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Significance

Enzymes that can precisely and 
selectively read, write, and edit 
DNA have revolutionized 
biochemical sciences and 
technologies. The availability of 
similar enzymes for site-
selectively "editing" proteins 
would have broad impact. 
Proteases are a large class of 
enzymes that have the ability to 
site-selectively cleave target 
proteins and therefore serve as 
examples to learn the rules of 
site-specific recognition, and as 
starting points for designing 
targeted cleavage. We present a 
geometric machine learning 
approach that uses protein 
structure and energetics to 
enable protease–substrate 
specificity prediction and design 
targeting alternative substrates. 
These studies set the stage for 
the large-scale prediction and 
design of tailor-made proteases 
that can site-selectively edit (cut) 
any chosen target protein, 
associated, for example, with a 
disease state.
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Site-specific proteolysis by the enzymatic cleavage of small linear sequence motifs is a 
key posttranslational modification involved in physiology and disease. The ability to 
robustly and rapidly predict protease–substrate specificity would also enable targeted 
proteolytic cleavage by designed proteases. Current methods for predicting protease 
specificity are limited to sequence pattern recognition in experimentally derived cleav-
age data obtained for libraries of potential substrates and generated separately for each 
protease variant. We reasoned that a more semantically rich and robust model of protease 
specificity could be developed by incorporating the energetics of molecular interac-
tions between protease and substrates into machine learning workflows. We present 
Protein Graph Convolutional Network (PGCN), which develops a physically grounded, 
structure-based molecular interaction graph representation that describes molecular 
topology and interaction energetics to predict enzyme specificity. We show that PGCN 
accurately predicts the specificity landscapes of several variants of two model proteases. 
Node and edge ablation tests identified key graph elements for specificity prediction, 
some of which are consistent with known biochemical constraints for protease:substrate 
recognition. We used a pretrained PGCN model to guide the design of protease libraries 
for cleaving two noncanonical substrates, and found good agreement with experimental 
cleavage results. Importantly, the model can accurately assess designs featuring diversity 
at positions not present in the training data. The described methodology should enable 
the structure-based prediction of specificity landscapes of a wide variety of proteases 
and the construction of tailor-made protease editors for site-selectively and irreversibly 
modifying chosen target proteins.

protease specificity | machine learning | geometric machine learning | protein design |  
yeast surface display

Multispecificity, the specific recognition and nonrecognition of multiple substrates by 
protease enzymes, is critical for many biological processes and diseases (1–5). For example, 
the selective recognition and cleavage of host and viral target sites by viral and host protease 
enzymes is critical for the lifecycle of many RNA viruses, including severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) (6–10). Identifying proteolytic targets of proteases 
would, therefore, provide deeper insights into the mechanisms and biological functions 
of proteases (3, 11). As protease inhibitors are often designed to mimic substrates, the 
ability to predict substrates may also aid inhibitor design against novel viruses (12–15). 
Furthermore, the ability to infer the global landscape of protease specificity, i.e., the set 
of all substrate sequence motifs that are recognized (and not recognized) by a given enzyme, 
would also enable the selection or design of bespoke proteases with specificities to degrade 
chosen biotechnologically relevant or disease-related targets (16–20).

Current experimental methods for protease substrate cleavage site identification involve 
assaying libraries of potential substrates for cleavage, one protease variant at a time  
(1, 21–26). Apart from being labor-intensive and time-consuming, only limited sampling 
of the protease:substrate sequence diversity is possible. Therefore, the development of 
rapid, cost-effective and generalizable computational approaches for precise prediction of 
specificity is valuable. Most current computational approaches for protease specificity 
prediction involve detecting and/or learning patterns in known substrate sequences using 
techniques ranging from inferred substitution matrices (27–32) to supervised machine 
learning (ML) (33–40). In some approaches [e.g., Procleave (41)], the accessibility of 
substrates depending on their solvent exposure and secondary structure assignment are 
also considered during prediction. We previously developed a supervised ML–based 
approach for specificity prediction in which protease–substrate interaction energy terms 
for the interface were considered (42, 43). We found that energetic terms play an important 
role in helping rank probabilities of cleavage. Similarly, inclusion of energetics in ML 
models was found to increase classification accuracy for identifying metalloenzymes (44). 
While computational approaches have successfully guided experiments in finding novel D
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cleavage sites and obtaining a better understanding of protease–
substrate interactions, these black-box approaches do not provide 
physical/chemical insight into the underlying basis for a particular 
experimentally observed specificity profile, nor are they robust to 
substitutions in the protease, requiring retraining for every pro-
tease variant, thus making these unsuitable for guiding protease 
design. Thus, there is need for interpretable and generalizable 
computational models of protease specificity.

We reasoned that a more semantically rich model of specificity 
would encompass both substrate sequence and the explicit ener-
getics of the protease–substrate complex. Specificity depends on 
the residue-level interactions between enzymes and substrates, and 
for this reason, we hypothesized that a high-resolution energetic 
representation of a protease–substrate complex will have a high 
predictive value. As the energies of a protein are a consequence of 
sequence, we anticipated that a sufficiently granular and accurate 
energetic representation may obviate the need for sequence fea-
tures. Using energies rather than sequence-based models for pro-
tease specificity naturally enables the design of proteases by 
training on directed evolution trajectories aimed at altering pro-
tease specificity for benchmarking (45). To encode the topology 
and energetic features of protease–substrate complexes for mod-
eling specificity landscapes, here we develop a Protein Graph 
Convolutional Network (PGCN). PGCN uses experimentally 
derived data and a physically intuitive structure-based molecular 
interaction energy graph to pose specificity prediction as a classi-
fication problem. We find that PGCN consistently performs as 
well as or better than other previously used ML models for sub-
strate specificity prediction especially when using energy-only 
features. A single PGCN model can effectively predict specificities 
for multiple protease variants, and ablation tests enable identifi-
cation of critical subgraph patterns responsible for observed spec-
ificity patterns, highlighting the interpretability of the model. We 
then use PGCN to guide the design of protease libraries aimed at 
cleaving noncanonical substrates for TEV (Tobacco Etch Virus) 
protease, and experimentally validate these predictions using a 
yeast surface display-based assay. Importantly, designs included 
residue positions and substitutions not present in the training set, 
speaking to the high generalizability of PGCN.

