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Autonomous experimentation systems have been used to greatly advance the Integrated Computational Materials 

Engineering paradigm. This paper outlines a framework that enables the design and selection of data collection workflows 

for autonomous experimentation systems. The framework first searches for data collection workflows that generate high-

quality information and then selects the workflow that generates the highest-value information as per a user-defined 

objective. We employ this framework to select the optimal high-throughput workflow for the characterization of an additively 

manufactured Ti–6Al– 4V sample using a deep-learning based image denoiser. The selected workflow reduced the collection 

time of backscattered electron scanning electron microscopy images by a factor of 5 times as compared to the case study’s 

benchmark workflow, and by a factor of 85 times as compared to the workflow used in a previously published study. 

 ICME · Materials informatics · Autonomous experimentation systems · Decision science · Workflow design/ 

engineering · High-throughput experimentation 

Autonomous experimentation (AE) (including autonomous 

simulation) is being explored as a strategy to accelerate 

materials design and reduce product development cycles [1–

5]. Autonomous experimentation is defined by Stach et al. 

as “...an iterative research loop of planning, experiment, and 

analysis [that is] carried out autonomously.” [1]. Materials 

AE research is a rapidly advancing field. Powerful  
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applications of AE in materials science include 

implementing Bayesian optimization principles in AE 

systems to quickly optimize material properties of interest 

[6–11], as well as utilizing AE systems to perform high-

throughput experimentation (HTE) for rapid materials 

discovery and optimization for polymers, metals, ceramics, 

and more [12–19]. 

We consider AE in a broader context and pose a futuristic 

scenario where scientific discovery proceeds from a human 

investigator giving a simple command to an autonomous 

system, such as identifying the likely root cause of failure 

for an example component. While this thought experiment 

borders on science fiction, it is instructive to consider the 

steps the autonomous system must complete to arrive at a 

final conclusion. For this autonomous exploration to be 

carried out, the system must:  

1. Parse the verbal instructions into a quantifiable objective 

that meets the requirements of the user 

2. Identify the necessary information required to achieve 

the objective 

3. Design a workflow to collect relevant information. In the 

materials realm this might include, for example, a 

sequence of testing, characterization, and simulation 

steps 
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4. Design a sequence of experiments using the workflow 

from Step 3 to optimally gain information about the 

system 

5. Execute the experiments to collect data 

6. Extract information from data and assess if the objective 

is met 

7. Iterate on Steps 3–6 if the objective is not met 

Steps 1 and 2 fall in the realm of knowledge discovery via 

natural language processing (NLP) [20–23]. Steps 4 through 

7 fall in the realm of optimal experiment design [6–11]. Both 

tasks are active areas in research. Step 3 involves the design 

and engineering of workflows. The focus of this writing is 

on expanding the capabilities of modern AE systems to 

complete Step 3 independent of human guidance or 

intervention. Here, we define a workflow as: “the set of 

procedures, methods, and models used to observe 

physical/virtual systems”. The working assumption here is 

that a specific objective set in Step 1 (e.g., grain size 

measurement, tensile stress/strain curve....) is established 

and that potential experimental and/ or simulation-based 

tools identified in Step 2 (e.g., microscopy imaging, 

hardness testing devices, heat flow models, FEM 

simulations, etc.) to extract the required information are in 

place. Workflow design consists of determining how best to 

use these experimental and simulation tools to collect 

information relevant to the objective. From here, Steps 4 

through 7 can proceed normally, returning to Step 3 when 

necessary. 

During materials/process development cycles, Step 3 is 

challenging for AE systems as it requires human-like domain 

knowledge of materials systems, as well as engineering 

properties of interest. Once the type of information to be 

gathered is ascertained, the natural next question is “How do 

we actually collect that information?” Current AE efforts 

start with the adoption of a human-designed experimental 

workflow that remains static throughout the entire process 

[24–26]. While some of these workflow decisions may seem 

trivial to human experts, even the most basic experimental 

procedures are typically outlined by detailed standards and 

operating procedures. Often, investigators will simplify a 

complex procedure with the understanding that the quality 

of the results does not significantly change. These 

modifications to procedures are often made to maximize 

repeatability, reduce time or cost of data acquisition, or 

account for different sources of variability. For example, 

unless testing is being performed for certification and 

qualification, most tensile testing is not performed to ASTM 

E8 specifications, even though the output of these tests is 

largely acceptable and reliable; tensile testing of miniature 

specimens is one such instance [27]. Another example is 

materials characterization by scanning electron microscopy 

(SEM): a human scientist operating an SEM relies on their 

prior experiences and intuition to determine the method of 

sample preparation, magnification, field of view, 

accelerating voltage, beam current, contrast/brightness, and 

so on to take an image with high-quality microstructural 

information. It is a non-trivial question for the AE system to 

assess when a given procedure is “good enough” for the 

scientific objectives given resource constraints, even when 

the data objectives and basic procedures have already been 

delineated in Step 2 above. 

