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ABSTRACT

control and process monitoring in many manufacturing applications. Photometric stereo is one of the potential solutions for
inprocess metrology and active geometry compensation, which takes multiple images of an object under different
illuminations as inputs and recovers its surface normal map based on a reflectance model. Deep learning approaches have
shown their potential in solving the highly nonlinear problem for photometric stereo, but the main challenge preventing their
practical application in process metrology lies in the difficulties in the generation of a comprehensive dataset for training the
deep learning model. This paper presents a new Deeplearning based Point-light Photometric Stereo method, DPPS, which
utilizes a multi-channel deep convolutional neural network (CNN) to achieve end-to-end prediction for both the surface normal
and height maps in a semicalibrated fashion. The key contribution is a new dataset generation method combining both physics-
based and data-driven approaches, which minimizes the training cost and enables DPPS to handle reflective metal surfaces
with unknown surface roughness. Even trained only with fully synthetic and high-fidelity dataset, our DPPS surpasses the state-
of-the-art with an accuracy better than 0.15 cm over a 10 cm x 10 cm area and its real-life experimental results are on par with
commercial 3D scanners. The demonstrated results provide guidance on improving the generalizability and robustness of
deep-learning based computer vision metrology with minimized training cost as well as show the potential for in-process 3D

metrology in advanced manufacturing processes.

Three-dimensional (3D) measurement provides
essential geometric information for quality

1. Introduction

Advances in in-situ metrology techniques have upgraded the capability of
modern manufacturing systems to a more competitive level. These techniques
are critical enablers for in-process performance monitoring and quality control.
Beyond traditional dimensional measurement techniques, three-dimensional
(3D) measurement can provide comprehensive geometrical information of a
physical object, which has gained increasing popularity in academia and
industry [1-3]. Many emerging manufacturing processes, such as metal
additive manufacturing, 5-axis machining, incremental forming, etc. [4—6], will
benefit greatly from in-process 3D measurement techniques for improved
geometry accuracy. In addition, in-process 3D metrology will provide a
powerful tool enabling the investigation of some unique and complex process

example, the most popular scanning technology, laser scanning, faces difficulty
in collecting high-quality data when scanning reflective surfaces that are
prevalent with metal components. Though the speckle noise and spurious
reflections can be removed with cross polarization [13] and image pre-
processing [14], the low receiving reflection intensity caused by specular
reflection is still a challenge for getting a confident scanning result.

As an alternative to scanning-based metrology, image-based methods are
gaining popularity because of their simple and low-cost hardware
requirements. With the recent advancement in computer vision techniques,
multiple image-based 3D reconstruction methods have been developed with
rapidly improving accuracy. Passive methods of 3D reconstruction, such as
multi-view stereo [15,16] and structure-frommotion [17], recover 3D
information by mapping the feature correspondence from a set of 2D
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mechanics, such as the thermal expansion in additive manufacturing [7] and
the geometric deviations in metal forming and forging [8,9].

Non-contact metrology provides the possibility of in-process measurement
without interfering with the manufacturing process. Overall, scanning-based
3D reconstruction, such as laser scanning [10], microwave imaging [11], and
computed tomography (CT) [12], can offer sub-millimeter level accuracy with
moderate efficiency (millions of points in one scan); however, limitations of
these methods include system complexity, high cost, and material restrictions,
making it difficult to be applied for in-process metrology and monitoring. For
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overlapping images. These methods work better with objects that have plenty
of unique features for matching. For the reconstruction of textureless surfaces,
which are commonly encountered in manufacturing applications, the accuracy
of these methods is limited. Derived methods are developed to improve the
accuracy in the case of textureless surface reconstruction by projecting
patterns on the surface [18-20] or powdering the object surface [21]. And
recently, NeRF (neural radiance field) [22], a completely new direction is
introduced that trains multilayer perceptrons [22] or neural 3D points [23] to
represent volumetric radiance field from a large number of images of the
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object from various views. These methods require multiple camera angles,
which are difficult to implement in many manufacturing process setups, and
still suffer from lower measurement accuracy.

Active methods for 3D reconstruction, such as deflectometry [24],
structured light reconstruction [25], and photometric stereo [26], utilize
lighting and projection conditions to extract more detailed shape and
appearance information from 2D images. Deflectometry and structured-light
reconstruction use almost identical setup, which includes a projector to project
pattern on the object and one or two cameras to capture images.
Deflectometry projects fringe patterns to a target object and reconstructs the
surface normal based on the phase information in reflected fringe patterns.
Because of its high sensitivity to surface curvature change, it is good at
reconstructing specular (shiny) and nearly flat surface [27]. To be compared,
structured light reconstruction recovers 3D geometry from the distorted fringe
or chessboard-like patterns using the principle of triangulation [28] and is more
suitable for reconstructing less specular or more complex surfaces. It is already
adopted by multiple commercial indoor RGB-D cameras as the basic algorithm
[29]. Deflectometry and structured light reconstruction capture images from a
limited number of viewpoints (commonly one or two), while the projected
structured pattern comes from a single source [30,31]. Thus, reconstruction
failure occurs for surfaces with large fluctuations when the projected pattern
is occluded by the shadow effect imposed by surface terrain.

Photometric stereo [26,32,33] is another active method for 3D
reconstruction which utilizes images taken under different illuminations to
reconstruct the normal map of a surface. It utilizes reflectance models for
estimating surface properties from transformations of image intensities that
arise from illumination changes [26,34]. Different from structured light
reconstruction and deflectometry, photometric stereo utilizes light sources
from multiple directions and takes multiple captures, which lessens the effect
of occlusion. Compared with deflectometry, which is better at reconstructing
specular and nearly flat surfaces, photometric stereo is more capable of
reconstructing 3D objects with more fluctuations. Furthermore, the
reconstruction resolution of photometric stereo is not limited by the resolution
of fringe patterns, so photometric stereo tends to recover finer details in the
surface normal variations.