Results

Overview of PGCN. We present a PGCN, which models protein 
structures and their complexes as fully connected graphs encoding 
sequence and single-residue and pairwise interaction energies 
generated using Rosetta (46). For the protease–substrate complexes, 
the substrate peptide is recognized by the protease for cleavage or 
rejection in the active site (Fig. 1A). The enzyme–substrate graph 
(Fig. 1B) is fed into a graph convolutional neural network, which 
outputs a probability of cleavage for a given complex (Fig. 1C). Our 
protease specificity dataset consists of experimentally determined 
cleavage information, i.e., lists of cleaved and uncleaved peptides for 
the wild type and variants of two viral proteases, NS3/4 protease of 
the Hepatitis C Virus (referred to as HCV protease in the following) 
(Dataset S1), and TEV protease (Dataset S2) obtained from Pethe 
et  al. (42) and Packer et  al. (45). The pools of experimentally 
confirmed cleaved and uncleaved substrates were randomly split 
into 80% training, 10% validation, and 10% test datasets.

PGCN Performs Better than Baseline ML Models for Substrate 
Specificity Prediction for Various Feature Encodings. To evaluate 
the performance of PGCN predicting substrate specificity, we 
first trained and tested models for specificity landscapes of WT 
(wild-type) and three HCV protease variants, A171T, D183A, 

and R170K/A171T/D183A (Table 1). We further combined all 
HCV protease variant data and trained and tested a single PGCN 
model on this combined set to explore how sensitive PGCN is in 
discriminating specificity changes upon small structural changes 
in the protease.

In benchmark tests, PGCN outperformed other ML models 
for all HCV variants using sequence features only (Fig. 2A), 
achieving more than 90% test accuracy for all datasets, including 
the combined dataset. We evaluated PGCN performance using 
different metrics besides accuracy, including F1 score, Precision, 
Recall, Area under curve (AUC), and Average Precision (AP), all 
standard evaluation metrics for ML tasks with imbalanced data 
(47–50). PGCN had the highest F1, Recall, and AP scores of the 
benchmarked methods (example: 93.53% F1, 96.85% Precision, 
90.44% Recall, 97.90% AUC, 96.05% AP for A171T protease 
using sequence features only) (see details in Dataset S3).

We then evaluated PGCN’s performance when using energy 
features. In these tests, we used either Rosetta energy information 
only, or sequence and Rosetta energy information together as fea-
tures used in PGCN, see Materials and Methods for Rosetta ener-
gies details. As shown in Fig. 2 B and C, PGCN always performed 
the best with either energy features only or complete sequence 
and energy features. This result is remarkable because previous 
energy-based scoring approaches for protease–peptide interac-
tions, which involved weighted sums of different energy terms, 
did not perform as well as sequence-based learning approaches 
(42, 43). A key difference between other energy-based models and 
PGCN is how calculated energies of interaction are used as fea-
tures. In all models other than PGCN, energies are learned in 
simple linear combinations, while PGCN takes advantage of graph 
representation to encode intermolecular energies in an implicitly 
nonlinear relationship. Therefore, our results show that graph-based 
convolution of individual energy terms is a promising approach 
for combining biophysical analysis and data-driven modeling in 
a way that addresses some of the limitations of each.

Having demonstrated good performance in predicting substrate 
specificities when provided training data including a large pool of 
substrates and sparse protease diversity, we sought to evaluate 
PGCN performance in predictions involving greater protease 
diversity. Therefore, we trained PGCN on the engineered TEV 
protease dataset, which had a larger set of protease variants than 
our HCV set, although fewer substrates per variant were experi-
mentally assayed (45) (Table 1 and SI Appendix, Table S1). We 
trained on this TEV dataset using the same three sets of feature 
encodings, either sequence-only information, energy-only infor-
mation, or complete sequence and energy information.

All ML models are able to learn some patterns for TEV data if 
considering sequence features only, but tree-based approaches, SVM 
(support vector machine), and ANN (artificial neural network) 
achieved lower accuracy when considering energy features (Fig. 2 B 
and C). PGCN’s performance is stable among different feature 
encodings, with accuracies of 86.86%, 86.62%, and 87.72%  
when using sequence-only (Fig. 2A), energy-only (Fig. 2C), and 
sequence+energy features (Fig. 2B), respectively. PGCN takes advan-
tage of encoding residue-level pairwise energies into edges of graphs 
that enable PGCN to learn the local environments of residues at 
each GCN layer. Furthermore, PGCN with complete sequence and 
energy features outperforms the models with reduced features (e.g., 
SVM), supporting our hypothesis that the prediction of protease 
specificity benefits from both sequences of substrates and physical 
energies of interaction between enzyme and substrate.

To ensure that PGCN performance, especially with sequence 
features, is not dominated by memorization of substrate sequence 
patterns during training (and detecting similar patterns in the test D
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set), we also trained PGCN models using a train, validation, test 
split strategy based on Kmeans clustering of substrate sequences 
in cleaved and uncleaved pools such that substrate sequences in 
each set are sequence-distant from the other two sets. We find that 
PGCN still has the highest performance for the TEV Combined 
dataset regardless of which feature encoding is considered, and it 
dominates the prediction with an accuracy of 86.41% when using 
sequence+energy features compared with other ML models (the 
best accuracy: 75.96% for SVM) (Fig. 2D). Similar results are 
obtained for HCV protease (SI Appendix, Fig. S1). Thus, we con-
clude that PGCN-based discrimination is not based on memo-
rizing or learning (nearest-neighbor) substrate sequence patterns, 

and therefore employ node-edge ablation tests to further investi-
gate the sources of PGCN performance.

