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Physics-informed neural networks (PINNs) have demonstrated effectiveness in solving partial differential equations (PDEs) 

associated with manufacturing scenarios, due to their physically interpretable training logic. One limitation has been that PINNs 

often exhibit heterogenous error maps and high-error “hot spots” throughout the solution domain, which reduce not only the 

solutions’ accuracy but also their overall consistency with the physical laws. This study addresses this limitation by presenting 

an efficient and error-aware PINN ensembling technique for error homogenization in solving manufacturing problems. 

Specifically, a PINN is first established by constraining its training process through a manufacturing specific PDE and 

corresponding boundary conditions to ensure physical consistency. Next, the loss landscape in the neighborhood of three 

PINNs trained with varying network parameter initialization is sampled to generate a PINN ensemble. Finally, the outputs of 

the ensemble members are combined through an inverse error-weighted average to yield the prediction of the PDE solution. 

Evaluation using the Allen-Cahn PDE, which describes phase separation in the solidification of metallic alloys, shows that the 

developed method reduces the average prediction error by 63% and error standard deviation by 30% across the solution space, 

demonstrating its effectiveness for PINN error reduction and homogenization. Additionally, the method has also demonstrated 

96% reduction in the computational time as compared to conventional ensembling methods.    

1. Introduction  

To facilitate digitization as an essential element of the cyber-physical 

manufacturing systems, accurate and robust solution of partial differential 

equations (PDEs) that govern manufacturing systems and processes such as 

heat transfer, chemical diffusion, and material flow, etc., has attracted 

increasing attention [1–3]. Representative PDEs shown in  Fig. 1 illustrate the 

broad applicability of PDEs on shop floors, as well as how the prediction of 

upstream PDE solutions cascades into subsequent processes and the final 

product throughout the manufacturing system. This implies that ensuring 

accurate solution of PDEs at each of the production steps can lead to reduced 

error propagation in the entire system, more robust production planning, a 

priori identification of noncompliant product and production bottlenecks, 

simultaneous optimization of product quality and production time, and, 

ultimately, avoidance of facility-wide operational disruptions caused by part 

rework [4]. Given this motivation, recent scientific literature has shown a 

variety of PDE modeling approaches that support new manufacturing 

paradigms such as digital twinning [5].  

Standard PDE solution methods rely on analytical or numerical techniques 

such as finite element analysis (FEA) and computational fluid dynamics (CFD), 

which exhibit good agreement with experimental observations and a robust 

connection to the underlying process physics [6, 7]. However, these benefits 

come at the cost of a generally high computational complexity as additional 

dimensions or nodes are considered, inability in handling real-world process 

disturbances, and spatiotemporal resolution constrained by the meshing 

scheme and/or element size [8,9]. Concurrent with the rise of industrial big 

data and increased computing power, data-driven approaches to solving PDEs 

have been investigated to overcome these drawbacks [10, 11].  

Data-driven modeling refers to the adaptive learning of input-output 

relationships using system observations through neural networks and/or other 

methods [14,15]. Compared to analytical methods, data-driven methods have 

several advantages. First, they have lower computational complexity as a 

function of the dimensionality and number of nodes when compared to the 

typically exponential growth of analytical solutions. This makes them an 

attractive choice for solving higher-dimensional PDEs where a high resolution 

is desired [16].  

Second, due to their mesh-free nature, data-driven models enable unique 

inference at all points of the PDE solution domain rather than being 

constrained to a grid of simulation nodes and the associated interpolation 

between them. This allows data-driven methods to predict future PDE behavior 

without simulating all time steps up to the time of interest. Third, data-driven 

models can consider process disturbances as model input and learn to express 
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the effects of disturbances in the model output, making them responsive to 

real-world manufacturing scenarios.  

Numerous studies on data-driven techniques have been conducted in 

recent years, demonstrating their success in manufacturing contexts [17–19]. 

Nonetheless, one limitation of these techniques is the general lack of 

compliance with physical domain laws. This is because neither their training 

processes nor prediction logic (e.g., forward computation in a neural network) 

is constrained by physics, which leads to the possibility of incorrect predictions 

outside of the training data range arising from spurious prediction logic 

obtained during training [20]. A recent example is illustrated in [21], wherein a 

data-driven COVID-19 detection algorithm learned to predict infection based 

on benign geometric features of chest radiographs rather than lung tissue 

damage, resulting in poor performance on never-before-seen data and 

potentially compromised diagnostic outcomes. Issues such as these are 

becoming increasingly relevant given that explainable artificial intelligence, 

which encapsulates data-driven modeling, has been codified in law [22,23], and 

is becoming commonplace within scientific literature in order to verify 

prediction logic and synthesize new knowledge about the systems being 

characterized [24,25]. In order for data-driven methods to be accepted by the 

manufacturing community as trustworthy, it must be assured that domain 

knowledge is respected in the solutions provided by data-driven models.  