Current advances in materials AE involve a priori 

selecting one workflow to measure the system, despite the 

possible existence of other workflows that might yield 

higher-certainty, higher-accuracy information at a lower cost 

of acquisition. An analogue to this issue can be seen in 

autonomous vehicles (AVs). The degree to which human 

intervention is required to operate an AV is classified by the 

SAE levels of driving automation (LDA) [28]. The LDA 

describes 6 levels of autonomy for an AV, ranging from a 

Level 0 AV having no driving automation, to a Level 5 AV 

having full driving automation. AVs use sensor networks to 

make decisions without human intervention. Current AVs are 

around Level 2 or 3 automation and do not decide what 

sensors to use or ignore in a given scenario. Instead, the 

priority and properties of the signals are predefined through 

a series of algorithms by the engineer. Human scientists and 

engineers design both the sensor networks and the 

autonomous system, thus dictating how it gathers and uses 

information. This approach has three notable advantages:  

1. The information stream from the workflow is controlled 

and predictable 

2. The autonomous system can quickly iterate through the 

objective space without having to potentially change 

tooling or account for the difference in measurements as 

the workflow is changed 

3. The measurement process is repeatable and thus allows 

autonomous systems to maximize data throughput 

The notable disadvantages of using a static workflow are 

that:  

1. Changes to the workflow or potential improvements 

cannot be quantified by the autonomous system 

2. A human must define the best method for information 

collection rather than the autonomous system 

Current approaches to the design of materials AE systems 

severely limit their potential application space to tasks that 

are strictly defined by human operators, which are repetitive 

in nature and limited in scope. Due to the growing activity 

in materials AE [1–11], they must quickly adapt to rapid 

advances made in experimental/simulation/data-processing 

technologies [20]. Hence, advancing the decision authority 
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of AE systems is crucial for their continued design and 

relevancy. 

In order to enable AE systems to select high-value data 

collection workflows independent of human scientists and 

engineers, we pose a framework reminiscent of multi-

objective optimization techniques to dynamically identify 

the highest-value workflow that generates structured 

materials information:  

1. An objective is established by the user to guide 

workflow development 

2. The procedures, methods, and models that will be 

considered in the workflow are listed by the user 

3. A fast search over the space of possible user-defined 

workflows is conducted to quickly filter for high-quality 

workflows in the context of the objective 

4. A fine search over high-quality workflows is conducted 

to select the optimal workflow 

The concept of this framework will be described in detail, 

then illustrated in a case study. There, the impact of a 

deeplearning based denoising algorithm on a materials 

characterization workflow is examined. The framework was 

used to algorithmically select the optimal high-throughput 

workflow that collects backscattered electron scanning 

electron microscope (BSE-SEM) images on the material 

sample approximately 85 times faster compared to the 

previous study [29], and 5 times faster than the Ground-

Truth workflow of the presented case study. Lastly, summary 

statistics for the information stream of the selected high-

throughput workflow are provided. 

All data collection efforts must begin with specifying an 

objective that needs to be met. A well-designed 𝐖𝐨𝐫𝐤𝐟𝐥𝐨𝐰 

generates relevant 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 that adds significant 

𝐕𝐚𝐥𝐮𝐞 to the broader objective. 

𝐖𝐨𝐫𝐤𝐟𝐥𝐨𝐰 → 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 → 𝐕𝐚𝐥𝐮𝐞 (1) 

Extracted information is an objective-dependent summary of 

the raw data (number of pores within a sample, average 

number of cracks in a part, etc.), that describes the system 

under investigation. If the workflow generates high-value 

information, the use of black-box data 

processing/transformation methods (such as neural 

networks) is justified in any workflow that utilizes them. 

Thus, the subtleties of how information is extracted from 

data are ignored. 

We use the direct product of the workflow, the extracted 

information, as a measure of the value of the workflow itself. 

The 𝐕𝐚𝐥𝐮𝐞 of information is proportional to the 

information’s 𝐐𝐮𝐚𝐥𝐢𝐭𝐲 and 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲. 