Node-Edge Importance Analysis to Obtain Physical Insights 
from PGCN. One advantage of PGCN is that the nodes and 
edges correspond directly to physical amino acid residues and 
their relationships. Therefore, we reasoned that we could identify 
important residues and interactions by identifying nodes and 
edges found to be critical for PGCN performance. To identify 
the prediction strength of each graph component by PGCN, 
we perturbed feature values of each node (or edge) across all 
sample graphs and computed accuracy again (see Node/Edge 

Fig. 1. Architecture of PGCN (A) Peptide substrate (blue) in the binding pocket (yellow) of HCV protease (gray). The seven-residue substrate spans P6 to P1′, 
with cleavage between P1 and P1′. The logo plot indicates the substrate sequences in the training set, where P1 and P1′ were kept constant, and P6 to P2 were 
variable. (B) Molecular depiction of the nodes and edges as a graph. Each substrate (blue) and binding pocket (yellow) amino acid constitutes a node of the 
graph. Gray lines between pairs of residues denote edges between pairs of nodes. (C) PGCN model architecture. Nodes are represented as a N × F  matrix of 
nodes and node features. Edges are represented as a N × N × M tensor of node pairs and edge features, flattened by the weighted sum of overall edge features. 
The PGCN model ultimately outputs probabilities of the given substrate belonging to each class, cleaved and uncleaved.

Table 1. Summary of input dataset

Protease variant
Training Validation Test

TotalCleaved Uncleaved Total Cleaved Uncleaved Total Cleaved Uncleaved Total

HCV WT 1,566 4,307 5,873 175 559 734 191 544 735 7,342

HCV A171T 2,905 7,659 10,564 366 954 1,320 373 948 1,321 13,205

HCV D183A 3,538 5,953 9,491 422 764 1,186 390 797 1,187 11,864

HCV Triple* 2,496 2,974 5,470 315 369 684 324 360 684 6,838

HCV Combined 10,404 20,995 31,399 1,319 2,606 3,925 1,338 2,587 3,925 39,249

TEV Combined 2,111 2,229 4,340 259 283 542 238 305 543 5,425
*Mutations made for HCV Triple: R170K, A171T, D183A.D
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Importance in Materials and Methods). The decrease in accuracy 
upon perturbation is used to measure the (relative) importance 
of node i (or edge j ) in the PGCN graph.

We normalized the calculated importance of node/edge by the 
overall accuracy of the prediction and aggregated the normalized 
importance by feature type (node or edge) to see how the features 
used by PGCN for training affected the classification. There are 
two types of nodes (protease, substrate) and three types of edges 
(protease–protease, substrate–substrate, and intermolecular) 
depending on the types of nodes that are connected by a given 
edge. When the sequence is the only feature (nothing on edges), 
as expected only peptide nodes contribute to accuracy for 
single-variant sets (Fig. 3A). However, for datasets in which pro-
tease diversity is also sampled (“Combined” dataset in Fig. 3A), 
protease nodes, typically sites of substitutions, are also detected as 
contributors to accuracy. When energy features are considered 
either solely or together with sequences, protease nodes make 
significantly greater contributions (Fig. 3A), indicating that pro-
tease residue energies are sensitive to the changes in their environ-
ment. In the same vein, when the sequence information is 
excluded, the dependence on edge features increases while the 
overall accuracy of prediction is not significantly affected. 
Leveraging energy information allows broader attention to resi-
due–residue interactions as more edges are deemed significantly 
important, as shown in SI Appendix, Fig. S2. These observations 
show that sequences are an abstraction that PGCN uses as a 

shortcut when available, but the same information can be learned 
from energy.

Next, we visualized the positions of important nodes and edges 
in the HCV protease structure. For the WT and each variant 
protease, a key edge was found to be between the P2 residue of 
the substrate and the catalytic base H72, which presumably reflects 
the proper positioning of the substrate in the active site. We also 
observed that some important nodes/edges were different between 
WT and variant proteases. For example, the protease edge 
R138-D183 is prominent for the wild type (Fig. 3B), but it is not 
a significant interaction when either A171T (Fig. 3C) or D183A 
(Fig. 3D) or the Triple variant A171T, D183A, and R170K 
(Fig. 3E). When D183A mutation is introduced (Fig. 3 D and E), 
side chain orientations of some intermolecular edges, e.g., 
P6-R138, were different even though the protease node D183A 
itself did not significantly influence classification for substrate 
specificity. Conversely, we found that some other intermolecular 
edges such as P3-I147, P2-A171(T), P4-A171(T), P4-V173, and 
P6-V173 are at least two times more important for models trained 
on D183A and Triple variants than those for models trained on 
the wild type and A171T data (Dataset S4). Also, protease node 
R170(K) shows its importance only if D183A is mutated (Fig. 3 
D and E). However, the important edge and node lists are not 
additive: for example, edges 138 to 173 and 96 to 170 are insig-
nificant for the Triple variant (Fig. 3E), while they are two of the 
most important protease edges for the model trained on D183A 

Fig. 2. PGCN performance. We evaluate models on six datasets, four consisting of a single HCV variant (WT, A171T, D183A, or Triple (R170K, A171T, D183A)), 
with various substrates, and two, Combined, one of which pools the other four, and the other consists of 10 TEV variants. (A–C) The radar plots show polygon 
patterns of average test accuracies across three seeds of benchmarked ML models (labeled in different colors) on the five datasets. The highest accuracy is on 
the polygon periphery. (D) Accuracy barplot of model prediction performance on the TEV Combined protease specificity data. In this analysis, the substrate were 
clustered based their sequence to ensure that training, validation, and test sets have distinct sequence patterns.
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(Fig. 3D). When taking the model trained on the HCV combined 
set into consideration, although most of the important nodes and 
edges for single-variant sets are equally important for the com-
bined set (such as node V173, edge P2-H72, P4-V173, etc.), there 
are also some important nodes/edges that are only useful for the 
prediction of substrate specificity within individual variants or the 
wild type, such as P3-I147 (Dataset S4). Thus, the model is able 
to classify to approximately the same level of accuracy using over-
lapping but distinct sets of node and edge features.

Similar trends were apparent in the node/edge sensitivity anal-
yses for TEV protease predictions (Fig. 4A). Several positions that 
are the sites of amino acid substitutions in the TEV variants had 
high importance, such as D148, S170, and N177 (Fig. 4B). Strong 
signals of some important interactions were also identified. For 
example, the interaction between the P2 residue of the substrate 
and the catalytic base H46 is consistently important across all 
TEV variants and the wild type (Fig. 4C), the same as in the HCV 
prediction described above. In addition, several other intermolec-
ular edges, e.g., P3-S170 (Fig. 4C), intraprotein edges around the 
S3 pocket (Fig. 4D) and the S1 pocket (Fig. 4E) were also found 
to be of high importance.

