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Kinetically Controlled Synthesis of Rotaxane Geometric Isomers

Dillon R. McCarthy®*#, Ke Xu,>* Mica E. Schenkelberg®®, Nils A. N. Balegamire®®, Huiming Liang?,
Shea A. Bellino?, Jianing Li*®, and Severin T. Schneebeli*#?

Geometric isomerism in mechanically interlocked systems — which arises when the axle of a mechanically interlocked
molecule is oriented, and the macrocyclic component is facially dissymmetric — can provide enhanced functionality for
directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric
isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic
access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two
stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are
achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely
selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms
faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative
'H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor
enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results
serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of

synthetic processes forming complex mechanically interlocked molecules.

Complex interlocked molecules have become integral
components for the development of next-generation
supramolecular catalysts?, molecular machines?, and molecular
motors3. In particular, rotaxanes with either oriented tracks* or
facially dissymmetric macrocycles® have shown promise for
ribosome-inspired peptide synthesis® and cargo transport.” To
impart additional degrees of spatial control and
unidirectionality into these systems, it would be desirable to
combine oriented axles with facially dissymmetric (i.e. rim-
differentiated) macrocyclic components in a selective fashion,
which leads to geometric isomers.8

We now report a through-space controlled® aminolysis reaction,
which can selectively form specific geometric isomers of
[2]rotaxanes under kinetic control. Our approach starts with a
readily accessible [2]rotaxane with a symmetric axle, which is
then desymmetrized based on selective stopper exchange
accelerated!® by the presence of nearby glyme functional
groups. We have recently applied this concept in the context of
interlocked molecules with through-space glyme-activating
groups (Figure 1a), which enabled the two reactive ends in
rotaxanes to communicate with each other.1° However, in our
initial system, the ring components of the rotaxanes were
facially symmetrical. Therefore, our initial system did not
address the complexity of forming specific rotaxane geometric
isomers selectively, which has now been accomplished in this
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work. Furthermore, in our initial glyme-catalyzed rotaxane
system (Figure 1a), we had observed only modest selectivity for
the glyme-activated reactions with the maximum selectivity for
mono- vs. difunctionalization ~8:1 at the beginning of the
reaction.’® Overall, our glyme-activated directional stopper-
exchange process represents an alternative way to accomplish
kinetic selection of reaction barriers in interlocked molecules.
Our results complement existing approaches to
control/augment chemical reactivity through space across the
mechanical bond.!! Related processes have also been
implemented in chemically fueled molecular machines, where
the position?2 12 or facial dissymmetry!3 of the macrocycle
determine the rate of addition and/or removal or a barrier.

Here, we now find that the selectivity for forming specific
rotaxane geometric isomers increases exponentially during
such glyme-activated reactions. After ~300 hours, the d.r. for
formation of the major geometric isomer increases to >40:1,
which represents a remarkable improvement from the prior 8:1
ratio. Our reactions lead (Figure 1B) to specific rotaxane
geometric isomers with high selectivity. This improved
selectivity was enabled by coupling (Scheme 1) two through-
space controlled aminolysis reactionss® 10. 14 with each other:
The first reaction leads to the major geometric isomer with
modest selectivity, while the second through-space controlled
aminolysis reaction selectively depletes the minor product.
Thereby, the overall selectivity of the coupled reaction system
is enhanced significantly compared to the two individual
reactions. While this concept is related to minor enantiomer
recycling®> and related photo-deracemization processes?®, the
minor isomer is not recycled in our system. Therefore, while the
selectivity rapidly increases over time (which can lead to simpler
purification), the increased selectivity arises at the cost of the
overall yield in our system, which decreases over time.
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Figure 1. Through-space controlled aminolysis in rotaxane
systems. This work applies the concept to the selective
synthesis of rotaxane geometric isomers, while also introducing
a strategy to enhance the selectivity in such reactions by
coupling (see also Scheme 1) a formation reaction selective for
the major geometric isomer with a depletion reaction with
inverse selectivity.
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Scheme 1. A matrix of fast and slow aminolysis reactions (all fast
ones are through-space controlled by the glyme-activating
groups) leads to kinetic control of geometric isomerism with
>40:1 selectivity for the major geometric isomer.

