not apply to PINNs since PINNs model known system
dynamics based on a priori physical understanding, with or without additional
system observations.

PINN-based PDE solutions include the modeling of hyperelastic stress,
which dictates the fabrication of elastomers and biological tissues, with 0.09 Pa
root mean squared error as compared to 0.18 Pa using a non-PINN method
[29]. A PINN was used to identify material parameters, including Young’s
modulus and Poisson’s ratio, for a structural health monitoring application
based on material deformation PDEs, which successfully identified the
parameters of interest within 1% error [30]. Meanwhile Chen et al. successfully
predicted natural convection temperature evolution using a PINN with less
than 0.1% error, with implications for heat treatment prediction as well as
chemical processing in manufacturing [31]. Liao et al. modeled the
temperature evolution of an additively manufactured part using a PINN and
observed 47 K root mean squared error as compared to experimental data [32].

While the PINNs from these studies exhibit good average error over the
solution space, it has also been observed that these PINNs exhibit regions of
high local error, or “hot spots,” throughout the solution domain [32-34]. This
means that moving a small distance away from the solution point in a space or
time may cause large changes in the error magnitude and thus reflects an
unstable model output that diminishes user confidence in the PINN
predictions. Often underreported in literature, such instability is also difficult
to compensate for using typical error correction techniques such as
spatiotemporally-aware bias terms. As such, PINNs remain prone to
heterogenous error distributions and methods of alleviating the error hot spots
are needed.

A promising method of accomplishing this homogenization is ensembling
methods such as model averaging reduce the prediction variance (a proxy
measure of error heterogeneity) and, for nonlinear models, the average error
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Fig. 1. Common partial differential equations in a CPS where solution accuracy of each process affects error propagation throughout the system and the final product. PDEs selected from

[3,12,13].

quantification [28]. This approach is useful in situations wherein simulated or
experimental data is available to train the NP encoder and decoder to
accurately model the system under study. However, this may not always be the

[35,36]. However, training a set of individual neural networks to achieve
ensembling benefits can be computationally expensive, as neural networks
often require several minutes, hours, or days to train [37]. The presented study
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is motivated by this observation and proposes an efficient ensemble-based
method of PINN error homogenization. Specifically, three PINNs are first
trained to define a loss landscape, from which new PINNs are sampled rather
than trained from scratch. A sampling procedure is then defined based on the
loss landscape to allow for the control of anticipated ensemble member error,
and correspondingly, the accuracy of the ensemble as a whole. The PDE
solution prediction is subsequently found as a weighted average of ensemble
member outputs, with the weights being inversely proportional to each
member’s loss. The expected reduction in the error heterogeneity is shown to
be dependent on the average pairwise correlation between ensemble member
outputs. An overview of the proposed method is shown in Fig. 2.
The presented study has made the following contributions:

1

Established an efficient ensembling method for PINNs, which yields as many
unique models as desired after training only three networks using the
standard training process,

Developed a systematic and error-aware PINN sampling procedure based
on the loss landscape topography with a tunable parameter controlling the
expected error of the newly sampled PINNs,

3) Demonstrated the error homogenization of the proposed PDE solving
method by comparing the ensemble error distribution with that of a single
PINN using the Allen-Cahn equation for modeling alloy solidification in
casting as an example.

2

The rest of this paper is organized as follows: Section 2 introduces the
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“u(t,x; f) = flt, ;0)Vt € [ty,tr],x € [xy,x1] (1)

Where the {, and 1 subscripts denote lower and upper bounds, respectively.
A PINN is considered physics-informed because of its multi-term loss
function, L:

LTu) = wyl Ju)+wsl slu)+wgl .i(u) (2) where L »is proportional to the PINN’s

deviation from the PDE

Physics-Informed Neural Network (PINN)
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Fig. 3. Physics-informed neural network architecture for 1-D PDE with spatiotemporal input
coordinates t and x and ground-truth solution u. The network outpuf'u replicates the
ground-truth solution at each coordinate pair. Adherence to the PDE is assured during the
model training process through physics-informed backpropagation, with the overall
network loss comprised of terms that consider deviations from the PDE equations,
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Fig. 2. Overview of proposed error homogenization methodology: a) illustration of metal alloy casting governed by the Allen-Cahn PDE; b) loss landscape visualization and sampling
method to retrieve PINN parameters (9,.w) after training only three models using conventional backpropagation; c) inverse error-weighted ensembling using 9., sampled from loss

surface and comparison of single-PINN and PINN ensemble solutions to ground-truth solution found by numerical simulation.

