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A B S T R A C T 

 

Three-dimensional (3D) measurement provides 

essential geometric information for quality 

control and process monitoring in many manufacturing applications. Photometric stereo is one of the potential solutions for 

inprocess metrology and active geometry compensation, which takes multiple images of an object under different 

illuminations as inputs and recovers its surface normal map based on a reflectance model. Deep learning approaches have 

shown their potential in solving the highly nonlinear problem for photometric stereo, but the main challenge preventing their 

practical application in process metrology lies in the difficulties in the generation of a comprehensive dataset for training the 

deep learning model. This paper presents a new Deeplearning based Point-light Photometric Stereo method, DPPS, which 

utilizes a multi-channel deep convolutional neural network (CNN) to achieve end-to-end prediction for both the surface normal 

and height maps in a semicalibrated fashion. The key contribution is a new dataset generation method combining both physics-

based and data-driven approaches, which minimizes the training cost and enables DPPS to handle reflective metal surfaces 

with unknown surface roughness. Even trained only with fully synthetic and high-fidelity dataset, our DPPS surpasses the state-

of-the-art with an accuracy better than 0.15 cm over a 10 cm × 10 cm area and its real-life experimental results are on par with 

commercial 3D scanners. The demonstrated results provide guidance on improving the generalizability and robustness of 

deep-learning based computer vision metrology with minimized training cost as well as show the potential for in-process 3D 

metrology in advanced manufacturing processes. 

1. Introduction 

Advances in in-situ metrology techniques have upgraded the capability of 

modern manufacturing systems to a more competitive level. These techniques 

are critical enablers for in-process performance monitoring and quality control. 

Beyond traditional dimensional measurement techniques, three-dimensional 

(3D) measurement can provide comprehensive geometrical information of a 

physical object, which has gained increasing popularity in academia and 

industry [1–3]. Many emerging manufacturing processes, such as metal 

additive manufacturing, 5-axis machining, incremental forming, etc. [4–6], will 

benefit greatly from in-process 3D measurement techniques for improved 

geometry accuracy. In addition, in-process 3D metrology will provide a 

powerful tool enabling the investigation of some unique and complex process 

mechanics, such as the thermal expansion in additive manufacturing [7] and 

the geometric deviations in metal forming and forging [8,9]. 

Non-contact metrology provides the possibility of in-process measurement 

without interfering with the manufacturing process. Overall, scanning-based 

3D reconstruction, such as laser scanning [10], microwave imaging [11], and 

computed tomography (CT) [12], can offer sub-millimeter level accuracy with 

moderate efficiency (millions of points in one scan); however, limitations of 

these methods include system complexity, high cost, and material restrictions, 

making it difficult to be applied for in-process metrology and monitoring. For 
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example, the most popular scanning technology, laser scanning, faces difficulty 

in collecting high-quality data when scanning reflective surfaces that are 

prevalent with metal components. Though the speckle noise and spurious 

reflections can be removed with cross polarization [13] and image pre-

processing [14], the low receiving reflection intensity caused by specular 

reflection is still a challenge for getting a confident scanning result. 

As an alternative to scanning-based metrology, image-based methods are 

gaining popularity because of their simple and low-cost hardware 

requirements. With the recent advancement in computer vision techniques, 

multiple image-based 3D reconstruction methods have been developed with 

rapidly improving accuracy. Passive methods of 3D reconstruction, such as 

multi-view stereo [15,16] and structure-frommotion [17], recover 3D 

information by mapping the feature correspondence from a set of 2D 

overlapping images. These methods work better with objects that have plenty 

of unique features for matching. For the reconstruction of textureless surfaces, 

which are commonly encountered in manufacturing applications, the accuracy 

of these methods is limited. Derived methods are developed to improve the 

accuracy in the case of textureless surface reconstruction by projecting 

patterns on the surface [18–20] or powdering the object surface [21]. And 

recently, NeRF (neural radiance field) [22], a completely new direction is 

introduced that trains multilayer perceptrons [22] or neural 3D points [23] to 

represent volumetric radiance field from a large number of images of the 
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object from various views. These methods require multiple camera angles, 

which are difficult to implement in many manufacturing process setups, and 

still suffer from lower measurement accuracy. 

Active methods for 3D reconstruction, such as deflectometry [24], 

structured light reconstruction [25], and photometric stereo [26], utilize 

lighting and projection conditions to extract more detailed shape and 

appearance information from 2D images. Deflectometry and structured-light 

reconstruction use almost identical setup, which includes a projector to project 

pattern on the object and one or two cameras to capture images. 

Deflectometry projects fringe patterns to a target object and reconstructs the 

surface normal based on the phase information in reflected fringe patterns. 

Because of its high sensitivity to surface curvature change, it is good at 

reconstructing specular (shiny) and nearly flat surface [27]. To be compared, 

structured light reconstruction recovers 3D geometry from the distorted fringe 

or chessboard-like patterns using the principle of triangulation [28] and is more 

suitable for reconstructing less specular or more complex surfaces. It is already 

adopted by multiple commercial indoor RGB-D cameras as the basic algorithm 

[29]. Deflectometry and structured light reconstruction capture images from a 

limited number of viewpoints (commonly one or two), while the projected 

structured pattern comes from a single source [30,31]. Thus, reconstruction 

failure occurs for surfaces with large fluctuations when the projected pattern 

is occluded by the shadow effect imposed by surface terrain. 

Photometric stereo [26,32,33] is another active method for 3D 

reconstruction which utilizes images taken under different illuminations to 

reconstruct the normal map of a surface. It utilizes reflectance models for 

estimating surface properties from transformations of image intensities that 

arise from illumination changes [26,34]. Different from structured light 

reconstruction and deflectometry, photometric stereo utilizes light sources 

from multiple directions and takes multiple captures, which lessens the effect 

of occlusion. Compared with deflectometry, which is better at reconstructing 

specular and nearly flat surfaces, photometric stereo is more capable of 

reconstructing 3D objects with more fluctuations. Furthermore, the 

reconstruction resolution of photometric stereo is not limited by the resolution 

of fringe patterns, so photometric stereo tends to recover finer details in the 

surface normal variations. 