To establish proof-of-concept for our kinetically controlled
synthesis, a rim-differentiated pillar[5]arene!” was chosen as
the facially dissymmetric macrocycle given the ease of
synthesis!8, excellent chemical stability and solubility??, and the
ability to control the directionality of the catalyst/activating
groupl”. 20, The triglyme activating group (needed to selectively
enhance the rate of stopper exchange asillustrated in Figure 1B)
is readily installed and is a known10 14a-d, 21 grgganocatalyst for
aminolysis reactions in relatively nonpolar organic solvents like
chloroform. With these building blocks in hand, we synthesized
RDP[5]cat@diester (Scheme 1) in 54% vyield by threadingl0 22
the rim-differentiated pillar[5]arene RDP[5]cat (synthesis
detailed in the supplementary information) onto a
hexadecanedioic acid dichloride axle in the presence of excess
3,5-bis(trifluoromethyl)phenol stopper and triethylamine. Next,
we subjected RDP[5]cat@diester to aminolysis with 3,5-
dimethylbenzylamine at 30 2C. We worked up the reaction early
(after 60 hours), to ensure that we could isolate both the major
and the minor geometric isomers of the mono-amide products
as the NMR standards for the quantitative 1H NMR experiments
(Figure 3). As measured by 'H NMR spectroscopy (see Figure
3c), the minor geometric isomer disappears almost completely
at later time points.

This journal is © The Royal Society of Chemistry 20xx
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Figure 2. a) Partial 'H-'H ROESY NMR (500 MHz, DCDIs) spectrum of
the major geometric isomer (RDP[5]cat@MAgs,,) obtained from the
aminolysis  reaction of  RDP[5]cat@diester = with  3,5-
dimethylbenzylamine. See the supplementary information for
additional characterization data as well as the full *H-'H ROESY NMR
spectrum. The H-H ROESY NMR spectrum shown in the Figure
clearly shows that the ethyl group on the pillar[5]arene ring is located
proximal to the remaining active ester present in the axle of the
favored geometric rotaxane isomer. The key NOE cross-peak
between He: and H, — which leads us to this conclusion — is
highlighted in orange. b) Non-covalent interaction plots?3 calculated
at the B3LYP-MM/LACVP* level of theory with the NCI method
implemented in Jaguar (version 8.8) as detailed in the supplementary
information. The NCI plots show the presence of attractive [C-H]-F
interactions between the ethyl groups on the pillararene ring and
one of the -CF3 functionalities of the 3,5-bis(trifluoromethyl)phenyl
stopper. We hypothesize that these non-covalent interactions are
primarily responsible for biasing the equilibrium distribution of the
pillararene ring toward the side of the active-ester stopper, which
results in the clear NOE cross-peak shown in panel a.

This journal is © The Royal Society of Chemistry 20xx
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The glyme-activated stopper-exchange reaction with g, first, @amine
nucleophile (3,5-dimethylbenzylamine) led &8!:d OmRUFES6TOHHEER
aminolysis products, which included the two geometric isomers of
the  mono-substituted rotaxanes  RDP[5]cat@MAg, and
RDP[5]cat@MAgistav, as well as the disubstituted rotaxane
RDP[5]cat@DA in 96% combined yield (calculated based on
recovered starting material). The excess amine in the reaction
mixture posed a challenge during the workup as attempts to remove
the solvent increased the amine concentration, which led to the
complete substitution of the remaining active esters. Therefore, we
developed a protocol (see supplementary information for details) to
remove the excess 3,5-dimethylbenzylamine reagent by simple
filtration through an acid-chloride functionalized MP carboxylic acid
resin before concentration and purification of the reaction mixture.

The structures of the reaction products with the 3,5-
dimethylbenzylamine nucleophile (RDP[5]cat@MA¢.,,
RDP[5]cat@MAgistav, RDP[5]cat@DA) were confirmed with
1H NMR, 3C NMR, and H-'H ROESY NMR spectroscopy, as well
as with high-resolution mass spectrometry (see the
supplementary information). Notably, the H-'H ROESY NMR
spectrum of the major, monosubstituted rotaxane product
RDP[5]cat@MAg¢., (Figure 2a) shows a cross peak between the
Het proton resonance (the —CHs proton resonance of the ethyl
group on the pillar[5]arene macrocycle, observed as a triplet at
1.41 ppm) and the H, aromatic resonance at 7.64 ppm (which
corresponds to the ortho-protons on the remaining active-ester
stoppering unit). The presence of this cross-peak seems to
indicate that the pillar[S]arene macrocycle possesses an
energetically favorable co-conformation, in which the ring binds
to the remaining active ester stopper.