Casting image adapted from [38,39].

theoretical background of PINNs, the proposed computationally- efficient
ensembling method through loss landscape sampling, and the weighted
aggregation of ensemble members. Section 3 describes the experimental
validation of the proposed method using the Allen-Cahn equation and outlines
the PINN training procedure. Section 4 presents and discusses the results of
the proposed sampling and ensembling method in solving the Allen-Cahn
equation and demonstrates the pairwise correlation between sampled PINNs
that yielded the ensemble performance as shown. Conclusions from this study
and future research directions are discussed in Section 5.

2. PINN theoretical background

The structure of a PINN for the case of a one-dimensional PDE, u(t,x), is
shown in Fig. 3. Spatiotemporal coordinates t and x are passed as inputs to a
fully-connected neural network, f, which outputs a proposed PDE solutiori'u as
a function of the inputs and the network weight and bias parameters, 9. The
forward calculation is represented in (1):

boundary conditions, and experimental data, respectively.

constraints at non-boundary or “colocation” points, L »is proportional to the
PINN’s deviation from the PDE constraints on the spatial and temporal
boundaries, L 4is proportional to the difference between the PINN prediction
and any experimentally observed datapoints, and each wx is a weighting term.
The losses are expressed as:

13w

Lalu)=— [F{u(tixif)| 3)
Nu i=1
13w

Lilu)=— IB (u(t;x)- BTu(t,xi:f)] (4)
Nb =1
150
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Ldlu) = _nai=1 | di=u(t, x;f) | (5) where F is the nonlinear differential

operator for the PDE [38], B represents the boundary conditions, diis the ith
experimental observation of PDE-governed system, and n«is the number of
interior, boundary, or observed points in the PINN training batch. When used
as the scalar loss term during backpropagation, the sum of these terms
enforce that the PINN-predicted PDE solution respects the governing physics
at the colocation points, on the boundaries, and with respect to experimental
observations [26], [40].

In general, the PINN is trained by sampling a training set of colocation and
boundary (t,x), calculating L for the sampled locations plus any available
experimental observations, and repeatedly backpropagating any error to
iteratively find the parameters which minimize the loss on the training data,
[vas

9" = argminL ) (6)
9

Using PINNSs to solve PDEs has several advantages over numerical methods
and conventional supervised machine learning approaches:

1) PINNs can be expanded to accommodate higher-dimensional PDEs with
moderate increase in computational complexity. It has been shown that
the complexity of numerical methods grows exponentially while PINN
complexity growth is sub-exponential [41], making PINNs relatively
lightweight from the perspectives of runtime and parameter storage
requirements as compared to numerical approaches.

PINNs do not require experimental data for training. Because the
derivative terms in the loss function are found using automatic
differentiation, L .and L, can be obtained without observational data [42].
This is an advantage of PINNs over conventional supervised learning
paradigms in situations where data is scarce or difficult to simulate.
PINNs have physically interpretable training logic. Because PINN weights
are adjusted to minimize violations of the governing PDE and boundary
conditions, the training process of PINN is more physically interpretable as
compared to purely data-driven supervised learning, which relies on
observational data alone. This contributes to improved trustworthiness of
the obtained prediction logic of PINNs.

PINN gradients are exact. The gradients found using automatic
differentiation are exact within machine precision [43]. This contrasts with
numerical methods, where finite difference approximations of derivatives
are used that introduce error into the model and may degrade the quality
of the final solution.