The surface normal reconstruction in photometric stereo solves the inverse 

reflection process with prior knowledge of the reflectance property of the 

target material. The fully diffusive reflection from so-called Lambertian 

surfaces can be analytically calculated by the photometric stereo, whose 

reflectance is not influenced by the viewing angle [35]. However, most real-

world surfaces are not Lambertian and exhibit both diffusive and specular 

appearances. The specular appearance introduces nonlinearity to the 

reflectance model, which adds more complexity when solving the inverse 

reflection process. Early research tried to handle the specular appearance by 

developing analytical reflectance models for more general materials [36–39] or 

excluding nonLambertian effects as outliers [40–42]. For non-Lambertian 

surfaces, the reflectance is usually described by a bi-directional reflectance 

distribution function (BRDF). Shi et al. [37] developed a bi-polynomial BRDF 

model to account for the low-frequency non-Lambertian effects. More 

generally, sophisticated BRDF models were developed to approximate 

reflectance with highly non-Lambertian effects [38]. However, methods in this 

category require solving complicated optimization problems and thus are 

computationally inefficient. For outliers-rejection methods, multiple machine 

learning approaches such as sparse regression [36, 40], random sample 

consensus [41], and rank minimization [42] have been utilized. For example, 

Wu et al. [42] regarded the problem as a rank minimization problem where 

Lambertian reflection was treated as a low-rank subspace while non-

Lambertian reflectance was excluded as outliers during rank minimization. This 

group of methods usually requires a large number of image inputs and works 

only when nonLambertian (specular) observations occupy a small portion of 

the whole image. 

Based on their success in computer vision tasks, deep learning methods 

have been introduced to photometric stereo to directly reconstruct non-

Lambertian surfaces without the explicit knowledge of an analytical 

reflectance model and brought the accuracy to the stateof-the-art [43–49]. 

Santo et al. [43] first attempted a deep learning approach in photometric 

stereo. The surface normal was estimated in a point-by-point manner with a 6-

layer fully connected neural network. Ikehata utilized convolutional neural 

networks (CNNs) to reconstruct very shiny surfaces with higher robustness 

which took into account both the global illumination effect (such as 

illumination variance and shadows) and inter-reflectance [44]. Chen et al. 

developed two CNNs, PS-FCN [45] and SDPS-Net [46], that supported an 

arbitrary number of input images taken under random lighting conditions. A 

combined loss function was defined in [46] that enabled the CNN to learn the 

surface normal as well as lighting directions of each image input. Li et al. [48] 

developed a deep learning framework in which a connection table was applied 

to select the most relevant lighting directions for reconstruction. As a result, 

the number of input images was reduced while the prediction accuracy was 

maintained. Ju et al. [49] introduced a dualregression task to photometric 

stereo, which synthesizes reconstructed images from the estimated normal 

map to add additional supervision and uplift the accuracy. 

Though deep learning methods have improved the performance and 

flexibility of photometric stereo, there remain several inherent challenges that 

prevent the further application of photometric stereo in manufacturing 

applications. The first challenge is the dataset generation for training deep 

learning models in photometric stereo. Since photometric stereo is an inverse 

mapping process from the image intensity to the normal map, the reflectance 

model critically determines the accuracy and robustness of photometric 

stereo. For deep-learning based photometric stereo, the reflectance model is 

usually not explicitly defined but embodied in the training dataset. A deep 

learning model implicitly learns surface reflectance and encodes this hidden 

knowledge in the neural network to recover the normal map. Therefore the 

resemblance between the dataset and reality determines the accuracy of the 

reconstruction result. Previously, the dataset for training deep-learning based 

photometric stereo was either captured from a limited set of experiments or 

generated from computer simulation. The experimentally captured datasets 

give the most realistic reflectance conditions [50,51]; however, they are usually 

too expensive with limited representations to train a deep learning model. On 

the other hand, synthetic datasets [45,47] are generated by taking linear 

combinations of different BRDF models from an experimental-based 

reflectance library [52]. This approach is unrealistic as it will smooth out the 

highfrequency Lambertian effects. There still lacks an approach to generate a 

realistic and comprehensive reflectance model that covers various materials. 

In addition, simulated datasets are often rendered in an ideal condition 

without considering uncertainties and variations in illumination and imaging. 

The performance of these trained models would be unstable and sensitive to 

inevitable environmental variations. In order to generate high-quality and 

realistic datasets, both experimental data and the physics of reflectance should 

be considered. 

Another limitation of photometric stereo lies in the ill-poised integration 

from surface normal maps to height maps. According to the reflectance 

principle, the captured image intensity depends on the normal vector for a 

given material and illumination direction. By solving the inverse reflectance 

problem, photometric stereo inherently only outputs the surface normal map 

of an object. Though the height map can be derived by integrating the normal 

map, the problem is illposed when the surface has discontinuity or free shape 

boundaries [53]. This physical restriction limits the reconstruction to 2.5D 

instead of full 3D. To alleviate this limitation, Vlasicl et al. [54] described a 

multiview photometric stereo that recovered the normal map of an object 

from different views and matched the correspondence of different views to 

recover the full 3D surface. Haefner et al. [55] utilized an RGBD camera to 

perform photometric stereo so a high-resolution height map can be 

reconstructed by combining the low-resolution geometric constraint from the 

depth camera and the details from the integrated normal map calculated with 

photometric stereo. However, these methods all depend on a separate 

algorithm that does not directly relate to photometric stereo. There is potential 

in deep learning to use an endto-end approach for height map reconstruction 

by fully utilizing the captured image information from photometric stereo. 
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To address the above challenges, in this paper, we present DPPS, a novel 

Deep-learning based Point-light Photometric Stereo for 3D reconstruction of 

metallic surfaces with unknown surface roughness. The proposed DPPS 

method has the following major contributions: • DPPS directly reconstructs 

both the height map and normal map of a 3D shape from images taken under 

different point-light conditions utilizing the principle of photometric stereo and 

the nonlinear mapping abilities of deep CNNs. 

