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Abstract

Autonomous experimentation systems have been used to greatly advance the Integrated Computational Materials
Engineering paradigm. This paper outlines a framework that enables the design and selection of data collection workflows
for autonomous experimentation systems. The framework first searches for data collection workflows that generate high-
quality information and then selects the workflow that generates the highest-value information as per a user-defined
objective. We employ this framework to select the optimal high-throughput workflow for the characterization of an additively
manufactured Ti—6Al—4V sample using a deep-learning based image denoiser. The selected workflow reduced the collection
time of backscattered electron scanning electron microscopy images by a factor of 5 times as compared to the case study’s
benchmark workflow, and by a factor of 85 times as compared to the workflow used in a previously published study.

Keywords ICME - Materials informatics - Autonomous experimentation systems - Decision science - Workflow design/

applications of AE in materials science include
implementing Bayesian optimization principles in AE
systems to quickly optimize material properties of interest

engineering - High-throughput experimentation

Introduction

Autonomous experimentation (AE) (including autonomous
simulation) is being explored as a strategy to accelerate
materials design and reduce product development cycles [ 1—
5]. Autonomous experimentation is defined by Stach et al.
as “...an iterative research loop of planning, experiment, and
analysis [that is] carried out autonomously.” [1]. Materials
AE research is a rapidly advancing field. Powerful
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[6-11], as well as utilizing AE systems to perform high-
throughput experimentation (HTE) for rapid materials
discovery and optimization for polymers, metals, ceramics,
and more [12-19].

We consider AE in a broader context and pose a futuristic
scenario where scientific discovery proceeds from a human
investigator giving a simple command to an autonomous
system, such as identifying the likely root cause of failure
for an example component. While this thought experiment
borders on science fiction, it is instructive to consider the
steps the autonomous system must complete to arrive at a
final conclusion. For this autonomous exploration to be
carried out, the system must:

1. Parse the verbal instructions into a quantifiable objective
that meets the requirements of the user

2. Identify the necessary information required to achieve
the objective

3. Design a workflow to collect relevant information. In the
materials realm this might include, for example, a
sequence of testing, characterization, and simulation
steps
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4. Design a sequence of experiments using the workflow
from Step 3 to optimally gain information about the
system

5. Execute the experiments to collect data

6. Extract information from data and assess if the objective
is met

7. Iterate on Steps 3—6 if the objective is not met

Steps 1 and 2 fall in the realm of knowledge discovery via
natural language processing (NLP) [20-23]. Steps 4 through
7 fall in the realm of optimal experiment design [6—11]. Both
tasks are active areas in research. Step 3 involves the design
and engineering of workflows. The focus of this writing is
on expanding the capabilities of modern AE systems to
complete Step 3 independent of human guidance or
intervention. Here, we define a workflow as: “the set of
procedures, methods, and models used to observe
physical/virtual systems”. The working assumption here is
that a specific objective set in Step 1 (e.g., grain size
measurement, tensile stress/strain curve....) is established
and that potential experimental and/ or simulation-based
tools identified in Step 2 (e.g., microscopy imaging,
hardness testing devices, heat flow models, FEM
simulations, etc.) to extract the required information are in
place. Workflow design consists of determining how best to
use these experimental and simulation tools to collect
information relevant to the objective. From here, Steps 4
through 7 can proceed normally, returning to Step 3 when
necessary.

During materials/process development cycles, Step 3 is
challenging for AE systems as it requires human-like domain
knowledge of materials systems, as well as engineering
properties of interest. Once the type of information to be
gathered is ascertained, the natural next question is “How do
we actually collect that information?” Current AE efforts
start with the adoption of a human-designed experimental
workflow that remains static throughout the entire process
[24-26]. While some of these workflow decisions may seem
trivial to human experts, even the most basic experimental
procedures are typically outlined by detailed standards and
operating procedures. Often, investigators will simplify a
complex procedure with the understanding that the quality
of the results does not significantly change. These
modifications to procedures are often made to maximize
repeatability, reduce time or cost of data acquisition, or
account for different sources of variability. For example,
unless testing is being performed for certification and
qualification, most tensile testing is not performed to ASTM
E8 specifications, even though the output of these tests is
largely acceptable and reliable; tensile testing of miniature
specimens is one such instance [27]. Another example is
materials characterization by scanning electron microscopy
(SEM): a human scientist operating an SEM relies on their
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prior experiences and intuition to determine the method of
sample preparation, magnification, field of view,
accelerating voltage, beam current, contrast/brightness, and
so on to take an image with high-quality microstructural
information. It is a non-trivial question for the AE system to
assess when a given procedure is “good enough” for the
scientific objectives given resource constraints, even when
the data objectives and basic procedures have already been
delineated in Step 2 above.

