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Kinetically Controlled Synthesis of Rotaxane Geometric Isomers 

Dillon R. McCarthya,#, Ke Xu,b,# Mica E. Schenkelberga,b, Nils A. N. Balegamirea,b, Huiming Lianga, 
Shea A. Bellinoa, Jianing Lia,b, and Severin T. Schneebeli*,a,b 

Geometric isomerism in mechanically interlocked systems — which arises when the axle of a mechanically interlocked 
molecule is oriented, and the macrocyclic component is facially dissymmetric — can provide enhanced functionality for 
directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric 

isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic 
access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two 
stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are 

achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely 
selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms 
faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 
1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor 
enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results 
serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of 

synthetic processes forming complex mechanically interlocked molecules.

Complex interlocked molecules have become integral 
components for the development of next-generation 
supramolecular catalysts1, molecular machines2, and molecular 
motors3. In particular, rotaxanes with either oriented tracks4 or 
facially dissymmetric macrocycles5 have shown promise for 
ribosome-inspired peptide synthesis6 and cargo transport.7 To 
impart additional degrees of spatial control and 
unidirectionality into these systems, it would be desirable to 
combine oriented axles with facially dissymmetric (i.e. rim-
differentiated) macrocyclic components in a selective fashion, 
which leads to geometric isomers.8  
 
We now report a through-space controlled9 aminolysis reaction, 
which can selectively form specific geometric isomers of 
[2]rotaxanes under kinetic control. Our approach starts with a 
readily accessible [2]rotaxane with a symmetric axle, which is 
then desymmetrized based on selective stopper exchange 
accelerated10 by the presence of nearby glyme functional 
groups.  We have recently applied this concept in the context of 
interlocked molecules with through-space glyme-activating 
groups (Figure 1a), which enabled the two reactive ends in 
rotaxanes to communicate with each other.10 However, in our 
initial system, the ring components of the rotaxanes were 
facially symmetrical. Therefore, our initial system did not 
address the complexity of forming specific rotaxane geometric 
isomers selectively, which has now been accomplished in this 

work. Furthermore, in our initial glyme-catalyzed rotaxane 
system (Figure 1a), we had observed only modest selectivity for 
the glyme-activated reactions with the maximum selectivity for 
mono- vs. difunctionalization  ~8:1 at the beginning of the 
reaction.10 Overall, our glyme-activated directional stopper-
exchange process represents an alternative way to accomplish 
kinetic selection of reaction barriers in interlocked molecules. 
Our results complement existing approaches to 
control/augment chemical reactivity through space across the 
mechanical bond.11 Related processes have also been 
implemented in chemically fueled molecular machines, where 
the position2a, 12 or facial dissymmetry13 of the macrocycle 
determine the rate of addition and/or removal or a barrier.  
 

Here, we now find that the selectivity for forming specific 
rotaxane geometric isomers increases exponentially during 
such glyme-activated reactions.  After ~300 hours, the d.r. for 
formation of the major geometric isomer increases to >40:1, 
which represents a remarkable improvement from the prior 8:1 
ratio. Our reactions lead (Figure 1B) to specific rotaxane 
geometric isomers with high selectivity. This improved 
selectivity was enabled by coupling (Scheme 1) two through-
space controlled aminolysis reactions8f, 10, 14 with each other: 
The first reaction leads to the major geometric isomer with 
modest selectivity, while the second through-space controlled 
aminolysis reaction selectively depletes the minor product. 
Thereby, the overall selectivity of the coupled reaction system 
is enhanced significantly compared to the two individual 
reactions. While this concept is related to minor enantiomer 
recycling15 and related photo-deracemization processes16, the 
minor isomer is not recycled in our system. Therefore, while the 
selectivity rapidly increases over time (which can lead to simpler 
purification), the increased selectivity arises at the cost of the 
overall yield in our system, which decreases over time. 

a. Departments of Chemistry, Pathology, and Materials Science Program, University 
of Vermont, Burlington, VT 05405 (USA). 

b. Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal 
Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 
47907 (USA) 

* Email: Schneebeli@purdue.edu; #Equal authorship contribution. 
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Figure 1. Through-space controlled aminolysis in rotaxane 
systems. This work applies the concept to the selective 
synthesis of rotaxane geometric isomers, while also introducing 
a strategy to enhance the selectivity in such reactions by 
coupling (see also Scheme 1) a formation reaction selective for 
the major geometric isomer with a depletion reaction with 
inverse selectivity. 