PINNs have infinitesimal spatiotemporal resolution. Unlike numerical
methods, PINNs are mesh-free. As a result, the (t,x) locations queried for
training and inference can be more flexibly selected in the input domain
and do not have to be equally spaced. This enables PINNs to generate PDE
solutions in a continuous manner both spatially and temporally, while
numerical solutions are constrained

to interpolating on the node mesh generated prior to executing the
simulation.

2

3

4

5

While standalone PINNs exhibit these advantages and have demonstrated
good performance as reported in recent studies [44,45], one noted limitation
is the variability in their error maps. This can render a PINN unreliable as
moving a small distance in space or time may cause unstable model behavior
and error to increase by orders of magnitude, as shown for a single PINN in Fig.
2c. To overcome this limitation, it is desired to generate an ensemble of PINNs
and combine their unique predictions together to homogenize the prediction
error.
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3. Proposed ensembling and PINN error homogenization scheme

Conventional generation of neural network ensembles is time- consuming
since each model must be retrained from scratch. For instance, an N-member
ensemble wherein each member is trained for 10,000 epochs will require
10,000N total epochs of training. If each epoch is performed in 0.03 s as in this
study, each additional ensemble member adds 5 min to the ensemble training
time. Thus, even a modestly-sized 50-member ensemble will require over 4 h
to train. Considering this substantial computational cost, an efficient
ensembling method based on the concept of loss landscape sampling is
developed, which can efficiently yield unique PINNs for the cost of only three
training sessions.

3.1. Loss landscape definition

Consider conventionally trained PINNs fi, f, and f: with vectorized
—F —*
parameters 91, 0, and 93, respectively. The vectorization is done by

concatenating all weights and biases into a single vector. When projected into
a two-dimensional space, these three points in parameter space define a plane

where each in-plane point represents a unique set of parameters, 9mgw. Such
a projection is represented as:

8 new(a, f) = Hr+a$+ﬁy -

>+ >+ = (D03 - DT 1) -
g2- O3,

cosli, (T +3- >0 1+) )i, and
where'j =

cos(a,b) is the cosine of the angle between a and b [45]. The cosine term

appears in the equation for ( ««) j in order to remove the component of 91?3—

91? 1which is parallel to i, thus ensuing that the i and j bases are orthogonal

- .

O new IS
found, it can be substituted directly into the weight and bias terms of f for
making predictions.

and relationship between each (& g) and 9,3 new is bijective. Once

3.2.  PINN parameter sampling from loss landscape

With the loss landscape defined for the three-PINN neighborhood, low-loss
regions of S can be identified and Unew sampled from them, with each new set
of parameters corresponding to a new PINN to be ensembled. Loss surface S is
first transformed into 2-D empirical PDF p defined for region a € [ay,a1] x 8 €
[84,84] via (8):

P Cmax(s)- (s @8)-mins)]  (8)

(0,6;8)=T157

6t Limax(s )- (s (a6 min(s )]
a 6 € da dé

where ¢ >0 is a concentration factor inversely proportional to the spread of the
—pF =k —_—

sampled 9,j,mwaway from 01, @ ;and ¢ 3, and the denominator converges

so long as S is finite within the integrated region. A large value of ¢ will cause

the newly sampled parameter vectors to be close to trained PINNs in the (@ g)

plane and the opposite is true for small values of c. This is because a large ¢

exponentially scales the peaks of the PDF at each 90 *to be much larger than
the surrounding probabilities, making it more likely to draw samples from the
peak locations. Additionally, since a small ¢ encourages samples to be taken
further away from the loss minima and these samples correspond to high loss,
c is inversely proportional to the expected ensemble loss.

Parameter vectors are sampled from p by vectorizing the PDF to find the
cumulative density function (CDF) and using the inverse CDF to convert N

samples, k ~ U(0,1), to (a,g) locations and the corresponding Unew. Since the
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parameters of each of the N ensemble PINNs are sampled in constant time, the

serialized ensemble generation time is O(1) « N = O(N). The same is true of the
ensemble prediction complexity since each of the N PINNs has O(1)
computation time. The PINN sampling and computation processes each require
approximately 1 ps on a 2.6 GHz CPU, meaning that the runtimes of the
sampling and prediction process for the whole ensemble are each on the order
of N ps. If the sampling and prediction processes are performed in parallel on

nccores, the complexity of each process is reduced to O(max[N/n.1]), and so

0O(1), or 1 ps, ensemble generation time and run time is achieved for the
ensemble so long as nc2 N.