Current advances in materials AE involve a priori
selecting one workflow to measure the system, despite the
possible existence of other workflows that might yield
higher-certainty, higher-accuracy information at a lower cost
of acquisition. An analogue to this issue can be seen in
autonomous vehicles (AVs). The degree to which human
intervention is required to operate an AV is classified by the
SAE levels of driving automation (LDA) [28]. The LDA
describes 6 levels of autonomy for an AV, ranging from a
Level 0 AV having no driving automation, to a Level 5 AV
having full driving automation. AVs use sensor networks to
make decisions without human intervention. Current AVs are
around Level 2 or 3 automation and do not decide what
sensors to use or ignore in a given scenario. Instead, the
priority and properties of the signals are predefined through
a series of algorithms by the engineer. Human scientists and
engineers design both the sensor networks and the
autonomous system, thus dictating how it gathers and uses
information. This approach has three notable advantages:

1. The information stream from the workflow is controlled
and predictable

2. The autonomous system can quickly iterate through the
objective space without having to potentially change
tooling or account for the difference in measurements as
the workflow is changed

3. The measurement process is repeatable and thus allows
autonomous systems to maximize data throughput

The notable disadvantages of using a static workflow are
that:

1. Changes to the workflow or potential improvements
cannot be quantified by the autonomous system

2. A human must define the best method for information
collection rather than the autonomous system

Current approaches to the design of materials AE systems
severely limit their potential application space to tasks that
are strictly defined by human operators, which are repetitive
in nature and limited in scope. Due to the growing activity
in materials AE [1-11], they must quickly adapt to rapid
advances made in experimental/simulation/data-processing
technologies [20]. Hence, advancing the decision authority
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of AE systems is crucial for their continued design and
relevancy.

In order to enable AE systems to select high-value data
collection workflows independent of human scientists and
engineers, we pose a framework reminiscent of multi-
objective optimization techniques to dynamically identify
the highest-value workflow that generates structured
materials information:

1. An objective is established by the user to guide
workflow development

2. The procedures, methods, and models that will be
considered in the workflow are listed by the user

3. A fast search over the space of possible user-defined
workflows is conducted to quickly filter for high-quality
workflows in the context of the objective

4. A fine search over high-quality workflows is conducted
to select the optimal workflow

The concept of this framework will be described in detail,
then illustrated in a case study. There, the impact of a
deeplearning based denoising algorithm on a materials
characterization workflow is examined. The framework was
used to algorithmically select the optimal high-throughput
workflow that collects backscattered electron scanning
electron microscope (BSE-SEM) images on the material
sample approximately 85 times faster compared to the
previous study [29], and 5 times faster than the Ground-
Truth workflow of the presented case study. Lastly, summary
statistics for the information stream of the selected high-
throughput workflow are provided.

Workflow Selection Framework
Motivation

All data collection efforts must begin with specifying an
objective that needs to be met. A well-designed Workflow
generates relevant Information that adds significant
Value to the broader objective.

Workflow -> Information -> Value (1)

Extracted information is an objective-dependent summary of
the raw data (number of pores within a sample, average
number of cracks in a part, etc.), that describes the system
under investigation. If the workflow generates high-value
information, the use of black-box data
processing/transformation methods (such as neural
networks) is justified in any workflow that utilizes them.
Thus, the subtleties of how information is extracted from
data are ignored.
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We use the direct product of the workflow, the extracted

information, as a measure of the value of the workflow itself.

The Value of information is proportional to the
information’s Quality and Actionability.

Value « Quality n Actionability 2)

Actionability is a user-defined decision function that
explains how useful information is in achieving a particular
objective. High-actionability information is critical to
making high-value decisions. For instance, the ground-truth
defect density of a part to estimate the overall mechanical
stability in a critical application is information of
highactionability. Sometimes, collecting highly-actionable
information (such as the ground-truth) can be expensive or
intractable. In these cases, the cost for collecting this
information must be assumed to be infinite and other, lower-
actionable types of information must be sought. For
example, collecting 3-dimensional estimates of the volume
fraction of a material sample can be very difficult, and so
one may have to rely on estimates of area fraction obtained
from 2-dimensional images instead. In contrast to high-
actionability information, low-actionability information is
less useful to making high-value decisions.