 
 

Scheme 1. A matrix of fast and slow aminolysis reactions (all fast 
ones are through-space controlled by the glyme-activating 
groups) leads to kinetic control of geometric isomerism with 
>40:1 selectivity for the major geometric isomer. 
 
To establish proof-of-concept for our kinetically controlled 

synthesis, a rim-differentiated pillar[5]arene17 was chosen as 

the facially dissymmetric macrocycle given the ease of 

synthesis18, excellent chemical stability and solubility19, and the 

ability to control the directionality of the catalyst/activating 

group17, 20. The triglyme activating group (needed to selectively 

enhance the rate of stopper exchange as illustrated in Figure 1B) 

is readily installed and is a known10, 14a-d, 21 organocatalyst for 

aminolysis reactions in relatively nonpolar organic solvents like 

chloroform. With these building blocks in hand, we synthesized 

RDP[5]cat@diester (Scheme 1) in 54% yield by threading10, 22 

the rim-differentiated pillar[5]arene RDP[5]cat (synthesis 

detailed in the supplementary information) onto a 

hexadecanedioic acid dichloride axle in the presence of excess 

3,5-bis(trifluoromethyl)phenol stopper and triethylamine. Next, 

we subjected RDP[5]cat@diester to aminolysis with 3,5-

dimethylbenzylamine at 30 ºC. We worked up the reaction early 

(after 60 hours), to ensure that we could isolate both the major 

and the minor geometric isomers of the mono-amide products 

as the NMR standards for the quantitative 1H NMR experiments 

(Figure 3). As measured by 1H NMR spectroscopy (see Figure 

3c), the minor geometric isomer disappears almost completely 

at later time points. 
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Figure 2. a) Partial 1H-1H ROESY NMR (500 MHz, DCDl3) spectrum of 
the major geometric isomer (RDP[5]cat@MAfav) obtained from the 
aminolysis reaction of RDP[5]cat@diester with 3,5-
dimethylbenzylamine. See the supplementary information for 
additional characterization data as well as the full 1H-1H ROESY NMR 
spectrum. The 1H-1H ROESY NMR spectrum shown in the Figure 
clearly shows that the ethyl group on the pillar[5]arene ring is located 
proximal to the remaining active ester present in the axle of the 
favored geometric rotaxane isomer. The key NOE cross-peak 
between Het and Ho — which leads us to this conclusion — is 
highlighted in orange. b) Non-covalent interaction plots23 calculated 
at the B3LYP-MM/LACVP* level of theory with the NCI method 
implemented in Jaguar (version 8.8) as detailed in the supplementary 
information. The NCI plots show the presence of attractive [C-H]…F 
interactions between the ethyl groups on the pillararene ring and 
one of the -CF3 functionalities of the 3,5-bis(trifluoromethyl)phenyl 
stopper. We hypothesize that these non-covalent interactions are 
primarily responsible for biasing the equilibrium distribution of the 
pillararene ring toward the side of the active-ester stopper, which 
results in the clear NOE cross-peak shown in panel a. 

The glyme-activated stopper-exchange reaction with a first amine 

nucleophile (3,5-dimethylbenzylamine) led to a mixture of three 

aminolysis products, which included the two geometric isomers of 

the mono-substituted rotaxanes RDP[5]cat@MAfav and 

RDP[5]cat@MAdisfav, as well as the disubstituted rotaxane 

RDP[5]cat@DA in 96% combined yield (calculated based on 

recovered starting material). The excess amine in the reaction 

mixture posed a challenge during the workup as attempts to remove 

the solvent increased the amine concentration, which led to the 

complete substitution of the remaining active esters. Therefore, we 

developed a protocol (see supplementary information for details) to 

remove the excess 3,5-dimethylbenzylamine reagent by simple 

filtration through an acid-chloride functionalized MP carboxylic acid 

resin before concentration and purification of the reaction mixture.  