𝐕𝐚𝐥𝐮𝐞 ∝ 𝐐𝐮𝐚𝐥𝐢𝐭𝐲 ∩ 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 (2) 

𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 is a user-defined decision function that 

explains how useful information is in achieving a particular 

objective. High-actionability information is critical to 

making high-value decisions. For instance, the ground-truth 

defect density of a part to estimate the overall mechanical 

stability in a critical application is information of 

highactionability. Sometimes, collecting highly-actionable 

information (such as the ground-truth) can be expensive or 

intractable. In these cases, the cost for collecting this 

information must be assumed to be infinite and other, lower-

actionable types of information must be sought. For 

example, collecting 3-dimensional estimates of the volume 

fraction of a material sample can be very difficult, and so 

one may have to rely on estimates of area fraction obtained 

from 2-dimensional images instead. In contrast to high-

actionability information, low-actionability information is 

less useful to making high-value decisions. 

The 𝐐𝐮𝐚𝐥𝐢𝐭𝐲 of information is proportional to its 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 with respect to a pre-determined ground truth and 

the number of unique data 𝐒𝐨𝐮𝐫𝐜𝐞𝐬 from which it is 

harvested, while being inversely proportional to the 𝐂𝐨𝐬𝐭 of 

acquisition. 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 ∩ 𝐒𝐨𝐮𝐫𝐜𝐞𝐬 

𝐐𝐮𝐚𝐥𝐢𝐭𝐲 ∝ 𝐂𝐨𝐬𝐭 (3) 

In general, increasing the 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 and/or the 𝐒𝐨𝐮𝐫𝐜𝐞𝐬 

reduces the uncertainty about the system that is under 

investigation. Therefore, the two quantities are related to the 

amount of valuable information that the workflow generates. 

However, increased 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 and the 𝐒𝐨𝐮𝐫𝐜𝐞𝐬 typically 

leads to increased 𝐂𝐨𝐬𝐭 of acquisition. This is due to the 

extra time needed and the extra resources required to collect, 

structure and curate the data [30]. 

The approach for any effort should be to select the 

highest-value workflow from a set of high-quality data 

collection workflows. High-quality workflows generate 

information that strikes a balance between the information’s 

accuracy, certainty, and cost. A high-quality workflow that 

generates high-actionability information is considered to be 

a highvalue workflow. As an example, high-throughput 

experimental workflow design aims to select a workflow that 

is considered high-quality and generates a given amount of 

information in the shortest amount of time at the lowest 

possible cost. In this study, we show that the setup and design 

of workflows can be addressed as a two-stage optimization 

problem. 
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It is very challenging to find the highest-value experimental 

workflow in one step. Therefore, we conduct the search for 

the highest-value workflow in a two-stage approach: In 

Stage I we seek to filter for workflows that generate high-

quality information. In Stage II we select the highest-value 

workflow from the set of workflows obtained in Stage I by 

maximizing the information’s 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 (see Fig 1). 

Let x be the data obtained from the collection process, 

dependent on the data collection settings 
𝜃

 , A be the data 

processing sequence that is applied to data x(
𝜃

) , with data 

processing parameters 
𝜆

 , the product A𝜆x(
𝜃

) be the extracted 

information from the workflow, and M be the design 
specification, or design parameter that we designate as 
ground-truth. 

Stage I ∶ 𝜃∗,𝜆∗ = argmin(C1||A𝜆x(𝜃)−M|| 

𝜃,𝜆 

 + C2 𝐂𝐨𝐬𝐭 (x(𝜃)) (4) 

 + C3 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲(A𝜆x(𝜃))), {C1,C2,C3 > 0} 

Stage II ∶ argmax𝜃∗,𝜆∗ (𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲(x(𝜃),A𝜆x(𝜃))) (5) 

For Stage II, report the bias and change in standard deviation 

for the selected workflow’s information stream when 

compared to Ground-Truth workflow. 

• A𝜆x(
𝜃

) and M are compared in the Stage I objective 

function. This comparison is a measure of 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 . 

Bias is a measure of non-accuracy, and is used to 

characterize and compare workflows. 

• 𝐂𝐨𝐬𝐭 is a term that accounts for how expensive it is to 

collect the data x with an instance of data collection 

parameters 
𝜃

 . A cost value can be assigned by the user 

for each potential step in the workflow. The total 𝐂𝐨𝐬𝐭 

for a single workflow can be then determined by 

summing over each step’s individual cost value. 

• 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲 is a term that accounts for A’s complexity, 

computation time/resources, curation time (which can  

 
increase due to the number of sources), and 

interpretability given an instance of data processing 

parameters 
𝜆

 . A simple example would be to use the term 

p+q2 , where p approximates the time/space complexity 

of algorithms used, and q corresponds to the number of 

sources of data. 

• C1,C2, and C3 are user-defined weights that can be used to 

adjust the importance of each term in the objective 

function. Larger numbers imply more importance, and 

smaller numbers imply less importance. 