The Quality of information is proportional to its
Accuracy with respect to a pre-determined ground truth and
the number of unique data Sources from which it is
harvested, while being inversely proportional to the Cost of
acquisition.

Accuracy n Sources

Quality x Cost 3)

In general, increasing the Accuracy and/or the Sources
reduces the uncertainty about the system that is under
investigation. Therefore, the two quantities are related to the
amount of valuable information that the workflow generates.
However, increased Accuracy and the Sources typically
leads to increased Cost of acquisition. This is due to the
extra time needed and the extra resources required to collect,
structure and curate the data [30].

The approach for any effort should be to select the
highest-value workflow from a set of high-quality data
collection workflows. High-quality workflows generate
information that strikes a balance between the information’s
accuracy, certainty, and cost. A high-quality workflow that
generates high-actionability information is considered to be
a highvalue workflow. As an example, high-throughput
experimental workflow design aims to select a workflow that
is considered high-quality and generates a given amount of
information in the shortest amount of time at the lowest
possible cost. In this study, we show that the setup and design
of workflows can be addressed as a two-stage optimization
problem.
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560
Mathematical Definition of Framework

It is very challenging to find the highest-value experimental
workflow in one step. Therefore, we conduct the search for
the highest-value workflow in a two-stage approach: In
Stage I we seek to filter for workflows that generate high-
quality information. In Stage II we select the highest-value
workflow from the set of workflows obtained in Stage I by
maximizing the information’s Actionability (sce Fig 1).
Let x be the data obtained from the collection process,

6), A be the data

processing sequence that is applied to data x( ﬂ) , with data

dependent on the data collection settings

processing parameters /Z, the product A.x( 6)) be the extracted

information from the workflow, and M be the design
specification, or design parameter that we designate as
ground-truth.

Stage | : &, = argmin(C1| |Ax(&)-M| |

6.4
+ C2Cost (x(#) 4)
+ C: Complexity(A.x(4)), {C1,C,,C3> 0}

Stage Il : argmaxs. 4 (Actionability(x(4),A.x(4))) (5)

For Stage I1, report the bias and change in standard deviation
for the selected workflow’s information stream when
compared to Ground-Truth workflow.

. A/X(ﬂ) and M are compared in the Stage I objective
function. This comparison is a measure of Accuracy .
Bias is a measure of non-accuracy, and is used to
characterize and compare workflows.

+ Cost is a term that accounts for how expensive it is to
collect the data x with an instance of data collection

parameters 4 . A cost value can be assigned by the user

for each potential step in the workflow. The total Cost
for a single workflow can be then determined by
summing over each step’s individual cost value.

+ Complexity is a term that accounts for 4’s complexity,
computation time/resources, curation time (which can
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Set Objective

Ascertain
Ground-Truth

Stage I:
Filtration

Stage Il:
Selection

oo
OO

increase due to the number of sources), and
interpretability given an instance of data processing

parameters j. A simple example would be to use the term

p+q* , where p approximates the time/space complexity
of algorithms used, and ¢ corresponds to the number of
sources of data.

* Ci1,G, and G; are user-defined weights that can be used to
adjust the importance of each term in the objective
function. Larger numbers imply more importance, and
smaller numbers imply less importance.

In Stage I, we find a set of candidate experimental

workflows with data collection settings and data

*

processing parameters that minimize the objective

function. This ensures that only workflows that generate
high-quality information remain.

Stage II directly compares the candidate workflows with

*

data collection settings ~* , and data processing parameters

A , and finds the workflow among these that maximizes the

user-defined Actiomability . For high-throughput
workflow design, Actionability can be defined as
collecting the most amount of data in a given amount of time.
We use this as part of the definition of Actionability for
our Stage II criteria in our case study (see Sect. 3).

The Stage I objective function describes the quality of the
information generated by the workflow: smaller scores of the
function will correspond to a higher-quality workflow, while
larger scores of the function will correspond to a lower-
quality workflow. The goal is to minimize the objective
function as much as possible. Regions of the same objective
values, outline iso-quality regions. Iso-quality regions imply
that both workflow settings produce information of the same
quality.