• This work is the first attempt to apply deep learning to pointlight 

photometric stereo. By utilizing point light sources, an extra dimension 

is introduced into the photometric stereo framework, which enables 

direct prediction of the height map of a 3D object. • Another major 

contribution of the work is a new dataset generation method combining 

physics-based and data-driven approaches that include experimentally 

calibrating light sources, training a data-driven reflectance model, and 

rendering realistic image sets. To improve the model robustness in 

experiments, careful considerations are made to include image capture 

noises, calibration uncertainty, and light intensity variations. 

• Last but not least, we have demonstrated DPPS’s performance on both 

synthetic datasets and real-world experiments. DPPS shows great 

generalizability to work with metal materials with unknown surface 

roughness. By only training DPPS with our fully synthetic and high-

fidelity dataset, its performance surpasses the state-of-the-art, while its 

real-life experimental results are on par with commercial 3D scanners. 

The demonstrated results provide guidance on improving the 

generalizability and robustness of deep-learning based computer vision 

metrology with minimized training cost as well as showing the potential 

for in-process 3D metrology in advanced manufacturing applications. 

2. Methods 

The overall flowchart of DPPS is illustrated in Fig. 1. A domeshaped setup is 

used to capture images of the target object under 96 point-light illumination 

conditions. A multi-channel CNN is designed to take the captured images as 

inputs and predict the target object’s surface normal and height maps 

simultaneously. The novel design of 

the CNN implicitly assigns the ill-posed problem of direct integration to the 

deep neural network, thus avoiding the integration error from normal to 

height. The model is trained by a synthetic dataset, which is the other key part 

of this research work. The dataset generation process incorporates calibrated 

light conditions (Section 2.1), a data-driven reflectance model considering 

unknown surface roughness (Section 2.2), and image rendering method 

considering lighting variation and measurement noises (Section 2.3). The 

design of the new CNN architecture and training details are given in Section 

2.4. 

2.1. Point-light photometric stereo and setup calibration 

Traditional photometric stereo assumes the incident light to be parallel. 

This condition holds true when the light source has a far larger diameter than 

the dimension of the reconstructed object (such as sunlight) or when the light 

is placed far enough from the object. By replacing the parallel lights with point 

lights, the practicality of photometric stereo for in-process metrology is largely 

improved. In this section, we will introduce the setup of the proposed deep-

learning based photometric stereo, DPPS, that works under point light 

illumination and the calibration procedure of the light sources. In point-light 

photometric stereo, the incident light intensity is both direction- and location-

dependent, forming a highly nonlinear problem. For a given point on the target 

surface with a coordinate vector, 𝑿𝑷 , and the pointlight source location, 𝑳𝒌, 

the light intensity vector, 𝑰, is given by [56] 

 𝐿𝑘 − 𝑋𝑃 1 

𝐼 = ⋅ ⋅ 𝐼0 (1) 

‖𝐿𝑘 − 𝑋𝑃 ‖ ‖𝐿𝑘 − 𝑋𝑃 ‖2 

Eq. (1) indicates that the incident light for each point on the 3D surface 

directs from the light source to the object point and has an intensity that is 

proportional to the inverse squared distance between the light source and 

object point. Unlike the uniform incident light in parallel-light photometric 

stereo, the location-dependency of pointlight illumination brings an additional 

dimension to the framework of photometric stereo, which gives rise to the 

direct prediction of height map of the reconstructed surface. An iteration 

procedure is often involved in solving the height map from the normal map in 

point-light photometric stereo. 

The proposed deep learning approach relies on the nonlinear mapping 

ability of deep CNNs to solve the surface normal and height in an end-to-end 

manner. The complex iteration procedures with an analytical approach are 

accomplished by a single CNN in the proposed DPPS. The light conditions are 

consistent in the training dataset and physical setup, so the CNN will learn to 

implicitly determine the light source locations. This is a semi-calibrate 

approach in which the light source information is not directly input to DPPS 

networks, but needs to be calibrated for rendering the training dataset. The 

setup of the proposed method and the calibration of the point-light locations 

are detailed as follows. 

We adopt a point-light photometric stereo configuration in the DPPS 

framework with 96 individually controlled light-emitting diodes (LEDs), as 

shown in Fig. 2(a). The 96 point-light sources are mounted on the inner surface 

of an aluminum dome shell, as shown in Fig. 2(a). The dome shell has a 

parabolic shape with a focal length of 152.4 mm and a bottom diameter of 

609.6 mm. The 96 LEDs are located at five different height levels, while the 

number of LEDs at each level from top to bottom is 6, 10, 18, 28, and 34, 

respectively. They are approximately spaced evenly at each level. The white 

light LEDs have a diameter of 1.4 mm and are parallelly controlled by an 

Arduino micro-controller. 

A 2.2 megapixel monochrome CMOS camera (MQ022MG-CM, Ximea, 

Germany) is mounted above the dome for image capture through a center hole 

drilled at the top of the dome. The working distance of the camera is set to 520 

mm. The lens used is a C-mount fixed focal length lens (16 mm) with a 

maximum aperture of f/1.6. The ground sampling distance (GSD) of the 

proposed method is: 

(𝑓𝑙𝑖𝑔ℎ𝑡 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 × 𝑠𝑒𝑛𝑠𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡) (520 mm × 11.27 mm) 

= 

(𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡) (16 mm × (2048 pixel∕4.461)) 

 = 0.798 mm (2) 

where the image height is divided by 4.461 which is the ratio of captured image 

size in the reconstruction area and the reconstruction size. 

Calibration of the point-light positions is performed in two steps. The first 

step is to determine the LED locations in the dome coordinate. As shown in Fig. 

2(b), the inner surface of the dome is captured 
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Fig. 2. (a) Point-light photometric stereo setup and the inner surface of the dome setup mounted 

with 96 LEDs; schematics showing (b) light position calibration and (c) alignment calibration. 

with each LED individually turned on. In the captured images, the dome has a 

diameter of 1,587 pixels, which is large enough to give precise positioning of 

each point-light. The dome center is determined through the best fit of a circle, 

while the X, Y, and Z positions of the LED can be calculated from the analytical 

expression of the dome geometry. The resultant coordinates are denoted as a 

96 × 3 matrix 𝑳𝟏. The second step is to align the dome coordinate to the camera 

coordinate, so the accurate light positions can be determined with respect to 

the measurement frame. We place a 1.5-inch shiny metal ball (G25 precision 

chrome steel ball, PGN Bearings, USA) below the dome and along its center 

axis, which has a diameter of 196 pixels in the camera view, as shown in Fig. 