A promising approach to enforcing domain knowledge in PDE solutions is 

the physics-informed neural network (PINN) [26]. Initially developed to solve 

nonlinear PDEs, PINNs penalize network predictions that violate constraints on 

the PDE and correspondingly guide the training procedure towards model 

parameters which minimize deviation between PDE constraints and PINN 

output. This physically interpretable training logic of PINNs has demonstrated 

success in solving PDEs and is gaining traction in the manufacturing community 

as a reliable tool for physics-driven modeling [27]. Although competing 

machine learning-based methods of solving PDEs have been published, they 

lack either explicit connection to the PDE physics or require training data which 

may not be available. For example, neural process (NP) has been proposed for 

PDE modeling given its high modeling accuracy and built-in uncertainty 

quantification [28]. This approach is useful in situations wherein simulated or 

experimental data is available to train the NP encoder and decoder to 

accurately model the system under study. However, this may not always be the 

case due to, e.g., high computational cost of simulation, difficulty in observing 

the phenomenon of interest (such as alloy solidification in casting operations 

as discussed in this study), or the phenomenon of interest occurring 

infrequently and yielding little data for training. In comparison, such data 

availability issues do not apply to PINNs since PINNs model known system 

dynamics based on a priori physical understanding, with or without additional 

system observations.  

PINN-based PDE solutions include the modeling of hyperelastic stress, 

which dictates the fabrication of elastomers and biological tissues, with 0.09 Pa 

root mean squared error as compared to 0.18 Pa using a non-PINN method 

[29]. A PINN was used to identify material parameters, including Young’s 

modulus and Poisson’s ratio, for a structural health monitoring application 

based on material deformation PDEs, which successfully identified the 

parameters of interest within 1% error [30]. Meanwhile Chen et al. successfully 

predicted natural convection temperature evolution using a PINN with less 

than 0.1% error, with implications for heat treatment prediction as well as 

chemical processing in manufacturing [31]. Liao et al. modeled the 

temperature evolution of an additively manufactured part using a PINN and 

observed 47 K root mean squared error as compared to experimental data [32].  

While the PINNs from these studies exhibit good average error over the 

solution space, it has also been observed that these PINNs exhibit regions of 

high local error, or “hot spots,” throughout the solution domain [32–34]. This 

means that moving a small distance away from the solution point in a space or 

time may cause large changes in the error magnitude and thus reflects an 

unstable model output that diminishes user confidence in the PINN 

predictions. Often underreported in literature, such instability is also difficult 

to compensate for using typical error correction techniques such as 

spatiotemporally-aware bias terms. As such, PINNs remain prone to 

heterogenous error distributions and methods of alleviating the error hot spots 

are needed.  

A promising method of accomplishing this homogenization is ensembling 

methods such as model averaging reduce the prediction variance (a proxy 

measure of error heterogeneity) and, for nonlinear models, the average error 

[35,36]. However, training a set of individual neural networks to achieve 

ensembling benefits can be computationally expensive, as neural networks 

often require several minutes, hours, or days to train [37]. The presented study 

 

Fig. 1. Common partial differential equations in a CPS where solution accuracy of each process affects error propagation throughout the system and the final product. PDEs selected from 

[3,12,13].  
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is motivated by this observation and proposes an efficient ensemble-based 

method of PINN error homogenization. Specifically, three PINNs are first 

trained to define a loss landscape, from which new PINNs are sampled rather 

than trained from scratch. A sampling procedure is then defined based on the 

loss landscape to allow for the control of anticipated ensemble member error, 

and correspondingly, the accuracy of the ensemble as a whole. The PDE 

solution prediction is subsequently found as a weighted average of ensemble 

member outputs, with the weights being inversely proportional to each 

member’s loss. The expected reduction in the error heterogeneity is shown to 

be dependent on the average pairwise correlation between ensemble member 

outputs. An overview of the proposed method is shown in Fig. 2.  

The presented study has made the following contributions:   

1) Established an efficient ensembling method for PINNs, which yields as many 

unique models as desired after training only three networks using the 

standard training process,   

2) Developed a systematic and error-aware PINN sampling procedure based 

on the loss landscape topography with a tunable parameter controlling the 

expected error of the newly sampled PINNs,   

3) Demonstrated the error homogenization of the proposed PDE solving 

method by comparing the ensemble error distribution with that of a single 

PINN using the Allen-Cahn equation for modeling alloy solidification in 

casting as an example.  

The rest of this paper is organized as follows: Section 2 introduces the 

theoretical background of PINNs, the proposed computationally- efficient 

ensembling method through loss landscape sampling, and the weighted 

aggregation of ensemble members. Section 3 describes the experimental 

validation of the proposed method using the Allen-Cahn equation and outlines 

the PINN training procedure. Section 4 presents and discusses the results of 

the proposed sampling and ensembling method in solving the Allen-Cahn 

equation and demonstrates the pairwise correlation between sampled PINNs 

that yielded the ensemble performance as shown. Conclusions from this study 

and future research directions are discussed in Section 5.  