Stage I's objective function is inherently “noisy,” meaning
that repeated measurement of the experimental workflows
will generate different Stage I objective values. This is the
reason why Stage II is required: Stage [ is a coarse search
that informs the user of what regions to investigate further.
Stage II is a fine search and guides the user to quan-
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Fig. 1 Schematic of the framework showing the two-stage approach
when searching for the highest-value workflow

processing parameters j. For each data collection parameter

g , its collection cost must be defined and for each data

. A . . .
processing parameter ~ , its processing complexity must be

defined. Second, experiments should be conducted to seck a
set of well-established, well-understood “ground-truth”
measurements that can be used to compare a workflow’s
ability to produce accurate information. Third, the accuracy,
cost, and analysis complexity term weights Ci,C;,Cs should
be properly defined. Fourth, a Stage I search should be
conducted. This can be done by collecting extracted
information across all workflows being considered and
using the extracted information to score each workflow. It is
recommended that few measurements for each workflow are
collected in this step, as the Stage I exploration space can be
large. Stage I will filter the workflow space and produce a
set of candidate workflows. Workflows that minimize the
objective function or are close to the minimum should be
included within the candidate set. Fifth, a Stage II data
collection effort using the candidate workflows for finer
comparison should be conducted. Because a Stage I/ search
needs to be higher-resolution than Stage I, it will require
more data per workflow than in the Stage [ search. The Stage
Il search can be conducted via a formal statistical
experimental design, such as one-way ANOVA. From here,
the workflow that maximizes Actionability can then be
selected. This fifth and final step will yield the highest-value
data collection workflow.

Case Study: Designing a High-Throughput

13

tify the bias and variance of the different workflows. Stage
11 allows for the possibility that Stage I's objective function
values are random. In practice, Stage II takes candidate
workflows with similar objective function values as input,
compares the workflows, and selects the workflow maxi-
mizing Actionability . To give an example in the context
of high-throughput workflow design, if a meaningful
difference between the workflows is found, a decision can
be made to select the workflow closest in mean to the
GroundTruth workflow that also minimizes the acquisition
time of information.

To use this framework, the user must first define the
objective, the types of information to extract, all
equipment/models/procedures to be potentially used for

information extraction, and all data collection parameters
and data

Workflow for Expediting Microstructural
Characterization of AM Builds

We now present a case study in which we design a
highthroughput ~ workflow for the microstructural
characterization of an additively manufactured (AM) sample
using BSESEM images. The AM sample was fabricated in a
previous study that examined and quantified the
microstructural variation between builds fabricated using
different beam scanning strategies [29].

Using SEM characterization is particularly interesting in
the research of high-throughput workflows for AM
applications because SEMs can be used to capture the subtle
variation in AM builds and generate large amounts of high-
value datasets. Thus, developing SEM-based high-
throughput workflows for AM applications is a desirable
goal.

An SEM image is acquired in a pixel-by-pixel approach,
while the number of pixels has an upper limit determined by
the SEM’s scan engine. The electron beam rasters in lines
over an area of interest pixel-by-pixel with an operator-
chosen dwell time at each of the steps. This dwell time has a
huge impact on the signal-to-noise ratio (SNR) of the final
image. An operator-chosen image magnification determines
the number and size of the pixels in relation to the feature
size in the sample (e.g., size of a grain or a defect) that is of
interest. In principle, the image acquisition time is
determined by the chosen number of pixels in an image
multiplied by the chosen dwell time per pixel. Integration of
multiple fast-scanned images (known as frame integration,
or FI for short) can be used to boost the SNR of the image.
The constraints are that the pixel size needs to be optimal in
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Table 1 Stage I values for
workflows with varying frame

768 x 512 pixel resolution: dwell time ( ps)

integration (FI) and dwell time 03 04 05 0.6 0.7 0.8 0.9 1 1.5 2 3
(DT) settings
Frame integration
L4708 11296 1) 456 12,762 13,673 16349 12866 4649 1331 803 226
2 4700 9171 4866 3463 3204 2213 3818 357 636 174 42
4 2247 2984 834 2331 720 840 190 95 216 64 83
8 490 157 174 453 151 148 119 84 100 117 164
16 200 94 95 97 95 147 124 114 164 218 330
32 87 114 120 154 173 194 226 218 328 437 664
64 146 197 245 274 318 357 401 436 654 872 1313

Lower values indicate higher-qualityworkflows

The bolded valuesrepresent the workflows chosen for the Stage 11 selection process

Increased Acquisition Time

relation to the size of a feature that needs to be resolved, and
the dwell time needs to be sufficiently high to achieve a
required SNR to recognize the feature in the subsequent data
analysis process.