2(c). We then take 96 pictures of the light reflection from each light source. In 

each captured image, the light spot location indicates the illumination 

direction by considering the geometrical relationship of the metal ball and the 

dome geometry. The light locations are then back-calculated, considering the 

intersection between the illumination direction and the dome surface. The 

results are denoted as a 96 × 3 matrix 𝑳𝟐. 

We use a singular value decomposition (SVD) method to decompose the 

inner product of 𝑳𝟏 and 𝑳𝟐 to two unitary matrices: 𝑼 and 𝑽 , and a rectangular 

diagonal matrix 𝑺, as defined by 

[𝑼, 𝑺, 𝑽 ] = 𝑆𝑉 𝐷(𝑳𝑻
𝟐 ⋅ 𝑳𝟏) (3) 

The orthogonal matrix 𝑽 is a rotation matrix that maps 𝑳𝟏 from the dome 

coordinate to the camera coordinate. The final calibrated point-light positions 

𝑳 (96 × 3) are derived as 

𝑳 = 𝑳𝟏 ⋅ 𝑽 (4) 

2.2. Reflectance model for metals with different roughness 

In order to render realistic reflection images with a range of different 

surface roughness, we build a data-driven and physics-based reflectance model 

for the dataset generation. In this section, a modified bidirectional reflection 

function (BRDF) is established to take into account the surface roughness of 

metal surfaces. Different metal materials exhibit similar ‘metallic’ reflection 

characteristics, thus we use aluminum to represent all metal materials. An 

experimental procedure is designed to collect metal reflection properties using 

aluminum sphere artifacts. The collected data are used to train a fully-

connected neural network, enabling the interpolation and extrapolation of 

arbitrary 𝜃𝑖, 𝜃𝑟, 𝜙𝑖−𝜙𝑟 and surface roughness. Though this data-driven 

reflectance model is only used for dataset generation, not directly used in the 

final DPPS, it is an essential component to ensure the quality of the training 

dataset, and thus significantly influencing the final DPPS performance. 

The reflectance properties of an object can be described by a BRDF, which 

assumes that the reflection intensity is a function of four input angles 

consisting of the incident lighting direction (𝜃𝑖, 𝜙𝑖) and the viewing direction 

(𝜃𝑟, 𝜙𝑟), as shown in Fig. 3(a). For an isotropic material, the in-plane rotations 

will not affect the reflectance, so the input angles can be reduced to 𝜃𝑖, 𝜃𝑟, 

𝜙𝑖−𝜙𝑟. In our modified BRDF model, the surface roughness is added as an 

additional input parameter to the function. The data-driven model can perform 

the interpolation not only on the 

 

Fig. 1. Flowchart of DPPS. 
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Fig. 3. (a) Experiment setup for BRDF measurement and 6 metal spheres with different surface 

roughness as the target artifacts; (b) structure of fully connected neural network for a data-

driven BRDF model. 

viewing and illumination angles, but also on the surface roughness. The 

modified BRDF model and the relationship between three input angles and 

three direction vectors can be described by 

𝐵𝑅𝐷𝐹 ∶ 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝑓(𝜃𝑖, 𝜃𝑟, 𝜙𝑖 − 𝜙𝑟, 𝑅𝑎) 

 ⟨ ⟩ 

𝜃𝑖 = ⃗𝑙, 𝑛 ⃗ 
(5) 

𝜃𝑟 = ⟨𝑣, ⃗ 𝑛 ⃗⟩ 
 ⟨ ⟩ 

𝜙𝑖 − 𝜙𝑟 = ⃗𝑙 − (⃗𝑙 ⋅ 𝑛 ⃗)𝑛, ⃗ 𝑣 ⃗ − (𝑣 ⃗ ⋅ 𝑛 ⃗)𝑛 ⃗ 

where ⃗𝑙 indicates the lighting direction vector; 𝑛 ⃗ is the surface normal 

vector; and 𝑣 ⃗ is the viewing direction vector. Operator ⟨, ⟩ calculates the angle 

between two vectors, that is: 

⟨  ⃗⟩ = 𝑎𝑟𝑐𝑐𝑜𝑠(  𝑎 ⃗ ⋅ 

𝑏⃖⃗ ⃗ ) (6) 

𝑎, ⃗ 𝑏⃖⃗ 

‖𝑎 ⃗‖ ⋅ ‖𝑏⃖⃗ ⃗‖ 

The data collection for training the modified BRDF model is performed with 

the following procedures. We use six aluminum spheres with a diameter of 3/4 

inch as the artifacts for BRDF data collection, which are polished to different 

surface roughness with a Ra value of 0.52 μm, 0.68 μm, 0.78 μm, 1.07 μm, 2.13 

μm, and 4.07 μm, respectively. The spherical shape of the artifact can provide 

a wide range of surface normal directions in a single shot, whose directions can 

be determined from its projected lateral positions. 

The reflection intensities of six artifacts are recorded at different viewing 

and lighting angles. In the experiment, we set the camera to three different 

viewing angles (the zenith angle, 𝜃𝑟, equal to 0◦, 22◦, 54◦; and the azimuth angle, 

𝜙𝑖 − 𝜙𝑟, equal to 90◦). The metal sphere is placed at the center of the camera 

view. A narrow-angle LED bulb (rated at 12 W, 1200 Lumen, Lusta LED, China) 

is fixed on the end of an adjustable arm beam as the light source, which can be 

rotated to adjust the zenith angle, 𝜃𝑖. For each viewing angle, the lighting angle 

is set to 19 levels from horizontal to vertical, at an interval of 5◦. For each 

captured image with a set of illumination and viewing angles, all pixels on the 

metal sphere are utilized as the training data for BRDF modeling. For each pixel 

on the sphere, the surface normal vector is calculated based on its relative 

position to the sphere center. Based on the illumination, viewing, and surface 

normal directions, the corresponding input angles are derived for 𝜃𝑖, 𝜃𝑟, 𝜙𝑖 − 

𝜙𝑟, following Eq. (5). 