The structures of the reaction products with the 3,5-

dimethylbenzylamine nucleophile (RDP[5]cat@MAfav,  

RDP[5]cat@MAdisfav, RDP[5]cat@DA) were confirmed with 
1H NMR, 13C NMR, and 1H-1H ROESY NMR spectroscopy, as well 

as with high-resolution mass spectrometry (see the 

supplementary information). Notably, the 1H-1H ROESY NMR 

spectrum of the major, monosubstituted rotaxane product  

RDP[5]cat@MAfav (Figure 2a) shows a cross peak between the 

Het proton resonance (the –CH3 proton resonance of the ethyl 

group on the pillar[5]arene macrocycle, observed as a triplet at 

1.41 ppm) and the Ho aromatic resonance at 7.64 ppm  (which 

corresponds to the ortho-protons on the remaining active-ester 

stoppering unit). The presence of this cross-peak seems to 

indicate that the pillar[5]arene macrocycle possesses an 

energetically favorable co-conformation, in which the ring binds 

to the remaining active ester stopper. 

 

To investigate the origin of this attractive interaction between 

the ring and the active ester stopper, we optimized a DFT model 

(Figure 2b) of the corresponding complex and calculated the 

noncovalent interactions from the DFT-optimized electron 

density with the NCI method.23-24 Based on our DFT results, 

there are attractive [C–H…O] and [C–H…F] interactions 

(illustrated as blue spheres in Figure 2b), which seem to be 

playing a key role in stabilizing the co-conformation with the 

pillar[5]arene macrocycle residing next to the active-ester 

stopper. 

 
Finally, to confirm our kinetic model for the reaction with the 

3,5-dimethylbenzylamine nucleophile, we conducted detailed 

kinetic studies with quantitative 1H NMR spectroscopy to 

investigate the selectivity of the reaction over time. For this 

purpose, RDP[5]cat@diester was reacted with an excess of 3,5-

dimethylbenzylamine in CDCl3 at 30 ºC in an NMR tube. Our 

reaction system is governed by four rate constants, k1,  k1’, k2, 

and k2’ as defined in Figure 3a. Reaction progression was 

monitored by 1H NMR in CDCl3 using 1,2,4,5-

tetrabromobenzene (TBB) as the internal standard. The unique 

amide protons for all three rotaxane products were readily 

apparent (Figure 3b), which allowed us to integrate them 

against the internal TBB standard to yield absolute 

concentrations. The resulting concentration-time plots 

b) 

a) 

RDP[5]cat@MA-Ring-Over-Ester-Model 
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(Figure 3c) were fit to the kinetic model shown in Figure 3a with 

Dynafit25, providing the four rate constants k1, k2, k1’, and k2’. 

The kinetic model showed that the rate constant corresponding 

to the formation of the favored rotaxane RDP[5]cat@MAfav-1 

(k1 = 0.55 ± 0.03) is about an order of magnitude larger than the 

corresponding rate constant for formation of the disfavored 

rotaxane RDP[5]cat@MAdisfav-1 (k2 = 0.08 ± 0.005). Moreover, 

both k1 and k1’ are also about an order of magnitude larger than 

either k2 or k2’, demonstrating the increased reactivity at the 

end of the rotaxane nearest to the catalyst.  
 

Our Dynafit model, which was fit to the quantitative 1H NMR 

data shown in Figure 3c, provides concentrations of 0.70 mM 

for RDP[5]cat@MAfav-1 and 0.02 mM for RDP[5]cat@MAdisfav-1 

at ~250 hours, which leads to a selectivity of approximately 31:1 

d.r. at this reaction time point. After 300 hours, the selectivity 

for the formation of the major geometric isomer rises even 

further to about ~45:1. This finding provides proof of principle 

for the enhanced selectivity enabled by our kinetically coupled 

reaction system.  
 

With the kinetic model established for 3,5-

dimethylbenzylamine as the nucleophile, we generalized 

(Figure 4) our selective rotaxane synthesis to other amine 

nucleophiles, including 1-naphthalenemethanamine and 9- 

anthracenemethanamine. 

 

 

 