2. PINN theoretical background  

The structure of a PINN for the case of a one-dimensional PDE, u(t,x), is 

shown in Fig. 3. Spatiotemporal coordinates t and x are passed as inputs to a 

fully-connected neural network, f, which outputs a proposed PDE solution ̃u as 

a function of the inputs and the network weight and bias parameters, θ. The 

forward calculation is represented in (1):  

̃u(t,x; f) = f(t, x;θ)∀t ∈ [t↓,t↑],x ∈ [x↓,x↑] (1)   

Where the ↓ and ↑ subscripts denote lower and upper bounds, respectively.  

A PINN is considered physics-informed because of its multi-term loss 

function, L :  

L (̃u) = ωuL u(̃u)+ωbL b(̃u)+ωdL d(̃u
) 
(2)  where L u is proportional to the PINN’s 

deviation from the PDE  

 

Fig. 3. Physics-informed neural network architecture for 1-D PDE with spatiotemporal input 

coordinates t and x and ground-truth solution u. The network output ̃u replicates the 

ground-truth solution at each coordinate pair. Adherence to the PDE is assured during the 

model training process through physics-informed backpropagation, with the overall 

network loss comprised of terms that consider deviations from the PDE equations, 

boundary conditions, and experimental data, respectively.  

constraints at non-boundary or “colocation” points, L b is proportional to the 

PINN’s deviation from the PDE constraints on the spatial and temporal 

boundaries, L d is proportional to the difference between the PINN prediction 

and any experimentally observed datapoints, and each ω⋆ is a weighting term. 

The losses are expressed as:  

1 ∑Nu 

L u(̃u) =  |F (̃u(ti,xi;f))| (3)   

 nu i=1 

1 ∑Nb 

L b(̃u) =  |B (u(ti,xi))− B (̃u(ti,xi;f))| (4)   

 nb i=1 

1 ∑N
d 

 

Fig. 2. Overview of proposed error homogenization methodology: a) illustration of metal alloy casting governed by the Allen-Cahn PDE; b) loss landscape visualization and sampling 

method to retrieve PINN parameters (θnew) after training only three models using conventional backpropagation; c) inverse error-weighted ensembling using θnew sampled from loss 

surface and comparison of single-PINN and PINN ensemble solutions to ground-truth solution found by numerical simulation.  
Casting image adapted from [38,39].  
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L d(̃u) = nd i=1 |di − ̃u(ti,xi;f)| (5)  where F is the nonlinear differential 

operator for the PDE [38], B represents the boundary conditions, di is the ith 

experimental observation of PDE-governed system, and n⋆ is the number of 

interior, boundary, or observed points in the PINN training batch. When used 

as the scalar loss term during backpropagation, the sum of these terms 

enforce that the PINN-predicted PDE solution respects the governing physics 

at the colocation points, on the boundaries, and with respect to experimental 

observations [26], [40].  

In general, the PINN is trained by sampling a training set of colocation and 

boundary (t,x), calculating L for the sampled locations plus any available 

experimental observations, and repeatedly backpropagating any error to 

iteratively find the parameters which minimize the loss on the training data, 

θ∗:  

θ∗ = argminL  (6)  
θ 

Using PINNs to solve PDEs has several advantages over numerical methods 

and conventional supervised machine learning approaches:   

1) PINNs can be expanded to accommodate higher-dimensional PDEs with 

moderate increase in computational complexity. It has been shown that 

the complexity of numerical methods grows exponentially while PINN 

complexity growth is sub-exponential [41], making PINNs relatively 

lightweight from the perspectives of runtime and parameter storage 

requirements as compared to numerical approaches.   

2) PINNs do not require experimental data for training. Because the 

derivative terms in the loss function are found using automatic 

differentiation, L u and L b can be obtained without observational data [42]. 

This is an advantage of PINNs over conventional supervised learning 

paradigms in situations where data is scarce or difficult to simulate.   

3) PINNs have physically interpretable training logic. Because PINN weights 

are adjusted to minimize violations of the governing PDE and boundary 

conditions, the training process of PINN is more physically interpretable as 

compared to purely data-driven supervised learning, which relies on 

observational data alone. This contributes to improved trustworthiness of 

the obtained prediction logic of PINNs.  

4) PINN gradients are exact. The gradients found using automatic 

differentiation are exact within machine precision [43]. This contrasts with 

numerical methods, where finite difference approximations of derivatives 

are used that introduce error into the model and may degrade the quality 

of the final solution.  

5) PINNs have infinitesimal spatiotemporal resolution. Unlike numerical 

methods, PINNs are mesh-free. As a result, the (t,x) locations queried for 

training and inference can be more flexibly selected in the input domain 

and do not have to be equally spaced. This enables PINNs to generate PDE 

solutions in a continuous manner both spatially and temporally, while 

numerical solutions are constrained  

to interpolating on the node mesh generated prior to executing the 

simulation.  

While standalone PINNs exhibit these advantages and have demonstrated 

good performance as reported in recent studies [44,45], one noted limitation 

is the variability in their error maps. This can render a PINN unreliable as 

moving a small distance in space or time may cause unstable model behavior 

and error to increase by orders of magnitude, as shown for a single PINN in Fig. 