Taken together, the analyses for HCV and TEV protease variants 
follow a series of general rules. First, the intermolecular edge 
between P2 and the histidine in the catalytic triad (P2-H72 for 
HCV in Fig. 3 B–E, and P2-H46 for TEV in Fig. 4C) is always 
one of the most important edges, reflecting the proper positioning 
of the substrate in the active site. Second, those interactions that 
presumably provide the H-bonds that template the substrate into 
the required β-sheet conformation were also identified as prominent 
edges, such as P4-V173 for HCV (Fig. 3 B–E), P3-S170, P3-F217 
for TEV (Fig. 4C). This is consistent with the well-known obser-
vation that protease substrates always adopt an extended confor-
mation in the active site with beta-sheet complementation (51). 
Some important nodes/edges form interconnected clusters that are 

consistent with the canonical substrate binding pockets (S pockets), 
for example, the S3 subpocket for TEV includes residues 170, 172, 
217 (Fig. 4D); the S1 pocket for TEV including interactions with 
148, 167, 170 (Fig. 4E). Thus, we argue that the PGCN models 
have learned to discriminate between cleaved and uncleaved sub-
strates based on criteria that can have an interpretable biophysical 
basis in some cases, and reflect nonobvious statistical relationships 
between various interactions in other cases.

Exploring PGCN Generalizability by Cross-Test and Leave-One-
Out Test Analyses. To investigate if the models learned by PGCN 
for a single-variant protease could be further generalized to protease 
variants outside the training data, we designed cross-test analysis 
for HCV datasets and leave-one-out analysis for the TEV dataset. 
First, we cross-tested prediction accuracy for each PGCN model 
trained on one of five HCV datasets on the other four. In each cross-
test experiment, we employed the identical training subset utilized 
in the previous evaluation of PGCN’s performance. Subsequently, 
we conducted testing on the other four HCV datasets, excluding 
substrates that exhibited redundancy in both the training and test 
data. Although the AUC of the self-test PGCN model is consistently 
higher than that of the cross-test model for each test dataset, cross-
test PGCN models still have a good ability to discriminate protease 
specificity, reaching at least 81% AUC score when testing the 
combined datasets excluded the trained variant, shown in Fig. 5A. 
Other metrics of performance are included in Dataset S7.

Next, to measure PGCN's ability to generalize over protease 
variants with multiple substitutions, we chose three TEV vari-
ants, N176I, I138T/N171D/N176T and E107D/D127A/
S135F/R203Q/K215E (Var2), which have one or two unique 
mutation, respectively, among all of ten TEV variants for the 
leave-one-out test purpose. For each of these three variants, we 
divided all of its substrates in cleaved and uncleaved pools into 
the test dataset, and split the remained data into training and 

Fig. 3. Node/edge importance analysis for HCV protease. (A) Relative importance of major physical groups of nodes/edges. Node/edge importance is analyzed 
by the decrease in accuracy upon perturbation normalized by the original test accuracy of the PGCN model trained on each of five HCV protease variants using 
sequence-only (S), energy-only (E), or both (S+E). All nodes and edges in the PGCN graph are grouped into five major physical groups, and each group’s total 
relative importance is aggregated as the sum of importance scores from nodes (or edges) of the specified type. (B–E) Structural representations of node/edge 
importance for HCV protease (PDB ID 3M5N; 3M5L), calculated by the energy-only PGCN model trained on B wild type; (C) A171T; (D) D183A; (E) Triple data. Only 
nodes/edges whose relative importance scores are within the first 25% quantile are displayed in the zoom-in protease structure (gray), with the substrate (cyan) 
as the center and the catalytic triad (magenta) as the reference. Among those nodes that meet the criteria, the relative importance levels of protease nodes 
(orange) are shown by the thickness of corresponding residue side chains, while that of peptide nodes (cyan) is reflected by the sizes of corresponding residue 
spheres at CB. For those important edges that meet the criteria, different groups are highlighted in different colors, including peptide edges (blue), protease 
edges (green), and intermolecular edges (yellow). All residues related to node/edge importance have labels in residue identifiers with one-letter codes (colored 
in red if mutation sites), including protease residues that are only related to edges (violet).
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validation datasets based on the ratio of 9:1. In Fig. 5B, PGCN 
models always have the highest AUC (96.63% AUC for N176I 
as an example) compared with the best baseline ML model 
(SVM: 75.36% AUC for N176I). For other variants, PGCN 
also outstands among other ML models, as shown in SI Appendix, 
Fig. S3.

Therefore, from the cross-test analysis and leave-one-out anal-
ysis, we conclude that PGCN models have the ability of transfer 
learning for the prediction of protease specificity compared with 
other ML models; on the other hand, PGCN models self-trained 
on the single mutation can still maximize its power for prediction 
of the dataset containing the same mutation.

Experimental Evaluation of PGCN Generalizability Using 
Protease Design. To further test if PGCN is able to generalize its 
classification ability to protease variants that are not in the training 
dataset, we turned to TEV protease specificity design. WT TEV 

protease demonstrates a preference for an ENLYFQ/X motif at 
the P6-P1′ positions of its canonical substrate (X = A,G,S) (45, 
52, 53). We aimed to design proteases against altered substrates 
with single-residue substitutions within the canonical recognition 
motif (P6: KNLYFQ/A, P2: ENLYYQ/A). A substitution of K at 
P6 or Y at P2 resulted in no cleavage of the substrate by WT TEV 
(SI Appendix, Fig. S4), providing a well-posed problem for designs 
using PGCN – given a set of designs, predict which designed 
variants would lead to cleavage of P6 and P2 target substrates.

We applied Rosetta-based computational design (SI Appendix, 
Computational Design Process for TEV Protease) to propose sequences 
(4,320 P6-targeted designs and 280 P2-targeted designs) that 
included stabilizing interactions with the target substrates (Fig. 6A). 
We then used our pretrained TEV protease model to score designs, 
and identified those with a high predicted probability of cleavage 
(Fig. 6B). PGCN selected 200 of 280 P2-targeted designs and  
126 of 4,320 P6-targeted designs with high predicted cleavage 

Fig. 4. Node and edge importance contribution for TEV. (A) Relative importance of major physical groups of nodes/edges. (B–E) Partial structural representations 
of node and edge importance in the context of TEV (PDB ID 1LVB; 1LVM) to show: (B) important protease nodes; (C) intermolecular edges that presumably form 
hydrogen bonds; (D) the subpocket surrounding P3, including P3-S170, P3-F172, P3-F217; (E) the subpocket surrounding P1, including intermolecular edges P1-
D148, P1-H167, P1-S170. The same color setting is used as in Fig. 3. The catalytic triad in each structure is just the reference of relative position. All mutations 
are highlighted in red.