The surface normal reconstruction in photometric stereo solves the inverse
reflection process with prior knowledge of the reflectance property of the
target material. The fully diffusive reflection from so-called Lambertian
surfaces can be analytically calculated by the photometric stereo, whose
reflectance is not influenced by the viewing angle [35]. However, most real-
world surfaces are not Lambertian and exhibit both diffusive and specular
appearances. The specular appearance introduces nonlinearity to the
reflectance model, which adds more complexity when solving the inverse
reflection process. Early research tried to handle the specular appearance by
developing analytical reflectance models for more general materials [36—39] or
excluding nonLambertian effects as outliers [40-42]. For non-Lambertian
surfaces, the reflectance is usually described by a bi-directional reflectance
distribution function (BRDF). Shi et al. [37] developed a bi-polynomial BRDF
model to account for the low-frequency non-Lambertian effects. More
generally, sophisticated BRDF models were developed to approximate
reflectance with highly non-Lambertian effects [38]. However, methods in this
category require solving complicated optimization problems and thus are
computationally inefficient. For outliers-rejection methods, multiple machine
learning approaches such as sparse regression [36, 40], random sample
consensus [41], and rank minimization [42] have been utilized. For example,
Wu et al. [42] regarded the problem as a rank minimization problem where
Lambertian reflection was treated as a low-rank subspace while non-
Lambertian reflectance was excluded as outliers during rank minimization. This
group of methods usually requires a large number of image inputs and works
only when nonLambertian (specular) observations occupy a small portion of
the whole image.

Based on their success in computer vision tasks, deep learning methods
have been introduced to photometric stereo to directly reconstruct non-
Lambertian surfaces without the explicit knowledge of an analytical
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reflectance model and brought the accuracy to the stateof-the-art [43-49].
Santo et al. [43] first attempted a deep learning approach in photometric
stereo. The surface normal was estimated in a point-by-point manner with a 6-
layer fully connected neural network. lkehata utilized convolutional neural
networks (CNNs) to reconstruct very shiny surfaces with higher robustness
which took into account both the global illumination effect (such as
illumination variance and shadows) and inter-reflectance [44]. Chen et al.
developed two CNNs, PS-FCN [45] and SDPS-Net [46], that supported an
arbitrary number of input images taken under random lighting conditions. A
combined loss function was defined in [46] that enabled the CNN to learn the
surface normal as well as lighting directions of each image input. Li et al. [48]
developed a deep learning framework in which a connection table was applied
to select the most relevant lighting directions for reconstruction. As a result,
the number of input images was reduced while the prediction accuracy was
maintained. Ju et al. [49] introduced a dualregression task to photometric
stereo, which synthesizes reconstructed images from the estimated normal
map to add additional supervision and uplift the accuracy.

Though deep learning methods have improved the performance and
flexibility of photometric stereo, there remain several inherent challenges that
prevent the further application of photometric stereo in manufacturing
applications. The first challenge is the dataset generation for training deep
learning models in photometric stereo. Since photometric stereo is an inverse
mapping process from the image intensity to the normal map, the reflectance
model critically determines the accuracy and robustness of photometric
stereo. For deep-learning based photometric stereo, the reflectance model is
usually not explicitly defined but embodied in the training dataset. A deep
learning model implicitly learns surface reflectance and encodes this hidden
knowledge in the neural network to recover the normal map. Therefore the
resemblance between the dataset and reality determines the accuracy of the
reconstruction result. Previously, the dataset for training deep-learning based
photometric stereo was either captured from a limited set of experiments or
generated from computer simulation. The experimentally captured datasets
give the most realistic reflectance conditions [50,51]; however, they are usually
too expensive with limited representations to train a deep learning model. On
the other hand, synthetic datasets [45,47] are generated by taking linear
combinations of different BRDF models from an experimental-based
reflectance library [52]. This approach is unrealistic as it will smooth out the
highfrequency Lambertian effects. There still lacks an approach to generate a
realistic and comprehensive reflectance model that covers various materials.
In addition, simulated datasets are often rendered in an ideal condition
without considering uncertainties and variations in illumination and imaging.
The performance of these trained models would be unstable and sensitive to
inevitable environmental variations. In order to generate high-quality and
realistic datasets, both experimental data and the physics of reflectance should
be considered.

Another limitation of photometric stereo lies in the ill-poised integration
from surface normal maps to height maps. According to the reflectance
principle, the captured image intensity depends on the normal vector for a
given material and illumination direction. By solving the inverse reflectance
problem, photometric stereo inherently only outputs the surface normal map
of an object. Though the height map can be derived by integrating the normal
map, the problem is illposed when the surface has discontinuity or free shape
boundaries [53]. This physical restriction limits the reconstruction to 2.5D
instead of full 3D. To alleviate this limitation, Vlasicl et al. [54] described a
multiview photometric stereo that recovered the normal map of an object
from different views and matched the correspondence of different views to
recover the full 3D surface. Haefner et al. [55] utilized an RGBD camera to
perform photometric stereo so a high-resolution height map can be
reconstructed by combining the low-resolution geometric constraint from the
depth camera and the details from the integrated normal map calculated with
photometric stereo. However, these methods all depend on a separate
algorithm that does not directly relate to photometric stereo. There is potential
in deep learning to use an endto-end approach for height map reconstruction
by fully utilizing the captured image information from photometric stereo.

2
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To address the above challenges, in this paper, we present DPPS, a novel
Deep-learning based Point-light Photometric Stereo for 3D reconstruction of
metallic surfaces with unknown surface roughness. The proposed DPPS
method has the following major contributions: ¢ DPPS directly reconstructs
both the height map and normal map of a 3D shape from images taken under
different point-light conditions utilizing the principle of photometric stereo and
the nonlinear mapping abilities of deep CNNs.

e This work is the first attempt to apply deep learning to pointlight
photometric stereo. By utilizing point light sources, an extra dimension
is introduced into the photometric stereo framework, which enables
direct prediction of the height map of a 3D object. ® Another major
contribution of the work is a new dataset generation method combining
physics-based and data-driven approaches that include experimentally
calibrating light sources, training a data-driven reflectance model, and
rendering realistic image sets. To improve the model robustness in
experiments, careful considerations are made to include image capture
noises, calibration uncertainty, and light intensity variations.

