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Site-specific proteolysis by the enzymatic cleavage of small linear sequence motifs is a
key posttranslational modification involved in physiology and disease. The ability to
robustly and rapidly predict protease—substrate specificity would also enable targeted
proteolytic cleavage by designed proteases. Current methods for predicting protease
specificity are limited to sequence pattern recognition in experimentally derived cleav-
age data obtained for libraries of potential substrates and generated separately for each
protease variant. We reasoned that a more semantically rich and robust model of protease
specificity could be developed by incorporating the energetics of molecular interac-
tions between protease and substrates into machine learning workflows. We present
Protein Graph Convolutional Network (PGCN), which develops a physically grounded,
structure-based molecular interaction graph representation that describes molecular
topology and interaction energetics to predict enzyme specificity. We show that PGCN
accurately predicts the specificity landscapes of several variants of two model proteases.
Node and edge ablation tests identified key graph elements for specificity prediction,
some of which are consistent with known biochemical constraints for protease:substrate
recognition. We used a pretrained PGCN model to guide the design of protease libraries
for cleaving two noncanonical substrates, and found good agreement with experimental
cleavage results. Importantly, the model can accurately assess designs featuring diversity
at positions not present in the training data. The described methodology should enable
the structure-based prediction of specificity landscapes of a wide variety of proteases
and the construction of tailor-made protease editors for site-selectively and irreversibly
modifying chosen target proteins.

protease specificity | machine learning | geometric machine learning | protein design |
yeast surface display

Multispecificity, the specific recognition and nonrecognition of multiple substrates by
protease enzymes, is critical for many biological processes and diseases (1-5). For example,
the selective recognition and cleavage of host and viral target sites by viral and host protease
enzymes is critical for the lifecycle of many RNA viruses, including severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (6-10). Identifying proteolytic targets of proteases
would, therefore, provide deeper insights into the mechanisms and biological functions
of proteases (3, 11). As protease inhibitors are often designed to mimic substrates, the
ability to predict substrates may also aid inhibitor design against novel viruses (12-15).
Furthermore, the ability to infer the global landscape of protease specificity, i.e., the set
of all substrate sequence motifs that are recognized (and not recognized) by a given enzyme,
would also enable the selection or design of bespoke proteases with specificities to degrade
chosen biotechnologically relevant or disease-related targets (16-20).

Current experimental methods for protease substrate cleavage site identification involve
assaying libraries of potential substrates for cleavage, one protease variant at a time
(1,21-26). Apart from being labor-intensive and time-consuming, only limited sampling
of the protease:substrate sequence diversity is possible. Therefore, the development of
rapid, cost-effective and generalizable computational approaches for precise prediction of
specificity is valuable. Most current computational approaches for protease specificity
prediction involve detecting and/or learning patterns in known substrate sequences using
techniques ranging from inferred substitution matrices (27-32) to supervised machine
learning (ML) (33-40). In some approaches [e.g., Procleave (41)], the accessibility of
substrates depending on their solvent exposure and secondary structure assignment are
also considered during prediction. We previously developed a supervised ML-based
approach for specificity prediction in which protease—substrate interaction energy terms
for the interface were considered (42, 43). We found that energetic terms play an important
role in helping rank probabilities of cleavage. Similarly, inclusion of energetics in ML
models was found to increase classification accuracy for identifying metalloenzymes (44).
While computational approaches have successfully guided experiments in finding novel
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cleavage sites and obtaining a better understanding of protease—
substrate interactions, these black-box approaches do not provide
physical/chemical insight into the underlying basis for a particular
experimentally observed specificity profile, nor are they robust to
substitutions in the protease, requiring retraining for every pro-
tease variant, thus making these unsuitable for guiding protease
design. Thus, there is need for interpretable and generalizable
computational models of protease specificity.