Figure 3. a) Complete kinetic pathway for through-space controlled stopper exchange with 3,5-dimethylbenzylamine as the nucleophile. 3,5-
DMBA = 3,5-dimethylbenzylamine; Stopper = 3,5-bis(trifluoromethyl)phenol. Rate constants k1 and k1’ denote substitution at the activated 
ester (proximal to the catalytic the side-chain), while k2 and k2’ denote substitution at the ester distal to the catalyst. b) Four representative 
1H NMR spectra (500 MHz, CDCl3, 300 K) recorded at different time points over the course of the kinetics experiment. The three sets of amide 
protons (1 NH each for both RDP[5]cat@MAfav and RDP[5]cat@MAdisfav, 2 NH for RDP[5]cat@DA) are highlighted. A complete stack of the 
entire kinetics spectrum is shown in Figure S1 in the supplementary information. c) Concentrations of all three reaction products measured 
by quantitative 1H NMR spectroscopy with the TBB internal standard over the course of the reaction. The reaction was run at 30 ºC as detailed 
in the supplementary information. Kinetics fits are shown as dashed lines. The kinetic fits were obtained using the Dynafit software package 
as detailed in the supplementary information. Derived rate constants with error bars (standard errors obtained from the Dynafit kinetic fits) 
are shown in the table on the right. 
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Figure 4. Comparison of aminolysis rate constants for RDP[5]cat@diester with different amine nucleophiles. All reactions were run at 30 ºC 
as detailed in the supplementary information. See Figures S1–S5 for the kinetic fits and stacks of the time-dependent 1H NMR spectra, which 
were used to determine all the rate constants.  The kinetic fits were obtained using the Dynafit software package as detailed in the 
supplementary information. Numerical values for the derived rate constants with error bars (standard errors obtained from the Dynafit 
kinetic fits) are listed in Figures 3c, S3b, and S5b. 

Both systems performed qualitatively similar to the reaction 

system with the 3,5-dimethylbenzylamine, which confirms the 

generality of our kinetically controlled rotaxane geometric 

isomer synthesis. However, we also observed (Figures 4 and 6) 

clear trends in the rate constants, based on (i) the sterics of the 

nucleophiles/amide stoppers and (ii) the sterics of the 

secondary (non-activating) face of the ring, which (when 

positioned over an active ester) seems to slow down the 

aminolysis reactions.  

 

(i) Steric effects of the nucleophile/amide stopper on the 

aminolysis rates: First, the observed trend in k1 rate constants 

(Figure 4) clearly shows that the k1 rate constants decrease with 

increasing steric bulk of the nucleophile, as one would expect 

for a classical acyl substitution mechanism.  

 

At the same time, the rate constants k1’ increased significantly 

from R = 3,5-dimethylbenzyl, to R = 1-naphtyl, and R = 9-

anthracenyl, which is contrary to the trend observed for k1. We 

hypothesize that this inverted trend is the result of reduced 

supramolecular interactions between the pillararene ring and 

the amide stoppers in the monofunctionalized rotaxane 

products RDP[5]cat@MAdisfav-2 (the napthyl case) and 

RDP[5]cat@MAdisfav-3 (the anthracenyl case). This hypothesis 

was confirmed by DFT-calculated binding energies (Figure 6) 

between the ring and the amide stoppers.  

 

 
 

 

Figure 5. Plots of the diastereoselectivity (d.r. = 
[RDP[5]cat@MAfav] / [RDP[5]cat@MAdisfav]) for the major 
geometric rotaxane isomers formed over time for the 
aminolysis reactions shown in Figure 4. The concentrations of 
the products were obtained from the kinetic fits to the 
quantitative 1H NMR data shown in Figures 3, S3b, and S5b. 
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Figure 6. DFT-calculated binding energies (B3LYP-MM/aug-cc-pVDZ//B3LYP-MM/LACVP* level of theory) between the different 

faces of the RDP[5]cat ring and the varying amide stoppers for both geometric isomers. The model systems used to calculate the 

binding energies are shown in insets at the top left of the figure. In the model systems for the disfavored rotaxane products 

(RDP[5]cat@MAdisfav-1-Model, RDP[5]cat@MAdisfav-2-Model, and RDP[5]cat@MAdisfav-3-Model), the tetraglyme chains do not 

directly interact with the varying amide stoppers. Therefore, for the models of the disfavored rotaxane products, the tetraglyme 

chains on the ring were replaced with ethyl substituents to simplify the conformational space and enable a more accurate search 

of the conformational space at the DFT level with these smaller model systems.  
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Based on the DFT results, we find that 3,5-dimethylbenzylamide 

stopper in RDP[5]cat@MAdisfav-1 binds the strongest with the 

pillararene ring, while the 9-anthracenemethanamide and the 

1-naphthalenemethanamide stoppers showed a reduced 

affinity with the ring. 