Last but not least, we have demonstrated DPPS’s performance on both
synthetic datasets and real-world experiments. DPPS shows great
generalizability to work with metal materials with unknown surface
roughness. By only training DPPS with our fully synthetic and high-
fidelity dataset, its performance surpasses the state-of-the-art, while its
real-life experimental results are on par with commercial 3D scanners.
The demonstrated results provide guidance on improving the
generalizability and robustness of deep-learning based computer vision
metrology with minimized training cost as well as showing the potential
for in-process 3D metrology in advanced manufacturing applications.

2. Methods

The overall flowchart of DPPS is illustrated in Fig. 1. A domeshaped setup is
used to capture images of the target object under 96 point-light illumination
conditions. A multi-channel CNN is designed to take the captured images as
inputs and predict the target object’s surface normal and height maps
simultaneously. The novel design of
the CNN implicitly assigns the ill-posed problem of direct integration to the
deep neural network, thus avoiding the integration error from normal to
height. The model is trained by a synthetic dataset, which is the other key part
of this research work. The dataset generation process incorporates calibrated
light conditions (Section 2.1), a data-driven reflectance model considering
unknown surface roughness (Section 2.2), and image rendering method
considering lighting variation and measurement noises (Section 2.3). The
design of the new CNN architecture and training details are given in Section
2.4.

2.1. Point-light photometric stereo and setup calibration

Traditional photometric stereo assumes the incident light to be parallel.
This condition holds true when the light source has a far larger diameter than
the dimension of the reconstructed object (such as sunlight) or when the light
is placed far enough from the object. By replacing the parallel lights with point
lights, the practicality of photometric stereo for in-process metrology is largely
improved. In this section, we will introduce the setup of the proposed deep-
learning based photometric stereo, DPPS, that works under point light
illumination and the calibration procedure of the light sources. In point-light
photometric stereo, the incident light intensity is both direction- and location-
dependent, forming a highly nonlinear problem. For a given point on the target
surface with a coordinate vector, X», and the pointlight source location, Zg,
the light intensity vector, Z, is given by [56]

L= Xp 1
/= . b (1)
[|£4= Xo|| || 24— Xoll2
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Eq. (1) indicates that the incident light for each point on the 3D surface
directs from the light source to the object point and has an intensity that is
proportional to the inverse squared distance between the light source and
object point. Unlike the uniform incident light in parallel-light photometric
stereo, the location-dependency of pointlight illumination brings an additional
dimension to the framework of photometric stereo, which gives rise to the
direct prediction of height map of the reconstructed surface. An iteration
procedure is often involved in solving the height map from the normal map in
point-light photometric stereo.

The proposed deep learning approach relies on the nonlinear mapping
ability of deep CNNs to solve the surface normal and height in an end-to-end
manner. The complex iteration procedures with an analytical approach are
accomplished by a single CNN in the proposed DPPS. The light conditions are
consistent in the training dataset and physical setup, so the CNN will learn to
implicitly determine the light source locations. This is a semi-calibrate
approach in which the light source information is not directly input to DPPS
networks, but needs to be calibrated for rendering the training dataset. The
setup of the proposed method and the calibration of the point-light locations
are detailed as follows.

We adopt a point-light photometric stereo configuration in the DPPS

framework with 96 individually controlled light-emitting diodes (LEDs), as
shown in Fig. 2(a). The 96 point-light sources are mounted on the inner surface
of an aluminum dome shell, as shown in Fig. 2(a). The dome shell has a
parabolic shape with a focal length of 152.4 mm and a bottom diameter of
609.6 mm. The 96 LEDs are located at five different height levels, while the
number of LEDs at each level from top to bottom is 6, 10, 18, 28, and 34,
respectively. They are approximately spaced evenly at each level. The white
light LEDs have a diameter of 1.4 mm and are parallelly controlled by an
Arduino micro-controller.
A 2.2 megapixel monochrome CMOS camera (MQ022MG-CM, Ximea,
Germany) is mounted above the dome for image capture through a center hole
drilled at the top of the dome. The working distance of the camera is set to 520
mm. The lens used is a C-mount fixed focal length lens (16 mm) with a
maximum aperture of f/1.6. The ground sampling distance (GSD) of the
proposed method is:

(fZight altitude x sensor height) (520 mm x 11.27 mm)

(focal length x image heighi) (16 mm x (2048 pixel/4.461))

=0.798 mm (2)

where the image height is divided by 4.461 which is the ratio of captured image
size in the reconstruction area and the reconstruction size.

Calibration of the point-light positions is performed in two steps. The first
step is to determine the LED locations in the dome coordinate. As shown in Fig.
2(b), the inner surface of the dome is captured
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dome geometry. The light locations are then back-calculated, considering the
intersection between the illumination direction and the dome surface. The
results are denoted as a 96 x 3 matrix Zz.

We use a singular value decomposition (SVD) method to decompose the
inner product of Zg and Zzto two unitary matrices: &and ¥, and a rectangular
diagonal matrix ., as defined by

O, S8 V=SV DL L) (3)

The orthogonal matrix ¥is a rotation matrix that maps Z1 from the dome
coordinate to the camera coordinate. The final calibrated point-light positions
£ (96 x 3) are derived as

=LV (4)

2.2. Reflectance model for metals with different roughness

In order to render realistic reflection images with a range of different
surface roughness, we build a data-driven and physics-based reflectance model
for the dataset generation. In this section, a modified bidirectional reflection
function (BRDF) is established to take into account the surface roughness of
metal surfaces. Different metal materials exhibit similar ‘metallic’ reflection
characteristics, thus we use aluminum to represent all metal materials. An
experimental procedure is designed to collect metal reflection properties using

Calibration ;
—_——

A 128512896
Setup Captured
images

DPPS framework

—_———p L11L2' ...,Lgﬁ

Light positions
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I

|
Physics - |
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Y- examy
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Dataset

Training

1 1 1

o 4 ! |
-

Height map

Normal map

Fig. 1. Flowchart of DPPS.