3.3. Inverse error-weighted ensembling

Once N new sets of parameters are sampled from the loss surface, the
corresponding PINNs are assembled into an ensemble, Q. The PDE solution
outputted by Qis the weighted average of each of the constituent PINNs, with
weights inversely proportional to the model’s loss as shown in (9):

o )
“u(t,x;Q) = Q(t,x;fufo ... fn) = fit, X;Onew,i Wi
i=1
p(a,85S)
wi= Zp(ai,&;s ) (9)
This weighting ensures that 2 wi= 1, and an ensemble member with a

smaller loss value will have a larger withan the PINN with a larger loss value.
As a result, the most accurate PINNs have more influence over the final result
to keep the prediction error low while still allowing the other PINNs to
contribute and homogenize the error via their unique prediction
distributions.

3.4. Reduction in PINN error heterogeneity due to ensembling

Assuming that the error maps of the PINNs in the ensemble have mean

@i

pairwge Pearson correlation coefficient g > 0 [46,47], the expected standard
deviat‘ion of the ensemble error is estimated as:
52 oa=

wiw;Cij

Cij= - OUTultxfi) OClultxh) (10)  where 0. denotes the standard
deviation of * and Cjis the estimated covariance of the error of ensemble

members fiand fjas a fraction (p) of the maximum covariance, UL]u(t,x;ﬁ))-UL

“uitxf) [48]. For PINNs sampled from the low-loss regions of S, the assumption

of positive error correlation is deemed reasonable given the close proximity
of the sampled parameter vectors and thus close proximity of the model
outputs [46]. In the worst possible scenario, all sampled PINNs are exactly

correlated, leading to p = 1 and 0q = 05= 05 Vi, i.e., no reduction in error

standard deviation via ensembling. However as g - 0, dg > 0, indicating that

lower average pairwise correlation represents lower variability in the
prediction error. As the standard deviation of the prediction error is
decreased, the ensemble’s error homogeneity is increased.
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4. Experimental evaluation

To evaluate the proposed ensembling method for PINN error
homogenization, metal casting is chosen as a representative case study. With
over $110B in economic impact and nearly 500k employees in the United
States alone, metal casting represents one of the world’s largest and most
diverse manufacturing sectors [49]. It is also one of the most critical
foundations of manufacturing operations, since nearly 90% of all manufactured
durable goods rely on cast parts as either functional components or in-process
tools [50]. Given this reach, rigorous quality standards for castings are
obligatory in order to ensure product conformity and end-user safety. Of cast
parts’ myriad quality dimensions, microstructural composition is the most
critical since it determines several key performance characteristics such as
tensile strength, creep resistance, corrosion susceptibility, and fatigue life, as
predicted by the process-structure-property-performance (PSPP) paradigm
[51-53]. Therefore, if cast parts’ microstructure can be accurately
characterized, conformity to design can be verified, part performance
measures can be predicted accurately and reliably without the need for large-
scale destructive testing, saving material resources.

Phase separation in casting operations, which has a strong influence on
mechanical properties, is governed by the Allen-Cahn equation. Depicted in Fig.
4, the equation describes reaction-diffusion systems, including phase
separation in multi-component alloy systems with order-disorder transitions. It
has become a tool to model and study phase transitions and interfacial
dynamics in materials science and is often used to model alloy composition at
the molecular level and thus serves as a basis for digital twinning of bulk
deformation processes in manufacturing, such as forging and casting [54].