In Stage I, we find a set of candidate experimental 

workflows with data collection settings 
𝜃∗ and data 

processing parameters 
𝜆∗ that minimize the objective 

function. This ensures that only workflows that generate 
high-quality information remain. 

Stage II directly compares the candidate workflows with 

data collection settings 
𝜃∗ , and data processing parameters 

𝜆∗ , and finds the workflow among these that maximizes the 

user-defined 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 . For high-throughput 

workflow design, 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 can be defined as 

collecting the most amount of data in a given amount of time. 

We use this as part of the definition of 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 for 

our Stage II criteria in our case study (see Sect. 3). 

The Stage I objective function describes the quality of the 

information generated by the workflow: smaller scores of the 

function will correspond to a higher-quality workflow, while 

larger scores of the function will correspond to a lower-

quality workflow. The goal is to minimize the objective 

function as much as possible. Regions of the same objective 

values, outline iso-quality regions. Iso-quality regions imply 

that both workflow settings produce information of the same 

quality. 

Stage I’s objective function is inherently “noisy,” meaning 

that repeated measurement of the experimental workflows 

will generate different Stage I objective values. This is the 

reason why Stage II is required: Stage I is a coarse search 

that informs the user of what regions to investigate further. 

Stage II is a fine search and guides the user to quan- 
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Schematic of the framework showing the two-stage approach 

when searching for the highest-value workflow 

tify the bias and variance of the different workflows. Stage 

II allows for the possibility that Stage I’s objective function 

values are random. In practice, Stage II takes candidate 

workflows with similar objective function values as input, 

compares the workflows, and selects the workflow maxi- 

mizing 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 . To give an example in the context 

of high-throughput workflow design, if a meaningful 

difference between the workflows is found, a decision can 

be made to select the workflow closest in mean to the 

GroundTruth workflow that also minimizes the acquisition 

time of information. 

To use this framework, the user must first define the 

objective, the types of information to extract, all 

equipment/models/procedures to be potentially used for 

information extraction, and all data collection parameters 
𝜃

 

and data  

processing parameters 
𝜆

 . For each data collection parameter 

𝜃
 , its collection cost must be defined and for each data 

processing parameter 
𝜆

 , its processing complexity must be 

defined. Second, experiments should be conducted to seek a 

set of well-established, well-understood “ground-truth” 

measurements that can be used to compare a workflow’s 

ability to produce accurate information. Third, the accuracy, 

cost, and analysis complexity term weights C1,C2,C3 should 

be properly defined. Fourth, a Stage I search should be 

conducted. This can be done by collecting extracted 

information across all workflows being considered and 

using the extracted information to score each workflow. It is 

recommended that few measurements for each workflow are 

collected in this step, as the Stage I exploration space can be 

large. Stage I will filter the workflow space and produce a 

set of candidate workflows. Workflows that minimize the 

objective function or are close to the minimum should be 

included within the candidate set. Fifth, a Stage II data 

collection effort using the candidate workflows for finer 

comparison should be conducted. Because a Stage II search 

needs to be higher-resolution than Stage I, it will require 

more data per workflow than in the Stage I search. The Stage 

II search can be conducted via a formal statistical 

experimental design, such as one-way ANOVA. From here, 

the workflow that maximizes 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 can then be 

selected. This fifth and final step will yield the highest-value 

data collection workflow. 

‑  

We now present a case study in which we design a 

highthroughput workflow for the microstructural 

characterization of an additively manufactured (AM) sample 

using BSESEM images. The AM sample was fabricated in a 

previous study that examined and quantified the 

microstructural variation between builds fabricated using 

different beam scanning strategies [29]. 

Using SEM characterization is particularly interesting in 

the research of high-throughput workflows for AM 

applications because SEMs can be used to capture the subtle 

variation in AM builds and generate large amounts of high-

value datasets. Thus, developing SEM-based high-

throughput workflows for AM applications is a desirable 

goal. 

An SEM image is acquired in a pixel-by-pixel approach, 

while the number of pixels has an upper limit determined by 

the SEM’s scan engine. The electron beam rasters in lines 

over an area of interest pixel-by-pixel with an operator-

chosen dwell time at each of the steps. This dwell time has a 

huge impact on the signal-to-noise ratio (SNR) of the final 

image. An operator-chosen image magnification determines 

the number and size of the pixels in relation to the feature 

size in the sample (e.g., size of a grain or a defect) that is of 

interest. In principle, the image acquisition time is 

determined by the chosen number of pixels in an image 

multiplied by the chosen dwell time per pixel. Integration of 

multiple fast-scanned images (known as frame integration, 

or FI for short) can be used to boost the SNR of the image. 