2c. To overcome this limitation, it is desired to generate an ensemble of PINNs 

and combine their unique predictions together to homogenize the prediction 

error.  

3. Proposed ensembling and PINN error homogenization scheme  

Conventional generation of neural network ensembles is time- consuming 

since each model must be retrained from scratch. For instance, an N-member 

ensemble wherein each member is trained for 10,000 epochs will require 

10,000N total epochs of training. If each epoch is performed in 0.03 s as in this 

study, each additional ensemble member adds 5 min to the ensemble training 

time. Thus, even a modestly-sized 50-member ensemble will require over 4 h 

to train. Considering this substantial computational cost, an efficient 

ensembling method based on the concept of loss landscape sampling is 

developed, which can efficiently yield unique PINNs for the cost of only three 

training sessions.  

3.1. Loss landscape definition  

Consider conventionally trained PINNs f1, f2, and f3 with vectorized 

parameters  2 and  , respectively. The vectorization is done by 

concatenating all weights and biases into a single vector. When projected into 

a two-dimensional space, these three points in parameter space define a plane 

where each in-plane point represents a unique set of parameters, 
→

θ new. Such 

a projection is represented as:  

̂
j (7)   

 →∗ →∗ ̂j = (→θ 3∗ − →θ 1∗) − cos(̂i, (→θ ∗3 − →θ 1∗) )⋅ ̂i, and  

where ̂i = θ 2 − θ 1,  

cos(a,b) is the cosine of the angle between a and b [45]. The cosine term 

appears in the equation for ( ∗ ∗) 
̂
j in order to remove the component of 

→
θ 3 − 

→
θ 1 which is parallel to 

̂
i, thus ensuing that the 

̂
i and 

̂
j bases are orthogonal 

and relationship between each (α,β) and 
→

θ new is bijective. Once 
→

θ new is 

found, it can be substituted directly into the weight and bias terms of f for 

making predictions.  

3.2. PINN parameter sampling from loss landscape  

With the loss landscape defined for the three-PINN neighborhood, low-loss 

regions of S can be identified and θnew sampled from them, with each new set 

of parameters corresponding to a new PINN to be ensembled. Loss surface S is 

first transformed into 2-D empirical PDF p defined for region α ∈ [α↓,α↑] × β ∈ 

[β↓,β↑] via (8):  

p c[max(S )− (S (α,β)− min(S ))] (8)  

dβ 

where c > 0 is a concentration factor inversely proportional to the spread of the 

sampled 
→

θ new away from 2 and , and the denominator converges 

so long as S is finite within the integrated region. A large value of c will cause 

the newly sampled parameter vectors to be close to trained PINNs in the (α,β) 

plane and the opposite is true for small values of c. This is because a large c 

exponentially scales the peaks of the PDF at each 
→

θ 
∗ to be much larger than 

the surrounding probabilities, making it more likely to draw samples from the 

peak locations. Additionally, since a small c encourages samples to be taken 

further away from the loss minima and these samples correspond to high loss, 

c is inversely proportional to the expected ensemble loss.  

Parameter vectors are sampled from p by vectorizing the PDF to find the 

cumulative density function (CDF) and using the inverse CDF to convert N 

samples, k ∼ U(0,1), to (α,β) locations and the corresponding θnew. Since the 
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parameters of each of the N ensemble PINNs are sampled in constant time, the 

serialized ensemble generation time is O(1) ∗ N = O(N). The same is true of the 

ensemble prediction complexity since each of the N PINNs has O(1) 

computation time. The PINN sampling and computation processes each require 

approximately 1 μs on a 2.6 GHz CPU, meaning that the runtimes of the 

sampling and prediction process for the whole ensemble are each on the order 

of N μs. If the sampling and prediction processes are performed in parallel on 

nc cores, the complexity of each process is reduced to O(max[N/nc,1]), and so 

O(1), or 1 μs, ensemble generation time and run time is achieved for the 

ensemble so long as nc ≥ N.  

3.3. Inverse error-weighted ensembling  

Once N new sets of parameters are sampled from the loss surface, the 

corresponding PINNs are assembled into an ensemble, Q. The PDE solution 

outputted by Q is the weighted average of each of the constituent PINNs, with 

weights inversely proportional to the model’s loss as shown in (9):  

 ∑N ( ) 

̃u(t,x;Q) = Q(t,x;f1,f2,…,fN) = fi t,x;θnew,i ⋅wi   
i=1 

p(αi,βi;S ) 

wi = ∑p(αi,βi;S ) (9)  
i 

This weighting ensures that 
∑ 

wi = 1, and an ensemble member with a 

smaller loss value will have a larger wi than the PINN with a larger loss value. 

As a result, the most accurate PINNs have more influence over the final result 

to keep the prediction error low while still allowing the other PINNs to 

contribute and homogenize the error via their unique prediction 

distributions.  