The trade-off between dwell time and FI vs. image quality
is an example of a compromise one has to accept when
attempting to utilize SEMs for high-throughput data
collection (see Fig. 2): decreasing the cost of data acquisition
(i.e., taking images faster with a shorter dwell time)
decreases image quality and might therefore lead to greater
deviations from a specified M (ground-truth).

Recent advances have shown that deep-learning
algorithms can be used to boost the SNR of low-quality
microscopy images and yield images with effectively higher
SNR [31-37]. These methods have exhibited robust
performance on images outside of their testing datasets when
compared to more standard denoising techniques. Deep
learningbased  denoising  algorithms  provide a
straightforward solution to the aforementioned problem of
taking SEM images for high-throughput data collection
purposes; one can take images with low SNR or low pixel
resolution and still retain the quality of higher-SNR, higher-
resolution images. The
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Fig. 2 Backscattered electron (BSE) scanning electron microscopy
(SEM) images taken with increasing dwell time visualizing one of the
many trade-offs between acquisition time vs. image quality

question then becomes, “what is the lowest image quality we
are willing to accept while increasing our throughput of
data?”

The objective is to design and implement a high-
throughput workflow utilizing an algorithm that denoises
BSE-SEM images to systematically characterize the AM
part examined in Shao et al. The extracted information for

this case study will be the size of the Ti—-6Al-4V (Ti64) @

lath (i.e., % Jath thickness).

Material Sample

Details about sample fabrication have previously been
reported [29]. The center region of the center-top XY Ti64
sample fabricated using a linear scan (LS) strategy is used
for this case study (see Fig. 3a in Shao et al).
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Denoising Algorithm

The BSE denoiser model presented here is a convolutional
neural network (CNN) with the U-Net architecture. Further
model details can be found at the following references [31,
38].

Stage I Search

Here, C; is 500, the distance term between Ax and M is
defined as the squared distance between the two terms, C; is
6.81, the cost term is defined by a combination of settings
that relate to the acquisition time of a micrograph, and the
model complexity term, Cs , is set to 0. Gz is set to 0 because
all images for this case study have the same pixel resolution,
and therefore the resources needed to process all images is
the same. Therefore, the model complexity term is constant
and does not affect the minimization of our Stage I objective
function for this case study.
The optimization problem:

Stage I : argmin(500(A.x(8)-M)? 6.4
(6)
+ 60.81(dwelltime - frameintegration))
Stage I : argming.,2 (Actionability(x(£),A.x(4))) 7

was used for the study. For Stage II, we will report the bias
and standard deviation change of the selected workflow's
information stream when compared to the Ground-Truth and

Fig. 3 Boxplots of information
streams for the candidate
workflows as compared to the !
Ground-Truth workflow. An 04511
information stream for the
Previous Study workflow was
simulated using the statistics
reported in [29]. The bolded

o
=
=3
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image at 30 p s dwell time, 1 FI, and 768 x 512 pixel image
resolution to act as the ground-truth setting M. A; is the
imaging, denoising, and segmentation process being
considered, and A.x( ‘9) is the “lath thickness extracted from
the image. We place the greatest emphasis on the
comparison between A/D((ﬂ) and M, as evidenced by the
weight of 500 on the first term.

Given a fixed model complexity value, we define
highlyactionable information as information that minimizes
the cost to acquire data as well as the bias between collected
data and agreed-upon metric M.

A

As given in Table 1, one image x(~) for each workflow

/Z) . The “lath thicknesses A,;x('g) for each
of the dwell times and FI were extracted from the images

with settings ([9,

through an image processing sequence A, . Here, we fix jby

using the same image processing workflow for all images.
The resulting scores were calculated using the objective
function defined above.

Table 1 shows Stage I results of the workflow search. As
the Stage I objective function is “noisy” (see Sect. 2.2), the
workflow corresponding to the lowest objective function
value in this figure should not immediately be taken to be
the most optimal value. However, based on this Stage [
search, it is obvious that some workflows are more
preferable than others. One should conduct a Stage 1] search
with workflows close to and equal to the lowest Stage I score
to investigate which workflow is truly preferable. The
number of potential workflows to check will vary based on
the application.