The constraints are that the pixel size needs to be optimal in 
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relation to the size of a feature that needs to be resolved, and 

the dwell time needs to be sufficiently high to achieve a 

required SNR to recognize the feature in the subsequent data 

analysis process. 

The trade-off between dwell time and FI vs. image quality 

is an example of a compromise one has to accept when 

attempting to utilize SEMs for high-throughput data 

collection (see Fig. 2): decreasing the cost of data acquisition 

(i.e., taking images faster with a shorter dwell time) 

decreases image quality and might therefore lead to greater 

deviations from a specified M (ground-truth). 

Recent advances have shown that deep-learning 

algorithms can be used to boost the SNR of low-quality 

microscopy images and yield images with effectively higher 

SNR [31–37]. These methods have exhibited robust 

performance on images outside of their testing datasets when 

compared to more standard denoising techniques. Deep 

learningbased denoising algorithms provide a 

straightforward solution to the aforementioned problem of 

taking SEM images for high-throughput data collection 

purposes; one can take images with low SNR or low pixel 

resolution and still retain the quality of higher-SNR, higher-

resolution images. The  

 

Backscattered electron (BSE) scanning electron microscopy 

(SEM) images taken with increasing dwell time visualizing one of the 

many trade-offs between acquisition time vs. image quality 

question then becomes, “what is the lowest image quality we 

are willing to accept while increasing our throughput of 

data?” 

The objective is to design and implement a high-

throughput workflow utilizing an algorithm that denoises 

BSE-SEM images to systematically characterize the AM 

part examined in Shao et al. The extracted information for 

this case study will be the size of the Ti–6Al–4V (Ti64) 
𝛼

-

lath (i.e., 
𝛼

-lath thickness). 

Details about sample fabrication have previously been 

reported [29]. The center region of the center-top XY Ti64 

sample fabricated using a linear scan (LS) strategy is used 

for this case study (see Fig. 3a in Shao et al). 

768 × 512 pixel resolution: dwell time ( μs)       

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 3 

Frame integration 

1 4704 11,296 
12,456 12,762 13,673 16,349 12,866 4649 1331 803 226 

2 4700 9171 4866 3463 3204 2213 3818 357 636 174 42 

4 2247 2984 834 2331 720 840 190 95 216 64 83 

8 490 157 174 453 151 148 119 84 100 117 164 

16 200 94 95 97 95 147 124 114 164 218 330 

32 87 114 120 154 173 194 226 218 328 437 664 

64 146 197 245 274 318 357 401 436 654 872 1313 

Stage I values for 

workflows with varying frame 

integration (FI) and dwell time  
(DT) settings 

Lower values indicate higher-qualityworkflows 

The bolded valuesrepresent the workflows chosen for the Stage II selection process 
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The BSE denoiser model presented here is a convolutional 

neural network (CNN) with the U-Net architecture. Further 

model details can be found at the following references [31, 

38]. 

Here, C1 is 500, the distance term between Ax and M is 

defined as the squared distance between the two terms, C2 is 

6.81, the cost term is defined by a combination of settings 

that relate to the acquisition time of a micrograph, and the 

model complexity term, C3 , is set to 0. C3 is set to 0 because 

all images for this case study have the same pixel resolution, 

and therefore the resources needed to process all images is 

the same. Therefore, the model complexity term is constant 

and does not affect the minimization of our Stage I objective 

function for this case study. 

The optimization problem: 

Stage I ∶ argmin(500(A𝜆x(𝜃)−M)2 𝜃,𝜆 

(6) 

+ 6.81(𝐝𝐰𝐞𝐥𝐥𝐭𝐢𝐦𝐞 ⋅ 𝐟𝐫𝐚𝐦𝐞𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧)) 

Stage II ∶ argmin𝜃∗,𝜆∗ (Actionability(x(𝜃),A𝜆x(𝜃))) (7) 

was used for the study. For Stage II, we will report the bias 
and standard deviation change of the selected workflow's 
information stream when compared to the Ground-Truth and 

Previous Study workflows. Here, x(
𝜃

) is an image taken of 

the sample taken at image acquisition settings 
𝜃

 [29]. M is 

the agreed-upon estimate of what the 
𝛼

-lath thickness in the 

Ti64 sample is. The 
𝛼

-lath thickness was extracted from an 

image at 30 μ s dwell time, 1 FI, and 768 × 512 pixel image 
resolution to act as the ground-truth setting M. A𝜆 is the 
imaging, denoising, and segmentation process being 

considered, and A𝜆x(
𝜃

) is the 
𝛼

-lath thickness extracted from 

the image. We place the greatest emphasis on the 

comparison between A𝜆x(
𝜃

) and M, as evidenced by the 

weight of 500 on the first term. 