To investigate the origin of this attractive interaction between
the ring and the active ester stopper, we optimized a DFT model
(Figure 2b) of the corresponding complex and calculated the
noncovalent interactions from the DFT-optimized electron
density with the NCI method.?324 Based on our DFT results,
there are attractive [C—H~QO] and [C—H+F] interactions
(illustrated as blue spheres in Figure 2b), which seem to be
playing a key role in stabilizing the co-conformation with the
pillar[5]arene macrocycle residing next to the active-ester
stopper.

Finally, to confirm our kinetic model for the reaction with the
3,5-dimethylbenzylamine nucleophile, we conducted detailed
kinetic studies with quantitative H NMR spectroscopy to
investigate the selectivity of the reaction over time. For this
purpose, RDP[5]cat@diester was reacted with an excess of 3,5-
dimethylbenzylamine in CDCls at 30 2C in an NMR tube. Our
reaction system is governed by four rate constants, ki1, ki, k2,
and k2’ as defined in Figure 3a. Reaction progression was
monitored by HNMR in CDCls3 using 1,2,4,5-
tetrabromobenzene (TBB) as the internal standard. The unique
amide protons for all three rotaxane products were readily
apparent (Figure 3b), which allowed us to integrate them
against the internal TBB standard to vyield absolute
concentrations. The resulting concentration-time plots

J. Name., 2013, 00, 1-3 | 3
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(Figure 3c) were fit to the kinetic model shown in Figure 3a with
Dynafit?5, providing the four rate constants ki, k», k1’, and k.
The kinetic model showed that the rate constant corresponding
to the formation of the favored rotaxane RDP[5]cat@MA¢.,-1
(k1 =0.55 + 0.03) is about an order of magnitude larger than the
corresponding rate constant for formation of the disfavored
rotaxane RDP[5]cat@MAgistav-1 (k2 = 0.08 £ 0.005). Moreover,
both k; and k;” are also about an order of magnitude larger than
either k; or ky’, demonstrating the increased reactivity at the
end of the rotaxane nearest to the catalyst.

Our Dynafit model, which was fit to the quantitative 'H NMR
data shown in Figure 3c, provides concentrations of 0.70 mM
for RDP[5]cat@MAgsa,-1 and 0.02 mM for RDP[5]cat@MA gisfav-1

Page 4 of 11

at ~250 hours, which leads to a selectivity of approyimately 31:1
d.r. at this reaction time point. After 3000k ufs) GFelseleetivitly
for the formation of the major geometric isomer rises even
further to about ~45:1. This finding provides proof of principle
for the enhanced selectivity enabled by our kinetically coupled
reaction system.

With the kinetic model established for 3,5-
dimethylbenzylamine as the nucleophile, we generalized
(Figure 4) our selective rotaxane synthesis to other amine
nucleophiles, including 1-naphthalenemethanamine and 9-

anthracenemethanamine.
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Figure 3. a) Complete kinetic pathway for through-space controlled stopper exchange with 3,5-dimethylbenzylamine as the nucleophile. 3,5-
DMBA = 3,5-dimethylbenzylamine; Stopper = 3,5-bis(trifluoromethyl)phenol. Rate constants k; and k;" denote substitution at the activated
ester (proximal to the catalytic the side-chain), while k, and k> denote substitution at the ester distal to the catalyst. b) Four representative
IH NMR spectra (500 MHz, CDCls, 300 K) recorded at different time points over the course of the kinetics experiment. The three sets of amide
protons (1 NH each for both RDP[5]cat@MA+., and RDP[5]cat@MAugistav, 2 NH for RDP[5]cat@DA) are highlighted. A complete stack of the
entire kinetics spectrum is shown in Figure S1 in the supplementary information. c) Concentrations of all three reaction products measured
by quantitative 'H NMR spectroscopy with the TBB internal standard over the course of the reaction. The reaction was run at 30 2C as detailed
in the supplementary information. Kinetics fits are shown as dashed lines. The kinetic fits were obtained using the Dynafit software package
as detailed in the supplementary information. Derived rate constants with error bars (standard errors obtained from the Dynafit kinetic fits)