Fig. 2. (a) Point-light photometric stereo setup and the inner surface of the dome setup mounted
with 96 LEDs; schematics showing (b) light position calibration and (c) alignment calibration.

with each LED individually turned on. In the captured images, the dome has a
diameter of 1,587 pixels, which is large enough to give precise positioning of
each point-light. The dome center is determined through the best fit of a circle,
while the X, Y, and Z positions of the LED can be calculated from the analytical
expression of the dome geometry. The resultant coordinates are denoted as a
96 x 3 matrix £1. The second step is to align the dome coordinate to the camera
coordinate, so the accurate light positions can be determined with respect to
the measurement frame. We place a 1.5-inch shiny metal ball (G25 precision
chrome steel ball, PGN Bearings, USA) below the dome and along its center
axis, which has a diameter of 196 pixels in the camera view, as shown in Fig.
2(c). We then take 96 pictures of the light reflection from each light source. In
each captured image, the light spot location indicates the illumination
direction by considering the geometrical relationship of the metal ball and the

aluminum sphere artifacts. The collected data are used to train a fully-
connected neural network, enabling the interpolation and extrapolation of
arbitrary &; &, @~@- and surface roughness. Though this data-driven
reflectance model is only used for dataset generation, not directly used in the
final DPPS, it is an essential component to ensure the quality of the training
dataset, and thus significantly influencing the final DPPS performance.

The reflectance properties of an object can be described by a BRDF, which
assumes that the reflection intensity is a function of four input angles
consisting of the incident lighting direction (&; &) and the viewing direction
(& #+), as shown in Fig. 3(a). For an isotropic material, the in-plane rotations
will not affect the reflectance, so the input angles can be reduced to 4, &,
&~@r. In our modified BRDF model, the surface roughness is added as an
additional input parameter to the function. The data-driven model can perform
the interpolation not only on the
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Fig. 3. (a) Experiment setup for BRDF measurement and 6 metal spheres with different surface
roughness as the target artifacts; (b) structure of fully connected neural network for a data-
driven BRDF model.

viewing and illumination angles, but also on the surface roughness. The
modified BRDF model and the relationship between three input angles and
three direction vectors can be described by

BRDF: Reflectance= 8; 6, ¢i— @r Ra)
¢ )
=4 n"
(5)
&=(v,"n")
( )
G~ @r= "1~ (1 nVn, “v" (0T 2V

where 7 indicates the lighting direction vector; 72 is the surface normal
vector; and z“is the viewing direction vector. Operator {, ) calculates the angle
between two vectors, that is:

( V=arccos{, ——— a”
6= ) (6)
a b

lle™ -1

The data collection for training the modified BRDF model is performed with
the following procedures. We use six aluminum spheres with a diameter of 3/4
inch as the artifacts for BRDF data collection, which are polished to different
surface roughness with a Ra value of 0.52 um, 0.68 um, 0.78 um, 1.07 um, 2.13
um, and 4.07 um, respectively. The spherical shape of the artifact can provide
a wide range of surface normal directions in a single shot, whose directions can
be determined from its projected lateral positions.

The reflection intensities of six artifacts are recorded at different viewing
and lighting angles. In the experiment, we set the camera to three different
viewing angles (the zenith angle, &,, equal to 0°, 22°, 54°; and the azimuth angle,
&i— @r, equal to 90°). The metal sphere is placed at the center of the camera
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view. A narrow-angle LED bulb (rated at 12 W, 1200 Lumen, Lusta LED, China)
is fixed on the end of an adjustable arm beam as the light source, which can be
rotated to adjust the zenith angle, &.. For each viewing angle, the lighting angle
is set to 19 levels from horizontal to vertical, at an interval of 5°. For each
captured image with a set of illumination and viewing angles, all pixels on the
metal sphere are utilized as the training data for BRDF modeling. For each pixel
on the sphere, the surface normal vector is calculated based on its relative
position to the sphere center. Based on the illumination, viewing, and surface
normal directions, the corresponding input angles are derived for &; &, @/~
&, following Eq. (5).

The BRDF model adopts a shallow neural network with one hidden layer to
map the three geometrical angles and the surface roughness to the reflection
intensity, as shown in Fig. 3(b). It is trained with 271,728 data points collected
from the experimental procedures described above. After 100 epochs of
learning, the coefficient of determination (R-value) reaches 0.98, and the mean
squared error (MSE) is reduced to the level of 107°.

The training results of our modified BRDF model are plotted in Fig. 4. In Fig.
4(a), the surface roughness Ra is fixed at 0.55 pm, while @,— @,is set to 0°. The
contour plot shows the output of normalized reflection intensity under
different zenith angles. As #;and &rincrease, the intensity drops rapidly, which
is consistent with the specular surface reflectance effect. g.and @-have almost
the same influence on the output intensity, as the material is isotropic
regarding the reflectance property. Fig. 4(b) shows the BRDF output with the
change of #;and Ra when &,- #,and g-are fixed to 0°and 30°, respectively.
When Ra is small, the surface tends to be specular, so the output intensity
drops more rapidly with the increase in &. As Ra increases, the surface
resembles more of a matte finish, so the output intensity is less sensitive to the
change of illumination and viewing angles.

2.3. Rendering of training datasets

Three components are necessary for our DPPS framework to generate the
training dataset. The point-light position calibration is described in Section 2.1.
A data-driven and physics-based BRDF model is detailed in Section 2.2. In this
section, the detailed algorithms are described for rendering realistic reflection
images with quality variances.