The general form of the Allen-Cahn equation is expressed as:

ou _0dt=eAu-g(u) (11)

where €is a constant, A is the Laplace operator denoting the sum of all unmixed
2nd-order partial derivatives in the spatial coordinates, and g is an arbitrary
function of u. This study uses the 1-D form of (11) with periodic Dirichlet and
Neumann boundary conditions as studied in [26] to maintain comparability
with PINN literature:

ou W ( 3 )
=0.0001 - S5u+5u;x €[-1,1],t € [0,1]
ot o2

Usolid

Fig. 4. Allen-Cahn equation-governed microstructural evolution of a cast steel alloy at a
phase boundary. The initial phase distribution immediately after pouring is highly mixed
and disorderly but quickly separates into larger and well-defined regions of each solid
phase according to the equation as time progresses.

Adapted from [37, 55].

ou ou
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U(O,x) = x*cos(mx);u(t, — 1) = u(r, 1); a—r(r, -1) = E(I’ 1) (12)

To find the ground truth solution to (12), i.e., u, the PDE is simulated using
the Chebfun package for MATLAB [56]. The solution surface is depicted for a
pum-ns scale in Fig. 5 and serves as the PDE solution which the singleton PINN
and PINN ensemble will aim to replicate as'u(t,x;f) and u(t, x;Q), respectively.
The value of u is an indicator variable reflecting the material state as either
phase A or phase B, and is thus unitless. Intermediate values indicate finely
mixed phases as shown as Umorten in Fig. 4, however these values disappear as
time progresses solidifies, thereby reflecting the
instantaneous stepwise changes between phases in a solid material. As t->eo,

and the material

u becomes comprised of entirely step functions with discrete domain u € {-

1,1} and the intermediate values disappear.

4.1. PINN architecture and training

The PINN architecture in this study comes from [26] and is defined as a 5-
layer fully-connected neural network with 100 neurons per hidden layer,
hyperbolic tangent activation, Adam optimization, 0.001 initial learning rate,
and loss function as defined in (2) with w, = wp = 0.5 and wy = 0 since
experimental data was not used for training given the difficulties of observing
phase separation in real-time. The network receives (t,x) tuples from the
domain defined in (12) as input and outputs’u(t,x;f) as described in (1).

The PINN training procedure is initialized by sampling 1000 boundary and
50,000 colocation points from the (tx) domain using the Latin Hypercube
sampling strategy [57]. The sampled points are then split into 16 stratified
batches of equal size and used to perform mini-batch gradient descent for
10,000 epochs. Batching was used in order to broaden the “valleys” of the loss
minima found during training, leading to better model generalization and larger
low-loss regions from which to sample ensemble members compared to full-
batch training [58]. At the end of training, the model parameters which yielded
the lowest loss are stored as ;* for the /" trained PINN.

The three PINNs needed to explore the loss surface are each trained with
random parameter initializations and unique training datasets. Training each
model took approximately 5 min on a single-threaded 2.6 GHz CPU.

4.2. Error quantification and homogenization measurement

To measure the overall accuracies of the singleton PINN and PINN
ensemble, the physics-informed loss as defined in (2) is evaluated on a
validation dataset comprised of 500 boundary and 25,000 colocation points of

u(t, x) (phase indicator)

x (o)

Fig. 5. Simulated 1-D Allen-Cahn equation solution. Vertical axis represents instantaneous
phase denoted by - 1 (phase A) or + 1 (phase B) with intermediate values occurring during
phase transition. x axis denotes spatial location, t axis denotes time since phase separation
began.
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the PDE input domain whick are disjoint from the training data. A lower loss
value corresponds to a less eirror—prone prediction of the PDE solution.

Error homogeneity for agiveriu, denoted &, is quantified as the standard
deviation of the error at eactEof the validation coordinates as described in (13):

il 2]
&(x) = Ev (L Tu(tx;x) — EJJL Tu(tx;*))]) (13) where v represents the validation
dataset. A lower value of ¢ indicates a predictive model with greater error

homogeneity and fewer error hot spots in the solution domain.
5. Results and discussion
5.1. PINN training and loss landscape visualization

The training and validation losses for PINNSs fi, f>, and fzare shown in Fig. 6.

The average loss (L) decay over time, as calculated across all training data,
indicates that the physics-informed model training procedure asymptotically
guided the PINN parameters ¥1, &2, and 93 to achieve loss minima and thus
good agreement with the PDE constraints. The similarities of the colocation and
boundary losses indicate good replication of the PDE solution over the entire
solution domain, and the similarities between the training and validation losses
shows the PINNs are not overfit.