The BRDF model adopts a shallow neural network with one hidden layer to 

map the three geometrical angles and the surface roughness to the reflection 

intensity, as shown in Fig. 3(b). It is trained with 271,728 data points collected 

from the experimental procedures described above. After 100 epochs of 

learning, the coefficient of determination (R-value) reaches 0.98, and the mean 

squared error (MSE) is reduced to the level of 10−6. 

The training results of our modified BRDF model are plotted in Fig. 4. In Fig. 

4(a), the surface roughness Ra is fixed at 0.55 μm, while 𝜙𝑖 − 𝜙𝑟 is set to 0◦. The 

contour plot shows the output of normalized reflection intensity under 

different zenith angles. As 𝜃𝑖 and 𝜃𝑟 increase, the intensity drops rapidly, which 

is consistent with the specular surface reflectance effect. 𝜙𝑖 and 𝜙𝑟 have almost 

the same influence on the output intensity, as the material is isotropic 

regarding the reflectance property. Fig. 4(b) shows the BRDF output with the 

change of 𝜃𝑖 and Ra when 𝜙𝑖 − 𝜙𝑟 and 𝜙𝑟 are fixed to 0◦ and 30◦, respectively. 

When Ra is small, the surface tends to be specular, so the output intensity 

drops more rapidly with the increase in 𝜃𝑖. As Ra increases, the surface 

resembles more of a matte finish, so the output intensity is less sensitive to the 

change of illumination and viewing angles. 

2.3. Rendering of training datasets 

Three components are necessary for our DPPS framework to generate the 

training dataset. The point-light position calibration is described in Section 2.1. 

A data-driven and physics-based BRDF model is detailed in Section 2.2. In this 

section, the detailed algorithms are described for rendering realistic reflection 

images with quality variances. 

The dataset generation module uses 10 random 3D objects from the Blobby 

library [57]. They are randomly rotated to 500 orientations and cropped with a 

size 128 × 128 associated with a physical dimension of 10 cm by 10 cm. The 

orientation angles (𝛼𝑦, 𝛼𝑥) are defined in the range of (0, 360◦). Each shape is 

then randomly assigned with two values of surface roughness in the range from 

0.52 μm to 4.07 μm, resulting in a total of 10×500×2 = 10,000 sets of data. The 

corresponding variation of the height is in the range from −5cm to 10 cm. The 

rendering module then generates 96 reflection images for each object shape 

under 96 point-light illumination conditions. 

For each Blobby shape in the set, we derive the surface normal and surface 

height information for each point from the geometry of the shape. Then for a 

given calibrated point-light position 𝑳𝒌, a point on the target surface 𝑿𝑷 , and 

the fixed camera position 𝑿𝒄, the viewing vector 𝑣 ⃗ and the illumination vector 

⃗𝑙 can be directly calculated by normalizing vector 𝑿𝒄 − 𝑿𝑷 and 𝑳𝒌 − 𝑿𝑷 . The 

three geometric angles 𝜃𝑖, 𝜃𝑟, 𝜙𝑖−𝜙𝑟 are then calculated according to Eq. (5). 

The trained BRDF model takes the three input angles and the assigned surface 

roughness to output the reflectance intensity at each surface point. To account 

for the light attenuation, the distance between the light position 𝑳𝒌 and the 

surface point 𝑿𝑷 is calculated according to Eq. (7). The attenuation factor 𝑞 is 

taken as 3, since the LED can be approximated as an ideal point-light source 

[58]. The reflection intensity 𝐼 at point 𝑿𝑷 on the surface under the illumination 

of a point-light at 𝑳𝒌 can be calculated by 

𝐼0 

𝐼𝑋𝑃 = ‖ 𝑳𝒌 − 𝑿𝑷‖2 𝐵𝑅𝐷𝐹(𝜃𝑖, 𝜃𝑟, 𝜙𝑖 − 𝜙𝑟, 𝑅𝑎) (7) 

For each rendered image, we normalize the intensity by rescaling the 

largest pixel intensity to 255. This approach yields a better training 
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Fig. 4. (a) Contour plot of the BRDF model for different zenith angles; (b) plot of the BRDF model 

for different surface roughness. 

performance of DPPS. After scaling, Gaussian noises with a zero mean and a 

standard deviation from 10−4 to 10−2 are applied to each rendered image to 

simulate the image capture noises. 

To further increase the robustness and adaptivity of DPPS, we deliberately 

generate data with quality variances, including over-exposed image sets with a 

larger intensity factor 𝐼0 (12.5% of the total samples), image sets with varying 

light intensities among the 96 light sources (6.25% of the total samples); image 

sets rendered under varying pointlight positions to account for the calibration 

uncertainties (6.25% of the total samples). We summarize our dataset 

generation and rendering algorithms in Table 1. 

The rendering procedures and examples of rendered image sets are shown 

in Fig. 5. Two rendered image sets are plotted for the same object under 

different point-light illumination and with two assigned surface roughness of 

Ra = 0.55 μm and Ra = 0.84 μm. It should be noted that these two surface 

roughness values are not the same as the calibrated artifacts but interpolated 

by the trained BRDF. 

2.4. Architecture of DPPS and training details 

In the proposed DPPS, we develop a two-channel CNN to directly extract 

the height map and surface normal map in an end-to-end manner, so the 

normal-map-targeted 2.5D reconstruction is extended to full 3D 

reconstruction. The structure of the CNN preserves the intrinsic character of 

photometric stereo while avoiding the ill-posed surface normal integration 

problem. 