The dataset generation module uses 10 random 3D objects from the Blobby
library [57]. They are randomly rotated to 500 orientations and cropped with a
size 128 x 128 associated with a physical dimension of 10 cm by 10 cm. The
orientation angles (@, @) are defined in the range of (0, 360°). Each shape is
then randomly assigned with two values of surface roughness in the range from
0.52 um to 4.07 um, resulting in a total of 10x500x2 = 10,000 sets of data. The
corresponding variation of the height is in the range from -5cm to 10 cm. The
rendering module then generates 96 reflection images for each object shape
under 96 point-light illumination conditions.

For each Blobby shape in the set, we derive the surface normal and surface
height information for each point from the geometry of the shape. Then for a
given calibrated point-light position Zg, a point on the target surface Xz, and
the fixed camera position X, the viewing vector " and the illumination vector
/ can be directly calculated by normalizing vector X;— Xzand Zz— X». The
three geometric angles &; &,, @~@rare then calculated according to Eq. (5).
The trained BRDF model takes the three input angles and the assigned surface
roughness to output the reflectance intensity at each surface point. To account
for the light attenuation, the distance between the light position Zzand the
surface point Xzis calculated according to Eq. (7). The attenuation factor ¢ is
taken as 3, since the LED can be approximated as an ideal point-light source
[58]. The reflection intensity /at point Xzon the surface under the illumination
of a point-light at Zzcan be calculated by

v

Zxe= || Li— XAl BROAG;, 6r, i~ @r, Ra) (7)

For each rendered image, we normalize the intensity by rescaling the
largest pixel intensity to 255. This approach yields a better training



R. Yang et al.
(a)
0.8
)
O
&h 0.6
O
NS
< 04
0.2
10 20 30 40 50 60 70 80 90
0; (degree)
(b)
——Ra = 0.55um
—Ra = 0.67 um
08 Ra = 1.05um
o —Ra =2.55um
=
& 006
]
j=1
0.4

10 20 0 40 50 60

L

B; (degree)

Fig. 4. (a) Contour plot of the BRDF model for different zenith angles; (b) plot of the BRDF model
for different surface roughness.

performance of DPPS. After scaling, Gaussian noises with a zero mean and a
standard deviation from 10 to 1072 are applied to each rendered image to
simulate the image capture noises.

To further increase the robustness and adaptivity of DPPS, we deliberately
generate data with quality variances, including over-exposed image sets with a
larger intensity factor /4 (12.5% of the total samples), image sets with varying
light intensities among the 96 light sources (6.25% of the total samples); image
sets rendered under varying pointlight positions to account for the calibration
uncertainties (6.25% of the total samples). We summarize our dataset
generation and rendering algorithms in Table 1.

The rendering procedures and examples of rendered image sets are shown
in Fig. 5. Two rendered image sets are plotted for the same object under
different point-light illumination and with two assigned surface roughness of
Ra = 0.55 um and Ra = 0.84 um. It should be noted that these two surface
roughness values are not the same as the calibrated artifacts but interpolated
by the trained BRDF.

2.4. Architecture of DPPS and training details

In the proposed DPPS, we develop a two-channel CNN to directly extract
the height map and surface normal map in an end-to-end manner, so the
normal-map-targeted 2.5D reconstruction is extended to full 3D
reconstruction. The structure of the CNN preserves the intrinsic character of
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photometric stereo while avoiding the ill-posed surface normal integration

problem.
Table 1
Image rendering procedures.

1. For 10 Blobby objects, rotate each object with 2%20 rotation angles
(@, @), and randomly crop to a size 0f128x128 with the surface normal
and height maps as the ground truth.

2. for k in 96 point-light sources
for P in all points on the 12&128 grid

Calculate:
«H
b= [n
b, = ( A n
€ )

d-d= 1= Anv=-(v nn
Calculate: image intensity

/
—f0
/g = LBRDLE, 6, — &, Rq
A Il Z, X |2 s Ors i 4

end for
end for

3. Apply Gaussian blur to the images.
4. Normalize the image intensity.

5. Add quality variations:
Over exposure: /o € (120Q 1600)
Varying light intensity:

Iy = fly, where € (Q95,1.05)
Varying point-light position:

Lp= L+ [a b c] where a b, c€ (-1 cml cmy

View point

96 images

Ra = 0.84 um

Fig. 5. Schematics and examples of image data rendering.
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The two-channel encoder—decoder CNN structure is illustrated in Fig. 6. The
CNN takes 96 images with a frame size of 128 x 128 and then concatenates
them into a 96 x 128 x 128 tensor. The input tensor will go through a series of
convolutional layers, which serve as an encoder in the widely adopted
encoder—decoder CNN structure [59,60]. In the encoder stage, we stack
multiple ResNet BasicBlocks [61] with increasing depth and decreasing feature
size. The encoder stage allows CNNs to extract high-dimensional features from
the sparse information in the input images. The resultant feature map of the
encoder will be used by two parallel decoder channels as the input. The first
output channel predicts a 3 x 128 x 128 normal map, which contains three
channels of surface normal directions, while the other output channel predicts
the height map with a size of 1 x 128 x 128. In the decoder stage, the depth of
the feature map will decrease while its size will increase until it reaches 256 x
256. A final convolutional layer will output the tensor with the desired size of
128 x 128. In this part, the height and surface normal information is recovered
from the highdimensional feature map. All modules in the decoder stage
include a convolutional or deconvolutional layer, a batch normalization layer,
and a LeakyReLU layer [62] with a slope of 0.1 for negative values. Since the

96 Images ,. m

¢ ’( )

V | 4
ResNet BasicBlock Max-pooling

] e

Residual Connection Deconvolution
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0.056 s for one reconstruction on a graphics processing unit (GeForce RTX 2080
Ti, NVIDIA, USA). In practice, the run time for reconstruction is nearly negligible
compared with the image capturing and processing time.