Comparison of Workflow Information Streams

lines represent the median @
lath thickness, while the

Information Stream

hollow circles represent the

o
w
&

average 2 |ath thickness

0.304

Workflow 1

Previous Study workflows. Here, x(ﬁ) is an image taken of
Y 129]. M is

the agreed-upon estimate of what the # Jath thickness in the

the sample taken at image acquisition settings

Ti64 sample is. The  Jath thickness was extracted from an

Ground-Truth

Workflow 3 Previous Study (Simulated)

Potential Workflows

Stage Il Search

Workflow 2

A total of 3 candidate experimental workflows were selected
as per the Stage I results and compared against the

13
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GroundTruth workflow. Using a fixed 768 x 512 pixel image
resolution, these were:

« Workflow 1: 0.7 p s dwell time, 16 times FI (4.5 s
acquisition time)

« Workflow 2: 2 p s dwell time, 4 times FI (3.2 s
acquisition time)

+ Workflow 3: 3 p s dwell time, 2 times FI (2.4 s
acquisition time)

Workflow 3 was selected as it had the lowest Stage I score
in Table 1. Workflows 1 and 2 were selected because they
had Stage I values close to Workflow 3’s minimal Stage [
value.

The Previous Study and Ground-Truth workflows are
listed below:

* Previous Study: 30 p s dwell time, 1 time FI at 3072 x
2048 pixel resolution (204.7 s acquisition time)

* Ground-Truth: 30 p s dwell time, 1 time FI at 768 x 512
pixel resolution (11.9 s acquisition time)

A comparison of the above workflows’ information streams
can be seen in Fig. 3. 35 instances of information each were
collected for Workflows 1-3 and the Ground-Truth
workflow, and 10000 instances of simulated information
were drawn to emulate the Previous Study workflow.

We note that Workflows 1-3 and the Previous Study

workflow report a higher average # Jath thickness than the
Ground-Truth workflow, and that Workflows 1-3 and the

Ground-Truth workflow report a lower average % Jath

thickness than what the Previous Study workflow reported
for the same sample [29]. Additionally, Workflows 1-3 also

report a higher “ Jath thickness standard deviation than the

GroundTruth and Previous Study workflows. Lastly,
Workflows 1 and 2 exhibit some right-tailed skewness (as
their mean is greater than their median), indicating that
results achieved using these workflows would be influenced
by the SNR lower limit for this system.

Based on our definition of Actionability , we sought to
determine whether or not the information gathered using the
three chosen candidate workflows were significantly
different from one another. This would inform us if there is
a meaningful difference in bias between Workflows 1-3 as
compared to the Ground-Truth and Previous Study
workflows. To investigate this, we conducted a repeated
measures ANOVA (after checking all assumptions—no
extreme outliers, normality in the response, and sphericity of
variance) to examine differences in the workflows’
information streams. Pairwise comparisons were conducted,
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with the null hypothesis asserting that the mean # Jath

thickness for the information streams of Workflows 1-3 are
the same, and the alternative hypothesis asserting that at

least one workflow’s information stream had a mean “-lath
thickness that was different compared to the others. The
condition for rejection of the null hypothesis was derived
using a family-wise significance level of 99% and a
Bonferroni correction, which means that each of the 3
comparisons made would have to have a p value less than (1

-0.99)3 = 0.003: to be considered as statistically significant

enough to reject the null hypothesis. None of the
comparisons made yielded p values less than

0.003- . Therefore, the null hypothesis was not rejected, and

the information streams of the three workflows were
considered to produce equivalent information. From this
analysis, it was concluded that the workflows deliver similar
results compared to each other (see Table 2), and Workflow
3 could be chosen as the most valuable high-throughput
workflow,
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as it had the lowest acquisition time of Workflows 1-3

(Workflow 3: average 2 Jath thickness = 0.37 p m, standard
deviation = 0.02 p m (see Table 3 for comparison statistics
of Workflow 3’s information stream)).