 

Fig. 5. Schematics and examples of image data rendering. 
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The two-channel encoder–decoder CNN structure is illustrated in Fig. 6. The 

CNN takes 96 images with a frame size of 128 × 128 and then concatenates 

them into a 96 × 128 × 128 tensor. The input tensor will go through a series of 

convolutional layers, which serve as an encoder in the widely adopted 

encoder–decoder CNN structure [59,60]. In the encoder stage, we stack 

multiple ResNet BasicBlocks [61] with increasing depth and decreasing feature 

size. The encoder stage allows CNNs to extract high-dimensional features from 

the sparse information in the input images. The resultant feature map of the 

encoder will be used by two parallel decoder channels as the input. The first 

output channel predicts a 3 × 128 × 128 normal map, which contains three 

channels of surface normal directions, while the other output channel predicts 

the height map with a size of 1 × 128 × 128. In the decoder stage, the depth of 

the feature map will decrease while its size will increase until it reaches 256 × 

256. A final convolutional layer will output the tensor with the desired size of 

128 × 128. In this part, the height and surface normal information is recovered 

from the highdimensional feature map. All modules in the decoder stage 

include a convolutional or deconvolutional layer, a batch normalization layer, 

and a LeakyReLU layer [62] with a slope of 0.1 for negative values. Since the 

captured intensity of an arbitrary pixel depends more on surface normals than 

locations, we concatenate feature maps from the normal map output channel 

to the height map channel to facilitate the height map prediction. We also 

apply multiple residual connection layers by adding the feature maps of ResNet 

BasicBlocks to the feature maps in the deconvolutional layers. The residual 

connection layers allow the preservation of detailed features between the 

encoder and decoder stages. Instead of concatenating the feature maps to the 

deconvolutional layers, we use element-wise addition for residual connection 

to increase the depth of CNN without enlarging the CNN dimensions with extra 

parameters [63]. The loss function for DPPS is defined as the mean squared 

error (MSE) between the prediction and the ground truth. To train the CNN, we 

choose Adam [64] as the optimization method, which can adaptively change 

the learning rate according to the current gradient, thus being computationally 

efficient. The two momentum parameters for Adam are set to 𝛽1 = 0.9 and 𝛽2 

= 0.999. 

A total of 10,000 sets of data, including clean data and quality variants, are 

divided into three parts: 7,000 in the training set, 1,500 in the validation set to 

monitor the overfitting, and 1,500 in the test dataset to evaluate the model 

performance. The CNNs are built on Pytorch (version 1.6.0) [65]. The training 

is first performed on clean data for 50 epochs with a learning rate of 0.001. 

Then we add the data with quality variations into both the training and 

validation sets and train the models for another 50 epochs. The learning rate 

is then reduced to 10–5 after 50 epochs of training. This multi-step training 

method speeds up the training process compared with directly training on the 

whole dataset and can effectively avoid overfitting. 

The model size of DPPS is 100.5 megabytes. The average run time is 

0.056 s for one reconstruction on a graphics processing unit (GeForce RTX 2080 

Ti, NVIDIA, USA). In practice, the run time for reconstruction is nearly negligible 

compared with the image capturing and processing time. 

3. Results and discussion 

In this section, we present the performance of DPPS tested on both 

rendered datasets and in real experiments. The results of both the surface 

normal map and height map for the test dataset are first analyzed. To 

demonstrate the advantage of end-to-end prediction of height maps, we 

compare the height map reconstruction results with the integrated height 

maps from the surface normal map that is conventionally adopted in current 

photometric stereo practice. Then, the performance of DPPS on a standard 

spherical shape is compared with the state-of-the-art, including those based 

on deep learning approaches. Furthermore, we test the performance of DPPS 

on real metal objects and compare the results with those obtained from 

commercial 3D scanners. 
Table 2 
Error comparison of the validation set, test dataset and two reconstruction samples. 

 Mean error for Mean angular Mean error for 

 normal map error height map 

Validation dataset 0.0089 1.394◦ 0.0415 cm 

Test dataset 0.0211 2.961◦ 0.1155 cm 
Example 1 0.0052 1.131◦ 0.0514 cm 
Example 2 0.0060 1.291◦ 0.0640 cm 

3.1. Results on the rendered dataset 

The quantitative analysis of DPPS of the prediction errors for the validation 

and test datasets is presented in Table 2. We show two sample reconstructions 

from the test dataset in Fig. 7 with their mean prediction errors listed in Table 

2. We use the mean surface normal difference and the mean height difference 

to evaluate the prediction accuracy of the surface normal and height maps, 

respectively. The corresponding mean angular error is calculated based on the 

surface normal error for reference. For the test dataset results, the mean 

angular error is 2.961◦, while the average error of the height map is 0.1155 cm, 

or below 1% of the overall height dimension of the object. 

We notice that the prediction errors in the test dataset are two times larger 

than those in the validation set for the angular error and more than ten-fold 

for the height map prediction. This is largely due to the quality variations 

included in the dataset, which randomly varies the illumination light intensities 

and positions in a small range to represent the measurement uncertainties. 

When we remove the quality variants from the dataset, the test dataset 

performance converges to the validation set accuracy nicely. Though there are 

 

Fig. 6. DPPS Architecture: multi-channel CNN for end-to-end surface normal and height map reconstruction. 
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some discrepancies between the validation and test dataset performance, we 

believe the results presented are more realistic performance indices. 

Two reconstruction examples from the test dataset are plotted in Fig. 7. The 

reference object shapes, rendered image samples (2 out of 96 image inputs), 

surface normal maps, height maps, and the corresponding error maps are all 

illustrated. The error map for the surface normal prediction is plotted as an 

RGB image, where the color information indicates both the direction and 

magnitude. The largest errors for both the surface normal and height maps 

come from the surface discontinuity. The corresponding quantitative analysis 

is summarized in Table 2. 

One advantage of DPPS is its ability to directly output the height map from 

image inputs to avoid the direct surface normal integration problem. In Fig. 

7(b), we compare the height map predictions from DPPS and from the 

traditional surface normal integration method. We used the Frankot–

Chellappa method [66] as the baseline comparison, which is a path-

independent integration method to achieve high 

Table 3 
Comparison of reconstruction results of a sphere. 

Model Mean angular error 

L2 4.10◦ 

ST14 1.74◦ 

IA14 3.34◦ 

DPSN 2.02◦ 

PS-FCN 2.82◦ 

DPPS 1.80◦ 

computational efficiency while preserving the details of surface discontinuities. 