are shown in the table on the right.
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Figure 4. Comparison of aminolysis rate constants for RDP[5]cat@diester with different amine nucleophiles. All reactions were run at 30 2C
as detailed in the supplementary information. See Figures S1-S5 for the kinetic fits and stacks of the time-dependent 'H NMR spectra, which
were used to determine all the rate constants. The kinetic fits were obtained using the Dynafit software package as detailed in the
supplementary information. Numerical values for the derived rate constants with error bars (standard errors obtained from the Dynafit

kinetic fits) are listed in Figures 3c, S3b, and S5b.

Both systems performed qualitatively similar to the reaction
system with the 3,5-dimethylbenzylamine, which confirms the
generality of our kinetically controlled rotaxane geometric
isomer synthesis. However, we also observed (Figures 4 and 6)
clear trends in the rate constants, based on (i) the sterics of the
nucleophiles/amide stoppers and (ii) the sterics of the
secondary (non-activating) face of the ring, which (when
positioned over an active ester) seems to slow down the
aminolysis reactions.

(i) Steric effects of the nucleophile/amide stopper on the
aminolysis rates: First, the observed trend in k; rate constants
(Figure 4) clearly shows that the k; rate constants decrease with
increasing steric bulk of the nucleophile, as one would expect
for a classical acyl substitution mechanism.

At the same time, the rate constants ki’ increased significantly
from R =3,5-dimethylbenzyl, to R =1-naphtyl, and R=9-
anthracenyl, which is contrary to the trend observed for k;. We
hypothesize that this inverted trend is the result of reduced
supramolecular interactions between the pillararene ring and
the amide stoppers in the monofunctionalized rotaxane

products RDP[5]cat@MAgistav-2 (the napthyl case) and

This journal is © The Royal Society of Chemistry 20xx

RDP[5]cat@MAygistav-3 (the anthracenyl case). This hypothesis
was confirmed by DFT-calculated binding energies (Figure 6)
between the ring and the amide stoppers.

100+
E Faster k1’ with R = 9-
J anthracenyl enhances
the selectivity

Selectivity for the Major Geometric
Rotaxane Isomer / d.r.

0I L N R T _ ;
0 100 200 300 |© #R=-
Time / hours
Figure 5. Plots of the diastereoselectivity (d.r.=
[RDP[5]cat@MAs.,] / [RDP[5]cat@MAgistav]) for the major

geometric rotaxane isomers formed over time for the
aminolysis reactions shown in Figure 4. The concentrations of
the products were obtained from the kinetic fits to the
quantitative 'H NMR data shown in Figures 3, S3b, and S5b.
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Figure 6. DFT-calculated binding energies (B3LYP-MM/aug-cc-pVDZ//B3LYP-MM/LACVP* level of theory) between the different
faces of the RDP[5]cat ring and the varying amide stoppers for both geometric isomers. The model systems used to calculate the
binding energies are shown in insets at the top left of the figure. In the model systems for the disfavored rotaxane products
(RDP[5]cat@MAgistav-1-Model, RDP[5]cat@MAgistav-2-Model, and RDP[5]cat@MAistav-3-Model), the tetraglyme chains do not
directly interact with the varying amide stoppers. Therefore, for the models of the disfavored rotaxane products, the tetraglyme
chains on the ring were replaced with ethyl substituents to simplify the conformational space and enable a more accurate search
of the conformational space at the DFT level with these smaller model systems.
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Based on the DFT results, we find that 3,5-dimethylbenzylamide
stopper in RDP[5]cat@MAugistav-1 binds the strongest with the
pillararene ring, while the 9-anthracenemethanamide and the
1-naphthalenemethanamide stoppers showed a reduced
affinity with the ring.