3.4. Reduction in PINN error heterogeneity due to ensembling  

Assuming that the error maps of the PINNs in the ensemble have mean 

pairwise Pearson correlation coefficient ρ ≥ 0 [46,47], the expected standard 

deviation of the ensemble error is estimated as:  

√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅  
  
  
  
  
  
  
  
  
  
  
  
  

∑ σQ =

 wiwjCij 

i,j 

Cij = ρ⋅σL (̃u(t,x;fi))⋅σL (̃u(t,x;fj)) (10)  where σ⋆ denotes the standard 

deviation of ⋆ and Cij is the estimated covariance of the error of ensemble 

members fi and fj as a fraction (ρ) of the maximum covariance, 
σ

L (̃u(t,x;fi))⋅
σ

L 

( ̃u(t,x;fj)) [48]. For PINNs sampled from the low-loss regions of S , the assumption 

of positive error correlation is deemed reasonable given the close proximity 

of the sampled parameter vectors and thus close proximity of the model 

outputs [46]. In the worst possible scenario, all sampled PINNs are exactly 

correlated, leading to ρ = 1 and σQ = σfi = σfj ∀i,j, i.e., no reduction in error 

standard deviation via ensembling. However as ρ → 0, σQ → 0, indicating that 

lower average pairwise correlation represents lower variability in the 

prediction error. As the standard deviation of the prediction error is 

decreased, the ensemble’s error homogeneity is increased.  

4. Experimental evaluation  

To evaluate the proposed ensembling method for PINN error 

homogenization, metal casting is chosen as a representative case study. With 

over $110B in economic impact and nearly 500k employees in the United 

States alone, metal casting represents one of the world’s largest and most 

diverse manufacturing sectors [49]. It is also one of the most critical 

foundations of manufacturing operations, since nearly 90% of all manufactured 

durable goods rely on cast parts as either functional components or in-process 

tools [50]. Given this reach, rigorous quality standards for castings are 

obligatory in order to ensure product conformity and end-user safety. Of cast 

parts’ myriad quality dimensions, microstructural composition is the most 

critical since it determines several key performance characteristics such as 

tensile strength, creep resistance, corrosion susceptibility, and fatigue life, as 

predicted by the process-structure-property-performance (PSPP) paradigm 

[51–53]. Therefore, if cast parts’ microstructure can be accurately 

characterized, conformity to design can be verified, part performance 

measures can be predicted accurately and reliably without the need for large-

scale destructive testing, saving material resources.  

Phase separation in casting operations, which has a strong influence on 

mechanical properties, is governed by the Allen-Cahn equation. Depicted in Fig. 

4, the equation describes reaction-diffusion systems, including phase 

separation in multi-component alloy systems with order-disorder transitions. It 

has become a tool to model and study phase transitions and interfacial 

dynamics in materials science and is often used to model alloy composition at 

the molecular level and thus serves as a basis for digital twinning of bulk 

deformation processes in manufacturing, such as forging and casting [54].  

The general form of the Allen-Cahn equation is expressed as:  

∂u ∂t = ϵΔu− g(u) (11)   

where ϵ is a constant, Δ is the Laplace operator denoting the sum of all unmixed 

2nd-order partial derivatives in the spatial coordinates, and g is an arbitrary 

function of u. This study uses the 1-D form of (11) with periodic Dirichlet and 

Neumann boundary conditions as studied in [26] to maintain comparability 

with PINN literature:  

∂u ∂2u ( 3 ) 

 = 0.0001 − 5u +5u ;x ∈ [− 1,1],t ∈ [0,1] 

 

 

Fig. 4. Allen-Cahn equation-governed microstructural evolution of a cast steel alloy at a 

phase boundary. The initial phase distribution immediately after pouring is highly mixed 

and disorderly but quickly separates into larger and well-defined regions of each solid 

phase according to the equation as time progresses.  
Adapted from [37, 55].  

 ∂u ∂u 
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u  (12)  

To find the ground truth solution to (12), i.e., u, the PDE is simulated using 

the Chebfun package for MATLAB [56]. The solution surface is depicted for a 

μm-ns scale in Fig. 5 and serves as the PDE solution which the singleton PINN 

and PINN ensemble will aim to replicate as ̃u(t,x;f) and ̃u(t, x;Q), respectively. 

The value of u is an indicator variable reflecting the material state as either 

phase A or phase B, and is thus unitless. Intermediate values indicate finely 

mixed phases as shown as umolten in Fig. 4, however these values disappear as 

time progresses and the material solidifies, thereby reflecting the 

instantaneous stepwise changes between phases in a solid material. As t→∞, 

u becomes comprised of entirely step functions with discrete domain u ∈ {− 

1,1} and the intermediate values disappear.  

4.1. PINN architecture and training  

The PINN architecture in this study comes from [26] and is defined as a 5-

layer fully-connected neural network with 100 neurons per hidden layer, 

hyperbolic tangent activation, Adam optimization, 0.001 initial learning rate, 

and loss function as defined in (2) with ωu = ωb = 0.5 and ωd = 0 since 

experimental data was not used for training given the difficulties of observing 

phase separation in real-time. The network receives (t,x) tuples from the 

domain defined in (12) as input and outputs ̃u(t,x;f) as described in (1).  