The calculated height from the ground truth normal map exhibits severe global 

shape deformation. The largest error is 5.7 cm, several orders of magnitude 

larger than the direct prediction from the second channel of DPPS. If there are 

additional estimation errors in the surface normal, the prediction error will be 

accumulated even further to deteriorate the height map prediction. In 

comparison, DPPS not only saves computation of normal integration but also 

achieves higher accuracy for the height map reconstruction. 

We also compare the performance of DPPS to the state-of-theart, including 

both traditional, machine learning, and deep learning approaches. We use a 

popular photometric stereo benchmark ‘sphere shape’ to compare the surface 

normal prediction accuracy, as shown in Table 3. L2 [26] belongs to the 

traditional photometric stereo category. ST14 [37] and IA14 [39] are based on 

the conventional machine learning approaches. DPSN [43] and PS-FCN [45] are 

deep-learning-based approaches. The mean angular error is calculated for the 

reconstruction of DPPS and other calibrated or semi-calibrated photometric 

stereo methods. DPPS’s prediction accuracy is comparable to or even better 

than the reference methods in this limited case. 

It is worth noting that: (1) All other reference photometric stereo methods 

do not give height map results for comparison, so we only compare the 

accuracy of the mean angular error of the surface normal. (2) Only DPPS 

assumes point-light illumination, which not only can be better implemented in 

a manufacturing setting but also provide potentially higher prediction accuracy 

due to the calibrated light positions (a semi-calibrated configuration in DPPS to 

be more precise). 

To further visualize the performance comparison, we plot the 3D 

reconstruction results from PS-FCN [45] on a spherical object from 

 

Fig. 8. (a) An example image of DiLigenT sphere shape data, reconstructed normal map by PS-

FCN [34] and error map; (b) an example image of rendered data for the same sphere shape with 

point-light sources, reconstructed normal map by DPPS and error map. 

 

Fig. 7. Two examples of DPPS results on the test dataset: (a) a convex shape; (b) a concave shape and the comparison with surface normal integration. 
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the DiLiGent benchmark [50] and the DPPS results on the same object 

rendered with our generation method in Fig. 8. Both PS-FCN and DPPS work in 

a semi-calibrated manner with 96 input images for reconstruction. Due to the 

different assumptions of illumination conditions (parallel vs. point-light), we 

cannot directly use DiLiGent images but render our own image sets based on 

the calibrated light conditions as described in Section 2. DPPS result exhibits 

smaller angular errors throughout the surface normal map. 

3.2. Performance analysis of experiments 

We further conduct experimental validation to evaluate the reallife 

performance of DPPS with simple and complex shapes. The chosen object 

shapes are very different from the training, validation, and test dataset to test 

the generalization capabilities of DPPS. It should be 

 

Fig. 9. (a) Pictures of the metal forming part for reconstruction and examples of experimentally 

captured images; comparison of the predicted and scanned results: (b) surface normal map and 

(c) height map; (d) comparison of 3D point cloud of the reconstructed surface by DPPS and the 

scanning result. 

noted that all previous CNN-based photometric stereo methods have only 

been tested on rendered or standard datasets. Their performance in real 

scenarios is unknown. This is the first work to evaluate the real-life 

performance of deep-learning based photometric stereo and to compare the 

results, particularly the height maps, with commercial 3D scanners. 

The first example is an aluminum sheet metal part made from incremental 

forming [67]. The formed part has a truncated pyramid shape with an 

approximate size of 35 cm×35 cm×5 cm, as shown in Fig. 9(a). The 

measurement region is located at the center with an area size of 10 cm×10 cm. 

The surface roughness Ra is measured to be 0.72 μm, which is within the 

calibrated range of 0.52 μm to 4.07 μm. To be noted, the measured Ra value is 

unknown to our DPPS model and has not been used in the 3D reconstruction. 

Ninety-six images are captured with each LED lit on in sequence. The images 

are cropped and fed into DPPS that outputs the surface normal map and height 

map, as shown in Fig. 9(b) and (c). 

We use a laser scanner (AS1, Hexagon, USA) to provide the reference 

surface normal and height maps (Fig. 9(b),(c)) to evaluate the performance of 

DPPS. The scanner is equipped with an encoded arm system (RA-7535 Si, 

Hexagon, USA), so the scanning is performed at multiple angles to ensure that 

the projected laser is perpendicular to the surface. However, one limitation of 

the laser scanner is its ability to deal with highly reflective surfaces. We directly 

scan the parts without applying an additional matte spray, which results in 

some missing data points where the scanner fails to register a point. It also 

demonstrates the advantage of DPPS in handling specular reflection and its 

potential for in-process metrology of metallic parts. 

 

Fig. 10. (a) 3D reconstruction results of a pumpkin sculpture with DPPS and a 3D camera; (b) 

comparison of point cloud reconstructed by DPPS and a 3D camera. 

The comparison of predicted and scanned results is shown in Fig. 9(b) and 

9(c). The predicted normal map from DPPS shows a good match with the 

scanned result except for the missing data points. The largest error comes from 

the edge region. This is mainly because the sharp edges were over-exposed in 

various lighting conditions, which produced a discontinuous intensity field in 

the captured image. As for the height map, the predicted height map is able to 

recover the object’s overall shape with some local distortion. The average 

difference between the predicted and scanned height maps is 0.317 cm. Part 

of the error is suspected to come from surface textures of the formed part, 

which results in anisotropic and uneven reflectance on the surface, as shown 

in Fig. 9(a). We also compare the 3D reconstruction result and scanned result 

in 3D point cloud format, as shown in Fig. 9(d), which indicates that DPPS 

reconstructs a more complete 3D surface than direct laser scanning result. 
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The second example part is a pumpkin-shaped sculpture painted with a 

metallic coating, as shown in Fig. 10. The sculpture size is 12.1 cm×12.1 cm×7.1 

cm. The reconstruction region is the center area with an area size of 10 cm×10 

cm. The sculpture has both complex convex and concave shapes, while the 

pumpkin stem creates discontinuous height profiles and occlusion. The 

reference results are measured using an industrial 3D camera (PhoXi 3D 

Scanner XS, Photoneo, USA), which utilizes structured light projection. The 

depth of view of the 3D camera is 161 205 mm. It is positioned 160 mm above 

the sculpture to ensure the top surface is within the focal region. 