Once again, this trend is caused by the increasing steric bulk of
the initial amine nucleophiles, which ultimately leads to bulkier
amide stoppers in the anthracenyl/naphthyl cases for the
monofunctionalized rotaxane products RDP[5]cat@ MAgisay. AS
shown by our DFT calculations (Figure 6), the increased steric
bulk of the 9-anthracenemethanamide and the 1-
naphthalenemethanamide stoppers even forces one of the
methoxyl groups out of conjugation with the aromatic units on
the pillararene rings. As a result, the supramolecular interaction
strength between the rings and the amide stoppers is
significantly reduced in the anthracenyl/naphthyl cases, which
favors the co-conformations with the glyme activating groups
residing over the remaining active esters. Consequently, the k7’
rate constants with RDP[5]cat@MAisfav-2 and
RDP[5]cat@MAgistav-3 are faster than with RDP[5]cat@MAgisfav-
1.

Since the fastest k1’ results with 9-anthracenemethanamine as
the nucleophile, the minor geometric rotaxane isomer
(RDP[5]cat@MAgistay) reacts away even faster in the
anthracenyl case, which further increases the selectivity for the
formation of the major geometric isomer (as shown in Figure 5)
with 9-anthracenemethanamine as the nucleophile. Overall,
near exponential growth of the reaction selectivity over time is
observed (Figure 5) with all three amine nucleophiles, since —
as more of the desired major product forms over time — the
undesired product also keeps reacting away faster than the
desired product, which leads to a continuously increasing
selectivity of the reaction for the major geometric isomer.

(i) Steric effects of the ring on the aminolysis rates: While the
face of the ring with the tetraglyme chains clearly speeds up the

aminolysis reactions as discussed above, the aminolysis
reactions slow down when the secondary face of the ring (i.e.,
the face without the glyme functions) is sitting over an active
ester. Based on our computational model shown in Figure 2b,
we explain this slow-down effect by the simple steric bulk of the
macrocycle, which partially blocks attack of the nucleophile
when the secondary face of the ring is positioned over the active
ester. Related inhibition effects of reactivity by the mechanical

bond have been observed previously in the literature.26

This inhibition effect is also clearly visible when comparing the
k2 and k' rate constants (Figure 3c) for the aminolysis reaction
with 3,5-dimethylbenzylamine. In this case, k3’ is significantly
slower than k, since in the monoamide RDP[5]cat@MAg,,-1 the
ring spends a significant portion of time over the active ester
(based on the NOESY NMR shown in Figure 2a), thereby partially
blocking access of the nucleophile to the active ester in this

This journal is © The Royal Society of Chemistry 20xx
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monoamide. In contrast, the ring is expected to be much more
evenly distributed between the two active ester sites in the
starting material RDP[5]cat@diester, which ultimately leads to
ko being significantly faster than k2’ with the 3,5-
dimethylbenzylamine nucleophile.

At the same time, the k;’ rate constants also increased notably
(Figure 4) in the anthracenyl and naphthyl cases, compared to
the case with R = 3,5-dimethylbenzyl. Again, we hypothesize
that this effect is caused by the secondary face of the ring
inhibiting nucleophilic attack, and by changing the balance of
supramolecular interactions between the ring and the varying
amide stoppers. In this case, the DFT calculations show that the
tetraglyme groups interact?’” more strongly with the amide
stoppers when R = naphthyl/anthracenyl than with R =3,5-
dimethylbenzyl. Therefore, the stronger supramolecular
interactions between the tetraglyme groups and the aromatic
stoppers in the anthracenyl/naphthyl case favor the co-
conformation with the ring residing over the side of the amide
stopper in the <case of RDP[5]cat@MAs-2 and
RDP[5]cat@MA¢.,-3, which frees up the active ester on the
other end of the rotaxane for faster nucleophilic attack and
leads to overall faster k;’ rate constants.

Conclusions

We developed a kinetically controlled strategy to selectively
access specific geometric isomers of complex interlocked
molecules through a coupled reaction system involving
selective stopper exchange reactions. Our reaction system was
able to achieve high selectivity by enhancing the intrinsic
selectivity of the selective stopper exchange reactions based on
coupled reactions of inverse selectivity. While the use of a
glyme catalyst/activating group as a means of promoting
stopper exchange in rotaxanes was previously reported by our
groupl9, this work expands the synthetic toolbox available to
selectively access rotaxane geometric isomers. We are currently
applying our synthetic strategy for the synthesis of new living
polymerization catalysts and are also expanding our
methodology to other macrocycles and catalysts/activating
groups to access complex interlocked molecules in a more

effective manner.
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