The PINN training procedure is initialized by sampling 1000 boundary and 

50,000 colocation points from the (t,x) domain using the Latin Hypercube 

sampling strategy [57]. The sampled points are then split into 16 stratified 

batches of equal size and used to perform mini-batch gradient descent for 

10,000 epochs. Batching was used in order to broaden the “valleys” of the loss 

minima found during training, leading to better model generalization and larger 

low-loss regions from which to sample ensemble members compared to full-

batch training [58]. At the end of training, the model parameters which yielded 

the lowest loss are stored as θi 
∗ for the ith trained PINN.  

The three PINNs needed to explore the loss surface are each trained with 

random parameter initializations and unique training datasets. Training each 

model took approximately 5 min on a single-threaded 2.6 GHz CPU.  

4.2. Error quantification and homogenization measurement  

To measure the overall accuracies of the singleton PINN and PINN 

ensemble, the physics-informed loss as defined in (2) is evaluated on a 

validation dataset comprised of 500 boundary and 25,000 colocation points of 

the PDE input domain which are disjoint from the training data. A lower loss 

value corresponds to a less error-prone prediction of the PDE solution.  

Error homogeneity for a given ̃u, denoted ξ, is quantified as the standard 

deviation of the error at each of the validation coordinates as described in (13):  

 √̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

[ 2 ] 

ξ(⋆) = Eν (L (̃u(t,x;⋆) − Eν[L (̃u(t,x;⋆))]) (13)  where ν represents the validation 

dataset. A lower value of ξ indicates a predictive model with greater error 

homogeneity and fewer error hot spots in the solution domain.  

5. Results and discussion  

5.1. PINN training and loss landscape visualization  

The training and validation losses for PINNs f1, f2, and f3 are shown in Fig. 6. 

The average loss (L  ) decay over time, as calculated across all training data, 

indicates that the physics-informed model training procedure asymptotically 

guided the PINN parameters θ1, θ2, and θ3 to achieve loss minima and thus 

good agreement with the PDE constraints. The similarities of the colocation and 

boundary losses indicate good replication of the PDE solution over the entire 

solution domain, and the similarities between the training and validation losses 

shows the PINNs are not overfit.  

Note that the noise in the loss curves is due to the mini-batch training. Since 

the model parameters are updated each time a batch is processed, some 

parameter updates may be backpropagated that bolster the prediction 

accuracy on one batch while worsening the accuracy of others. If the average 

loss across all mini-batches at the end of an epoch is greater than the previous 

epoch, the loss shown in the plot will increase. The effects of this phenomenon 

are negligible, however, since the overall loss trend is asymptotic, and the 

training procedure is developed to capture the best network parameters 

achieved at any point during training. The mini-batches therefore help ensure 

broad loss minima as discussed in [58] with little degradation of final model 

accuracy.  

Fig. 7 depicts the training loss landscape S near the three trained networks. 

The deep craters represent θ1
∗, θ2

∗, and θ3
∗
 and every other point represents a 

linear combination of these three parameters. The loss surface is notably 

smooth throughout the (α,β) domain, with loss rapidly increasing in the vicinity 

of the trained models and even further near the edges of the plot. The effects 

of this loss topography on the PINN parameter sampling procedure are 

investigated relative to the sampling concentration factor in the following 

section.  

 

Fig. 5. Simulated 1-D Allen-Cahn equation solution. Vertical axis represents instantaneous 

phase denoted by − 1 (phase A) or + 1 (phase B) with intermediate values occurring during 

phase transition. x axis denotes spatial location, t axis denotes time since phase separation 

began.  

5.2. Effect of sampling parameters on parameter selection and 

ensemble loss  

The relationship between concentration factor and sampling density is 

depicted for three values of c in Fig. 8a-c. It is seen that a small concentration 

factor deemphasizes the loss value when sampling (α,β) and leads to samples 

being taken all over the loss landscape, including from high-loss regions. This 

corresponds to a large distance between points, as well as a large distance 

from each point to the nearest trained PINN, as shown in Fig. 8d. Conversely, 

as c is increased, the peaks of the PDF near the trained models grows 

exponentially taller according to (8) and the sampled (α,β) move closer to the 

loss minima generated by the trained PINNs. As c→∞, the sampled models will 

grow increasingly closer to the trained models, as quantified in Fig. 8d.  

To simultaneously observe the relationship between c, N, and L , the 

ensemble’s average loss is evaluated on a grid of (c,N) points and visualized in 

Fig. 9. Relatively high loss values are observed for low concentration factors 

and model counts, shown by the blue region in the  
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Fig. 6. Training and validation loss curves for: a) f1, b) f2, and c) f3 showing that each conventionally trained PINN converged during training.   

lower left corner. While increasing N generally reduces the ensemble loss, a low concentration factor consistently degrades ensemble performance, as 

prominently observed in the small blue region between N = 20 and N = 40 on the left 

axis where c is small. This evidence suggests  

Fig. 7. Loss 

landscape near θ1
∗, θ2

∗, and θ3
∗
 evaluated on an (α,β) grid. The height and corresponding color 

denote the average loss value of the resulting PINN at each (α,β) point. The deep craters shown in 

dark red represent the three trained models, with f1 at (0,0), f2 at (1,0) and f3 at approximately (0.6, 

1.  