Note that the noise in the loss curves is due to the mini-batch training. Since
the model parameters are updated each time a batch is processed, some
parameter updates may be backpropagated that bolster the prediction
accuracy on one batch while worsening the accuracy of others. If the average
loss across all mini-batches at the end of an epoch is greater than the previous
epoch, the loss shown in the plot will increase. The effects of this phenomenon
are negligible, however, since the overall loss trend is asymptotic, and the
training procedure is developed to capture the best network parameters
achieved at any point during training. The mini-batches therefore help ensure
broad loss minima as discussed in [58] with little degradation of final model
accuracy.

Fig. 7 depicts the training loss landscape S near the three trained networks.
The deep craters represent $1*, 9>, and 93" and every other point represents a
linear combination of these three parameters. The loss surface is notably

smooth throughout the (& ) domain, with loss rapidly increasing in the vicinity
of the trained models and even further near the edges of the plot. The effects
of this loss topography on the PINN parameter sampling procedure are
investigated relative to the sampling concentration factor in the following
section.

5.2. Effect of sampling parameters on parameter selection and
ensemble loss

The relationship between concentration factor and sampling density is
depicted for three values of c in Fig. 8a-c. It is seen that a small concentration

factor deemphasizes the loss value when sampling (a g) and leads to samples
being taken all over the loss landscape, including from high-loss regions. This
corresponds to a large distance between points, as well as a large distance
from each point to the nearest trained PINN, as shown in Fig. 8d. Conversely,
as c is increased, the peaks of the PDF near the trained models grows

exponentially taller according to (8) and the sampled (a, g) move closer to the
loss minima generated by the trained PINNs. As c=> o, the sampled models will
grow increasingly closer to the trained models, as quantified in Fig. 8d.

To simultaneously observe the relationship between ¢, N, and L, the
ensemble’s average loss is evaluated on a grid of (c,N) points and visualized in
Fig. 9. Relatively high loss values are observed for low concentration factors
and model counts, shown by the blue region in the
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Fig. 6. Training and validation loss curves for: a) fi, b) f,, and c) f3 showing that each conventionally trained PINN converged during training.

lower left corner. While increasing N generally reduces the ensemble loss, a low concentration factor consistently degrades ensemble performance, as
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Fig. 8. Effect of concentration factor on PINN parameter sampling shown ata) c=1, b) ¢ =105, an
trained model and to all other points over range of c; shading indicates one standard deviation

the theoretical inverse relationship between ¢ and L __ holds in practice. For

Journal of Manufacturing Systems 71 (2023) 298-308

d c) c= 10", Depicted in d) is average distance of sampled points to nearest conventionally
Absolute Difference -0.0238 -0.0085
Relative Difference -62.7% -29.6%

the given search space, the loss minimum occurs at (¢ = 2 x10%, N

= 80), where L __ = 0.014025. These ensembling parameters are used to

produce the ideal ensemble solution for comparison to the singleton PINN.

5.3. Comparison of predicted PDE solutions

Predicted PDE solutions and error maps for a common validation dataset
are shown in Fig. 10 for fi, which exhibited the lowest post- training validation
loss, and the PINN ensemble with optimal c and N as identified above. Visual
inspection indicates that the ensemble has better error homogeneity than the
singleton as shown by the reduced number of error hot spots in the solution
space and decreased intensity of coloration in these regions. Furthermore,
there is less error “waviness” in the ensemble solution, especially for t < 0.8
and x € [- 0.5, 0.5]. This leads to more stable predictions and error estimates
in this region compared to the single model.