For the 3D camera, the structured light is projected from a single projector 

position, so the shadow effect caused by occlusion and concavity will cause 

missing data points in the scanned result. In addition, since the surface normal 

map is not directly provided by the point cloud output, the reference surface 

normal is manually calculated using local fitting from the point cloud data. 

The measurement results from DPPS and the 3D camera are compared in 

Fig. 10. The surface normal map predicted by DPPS shows finer details of the 

reconstructed pumpkin, even for the steep slope on the stem region where the 

3D camera failed to register data points. This is more obvious in the 3D point 

cloud comparison, as shown in Fig. 10(b). The height map predicted by DPPS 

shows high consistency with the scanned result except for the concave regions 

on the pumpkin surface, where the camera outputs abnormal values. Though 

shadow also exists due to occlusion by the stem, DPPS results are not affected 

by the shadows. The height map from surface normal integration is also plotted 

for comparison. The integrated height map is able to recover the overall shape 

but cannot preserve the height jump in the stem region. 

The above experimental validation suggests that DPPS is able to reconstruct 

complex metal surfaces even when the shape is very different from those in 

the training dataset. The reconstruction results are in high consistency with the 

commercial 3D scanners, while DPPS shows much greater potential for in-

process metrology capabilities. 

4. Conclusion 

In this paper, we present DPPS, a deep-learning based point-light 

photometric stereo for 3D reconstruction of metal surfaces with unknown 

surface roughness. DPPS takes 96 image inputs captured under 96 point-light 

LED illumination and reconstructs both the surface normal and height maps in 

an end-to-end manner. 

The major contributions of the work can be summarized as follows: 

1. A new dataset generation procedure combining both physicsbased and 

data-driven approaches is developed. It includes three novel modules: 

(a) point-light source calibration, (b) a physicsbased and data-driven 

reflectance model, and (c) realistic pointlight reflection rendering. The 

proposed method is able to render comprehensive image sets under 

location-dependent illumination, a range of different surface 

roughness, and quality variations. 

2. An end-to-end approach is proposed to directly predict the height map 

from input images from a multi-channel CNN, significantly reducing 

distortions when calculating the height map from surface normals. The 

ill-posed surface integration problem is avoided by introducing the 

position as an extra dimension to photometric stereo, enabling the 

CNN to learn the height map directly 

3. Point-light photometric stereo is introduced in a deep learning 

framework, which utilizes the nonlinear mapping ability of deep CNNs 

to implicitly determine the reflection properties determined by the 

surface roughness and point-light source locations. 

4. Though only trained with synthetic datasets, DPPS shows good 

performance on both rendered test datasets and experimental 

conditions. DPPS outperforms the state-of-the-art in a sphere 

reconstruction test with a mean angular error of 1.80◦. In realworld 

tests, DPPS is able to reconstruct a metal forming part and a complex 

pumpkin sculpture with millimeter level accuracy on height prediction 

and less than 10◦ angular errors in surface normal prediction. The 

results are directly compared with commercial 3D scanners (laser scan 

and structured light projection). 

5. DPPS is a promising computer vision 3D reconstruction method for 

future in-process 3D metrology of various manufacturing processes, 

such as metal additive manufacturing. By utilizing our data-driven and 

physics-based data generation approach, DPPS can be extended to 

different scales, lighting conditions, and materials. 

The proposed DPPS provides insight into utilizing deep learning to 

overcome the intrinsic limitation of 3D reconstruction methods. It establishes 

a new solution for dealing with reflectance property with a neural network to 

quickly render comprehensive datasets for training deep learning models. 

While applying this method in 3D reconstruction, there are multiple factors 

that need to be considered. (1) The current model is sensitive to environmental 

lighting and has to be used in a dark setting. (2) Since the normal map and 

height map are reconstructed at the same time, the reconstruction range is 

fixed into a 10 cm × 10 cm region which is not directly scalable. Our future work 

includes designing a lighting setup with much brighter illumination to eliminate 

the influence of environmental light and designing a compact system for 

reconstructing details of metal surfaces, which is applicable for the in-process 

monitoring of powder bed fusion processes. We are also working on replacing 

the dome with a robot arm holding and moving a point light to provide 

different lighting conditions, which largely reduces the system complexity of 

DPPS. 
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Appendix 

A.1. How we get 271,728 data points for training the brdf function? 

When the viewing angles are 0◦, 22◦ and 54◦, the metal ball in the captured 

image has diameters of 159 pixels, 151 pixels and 153 pixels. Since most parts 

of the captured image are dark under the single direction lighting, we utilize 

the symmetric property of the BRDF model to reduce a large amount of 

https://github.com/RuYangNU/point-light-photometric-stereo
https://github.com/RuYangNU/point-light-photometric-stereo
https://github.com/RuYangNU/point-light-photometric-stereo
https://github.com/RuYangNU/point-light-photometric-stereo
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redundant data by taking the upper-left quarter of the pixels. This leads to 

5,097, 4,606, 4,727 data points for each image taken under 0◦, 22◦ and 54◦. And 

when the viewing angle is 0◦, which is right on top of the metal ball and 𝜃𝑖 

equals 0◦, the incident light is partially occluded by the camera, so we discard 

a rectangular region (37 × 66) in that image. So the total amount of data points 

equals (5, 097 + 4, 606 + 4, 727) × 19 − 37 × 66 = 271, 728. 

forming part. 

A.2. Additional experimental verification 

In this section, we show two experiment results to analyze the performance 

of DPPS in addition to the two experiments in Section 3.2. The first example is 

a 3D start made of bronze material and the second example is a cone-shaped 

aluminum forming part. Both objects are larger than 10 cm × 10 cm in 𝑥-𝑦 

dimension, so the reconstruction area is the maximum scanning area of DPPS, 

that is 10 cm × 10 cm. In Fig. A.1 we demonstrate the normal map, height map 

and the point cloud comparison of DPPS reconstruction and scanning results. 
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