Fig. 9. Loss value as a function of concentration factor and number of models sampled for 

ensemble.  
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Fig. 8. Effect of concentration factor on PINN parameter sampling shown at a) c = 1, b) c = 105, and c) c = 1017. Depicted in d) is average distance of sampled points to nearest conventionally 

trained model and to all other points over range of c; shading indicates one standard deviation.  

the theoretical inverse relationship between c and L  holds in practice. For 

the given search space, the loss minimum occurs at (c = 2 ×1016, N  

= 80), where L   = 0.014025. These ensembling parameters are used to 

produce the ideal ensemble solution for comparison to the singleton PINN.  

5.3. Comparison of predicted PDE solutions  

Predicted PDE solutions and error maps for a common validation dataset 

are shown in Fig. 10 for f1, which exhibited the lowest post- training validation 

loss, and the PINN ensemble with optimal c and N as identified above. Visual 

inspection indicates that the ensemble has better error homogeneity than the 

singleton as shown by the reduced number of error hot spots in the solution 

space and decreased intensity of coloration in these regions. Furthermore, 

there is less error “waviness” in the ensemble solution, especially for t < 0.8 

and x ∈ [− 0.5, 0.5]. This leads to more stable predictions and error estimates 

in this region compared to the single model.  

While the ensemble generally outperforms the singleton in terms of error 

presence and intensity, both approaches yield high error at x  

= ± 0.5 for t > 0.8, which is where the PDE solution becomes “sharp” as 

depicted in Fig. 5. This inability to accurately model sharp regions of PDEs is a 

well-documented shortcoming of PINNs and is inherited by the ensemble [59]. 

This behavior is believed to be caused by inadequately fine sampling along 

steep gradients of the PDE solution, which impedes the network’s ability to 

accurately reconstruct such regions. As such, the error hot spots in the sharp 

regions of the PDE solution may be mitigated through the use of adaptive 

sampling methods when training the ensemble PINNs, such as residual-based 

adaptive refinement wherein sharp regions of the PDE solution are 

automatically detected via their loss values and subsequently oversampled to 

improve PINN performance in these regions [60,61].  

The average prediction loss and loss standard deviation agrees with visual 

inspection. As depicted in Table 1, the ensemble prediction has 62.7% lower 

loss and 29.6% lower loss standard deviation than the single model, indicating 

that the ensemble is both more accurate than the singleton and has greater 

error homogeneity. An analysis of the ensemble follows in the subsequent 

section to better understand the source of these performance improvements.  

To observe the robustness of the proposed method’s stochastic parameter 

selection for the ensemble’s PINN members, 100 ensembles are sampled 

independently from the loss landscape defined in Fig. 7 using the proposed 

loss landscape sampling technique with c and N  
Table 1  
Error comparison between singleton PINN and PINN ensemble.   

Model  Average Error (L )  Error Std. Deviation (ξ)  

Single PINN  0.0379  0.0287  

PINN Ensemble  0.0141  0.0202  

Absolute Difference  -0.0238  -0.0085  
Relative Difference  -62.7%  -29.6%   

parameters as identified in Fig. 9 and assessed on the PDE solution domain. 

The distributions of average error, L  , and error standard deviation, ξ, are 

shown in Fig. 11 along with the global means of each parameter across the 100 

ensembles.  

 

Fig. 11. Histograms of ensemble average errors and error standard deviations for 100 

ensembles sampled from loss surface defined by θ1
∗, θ2

∗, and θ3
∗with c = 2 × 1016 and N = 

80. The green line plot depicts the cumulative probability of sampling an ensemble with 

an L  or ξ value (X) lower than the corresponding value along the horizontal axis. As 

shown by the cumulative probability, there is a 62% chance that an ensemble will have a 

below-average L  and a 76% chance that an ensemble will have a below-average ξ.  

Both distributions are approximately centered about their means as 

evidenced by the clear peaks located near the vertical black lines. Additionally, 

both distributions are light-tailed as well, with less than a  

1% chance of sampling an ensemble with L or ξ more than + 3 standard 

deviations from the mean. The means themselves are in good agreement with 

the results shown in Table 1. The L global mean is observed to be 0.0153, which 

is 8.5% higher than single ensemble’s L  of 0.0141. Meanwhile the ξ global 

mean is observed to be 0.0205, or 1.4% higher than the single ensemble’s ξ. 

These discrepancies are to be expected since, as evidenced by the cumulative 

probabilities shown in green, there is a greater than 60% chance that an 

ensemble drawn at random will have a below-average error or standard 

 

Fig. 10. Error comparison of single PINN and PINN ensemble solving Allen-Cahn equation specified in (12).   
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deviation. Overall, these results suggest the ensemble member sampling 

procedure is probabilistically unlikely to yield detrimental outliers and instead 

prefers models with L  and ξ at or below the global means of these metrics.  