 

Once again, this trend is caused by the increasing steric bulk of 

the initial amine nucleophiles, which ultimately leads to bulkier 

amide stoppers in the anthracenyl/naphthyl cases for the 

monofunctionalized rotaxane products RDP[5]cat@MAdisfav. As 

shown by our DFT calculations (Figure 6), the increased steric 

bulk of the 9-anthracenemethanamide and the 1-

naphthalenemethanamide stoppers even forces one of the 

methoxyl groups out of conjugation with the aromatic units on 

the pillararene rings. As a result, the supramolecular interaction 

strength between the rings and the amide stoppers is 

significantly reduced in the anthracenyl/naphthyl cases, which 

favors the co-conformations with the glyme activating groups 

residing over the remaining active esters.  Consequently, the k1’ 

rate constants with RDP[5]cat@MAdisfav-2 and 

RDP[5]cat@MAdisfav-3 are faster than with RDP[5]cat@MAdisfav-

1. 

 

Since the fastest k1’ results with 9-anthracenemethanamine as 

the nucleophile, the minor geometric rotaxane isomer 

(RDP[5]cat@MAdisfav) reacts away even faster in the 

anthracenyl case, which further increases the selectivity for the 

formation of the major geometric isomer (as shown in Figure 5) 

with 9-anthracenemethanamine as the nucleophile. Overall, 

near exponential growth of the reaction selectivity over time is 

observed (Figure 5) with all three amine nucleophiles, since — 

as more of the desired major product forms over time — the 

undesired product also keeps reacting away faster than the 

desired product, which leads to a continuously increasing 

selectivity of the reaction for the major geometric isomer. 

 

(ii) Steric effects of the ring on the aminolysis rates: While the 

face of the ring with the tetraglyme chains clearly speeds up the 

aminolysis reactions as discussed above, the aminolysis 

reactions slow down when the secondary face of the ring (i.e., 

the face without the glyme functions) is sitting over an active 

ester. Based on our computational model shown in Figure 2b, 

we explain this slow-down effect by the simple steric bulk of the 

macrocycle, which partially blocks attack of the nucleophile 

when the secondary face of the ring is positioned over the active 

ester. Related inhibition effects of reactivity by the mechanical 

bond have been observed previously in the literature.26 

 

This inhibition effect is also clearly visible when comparing the 

k2 and k2’ rate constants (Figure 3c) for the aminolysis reaction 

with 3,5-dimethylbenzylamine. In this case, k2’ is significantly 

slower than k2, since in the monoamide RDP[5]cat@MAfav-1 the 

ring spends a significant portion of time over the active ester 

(based on the NOESY NMR shown in Figure 2a), thereby partially 

blocking access of the nucleophile to the active ester in this 

monoamide. In contrast, the ring is expected to be much more 

evenly distributed between the two active ester sites in the 

starting material RDP[5]cat@diester, which ultimately leads to 

k2 being significantly faster than k2’ with the 3,5-

dimethylbenzylamine nucleophile. 

 

At the same time, the k2’ rate constants also increased notably 

(Figure 4) in the anthracenyl and naphthyl cases, compared to 

the case with R = 3,5-dimethylbenzyl. Again, we hypothesize 

that this effect is caused by the secondary face of the ring 

inhibiting nucleophilic attack, and by changing the balance of 

supramolecular interactions between the ring and the varying 

amide stoppers. In this case, the DFT calculations show that the 

tetraglyme groups interact27 more strongly with the amide 

stoppers when R = naphthyl/anthracenyl than with R = 3,5-

dimethylbenzyl. Therefore, the stronger supramolecular 

interactions between the tetraglyme groups and the aromatic 

stoppers in the anthracenyl/naphthyl case favor the co-

conformation with the ring residing over the side of the amide 

stopper in the case of RDP[5]cat@MAfav-2 and 

RDP[5]cat@MAfav-3, which frees up the active ester on the 

other end of the rotaxane for faster nucleophilic attack and 

leads to overall faster k2’ rate constants. 

Conclusions 

We developed a kinetically controlled strategy to selectively 

access specific geometric isomers of complex interlocked 

molecules through a coupled reaction system involving 

selective stopper exchange reactions. Our reaction system was 

able to achieve high selectivity by enhancing the intrinsic 

selectivity of the selective stopper exchange reactions based on 

coupled reactions of inverse selectivity. While the use of a 

glyme catalyst/activating group as a means of promoting 

stopper exchange in rotaxanes was previously reported by our 

group10, this work expands the synthetic toolbox available to 

selectively access rotaxane geometric isomers. We are currently 

applying our synthetic strategy for the synthesis of new living 

polymerization catalysts and are also expanding our 

methodology to other macrocycles and catalysts/activating 

groups to access complex interlocked molecules in a more 

effective manner. 
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