Fig. 5. PGCN generalizability. (A) AUC for HCV cross-test among HCV WT, HCV A171T, HCV D183A, HCV Triple data using sequence+energy features. (B) AUC for 
leave-one-out tests of three TEV variants which have unique mutations among all TEV variants.D
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probability. Based on visual inspection, we selected 96 energetically 
favorable designs targeting P6 and 18 energetically favorable designs 
targeting P2 for further evaluation. To cost-effectively test these 
designs in experiments as well as generate negative (uncleaved) 
examples for classification, we identified amino acid substitutions 
that were enriched in the selected designs (SI Appendix, Fig. S5) 
and generated a combinatorial library sampling these protease sub-
stitutions. The library of selected designs was subjected to our pre-
viously reported version of the YESS (Yeast endosomal sequestration 
screening) assay (54) (Fig. 6C). Briefly, the assay detects cleavage by 
the presence/absence of HA and FLAG® tags on either side of the 
chosen substrate using anti-tag fluorescently labeled antibodies, and 
fluorescence-activated cell sorting (FACS) is used to isolate pools 
of “cleaved” and “uncleaved” cells. Several individual colonies from 
plating the cleaved and uncleaved pools of the P6- and P2-targeted 
TEV libraries were clonally validated (Fig. 6D). We selected 19 
designs for clonal validation, 9 from the cleaved pool and 10 from 
the uncleaved pool. As shown in Fig. 6E, all 9 cleaved designs are 
correctly predicted by PGCN with high confidence (probability > 
0.75) whereas 7 out of the 10 uncleaved designs are correctly pre-
dicted. Predictions are robust across 10 different Rosetta 
FastRelax-generated models of designs (SI Appendix, Fig. S6).

Discussion

Current computational methods for protease specificity prediction 
largely rely on statistical pattern detection in datasets of known sub-
strates and nonsubstrates for learning specificity, and are therefore 
not generalizable for use in protease design, and do not provide 
insights into the underlying biophysical bases of substrate–protease 
molecular recognition. We developed PGCN to include residue-level 

energies as features and decompose the Rosetta-computed energies 
into the node and edge features. PGCN shows high accuracy in 
classification tasks for HCV and TEV protease variants. A PGCN 
model utilizing sequence and energy-based features and trained on 
experimental data for TEV protease was used to evaluate and select 
designed TEV protease variants for cleaving noncanonical sub-
strates. Evaluated protease diversity included residue positions and/
or amino acid substitutions not present in the training dataset. 
Experimental validation showed that PGCN scoring led to high-
accuracy selection of cleaved designs. Thus, PGCN was able to be 
generalized and our studies show proof-of-principle for the chal-
lenging task of protease design using ML-enabled structure-aware 
computational modeling.

As energies implicitly encode distance information, we also 
compared the contribution of energy information and distance 
information in models along with sequence features. The models 
incorporating additional distance information did not exhibit 
greatly improved accuracy of prediction (SI Appendix, Table S5). 
However, we found that PGCN can achieve comparable accuracy 
to sequence+energy models when utilizing sequence+distance 
features. This can be attributed to the primary role of sequence 
features in the model’s ability to discriminate (Figs. 3 and 4). Thus, 
for specificity prediction where sequence information is available 
for training, distance features perform equivalent to energy. 
However, energy features are required for design tasks where 
sequence and distance features have limited utility as interresidue 
distance does not change during design and sequence at all posi-
tions is not known a priori.

The physically based graphical structure of PGCN enables 
overcoming to some extent the black-box nature of ML methods 
as applied to protein modeling. Sensitivity analysis of nodes/

Fig. 6. Pipeline for TEV protease design, including procedures of (A) computational design, (B) PGCN prediction, and (C) yeast-based assay testing using FACS, 
and (D) flow cytometry–based analysis of individual colonies. (A) S2 and S6 Pockets corresponding to altered substrate residues were inferred from the crystal 
structure of a TEV protease–substrate complex, and redesigned using Rosetta. (B) Rosetta-generated designs were evaluated using a pretrained PGCN model 
and mutations enriched in high-scoring designs were identified and used to generate combinatorial protease libraries. (C) These libraries were screened using 
the YESS assay with P6 and P2 variant substrates, and pools of cells corresponding to cleaved and uncleaved protease:substrate variant pairs were isolated 
using FACS. (D) Individual colonies isolated from cleaved and uncleaved pools were tested using flow cytometry. 2-D scatter plots for positive P2-targeted 
(Top-Left) and P6-targeted (Top-Right) designs and negative designs (P2: Bottom-Left, P6: Bottom-Right) are shown. (E) Comparison table of PGCN prediction and 
experimental results on 19 clonally tested designs.
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edges that are mapped to a residue (a node) or the link between 
two residues (an edge) helps identify residues and pairwise resi-
dues that are most influential for selectivity, suggesting that the 
latent space of the PGCN model is rich and has the potential to 
further our understanding of molecular bases of protease selec-
tivity. For example, identified important intermolecular edges 
influence the relative placement of the scissile bond with respect 
to the catalytic base, a key geometric requirement for the acylen-
zyme formation step protease hydrolysis. Furthermore, PGCN 
identified subgraphs or networks of interacting residues that are 
key for specificity in recognizing a single peptide residue. Current 
implementation of PGCN gives as output probabilities for a 
binary classification, thus the results are qualitative. A quantita-
tive or semiquantitative prediction (i.e., ranking with respect to 
a known variant) of the catalytic parameters of the enzyme may 
become possible with protease activity datasets of sufficiently 
large size generated using experiments in which proteolysis is 
measured as a function of time. Due to its physical grounding, 
PGCN may be generally applicable in the specificity prediction 
and design of other proteins that bind peptide substrates, espe-
cially when only small experimental datasets (a few hundred or 
thousand peptide substrates) are available (55). As PGCN only 
needs the structure of one protein:peptide complex as input, the 
availability of predicted structures of protein–peptide complexes 
opens the door to tackling specificity modeling on a large scale, 
provided accurate complex structures can be built (56, 57). These 
efforts are currently ongoing in our laboratory.