3. Results and discussion

In this section, we present the performance of DPPS tested on both
rendered datasets and in real experiments. The results of both the surface
normal map and height map for the test dataset are first analyzed. To
demonstrate the advantage of end-to-end prediction of height maps, we
compare the height map reconstruction results with the integrated height
maps from the surface normal map that is conventionally adopted in current
photometric stereo practice. Then, the performance of DPPS on a standard
spherical shape is compared with the state-of-the-art, including those based
on deep learning approaches. Furthermore, we test the performance of DPPS
on real metal objects and compare the results with those obtained from
commercial 3D scanners.

Table 2
Error comparison of the validation set, test dataset and two reconstruction samples.

[
f

Normal map

m Height map

Fig. 6. DPPS Architecture: multi-channel CNN for end-to-end surface normal and height map reconstruction.

captured intensity of an arbitrary pixel depends more on surface normals than
locations, we concatenate feature maps from the normal map output channel
to the height map channel to facilitate the height map prediction. We also
apply multiple residual connection layers by adding the feature maps of ResNet
BasicBlocks to the feature maps in the deconvolutional layers. The residual
connection layers allow the preservation of detailed features between the
encoder and decoder stages. Instead of concatenating the feature maps to the
deconvolutional layers, we use element-wise addition for residual connection
to increase the depth of CNN without enlarging the CNN dimensions with extra
parameters [63]. The loss function for DPPS is defined as the mean squared
error (MSE) between the prediction and the ground truth. To train the CNN, we
choose Adam [64] as the optimization method, which can adaptively change
the learning rate according to the current gradient, thus being computationally
efficient. The two momentum parameters for Adam are set to £1=0.9 and />
=0.999.

A total of 10,000 sets of data, including clean data and quality variants, are
divided into three parts: 7,000 in the training set, 1,500 in the validation set to
monitor the overfitting, and 1,500 in the test dataset to evaluate the model
performance. The CNNs are built on Pytorch (version 1.6.0) [65]. The training
is first performed on clean data for 50 epochs with a learning rate of 0.001.
Then we add the data with quality variations into both the training and
validation sets and train the models for another 50 epochs. The learning rate
is then reduced to 10-5 after 50 epochs of training. This multi-step training
method speeds up the training process compared with directly training on the
whole dataset and can effectively avoid overfitting.

The model size of DPPS is 100.5 megabytes. The average run time is

Mean error for Mean angular Mean error for

normal map error height map
Validation dataset 0.0089 1.394° 0.0415 cm
Test dataset 0.0211 2.961° 0.1155cm
Example 1 0.0052 1.131° 0.0514 cm
Example 2 0.0060 1.291° 0.0640 cm

3.1. Results on the rendered dataset

The quantitative analysis of DPPS of the prediction errors for the validation
and test datasets is presented in Table 2. We show two sample reconstructions
from the test dataset in Fig. 7 with their mean prediction errors listed in Table
2. We use the mean surface normal difference and the mean height difference
to evaluate the prediction accuracy of the surface normal and height maps,
respectively. The corresponding mean angular error is calculated based on the
surface normal error for reference. For the test dataset results, the mean
angular error is 2.961°, while the average error of the height map is 0.1155 cm,
or below 1% of the overall height dimension of the object.

We notice that the prediction errors in the test dataset are two times larger
than those in the validation set for the angular error and more than ten-fold
for the height map prediction. This is largely due to the quality variations
included in the dataset, which randomly varies the illumination light intensities
and positions in a small range to represent the measurement uncertainties.
When we remove the quality variants from the dataset, the test dataset
performance converges to the validation set accuracy nicely. Though there are
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some discrepancies between the validation and test dataset performance, we
believe the results presented are more realistic performance indices.

Two reconstruction examples from the test dataset are plotted in Fig. 7. The
reference object shapes, rendered image samples (2 out of 96 image inputs),
surface normal maps, height maps, and the corresponding error maps are all
illustrated. The error map for the surface normal prediction is plotted as an
RGB image, where the color information indicates both the direction and
magnitude. The largest errors for both the surface normal and height maps
come from the surface discontinuity. The corresponding quantitative analysis
is summarized in Table 2.

One advantage of DPPS is its ability to directly output the height map from
image inputs to avoid the direct surface normal integration problem. In Fig.
7(b), we compare the height map predictions from DPPS and from the
traditional surface normal integration method. We used the Frankot—
Chellappa method [66] as the baseline comparison, which is a path-

independent integration method to achieve high
(a)

Reference image Rendered image sample

Ground truth

normal Error of normal

Predicted normal

A 000 —
(Jmund truth

height Predicted height

Error of height

—
Error map

Reference image

LLluul

Ground truth
normal

Ground truth
height
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deep-learning-based approaches. The mean angular error is calculated for the
reconstruction of DPPS and other calibrated or semi-calibrated photometric
stereo methods. DPPS'’s prediction accuracy is comparable to or even better
than the reference methods in this limited case.

It is worth noting that: (1) All other reference photometric stereo methods
do not give height map results for comparison, so we only compare the
accuracy of the mean angular error of the surface normal. (2) Only DPPS
assumes point-light illumination, which not only can be better implemented in
a manufacturing setting but also provide potentially higher prediction accuracy
due to the calibrated light positions (a semi-calibrated configuration in DPPS to
be more precise).

To further visualize the performance comparison, we plot the 3D
reconstruction results from PS-FCN [45] on a spherical object from

Rendered image sample

In
Imegrated height

map from normal
cm cim - "ll]

f | .

AN0.0 S -

=]

4

Predicted normal  Error of normal

Error of integrated
height

Predicted height  Error of height

Fig. 7. Two examples of DPPS results on the test dataset: (a) a convex shape; (b) a concave shape and the comparison with surface normal integration.