5.4. Ensemble member error map correlation  

Average pairwise correlations of the ensemble member error maps are 

plotted as a histogram in Fig. 12. As desired in (10), the mean correlation is far 

from unity, at 0.06, indicating that the models do not reinforce one another’s 

error and, when aggregated, tend towards zero error heterogeneity. 

Additionally, the maximum pairwise correlation is only 0.24, indicating very 

little error reinforcement in even the worse- case scenario amongst the 

sampled models. 15 of the 80 models (18.8%) have negative average pairwise 

correlations, indicating error correction capabilities via error map 

anticorrelation.  

Overall, the small pairwise correlations of the ensemble members support 

the reduction in mean loss and loss standard deviation. It should be noted that 

the experimental error standard deviation (71% of single PINN) does not match 

the theoretical error standard deviation based on the average pairwise 

correlation (6% of single PINN). This is likely because (10) assumes 

independent PINNs whereas the PINNs used in this study are not independent 

due to the clustered sampling procedure used, which preferred models nearer 

the trained PINNs. Further investigation of this relationship is identified as a 

promising area for future work in fast neural network ensembling.  

6. Conclusions  

The presented study aims to fill an existing research gap for solving PDEs in 

manufacturing using PINNs: heterogenous error distributions over the PDE 

solution space. By leveraging the mathematical properties of ensembling, an 

efficient ensembling scheme and model parameter sampling procedure have 

been developed to homogenize PINN prediction errors while also reducing the 

mean error across the solution space. At the cost of only three trained models, 

unique PINNs have been generated to form an ensemble, and the expected 

error of which is controlled by the concentration factor of the loss surface-

derived PDF.  

It is shown that the expected reduction in error variance is inversely 

proportional to the average pairwise correlation between ensemble member 

outputs. Verification of the method using the Allen-Cahn PDE shows strong 

error homogenization and reduction capabilities, which reduced error 

standard deviation by 29.6% and average error by 62.7%. This is due to near-

zero average pairwise correlation within the 80-member ensemble used for 

prediction, which leads to increased homogeneity of the ensemble error 

compared to a singleton PINN. Further, the ensemble is built using only 15 min 

of model train time (3 trained models), compared to 400 min if conventional 

ensembling is used (80 trained models), representing a 96% reduction in the 

computational time.  

The key findings of this study are summarized as:   

1) The error hot-spot phenomenon exhibited by singleton PINNs has been 

effectively reduced through aggregative ensembling. Specifically, the 

average error and error standard deviation have shown to be reduced by 

62.7% and 29.6%, respectively, by a PINN ensemble as compared to a single 

conventionally trained PINN.   

2) Loss landscape sampling of PINN parameters is an effective and 

computationally efficient replacement for conventional PINN training, with 

the ensemble formation time being reduced by 96% in this study when 

compared to conventional network training.   

3) The developed inverse error-weighted parameter sampling and model 

aggregation methods enable the ensemble error to be controlled during 

the ensemble formation process. This control been demonstrated by 

observing the relationship between ensemble error, concentration factor, 

and the number of ensemble members sampled.  

These findings are envisioned to help improve the trustworthiness and 

feasibility of PINNs as a modeling tool for manufacturing processes and 

systems that are characterized by the increasingly interconnected operations. 

By improving the prediction error homogeneity as evidenced by the 

ensemble’s reduced error standard deviation and increasing prediction 

accuracy, more reliable modeling predictions with greater stability in each of 

the spatiotemporal directions can be expected. Such increased model 

reliability contributes to greater confidence in the modeling outcome, more 

robust production forecasts, and reduced waste of material and human capital 

arising from the unexpected machine downtime and related noncompliant 

quality issues.  

Given the broad applicability of PDEs in manufacturing systems,  

which encompasses topics ranging from material flow to machining, heat 

treatment, finishing, inspection, and shipping, the developed model ensemble 

method is envisioned to especially benefit the communities consisting of 

diverse small- and medium-sized manufacturers (SMMs) where each of the 

SMMs is specialized in a particular manufacturing process. The result is a 

unified modeling solution across the spectrum of diverse manufacturing 

processes that fosters collaboration across SMMs to collectively improve 

material and energy efficiencies and optimize operation in a coordinated, 

global manner. The synergy will enhance SMMs’ productivity and promote the 

development of smart and connected communities in which they reside, 

promoting continued growth and sustainability.  

Future research will adapt the ensembling method to reduce prediction 

error in the sharp regions of the PDE solution using location- aware 

aggregation methods. Research will also be undertaken to better characterize 

 

Fig. 12. Average inter-model prediction error correlation for ensemble of 80 PINNs sampled from loss landscape.   
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the effect of experimental observations on the ensemble accuracy and 

homogenization capacity. The root causes of the PINN error hot spots outside 

of the sharp PDE regions will also be comprehensively investigated from 

theoretical and experimental perspectives such that improved PINN training 

procedures can be developed and the hot spots can be avoided altogether. 

Finally, acceleration of the PINN training procedure will be investigated so that 

the initial model training cost is reduced.  
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