Materials and Methods

Protease Specificity Data.HCV protease. The experimental dataset for 
HCV protease was obtained in previous yeast surface display experiments 
conducted in our lab using yeast surface display coupled with deep sequenc-
ing (42). This method allowed for rapid sampling of many candidate P6-P2 
sequences with a given protease (WT HCV or one of three variants shown in 
SI Appendix, Fig. S7A) and determining each of those substrates to be either 
cleaved or not cleaved. Specifically, it sampled 7,342 substrates for wild type 
(1,932 of which were confirmed as cleaved), 13,208 substrates for A171T vari-
ant (3,644 of which were confirmed as cleaved), 11,864 substrates for D183A 
variant (4,350 of which were confirmed as cleaved) and 6,838 substrates for 
R170K/A171T/D183A variant (3,135 of which were confirmed as cleaved). All 
data points for HCV proteases are combined into a new single dataset (named 
HCV Combined). For each protease variant, substrate identity within each pool 
is less than 80% to avoid overfitting to the input because of data redundancy 
with a number of samples for each variant shown in Table  1. Experiments 
enable the sampling of P6-P2 substrates across all amino acids (SI Appendix, 
Fig. S7 B–F). As the datasets for WT, A171T, and D183A are imbalanced (the 
number of uncleaved samples is at least twice of the cleaved samples), metrics 
besides accuracy, such as precision, recall, F1 score, etc., were also considered 
during the analysis.
TEV protease. The experimental dataset for TEV protease was obtained from 
directed evolution and deep sequencing profiling data of the phage substrate 
display collected in Packer et al. (45). Briefly, substrates of nine designed TEV 
variants (SI Appendix, Table S1) were profiled based on single-mutation sub-
strate libraries, and each variant has between 4,000 and 6,000 substrates, 
including 2,000 to 3,000 cleaved sequences. L2F variant and WT variant were 
also profiled based on a triple-mutation substrate library (three substrate posi-
tions are randomized simultaneously). Up to ~55,000 cleaved sequences and 
~80,000 uncleaved sequences for the L2F variant were obtained, while ~30,000 
cleaved sequences and ~40,000 uncleaved sequences were obtained for the 
WT. However, due to the noise in the high-throughput sequencing assays, we 
observed considerable overlap between the cleaved and uncleaved pools for all 
variants. Therefore, we developed a data processing pipeline (SI Appendix, Fig. S8) 
to preprocess raw deep sequencing data to identify nonoverlapping substrate 
sets (SI Appendix, TEV Deep Sequencing Data Processing). Sequence data were 

filtered based on empirical threshold to minimize overlap between cleaved and 
uncleaved populations (SI Appendix, Figs. S9–S12), resulting in a final tally of 
5,425 high-confidence substrates among ten TEV protease types (including the 
wild type or variants), 48% of which are determined to be cleaved.

Observed substitutions in the engineered TEV variants are dispersed within 
the TEV protease structure (Fig. 7A). Additionally, there is variation in both P1 
and P1’ positions of substrates shown in Fig. 7B, in contrast with HCV data. Other 
than Q/S, other P1/P1′ combinations, such as H/I, N/S, H/G, and Q/W, have been 
included. The top frequent amino acids at all positions in the cleaved population 
are the same as in the uncleaved population, and those from P6 to P1′ consist of 
ENLYFQ/S, known as the canonical sequence of TEV protease. Thus, the differences 
between cleaved and uncleaved sets are subtle.

In terms of the degree of protease variation in the TEV dataset, up to 23 dif-
ferent substitutions are present in comparison with the TEV WT protease (Fig. 7 
C, Left). As depicted in the Sankey diagram (Fig. 7C), among 10 TEV protease var-
iants (including wild type), R203Q, K215E, and I138T are present in one variant; 
T17S, H28L, T30A, N68D, F132L, T146S, D148P, S153N, F162S, S170A, N171D, 
N177M, V209M, W211I, M218F (cyan), and K229E are present in two variants; 
N176T (orange) is present in three variants; E107D, D127A, S135F (magenta) 
are present in four variants. L2F variant has the largest number of amino acid 
substitution sites among all variants and accounts for the majority of the dataset.

Protease–Substrate Complex Model Generation Using Rosetta. For HCV 
protease, models of protease–substrate complexes were based on crystal struc-
tures of inhibitor-bound (PDB code: 3M5N) and peptide-bound inactive (PDB 
code: 3M5L) variants of HCV protease (58). The structures were superimposed, 
and the peptide substrate of 3m5l was copied into the unmutated active site of 
3m5n, replacing the inhibitor, and then the complex was minimized using the 
Rosetta FastRelax protocol (59) with coordinate constraints on all Cα atoms. A 
similar process was used with crystal structures of inhibitor-bound (PDB code: 
1LVM) and peptide-bound inactive (PDB code: 1LVB) for TEV (52).

Mutant complexes were generated by substituting the appropriate residues 
in the WT complex and then minimizing all interfacial side chains (interfacial 
residues were defined as those with Cα-Cα distance <5.5 Å, or with distance 
<9 Å and Cα-Cβ vectors at an angle <75°) with an immobile backbone. We 
generated models for each possible substrate ( 3.2 × 105 possibilities within 
P5-P2) as part of a complex including the peptide from P7 to P4′ bound to each 
of the four HCV variants and the peptide from P7 to P3′ bound to each of the 
ten TEV variants in PyRosetta (23), using the Rosetta FastRelax protocol (59). 
Coordinate constraints minimized the movement of Cα for the peptide back-
bone, and the protease backbone was held fixed. Distance, angle, and dihedral 
constraints were applied to the catalytic triad (H72, D96, and S154 for HCV and 
H46, D81, and C151 for TEV) and the P1 and P1′ residues to enforce the catalytic 
geometry required for cleavage. A single FastRelax trajectory was performed for 
each protease–substrate complex.