Table 3

Comparison of reconstruction results of a sphere.
Model Mean angular error

L2 4.10°

ST14 1.74°

1A14 3.34°

DPSN 2.0

PS-FCN 2.82°

DPPS 1.80°

computational efficiency while preserving the details of surface discontinuities.
The calculated height from the ground truth normal map exhibits severe global
shape deformation. The largest error is 5.7 cm, several orders of magnitude
larger than the direct prediction from the second channel of DPPS. If there are
additional estimation errors in the surface normal, the prediction error will be
accumulated even further to deteriorate the height map prediction. In
comparison, DPPS not only saves computation of normal integration but also
achieves higher accuracy for the height map reconstruction.

We also compare the performance of DPPS to the state-of-theart, including
both traditional, machine learning, and deep learning approaches. We use a
popular photometric stereo benchmark ‘sphere shape’ to compare the surface
normal prediction accuracy, as shown in Table 3. L2 [26] belongs to the
traditional photometric stereo category. ST14 [37] and 1A14 [39] are based on
the conventional machine learning approaches. DPSN [43] and PS-FCN [45] are

degree

I8
16

Mln

DiLiGent sample PS-FCN result

(b)-n

Rendered image DPPS result
sample

Error

Error

Fig. 8. (a) An example image of DiLigenT sphere shape data, reconstructed normal map by PS-
FCN [34] and error map; (b) an example image of rendered data for the same sphere shape with
point-light sources, reconstructed normal map by DPPS and error map.



R. Yang et al.

the DilLiGent benchmark [50] and the DPPS results on the same object
rendered with our generation method in Fig. 8. Both PS-FCN and DPPS work in
a semi-calibrated manner with 96 input images for reconstruction. Due to the
different assumptions of illumination conditions (parallel vs. point-light), we
cannot directly use DiLiGent images but render our own image sets based on
the calibrated light conditions as described in Section 2. DPPS result exhibits
smaller angular errors throughout the surface normal map.

3.2. Performance analysis of experiments

We further conduct experimental validation to evaluate the reallife
performance of DPPS with simple and complex shapes. The chosen object
shapes are very different from the training, validation, and test dataset to test
the generalization capabilities of DPPS. It should be

En

Captured images

[\’IlSSll’lb
pomts

Predicted normal  Scanned normal Difference
cm cm Cﬂl
¢) 4 l4
3 3 (] 75
2 |2
1 | 0.25
0 0°
Predicted height ~ Scanned height Difference
(d) cm
|4
3
2
0 |
0

0 10 0 10

x (cm) y (cm) x (mm)

Point cloud of the
reconstructed surface

y (mm)
Point cloud of the
scanned surface

Fig. 9. (a) Pictures of the metal forming part for reconstruction and examples of experimentally
captured images; comparison of the predicted and scanned results: (b) surface normal map and
(c) height map; (d) comparison of 3D point cloud of the reconstructed surface by DPPS and the
scanning result.

noted that all previous CNN-based photometric stereo methods have only
been tested on rendered or standard datasets. Their performance in real
scenarios is unknown. This is the first work to evaluate the real-life
performance of deep-learning based photometric stereo and to compare the
results, particularly the height maps, with commercial 3D scanners.

The first example is an aluminum sheet metal part made from incremental
forming [67]. The formed part has a truncated pyramid shape with an
approximate size of 35 cmx35 c¢cmx5 cm, as shown in Fig. 9(a). The
measurement region is located at the center with an area size of 10 cmx10 cm.
The surface roughness Ra is measured to be 0.72 um, which is within the
calibrated range of 0.52 um to 4.07 um. To be noted, the measured Ra value is
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unknown to our DPPS model and has not been used in the 3D reconstruction.
Ninety-six images are captured with each LED lit on in sequence. The images
are cropped and fed into DPPS that outputs the surface normal map and height
map, as shown in Fig. 9(b) and (c).

We use a laser scanner (AS1, Hexagon, USA) to provide the reference
surface normal and height maps (Fig. 9(b),(c)) to evaluate the performance of
DPPS. The scanner is equipped with an encoded arm system (RA-7535 Si,
Hexagon, USA), so the scanning is performed at multiple angles to ensure that
the projected laser is perpendicular to the surface. However, one limitation of
the laser scanner is its ability to deal with highly reflective surfaces. We directly
scan the parts without applying an additional matte spray, which results in
some missing data points where the scanner fails to register a point. It also
demonstrates the advantage of DPPS in handling specular reflection and its
potential for in-process metrology of metallic parts.

Predicted normal  Scanned normal

Predicted height ~ Scanned height
1

‘J Missing

points
- I

Integrated height
from normal

,tm

X (cm) 8 y (cm) X (cm) ¢ IO

Point cloud of the
l'CCOl'lStl'I.lCted surfacc

Captured images

(b)

y (cm)
Point cloud of the
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Fig. 10. (a) 3D reconstruction results of a pumpkin sculpture with DPPS and a 3D camera; (b)
comparison of point cloud reconstructed by DPPS and a 3D camera.

The comparison of predicted and scanned results is shown in Fig. 9(b) and
9(c). The predicted normal map from DPPS shows a good match with the
scanned result except for the missing data points. The largest error comes from
the edge region. This is mainly because the sharp edges were over-exposed in
various lighting conditions, which produced a discontinuous intensity field in
the captured image. As for the height map, the predicted height map is able to
recover the object’s overall shape with some local distortion. The average
difference between the predicted and scanned height maps is 0.317 cm. Part
of the error is suspected to come from surface textures of the formed part,
which results in anisotropic and uneven reflectance on the surface, as shown
in Fig. 9(a). We also compare the 3D reconstruction result and scanned result
in 3D point cloud format, as shown in Fig. 9(d), which indicates that DPPS
reconstructs a more complete 3D surface than direct laser scanning result.
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The second example part is a pumpkin-shaped sculpture painted with a
metallic coating, as shown in Fig. 10. The sculpture size is 12.1 cmx12.1 cmx7.1
cm. The reconstruction region is the center area with an area size of 10 cmx10
cm. The sculpture has both complex convex and concave shapes, while the
pumpkin stem creates discontinuous height profiles and occlusion. The
reference results are measured using an industrial 3D camera (PhoXi 3D
Scanner XS, Photoneo, USA), which utilizes structured light projection. The
depth of view of the 3D camera is 161 205 mm. It is positioned 160 mm above
the sculpture to ensure the top surface is within the focal region.