Discussion

Comparison of Workflows with Different Data
Dimensionality

The previous study used a workflow that generated images
with 3072 x 2048 pixel resolution [29]. The presented case
study examined workflows that generated images with only
768 x 512 pixel resolution. The case study is an example
where the Actionability , cost, and complexity associated
with acquiring information equivalent to the previous study
is very high. When this happens, a workflow with an
information stream of lower Actionability , cost, and
complexity must be used in order to proceed. As the Stage 1
objective function yields workflows that balance accuracy
with cost and complexity, the difference in determined Ti64

2 Jath thickness between Workflow 3, the Ground-Truth

workflow, and the Previous Study workflow is accounted
for. In this case study, we focus on calibrating our potential
high-throughput workflows to the specified Ground-Truth
workflow for this case study, and simply report the bias and
variance of each workflow based on the reported
GroundTruth workflow as well as the Previous Study
workflow (see Table 3). As long as data collection proceeds
with an understanding of the bias and variance between
workflows, continuity and reproducibility between both
studies is achieved.

Applying the Framework Beyond the Case Study

Understanding Actionability in the
Context of Decision-Making

Actionability is how one encodes decision-making
intuition into an AE system. The AE system makes decisions
about workflows by maximizing the Actionability
function. However, different objectives will yield different
defi-

nitions of Actionability , and therefore, the result of a
Stage II search will vary based on the user-defined objective.
The framework also can be generalized to yield high-

Table 2 Results of the statistical comparisons conducted between
Workflows 1-3
Comparison

p value
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Table 3 the
information streams of Workflow 3
and the information streams of Wo1

workflow

Workflows being compared Bias ( pm) Standard
deviation
change
(1 m)

Workflow 3—Ground-Truth +0.03 +0.005

Workflow 3—Previous Study ~0.10 +0.01

accuracy workflows and low-variance workflows due to the
uncertainty quantification measures and accuracy estimates
that the Stage II selection process yields. The schematic in
Fig. 4 shows potential workflows that could be selected
based on different objectives. Workflow 1’s variance and
acquisition time are low, but the bias is large—this would
have to be taken into consideration if Workflow 1 is selected
for use. Workflow 2’s variance is high, but has no bias and
has a lower acquisition time compared to the Ground-Truth
workflow. This workflow might be considered if accurate
results are required at a faster pace than the Ground-Truth
workflow. Workflow 3 strikes a balance between the
previous two workflows, with a bias, variance, and
acquisition time between Workflow 1 and Workflow 2.
Workflow 3 might be considered as a moderate choice
between Workflows 1-3. Additionally, it may be decided
that very precise measurements regardless of acquisition
time are required and so the Ground-Truth workflow may
also be selected.

Selection of the Stage I Objective Function Weights

The weights for the Stage I objective function are currently
chosen by human beings, and not the automated system.
This is intentional; changing the weights of the parameters
of the Stage I objective function filters for workflows that
prioritize different facets of informational quality. This
allows the framework to yield a set of high-value workflows
with

Comparison of Workflow Information Streams

o

|=———————] b

——

=

Information Stream
o

Woakﬂcwr1 (1 hour) Workflow 7‘ (15 hours) Workflow é (5 hours) Grouﬂd—Trul'h (30 hours)
Potential Workflows
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Workflow 1-Workflow 2 0.01
Workflow 1-Workflow 3 1.00
Workflow 2—Workflow 3 0.50

varying accuracy, cost, and complexity. Larger weights on a
term will lead to more importance of that term in the overall
Stage I objective function. For example, assigning larger
weights to FI will skew the optimal results to conditions that
incorporate lower FI. In practice, this choice of weights adds
flexibility and allows one to prioritize conditions that best fit
their requirements. As an example, investigations of critical
components in aerospace applications demand a very
accurate estimate of the ground-truth. These applications
can still use the framework presented to select high-
throughput workflows. In such a case, one may assign a
relatively large weight to the bias term, while comparatively
smaller terms are assigned to the cost and complexity terms.
The Stage I objective function will naturally select
workflows that collect high-accuracy information, while
prioritizing the cost to acquire data and complexity to extract
information from the data, less.