Protein Graph Representation. The protein complex obtained from Rosetta 
modeling was encoded as a fully connected graph (i.e., there is an edge between 
every pair of nodes). The nodes of this graph are the amino acids of the substrate 
and the binding pocket of the protease, and the edges represent the pairwise 
residue interactions between nodes (Fig. 1B). Each node contains the features 
of a single residue, including a 1-hot encoder for amino acid type, a binary 
variable to indicate whether a residue is part of the substrate or the protease, 
and all 1-body Rosetta energy terms (60). These 1-body terms include statistical 
energy terms describing the likelihood of backbone (rama, omega) and side-
chain torsions (fa_dun) compared to the values observed for high-resolution 
protein structures, and backbone-dependent probability of observing a given 
amino acid (p_aa_pp) and a reference energy (ref) that models the unfolded 
state. Each edge contains relational features between the pair of residue nodes it 
connects, including binary indications of whether the edge is between a substrate 
and a protease residue and whether the residues are covalently bonded (i.e., 
adjacent residues in sequence), and all Rosetta 2-body energy terms. Rosetta 
2-body energies measure various types of interactions, including Van der Waals 
interactions, electrostatics, solvation, hydrogen bonding. List and brief explana-
tions of node and edge features are listed in SI Appendix, Table S2, and further 
details of Rosetta energy functions used to compute these values can be found 
in ref. 60. Since residues that are far away from the substrate are less likely to D
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influence specificity and more likely to introduce noise into the model, we only 
consider a subgraph including the substrate and interfacial residues that are 
within 10 Angstroms from the substrate (see SI  Appendix, Tables  S3 and S4 
for node indices for HCV/TEV input graphs), selected based on proximity and 
sidechain orientation toward the substrate.

The node features for HCV protease are encoded into a N × F node feature 
matrix X , where N = 34 is the number of nodes, and F = 20 + 8 is the number 
of node features if combining both sequence and energy features for HCV data. 
The edge features are encoded as a M -length list of N × N edge feature matrices, 
where M = 8 is the number of edge features.

For TEV data, the number of nodes is N = 47 , while node and edge feature 
encodings are the same as HCV data. To better introduce the architecture of our 
model, we use HCV data under combined (Sequence + Energy) feature encoding 
as the reference in the following paragraphs.

Transformation of Energy Features. Rosetta energies are negative for favora-
ble interactions and positive for unfavorable interactions and penalties. However, 
for learning, it is preferable if all features are positive values when updating 
node weights during convolution. To accomplish this conversion, we performed 
a two-step transformation. First, we transformed each element ei,j,q in the edge 

tensor to a modified Boltzmann weight, e′
i,j,q

 (Eq. 1), where i and j are the nodes 
comprising the edge and q is the edge feature, numbered 1 to 8.

	
[1]e�

i,j,q
= exp(−ei,j,q)

.

This converts negative Rosetta energies to larger positive values and positive 
Rosetta energies to small positive values, thereby assigning more appropriate 
weights to stabilize interactions. Second, since each edge of the graph is shared 
by two nodes, we followed Kipf (61) to further normalize each edge weight by 
degrees of two ends of nodes to match normalized Laplacian. The normalized 
Laplacian is written in the matrix format, which is similar to Eq. 2,

	
[2]Ẽ

�

q
= D−1∕2

q
E�
q
D−1∕2
q

.

Herein, E′
q
 represents q th edge feature matrix, and each element of the matrix E′

q
 is 

e′
i,j,q

 , derived from Eq. 1. Dq is the diagonal degree matrix of E′
q
 , of which diagonal 

element is the sum of q th edge features for edges that are linked to a specific node.
After the transformation and normalization, the original edge data are trans-

formed into a list of M matrices labeled by Ẽ
�

1
, Ẽ

�

2
, … , Ẽ

�

q
 . Each matrix is of 

Fig. 7. TEV input data variety. (A) TEV protease mutation sites (gray) are shown all together in the TEV WT protease structure, located around the substrate (cyan). 
(B) Substrate sequence logos for TEV input data from P6-P1′ positions. X axis splits data into cleaved (above x axis) and uncleaved (below x axis) populations, 
where the higher frequency of amino acids appeared in the cleaved population, the higher it is located in the logo plot; the lower if considering the uncleaved 
population. (C) Sankey diagram of mutation sites for TEV variants, combined with a horizontal barplot, showing the number of samples for different TEV variants 
(along x axis). Variants are named based on their mutation sites except for the following four variants: Var1 (T146S_D148P_S153N_S170A_N177M), Var2 (E107D_
D127A_S135F_R203Q_K215E), Var3 (T17S_N68D_E107D_D127A_F132L_S135F_F162S_K229E), and L2F. See Dataset S5 for complete mutation sites in the table.
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the size N by N , where N = 34 denotes the number of nodes. Next, PGCN trans-
forms the M = 8 edge matrices to a weighted sum N × N matrix E . In other 
words, E =

∑q

i=1
□ wi Ẽ

�

i
 where w1, w2, … , wq

 are learned weights. Those 

weights are initialized within the range of [0, 1) and updated throughout the 
training process.

PGCN. After PGCN has transformed edge feature matrices into the matrix E with 
the size of N by N , each node from the node feature matrix X with the size of N 
by N is able to learn from all other nodes based on weights assigned by edge 
features. E matrix is used as the weight matrix for convolution. Then the weight 
matrix E is fed to a GCN (61) layer (Fig. 1C), which in fact results in that each edge 
feature matrix Ẽ

�

i
 performs matrix multiplication with node feature matrix X , and 

independent multiplication outputs are concatenated and linearly transformed 
to N by F dimension, which aligns with the idea of multihead attention (62).

To reduce computational complexity, we used two GCN layers, and the number 
of hidden nodes of the second layer is the same as the first GCN layer. Therefore, 
the output of two GCN layers is

	
[3]H = �(E�(EXW1)W2)

,

where � is the nonlinear activation function (63), here we use 
� = ReLU(x) = max(x, 0) element-wise applied on each output of the GCN 
layer, W1 , W2 are learned weight matrices both with the size of F × C for hidden 
layers with C = 20 feature maps. Each GCN layer is followed by a BatchNorm layer 
(64), which aims at avoiding slow convergence.