For the 3D camera, the structured light is projected from a single projector
position, so the shadow effect caused by occlusion and concavity will cause
missing data points in the scanned result. In addition, since the surface normal
map is not directly provided by the point cloud output, the reference surface
normal is manually calculated using local fitting from the point cloud data.

The measurement results from DPPS and the 3D camera are compared in
Fig. 10. The surface normal map predicted by DPPS shows finer details of the
reconstructed pumpkin, even for the steep slope on the stem region where the
3D camera failed to register data points. This is more obvious in the 3D point
cloud comparison, as shown in Fig. 10(b). The height map predicted by DPPS
shows high consistency with the scanned result except for the concave regions
on the pumpkin surface, where the camera outputs abnormal values. Though
shadow also exists due to occlusion by the stem, DPPS results are not affected
by the shadows. The height map from surface normal integration is also plotted
for comparison. The integrated height map is able to recover the overall shape
but cannot preserve the height jump in the stem region.

The above experimental validation suggests that DPPS is able to reconstruct
complex metal surfaces even when the shape is very different from those in
the training dataset. The reconstruction results are in high consistency with the
commercial 3D scanners, while DPPS shows much greater potential for in-
process metrology capabilities.

4. Conclusion

In this paper, we present DPPS, a deep-learning based point-light
photometric stereo for 3D reconstruction of metal surfaces with unknown
surface roughness. DPPS takes 96 image inputs captured under 96 point-light
LED illumination and reconstructs both the surface normal and height maps in
an end-to-end manner.

The major contributions of the work can be summarized as follows:

1. Anew dataset generation procedure combining both physicsbased and
data-driven approaches is developed. It includes three novel modules:
(a) point-light source calibration, (b) a physicsbased and data-driven
reflectance model, and (c) realistic pointlight reflection rendering. The
proposed method is able to render comprehensive image sets under
location-dependent illumination, a range of different surface
roughness, and quality variations.

2. An end-to-end approach is proposed to directly predict the height map
from input images from a multi-channel CNN, significantly reducing
distortions when calculating the height map from surface normals. The
ill-posed surface integration problem is avoided by introducing the
position as an extra dimension to photometric stereo, enabling the
CNN to learn the height map directly

3. Point-light photometric stereo is introduced in a deep learning
framework, which utilizes the nonlinear mapping ability of deep CNNs
to implicitly determine the reflection properties determined by the
surface roughness and point-light source locations.

4. Though only trained with synthetic datasets, DPPS shows good
performance on both rendered test datasets and experimental
conditions. DPPS outperforms the state-of-the-art in a sphere
reconstruction test with a mean angular error of 1.80°. In realworld
tests, DPPS is able to reconstruct a metal forming part and a complex
pumpkin sculpture with millimeter level accuracy on height prediction
and less than 10" angular errors in surface normal prediction. The
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results are directly compared with commercial 3D scanners (laser scan
and structured light projection).

5. DPPS is a promising computer vision 3D reconstruction method for
future in-process 3D metrology of various manufacturing processes,
such as metal additive manufacturing. By utilizing our data-driven and
physics-based data generation approach, DPPS can be extended to
different scales, lighting conditions, and materials.

The proposed DPPS provides insight into utilizing deep learning to
overcome the intrinsic limitation of 3D reconstruction methods. It establishes
a new solution for dealing with reflectance property with a neural network to
quickly render comprehensive datasets for training deep learning models.
While applying this method in 3D reconstruction, there are multiple factors
that need to be considered. (1) The current model is sensitive to environmental
lighting and has to be used in a dark setting. (2) Since the normal map and
height map are reconstructed at the same time, the reconstruction range is
fixed into a 10 cm x 10 cm region which is not directly scalable. Our future work
includes designing a lighting setup with much brighter illumination to eliminate
the influence of environmental light and designing a compact system for
reconstructing details of metal surfaces, which is applicable for the in-process
monitoring of powder bed fusion processes. We are also working on replacing
the dome with a robot arm holding and moving a point light to provide
different lighting conditions, which largely reduces the system complexity of
DPPS.
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Appendix

A.1. How we get 271,728 data points for training the brdf function?

When the viewing angles are 0°, 22" and 54°, the metal ball in the captured
image has diameters of 159 pixels, 151 pixels and 153 pixels. Since most parts
of the captured image are dark under the single direction lighting, we utilize
the symmetric property of the BRDF model to reduce a large amount of
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redundant data by taking the upper-left quarter of the pixels. This leads to
5,097, 4,606, 4,727 data points for each image taken under 0°, 22°and 54°. And
when the viewing angle is 0°, which is right on top of the metal ball and &;
equals 07, the incident light is partially occluded by the camera, so we discard
a rectangular region (37 x 66) in that image. So the total amount of data points
equals (5, 097 + 4, 606 + 4, 727) x 19 - 37 x 66 = 271, 728.
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Fig. A.1. (a) Comparison of DPPS reconstruction and scanning results on a 3D bronze star; (b) comparison of DPPS reconstruction and scanning results on a cone-shaped aluminum

forming part.

A.2. Additional experimental verification

In this section, we show two experiment results to analyze the performance
of DPPS in addition to the two experiments in Section 3.2. The first example is
a 3D start made of bronze material and the second example is a cone-shaped
aluminum forming part. Both objects are larger than 10 cm x 10 cm in -y
dimension, so the reconstruction area is the maximum scanning area of DPPS,
that is 10 cm x 10 cm. In Fig. A.1 we demonstrate the normal map, height map
and the point cloud comparison of DPPS reconstruction and scanning results.
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