Exploring the Stage I Space

We opted for a grid-based search to highlight the use of a
framework for a simple case study with a 2-dimensional
Stage I search space. One of the limitations of the search
method we used is that it does not generalize well to large
parameter spaces. As an example, having 10 possible pieces
of equipment each with n different possible settings will
yield a Stage I search space of up to 10" workflows; this
space cannot be practically explored using an exhaustive
grid-based search if n is even moderately large. We can make
workflow selection more efficient in four ways. First, by
being more selective with the candidate workflows in the
final step of Stage I, one can choose workflows exactly at
the minimum or workflows with scores having very small
differences from the minimum, leading to a smaller set of
candidate workflows to examine in Stage II. Second, using
prior knowledge, the Stage I exploration space can be
dramatically reduced to workflows that only make sense
based on experience. Third, the weights of the Stage I
objective function can be adjusted in such a way that it
penalizes expensive workflows heavily and restricts the
exploration space even further. Fourth, the Stage I search
task can be completed using adaptive search methods such
as active/ sequential learning, leading to vast improvements
in Stage I's execution speed [39—41].
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Fig. 4 Examples of workflows that can each be considered optimal
given different definitions of Actionability

Using the Framework to Select Workflows With
Differing Structures

The presented case study demonstrates the use of the
framework for a typical SEM characterization procedure,
whose steps are well defined and understood. However, this
framework can also be used to determine the optimal
workflow for a scenario where numerous pieces of
equipment, data processing pipelines, and types of models
can be used in various combinations to arrive at the same
kind of information, provided that the objective and ground-
truth are still clearly defined by a human researcher. This
framework is applicable for any objective where every
possible sequence of steps in a workflow can be explicitly
parametrized and defined.

To better illustrate this, we conceive of a scenario where
an AE system is tasked to find the optimal workflow given a
set of workflows with different structures and
parametrizations. ARES is an AE system that synthesizes
carbon nanotubes (CNTs) [24]. In this study, the authors
chose (among other factors) the growth catalyst along with
its film and support thickness, the dimensions for the silicon
pillars that the catalyst pre-seeded, the number of silicon
pillars per wafer for testing, and the method of determining
the CNT growth rate. However, consider the possibility that
some of the elements of the workflow can be changed, which
would change the structure of the workflow used to measure
the growth rate of CNTs. Each change that can be made to
the experimental workflow requires the consideration of
completely different sets of equipment and parameters. In
general, this scenario can be posed as the following question:
“if all assumptions of the framework were satisfied, and a
given AE system could use all
equipment/models/procedures in the lab, change all
parameters accordingly, extract information from the
potential workflows’ information streams, compare this
information to the ground-truth, and evaluate workflows
using a mathematically valid definition of
Actionability , could the AE system find the optimal
highthroughput workflow as defined by the Stage / and
Stage /I functions?” The answer is yes.



Integrating Materials and Manufacturing Innovation (2022) 12:557-567

Using the Framework to Address Data Reproducibility
Issues

Lastly, we envision that this framework will assist with the
growing problem of data continuity and reproducibility
within the scientific community. Historically, results from
scientific studies could not be reproduced, either by the
authors of the study or by other members in the community.
This was partially due to the differences in the workflows
that were employed: methods, capabilities, and tools are
subject to change across research groups and across time.
This complicates efforts to establish processing and property
standards for materials systems, which is a significant
impediment to expediting and optimizing materials
development cycles. The presented framework creates an
interface for different workflows to be compared and
evaluated, which is a point of crucial importance as we enter
a more mature era of the Integrated Computational Materials
Engineering (ICME) initiative. Using this framework,
different workflows can be compared on the Stage [
objective space as long as they produce the same
information for the same objective. Additionally, the
framework’s bias and uncertainty measures provide an
easily interpretable set of metrics to judge the efficacy of
workflows based on the information they produce.

Conclusion

It has been demonstrated in the literature that autonomous
experimentation (AE) systems have incredible value to add
to the community. For AE systems’ potential to be fully
realized, we recognize that their decision authority must be
expanded in a practically implementable manner for
experimenters. To achieve this, we designed a robust
algorithmic framework for the selection of high-throughput
workflows that can be completed by AE systems with
minimal human intervention. We used the framework to
select the optimal high-throughput workflow for material
characterization on an AM Ti64 sample using a deep-
learning based image denoiser in a case study. The collection
time of BSE-SEM images was reduced by a factor of 5 and
by a factor of 85 as compared to the Ground-Truth and
Previous Study workflows, respectively. The bias and
increase in standard deviation for the selected high-
throughput workflow as compared to the Ground-Truth and
Previous Study workflows were also reported.

Future work will involve utilizing the presented
framework in further studies on metal AM components to

develop databases that are critically important to
understanding  underlying  process—structure—property
relationships. Particularly, focus will be placed on
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automating the image processing steps when performing
materials characterization experiments to a greater extent.
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