Given a fixed model complexity value, we define 

highlyactionable information as information that minimizes 

the cost to acquire data as well as the bias between collected 

data and agreed-upon metric M. 

As given in Table 1, one image x(
𝜃

) for each workflow 

with settings (
𝜃

,
𝜆

) . The 
𝛼

-lath thicknesses A𝜆x(
𝜃

) for each 

of the dwell times and FI were extracted from the images 

through an image processing sequence A𝜆 . Here, we fix 
𝜆

 by 

using the same image processing workflow for all images. 

The resulting scores were calculated using the objective 

function defined above. 

Table 1 shows Stage I results of the workflow search. As 

the Stage I objective function is “noisy” (see Sect. 2.2), the 

workflow corresponding to the lowest objective function 

value in this figure should not immediately be taken to be 

the most optimal value. However, based on this Stage I 

search, it is obvious that some workflows are more 

preferable than others. One should conduct a Stage II search 

with workflows close to and equal to the lowest Stage I score 

to investigate which workflow is truly preferable. The 

number of potential workflows to check will vary based on 

the application. 

A total of 3 candidate experimental workflows were selected 

as per the Stage I results and compared against the 

Boxplots of information 

streams for the candidate 

workflows as compared to the 

Ground-Truth workflow. An 

information stream for the 

Previous Study workflow was 

simulated using the statistics 

reported in [29]. The bolded 

lines represent the median  
𝛼

-

lath thickness, while the  

hollow circles represent the 

average 
𝛼

-lath thickness 
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GroundTruth workflow. Using a fixed 768 × 512 pixel image 

resolution, these were: 

• Workflow 1: 0.7 μ s dwell time, 16 times FI (4.5 s 

acquisition time) 

• Workflow 2: 2 μ s dwell time, 4 times FI (3.2 s 

acquisition time) 

• Workflow 3: 3 μ s dwell time, 2 times FI (2.4 s 

acquisition time) 

Workflow 3 was selected as it had the lowest Stage I score 

in Table 1. Workflows 1 and 2 were selected because they 

had Stage I values close to Workflow 3’s minimal Stage I 

value. 

The Previous Study and Ground-Truth workflows are 

listed below: 

• Previous Study: 30 μ s dwell time, 1 time FI at 3072 × 

2048 pixel resolution (204.7 s acquisition time) 

• Ground-Truth: 30 μ s dwell time, 1 time FI at 768 × 512 

pixel resolution (11.9 s acquisition time) 

A comparison of the above workflows’ information streams 

can be seen in Fig. 3. 35 instances of information each were 

collected for Workflows 1-3 and the Ground-Truth 

workflow, and 10000 instances of simulated information 

were drawn to emulate the Previous Study workflow. 

We note that Workflows 1–3 and the Previous Study 

workflow report a higher average 
𝛼

-lath thickness than the 

Ground-Truth workflow, and that Workflows 1–3 and the 

Ground-Truth workflow report a lower average 
𝛼

-lath 

thickness than what the Previous Study workflow reported 

for the same sample [29]. Additionally, Workflows 1–3 also 

report a higher 
𝛼

-lath thickness standard deviation than the 

GroundTruth and Previous Study workflows. Lastly, 

Workflows 1 and 2 exhibit some right-tailed skewness (as 

their mean is greater than their median), indicating that 

results achieved using these workflows would be influenced 

by the SNR lower limit for this system. 

Based on our definition of 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 , we sought to 

determine whether or not the information gathered using the 

three chosen candidate workflows were significantly 

different from one another. This would inform us if there is 

a meaningful difference in bias between Workflows 1–3 as 

compared to the Ground-Truth and Previous Study 

workflows. To investigate this, we conducted a repeated 

measures ANOVA (after checking all assumptions–no 

extreme outliers, normality in the response, and sphericity of 

variance) to examine differences in the workflows’ 

information streams. Pairwise comparisons were conducted, 

with the null hypothesis asserting that the mean 
𝛼

-lath 

thickness for the information streams of Workflows 1–3 are 

the same, and the alternative hypothesis asserting that at 

least one workflow’s information stream had a mean 
𝛼

-lath 

thickness that was different compared to the others. The 

condition for rejection of the null hypothesis was derived 

using a family-wise significance level of 99% and a 

Bonferroni correction, which means that each of the 3 

comparisons made would have to have a p value less than (1 

− 0.99)∕3 = 0.003
̄
 to be considered as statistically significant 

enough to reject the null hypothesis. None of the 

comparisons made yielded p values less than  

0.003
̄
 . Therefore, the null hypothesis was not rejected, and 

the information streams of the three workflows were 

considered to produce equivalent information. From this 

analysis, it was concluded that the workflows deliver similar 

results compared to each other (see Table 2), and Workflow 

3 could be chosen as the most valuable high-throughput 

workflow,  
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The previous study used a workflow that generated images 