Next, PGCN drops out a proportion of hidden nodes over nodes to avoid the 
overfitting problem (65). Finally, PGCN flattens the output matrix H ∈ RN×C from 
the dropout layer into a one-dimensional vector H�

∈ R1×NH . Then we transform 
H′ to the expected dimension by applying a linear layer,

	
[4]Y = H�W3 + B ,

where Y ∈ R1×1 is the output, W3 ∈ RNH×1 is the learned vector, B ∈ R1×1 is the 
learned bias. Herein, we could apply the sigmoid as the activation function to 
calculate probabilities of being cleaved/uncleaved.

We followed a previously described approach to initialize weights (25). For 
training, PGCN does backpropagation to update all parameters mentioned 
above and the set of tuning hyperparameters: batch size, learning rate, drop-
out rate, and weight decay coefficient. The weight decay coefficient is a part of 
the L2 regularization term that multiplies the sum of learned weights for the 
antioverfitting procedure. Learned parameters are updated through epochs. 
The trained PGCN model is used for testing, in which test data pass through 
each layer of the PGCN model but skip the dropout process. The loss function 
is cross-entropy loss. PGCN is trained on training datasets using PyTorch, and 
tested on validation sets for hyperparameter tuning. PGCN performances are 
reported on test datasets.

Comparison with Baseline ML methods. We compared the prediction perfor-
mance obtained for the PGCN with that obtained from five other ML methods. We 
used the Scikit-learn 0.20.1 (66) to implement logistic regression (lg), random 
forest (rf), decision tree (dt), SVM classification, and Tensorflow 1.13.1 (67) for 
ANN. The ANN model in this experiment is a one-layer fully connected neural 
network with 1,024 hidden nodes and allows a dropout rate between 0.1 to 0.9. 
To better compare performances between PGCN and other ML models, energy 
features are formed by residue-level energies, including single residue ener-
gies and pairwise energies flattened into a 1-dimensional vector, together with 
the protease type identifier (encoded in 10-dimensional one hot encoder) and 
sequence one hot encoder. In this case, PGCN and other ML models have the same 
feature encoding on energies to ensure proper comparison. We also followed the 
same rule as PGCN of splitting data into training, validation, and test datasets.

Node/Edge Importance. We would like to derive biological insights about 
important residues or relationships between pairs of residues that contribute 
to the discrimination of cleaved and uncleaved substrates in PGCN. Since the 
test graphs for a PGCN model all come from the same protein family, they share 
the same graph structure. Therefore, we can discover the important residue (or a 
pair of residues) of the same node (or edge) across all test graphs. To efficiently 
determine the importance of a specific node (or edge), we perturbed values of 

each node feature for the same node (or edge feature for the same edge) across 
all test samples and inspected how much the test accuracy drops. By doing this, 
we avoid retraining the PGCN and the time complexity of perturbation is O(1) . 
By following the procedure above, we were able to evaluate the importance of all 
nodes and edges on test graphs. We further normalized the change of accuracy 
by (Original_Accuracy – Perturbed_Accuracy)/Original_Accuracy.

Combinatorial Library Preparation and Yeast-Surface Display. 
Oligonucleotides containing degenerate codons at positions K141, N171, 
T173, T175, N176 (P6-targeted residues) or V209, W211 and M218 (P2-
targeted residues) of the TEV protease sequence were purchased from IDT Inc. 
Application of degenerate codons increased the theoretical library size from 96 
to 432 in the P6 targeted library and from 18 to 48 in the P2 targeted library. 
The double-stranded insert DNA sequence (varying from 150-300 bp in length) 
coding for the combinatorial amino acid library was assembled through overlap 
assembly PCR followed by agarose gel extraction and column purification. The 
integrity of the assembled insert was verified by Sanger sequencing through 
Genewiz Inc.

An LY104 vector backbone (obtained from Y. Li, B. Iverson, and G. Georgiou at 
University of Texas at Austin) containing the gene sequence for TEV protease and 
P6-P2 region of the corresponding substrate was linearized through PCR with 
primers to create sufficient overlap with the insert sequence for effective homol-
ogous recombination. Electrocompetent EBY100 yeast cells were transformed 
with the DNA library through electroporation on a Micropulser™ electroporation 
apparatus at 1.8 kV. The cultures were grown overnight in selective dextrose cas-
amino acid media. While the O.D of the cultures was less than 6, the cells were 
resuspended in selective galactose casamino acid induction media to induce 
display of the constructs on the surface of yeast.

Library FACS and cytometric analysis of individual designs. The induced 
combinatorial yeast-surface displayed libraries were tested separately using flow 
cytometry. 3 × 107 cells were pelleted at 2,250 rcf for 3 min and washed with 
1 mL of PBS + 0.1%BSA at 3,000 rcf for 5 min. Washed cells were incubated 
with antibody stains (1:25 of anti-FLAG(DYKDDDDK)-PE(Phycoerythrin), 130-
101-576, and 1:50 of anti-HA-fluorescein isothiocyanate (FITC) from Miltenyi, 
130-120-722) for 1 h at 4 °C. Following incubation, the cells were washed with 
1 mL PBS with 0.1% BSA, pelleted and then resuspended in 1 mL PBS. Samples 
were diluted to achieve a final concentration of 5 × 106 cells/mL following which, 
FITC (anti-HA) and PE (anti- FLAG) intensities were detected using the Beckman 
Coulter Gallios flow cytometer.

Gates for cell sorting of cleaved and uncleaved populations were defined using 
the MoFlo Astrios Cell Sorter. Cells from the two gates—cleaved and uncleaved 
underwent one round of sorting and were collected until a cell count of 106 
was reached. DNA was collected from each population by using a Zymoprep Kit 
(Omega).

Data, Materials, and Software Availability. All related analytical results 
in this study are provided in supporting information. All scripts to generate 
data and pre-trained HCV/TEV models, all classification files for cleavage activ-
ities, and HCV/TEV input datasets for PGCN model selection are available at 
Zenodo (68). TEV designs for PGCN screening and for flow cytometry analysis 
are also available at Zenodo with https://doi.org/10.5281/zenodo.7653923 
(68). All other source data are available on request from the authors. All codes 
and scripts to replicate PGCN results are available in https://doi.org/10.5281/
zenodo.7653923 (68). See instructions in https://github.com/Nucleus2014/
protease-gcnn-pytorch/ (69).
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