While the ensemble generally outperforms the singleton in terms of error
presence and intensity, both approaches yield high error at x

= 4+ 0.5 for t > 0.8, which is where the PDE solution becomes “sharp” as

depicted in Fig. 5. This inability to accurately model sharp regions of PDEs is a
well-documented shortcoming of PINNs and is inherited by the ensemble [59].
This behavior is believed to be caused by inadequately fine sampling along
steep gradients of the PDE solution, which impedes the network’s ability to
accurately reconstruct such regions. As such, the error hot spots in the sharp
regions of the PDE solution may be mitigated through the use of adaptive
sampling methods when training the ensemble PINNs, such as residual-based
adaptive refinement wherein sharp regions of the PDE solution are
automatically detected via their loss values and subsequently oversampled to
improve PINN performance in these regions [60,61].

The average prediction loss and loss standard deviation agrees with visual
inspection. As depicted in Table 1, the ensemble prediction has 62.7% lower
loss and 29.6% lower loss standard deviation than the single model, indicating
that the ensemble is both more accurate than the singleton and has greater
error homogeneity. An analysis of the ensemble follows in the subsequent
section to better understand the source of these performance improvements.

To observe the robustness of the proposed method'’s stochastic parameter
selection for the ensemble’s PINN members, 100 ensembles are sampled
independently from the loss landscape defined in Fig. 7 using the proposed
loss landscape sampling technique with cand N

parameters as identified in Fig. 9 and assessed on the PDE solution domain.

The distributions of average error, L__, and error standard deviation, &, are
shown in Fig. 11 along with the global means of each parameter across the 100
ensembles.
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Fig. 11. Histograms of ensemble average errors and error standard deviations for 100
ensembles sampled from loss surface defined by &;*, ;*, and 95*with ¢ =2 x 10%and N =
80. The green line plot depicts the cumulative probability of sampling an ensemble with

an L or & value (X) lower than the corresponding value along the horizontal axis. As
shown by the cumulative probability, there is a 62% chance that an ensemble will have a

below-average L _ and a 76% chance that an ensemble will have a below-average é&.
Both distributions are approximately centered about their means as

evidenced by the clear peaks located near the vertical black lines. Additionally,

both distributions are light-tailed as well, with less than a

1% chance of sampling an ensemble with T or £ more than + 3 standard

deviations from the mean. The means themselves are in good agreement with

the results shown in Table 1. The L global ni€an is observed to be 0.0153, which

is 8.5% higher than single ensemble’s L __ of 0.0141. Meanwhile the ¢ global

Table 1
Error comparison between singleton PINN and PINN ensemble. mean is observed to be 0.0205, or 1.4% higher than the single ensemble’s &.
Model Average Error (L) Error Std. Deviation (§) These discrepancies are to be expected since, as evidenced by the cumulative
Single PINN 0.0379 0.0287 probabilities shown in green, there is a greater than 60% chance that an
PINN Ensemble 0.0141 0.0202 ensemble drawn at random will have a below-average error or standard
Single PINN Error PINN Ensemble Error
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Fig. 10. Error comparison of single PINN and PINN ensemble solving Allen-Cahn equation specified in (12).
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deviation. Overall, these results suggest the ensemble member sampling
procedure is probabilistically unlikely to yield detrimental outliers and instead

prefers models with L __ and £ at or below the global means of these metrics.
5.4. Ensemble member error map correlation

Average pairwise correlations of the ensemble member error maps are
plotted as a histogram in Fig. 12. As desired in (10), the mean correlation is far
from unity, at 0.06, indicating that the models do not reinforce one another’s
error and, when aggregated, tend towards zero error heterogeneity.
Additionally, the maximum pairwise correlation is only 0.24, indicating very
little error reinforcement in even the worse- case scenario amongst the
sampled models. 15 of the 80 models (18.8%) have negative average pairwise
correlations, indicating error correction capabilities via error map
anticorrelation.

Overall, the small pairwise correlations of the ensemble members support
the reduction in mean loss and loss standard deviation. It should be noted that
the experimental error standard deviation (71% of single PINN) does not match
the theoretical error standard deviation based on the average pairwise
correlation (6% of single PINN). This is likely because (10) assumes
independent PINNs whereas the PINNs used in this study are not independent
due to the clustered sampling procedure used, which preferred models nearer
the trained PINNs. Further investigation of this relationship is identified as a
promising area for future work in fast neural network ensembling.