with 3072 × 2048 pixel resolution [29]. The presented case 

study examined workflows that generated images with only 

768 × 512 pixel resolution. The case study is an example 

where the 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 , cost, and complexity associated 

with acquiring information equivalent to the previous study 

is very high. When this happens, a workflow with an 

information stream of lower 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 , cost, and 

complexity must be used in order to proceed. As the Stage I 

objective function yields workflows that balance accuracy 

with cost and complexity, the difference in determined Ti64 

𝛼 
-lath thickness between Workflow 3, the Ground-Truth 

workflow, and the Previous Study workflow is accounted 

for. In this case study, we focus on calibrating our potential 

high-throughput workflows to the specified Ground-Truth 

workflow for this case study, and simply report the bias and 

variance of each workflow based on the reported 

GroundTruth workflow as well as the Previous Study 

workflow (see Table 3). As long as data collection proceeds 

with an understanding of the bias and variance between 

workflows, continuity and reproducibility between both 

studies is achieved. 

𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲

‑

𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 is how one encodes decision-making 

intuition into an AE system. The AE system makes decisions 

about workflows by maximizing the 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 

function. However, different objectives will yield different 

defi- 

nitions of 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 , and therefore, the result of a 

Stage II search will vary based on the user-defined objective. 

The framework also can be generalized to yield high-

accuracy workflows and low-variance workflows due to the 

uncertainty quantification measures and accuracy estimates 

that the Stage II selection process yields. The schematic in 

Fig. 4 shows potential workflows that could be selected 

based on different objectives. Workflow 1’s variance and 

acquisition time are low, but the bias is large—this would 

have to be taken into consideration if Workflow 1 is selected 

for use. Workflow 2’s variance is high, but has no bias and 

has a lower acquisition time compared to the Ground-Truth 

workflow. This workflow might be considered if accurate 

results are required at a faster pace than the Ground-Truth 

workflow. Workflow 3 strikes a balance between the 

previous two workflows, with a bias, variance, and 

acquisition time between Workflow 1 and Workflow 2. 

Workflow 3 might be considered as a moderate choice 

between Workflows 1–3. Additionally, it may be decided 

that very precise measurements regardless of acquisition 

time are required and so the Ground-Truth workflow may 

also be selected. 

The weights for the Stage I objective function are currently 

chosen by human beings, and not the automated system. 

This is intentional; changing the weights of the parameters 

of the Stage I objective function filters for workflows that 

prioritize different facets of informational quality. This 

allows the framework to yield a set of high-value workflows 

with  

 
Results of the statistical comparisons conducted between 

Workflows 1–3 

Comparison p value 

as it had the lowest acquisition time of Workflows 1–3 

(Workflow 3: average 
𝛼

-lath thickness = 0.37 μ m, standard 

deviation = 0.02 μ m (see Table 3 for comparison statistics 
of Workflow 3’s information stream)). 

 

 

 
information streams of Workflow 3 and the Ground-Truth workflow, 

and the information streams of Workflow 3 and the Previous Study 

workflow 

Reported bias and standard deviation differences between 

the  
 

Workflows being compared Bias ( μm) Standard 

deviation 

change  
(μ m) 

Workflow 3—Ground-Truth 

Workflow 3—Previous Study 
+ 0.03 

− 0.10 

+ 0.005 

+ 0.01 
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Workflow 1–Workflow 2 0.01 

Workflow 1–Workflow 3 1.00 

Workflow 2–Workflow 3 0.50 

Examples of workflows that can each be considered optimal  
given different definitions of 𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 

varying accuracy, cost, and complexity. Larger weights on a 

term will lead to more importance of that term in the overall 

Stage I objective function. For example, assigning larger 

weights to FI will skew the optimal results to conditions that 

incorporate lower FI. In practice, this choice of weights adds 

flexibility and allows one to prioritize conditions that best fit 

their requirements. As an example, investigations of critical 

components in aerospace applications demand a very 

accurate estimate of the ground-truth. These applications 

can still use the framework presented to select high-

throughput workflows. In such a case, one may assign a 

relatively large weight to the bias term, while comparatively 

smaller terms are assigned to the cost and complexity terms. 

The Stage I objective function will naturally select 

workflows that collect high-accuracy information, while 

prioritizing the cost to acquire data and complexity to extract 

information from the data, less. 

We opted for a grid-based search to highlight the use of a 

framework for a simple case study with a 2-dimensional 

Stage I search space. One of the limitations of the search 

method we used is that it does not generalize well to large 

parameter spaces. As an example, having 10 possible pieces 

of equipment each with n different possible settings will 

yield a Stage I search space of up to 10n workflows; this 

space cannot be practically explored using an exhaustive 

grid-based search if n is even moderately large. We can make 

workflow selection more efficient in four ways. First, by 

being more selective with the candidate workflows in the 

final step of Stage I, one can choose workflows exactly at 

the minimum or workflows with scores having very small 

differences from the minimum, leading to a smaller set of 

candidate workflows to examine in Stage II. Second, using 

prior knowledge, the Stage I exploration space can be 

dramatically reduced to workflows that only make sense 

based on experience. Third, the weights of the Stage I 

objective function can be adjusted in such a way that it 

penalizes expensive workflows heavily and restricts the 

exploration space even further. Fourth, the Stage I search 

task can be completed using adaptive search methods such 

as active/ sequential learning, leading to vast improvements 

in Stage I’s execution speed [39–41]. 

The presented case study demonstrates the use of the 

framework for a typical SEM characterization procedure, 

whose steps are well defined and understood. However, this 

framework can also be used to determine the optimal 

workflow for a scenario where numerous pieces of 

equipment, data processing pipelines, and types of models 

can be used in various combinations to arrive at the same 

kind of information, provided that the objective and ground-

truth are still clearly defined by a human researcher. This 

framework is applicable for any objective where every 

possible sequence of steps in a workflow can be explicitly 

parametrized and defined. 

To better illustrate this, we conceive of a scenario where 

an AE system is tasked to find the optimal workflow given a 

set of workflows with different structures and 

parametrizations. ARES is an AE system that synthesizes 

carbon nanotubes (CNTs) [24]. In this study, the authors 

chose (among other factors) the growth catalyst along with 

its film and support thickness, the dimensions for the silicon 

pillars that the catalyst pre-seeded, the number of silicon 

pillars per wafer for testing, and the method of determining 

the CNT growth rate. However, consider the possibility that 

some of the elements of the workflow can be changed, which 

would change the structure of the workflow used to measure 

the growth rate of CNTs. Each change that can be made to 

the experimental workflow requires the consideration of 

completely different sets of equipment and parameters. In 

general, this scenario can be posed as the following question: 

“if all assumptions of the framework were satisfied, and a 

given AE system could use all 

equipment/models/procedures in the lab, change all 

parameters accordingly, extract information from the 

potential workflows’ information streams, compare this 

information to the ground-truth, and evaluate workflows 

using a mathematically valid definition of  

𝐀𝐜𝐭𝐢𝐨𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲 , could the AE system find the optimal 

highthroughput workflow as defined by the Stage I and 

Stage II functions?” The answer is yes. 
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Lastly, we envision that this framework will assist with the 

growing problem of data continuity and reproducibility 

within the scientific community. Historically, results from 

scientific studies could not be reproduced, either by the 

authors of the study or by other members in the community. 

This was partially due to the differences in the workflows 

that were employed: methods, capabilities, and tools are 

subject to change across research groups and across time. 

This complicates efforts to establish processing and property 

standards for materials systems, which is a significant 

impediment to expediting and optimizing materials 

development cycles. The presented framework creates an 

interface for different workflows to be compared and 

evaluated, which is a point of crucial importance as we enter 

a more mature era of the Integrated Computational Materials 

Engineering (ICME) initiative. Using this framework, 

different workflows can be compared on the Stage I 

objective space as long as they produce the same 

information for the same objective. Additionally, the 

framework’s bias and uncertainty measures provide an 

easily interpretable set of metrics to judge the efficacy of 

workflows based on the information they produce. 

It has been demonstrated in the literature that autonomous 

experimentation (AE) systems have incredible value to add 

to the community. For AE systems’ potential to be fully 

realized, we recognize that their decision authority must be 

expanded in a practically implementable manner for 

experimenters. To achieve this, we designed a robust 

algorithmic framework for the selection of high-throughput 

workflows that can be completed by AE systems with 

minimal human intervention. We used the framework to 

select the optimal high-throughput workflow for material 

characterization on an AM Ti64 sample using a deep-

learning based image denoiser in a case study. The collection 

time of BSE-SEM images was reduced by a factor of 5 and 

by a factor of 85 as compared to the Ground-Truth and 

Previous Study workflows, respectively. The bias and 

increase in standard deviation for the selected high-

throughput workflow as compared to the Ground-Truth and 

Previous Study workflows were also reported. 

Future work will involve utilizing the presented 

framework in further studies on metal AM components to 

develop databases that are critically important to 

understanding underlying process–structure–property 

relationships. Particularly, focus will be placed on 

automating the image processing steps when performing 

materials characterization experiments to a greater extent. 
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