6. Conclusions

The presented study aims to fill an existing research gap for solving PDEs in
manufacturing using PINNs: heterogenous error distributions over the PDE
solution space. By leveraging the mathematical properties of ensembling, an
efficient ensembling scheme and model parameter sampling procedure have

Ensemble Members Error Maps
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f(t; X, gnew,z) """ ’?.
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1 Im
"
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ensembling is used (80 trained models), representing a 96% reduction in the
computational time.
The key findings of this study are summarized as:

1) The error hot-spot phenomenon exhibited by singleton PINNs has been
effectively reduced through aggregative ensembling. Specifically, the
average error and error standard deviation have shown to be reduced by
62.7% and 29.6%, respectively, by a PINN ensemble as compared to a single
conventionally trained PINN.

Loss landscape sampling of PINN parameters is an effective and
computationally efficient replacement for conventional PINN training, with
the ensemble formation time being reduced by 96% in this study when
compared to conventional network training.

2

3

The developed inverse error-weighted parameter sampling and model
aggregation methods enable the ensemble error to be controlled during
the ensemble formation process. This control been demonstrated by
observing the relationship between ensemble error, concentration factor,
and the number of ensemble members sampled.

These findings are envisioned to help improve the trustworthiness and
feasibility of PINNs as a modeling tool for manufacturing processes and
systems that are characterized by the increasingly interconnected operations.
By improving the prediction error homogeneity as evidenced by the
ensemble’s reduced error standard deviation and increasing prediction
accuracy, more reliable modeling predictions with greater stability in each of
the spatiotemporal directions can be expected. Such increased model
reliability contributes to greater confidence in the modeling outcome, more
robust production forecasts, and reduced waste of material and human capital
arising from the unexpected machine downtime and related noncompliant
quality issues.

Given the broad applicability of PDEs in manufacturing systems,

161 —— Mean (0.06)

#PINN Pairs
<o
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0.2

-
0.2 -0.1 0.0 0.1
Pairwise PINN Error Correlation

Fig. 12. Average inter-model prediction error correlation for ensemble of 80 PINNs sampled from loss landscape.

been developed to homogenize PINN prediction errors while also reducing the
mean error across the solution space. At the cost of only three trained models,
unique PINNs have been generated to form an ensemble, and the expected
error of which is controlled by the concentration factor of the loss surface-
derived PDF.

It is shown that the expected reduction in error variance is inversely
proportional to the average pairwise correlation between ensemble member
outputs. Verification of the method using the Allen-Cahn PDE shows strong
error homogenization and reduction capabilities, which reduced error
standard deviation by 29.6% and average error by 62.7%. This is due to near-
zero average pairwise correlation within the 80-member ensemble used for
prediction, which leads to increased homogeneity of the ensemble error
compared to a singleton PINN. Further, the ensemble is built using only 15 min
of model train time (3 trained models), compared to 400 min if conventional

which encompasses topics ranging from material flow to machining, heat
treatment, finishing, inspection, and shipping, the developed model ensemble
method is envisioned to especially benefit the communities consisting of
diverse small- and medium-sized manufacturers (SMMs) where each of the
SMMs is specialized in a particular manufacturing process. The result is a
unified modeling solution across the spectrum of diverse manufacturing
processes that fosters collaboration across SMMs to collectively improve
material and energy efficiencies and optimize operation in a coordinated,
global manner. The synergy will enhance SMMs’ productivity and promote the
development of smart and connected communities in which they reside,
promoting continued growth and sustainability.

Future research will adapt the ensembling method to reduce prediction
error in the sharp regions of the PDE solution using location- aware
aggregation methods. Research will also be undertaken to better characterize
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the effect of experimental observations on the ensemble accuracy and
homogenization capacity. The root causes of the PINN error hot spots outside
of the sharp PDE regions will also be comprehensively investigated from
theoretical and experimental perspectives such that improved PINN training
procedures can be developed and the hot spots can be avoided altogether.
Finally, acceleration of the PINN training procedure will be investigated so that
the initial model training cost is reduced.
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