We reasoned that a more semantically rich model of specificity
would encompass both substrate sequence and the explicit ener-
getics of the protease—substrate complex. Specificity depends on
the residue-level interactions between enzymes and substrates, and
for this reason, we hypothesized that a high-resolution energetic
representation of a protease—substrate complex will have a high
predictive value. As the energies of a protein are a consequence of
sequence, we anticipated that a sufliciently granular and accurate
energetic representation may obviate the need for sequence fea-
tures. Using energies rather than sequence-based models for pro-
tease specificity naturally enables the design of proteases by
training on directed evolution trajectories aimed at altering pro-
tease specificity for benchmarking (45). To encode the topology
and energetic features of protease—substrate complexes for mod-
eling specificity landscapes, here we develop a Protein Graph
Convolutional Network (PGCN). PGCN uses experimentally
derived data and a physically intuitive structure-based molecular
interaction energy graph to pose specificity prediction as a classi-
fication problem. We find that PGCN consistently performs as
well as or better than other previously used ML models for sub-
strate specificity prediction especially when using energy-only
features. A single PGCN model can effectively predict specificities
for multiple protease variants, and ablation tests enable identifi-
cation of critical subgraph patterns responsible for observed spec-
ificity patterns, highlighting the interpretability of the model. We
then use PGCN to guide the design of protease libraries aimed at
cleaving noncanonical substrates for TEV (Tobacco Etch Virus)
protease, and experimentally validate these predictions using a
yeast surface display-based assay. Importantly, designs included
residue positions and substitutions not present in the training set,

speaking to the high generalizability of PGCN.

Results

overview of PGCN. We present a PGCN, which models protein
structures and their complexes as fully connected graphs encoding
sequence and single-residue and pairwise interaction energies
generated using Rosetta (46). For the protease—substrate complexes,
the substrate peptide is recognized by the protease for cleavage or
rejection in the active site (Fig. 14). The enzyme-substrate graph
(Fig. 1B) is fed into a graph convolutional neural network, which
outputs a probability of cleavage for a given complex (Fig. 1C). Our
protease specificity dataset consists of experimentally determined
cleavage information, i.e., lists of cleaved and uncleaved peptides for
the wild type and variants of two viral proteases, NS3/4 protease of
the Hepatitis C Virus (referred to as HCV protease in the following)
(Dataset S1), and TEV protease (Dataset S2) obtained from Pethe
et al. (42) and Packer et al. (45). The pools of experimentally
confirmed cleaved and uncleaved substrates were randomly split
into 80% training, 10% validation, and 10% test datasets.

PGCN Performs Better than Baseline ML Models for Substrate
Specificity Prediction for Various Feature Encodings. To evaluate
the performance of PGCN predicting substrate specificity, we
first trained and tested models for specificity landscapes of WT
(wild-type) and three HCV protease variants, A171T, D183A,

https://doi.org/10.1073/pnas.2303590120

and R170K/A171T/D183A (Table 1). We further combined all
HCYV protease variant data and trained and tested a single PGCN
model on this combined set to explore how sensitive PGCN is in
discriminating specificity changes upon small structural changes
in the protease.

In benchmark tests, PGCN outperformed other ML models
for all HCV variants using sequence features only (Fig. 24),
achieving more than 90% test accuracy for all datasets, including
the combined dataset. We evaluated PGCN performance using
different metrics besides accuracy, including F1 score, Precision,
Recall, Area under curve (AUC), and Average Precision (AP), all
standard evaluation metrics for ML tasks with imbalanced data
(47-50). PGCN had the highest F1, Recall, and AP scores of the
benchmarked methods (example: 93.53% F1, 96.85% Precision,
90.44% Recall, 97.90% AUC, 96.05% AP for A171T protease
using sequence features only) (see details in Dataset S3).

We then evaluated PGCN’s performance when using energy
features. In these tests, we used either Rosetta energy information
only, or sequence and Rosetta energy information together as fea-
tures used in PGCN, see Materials and Methods for Rosetta ener-
gies details. As shown in Fig. 2 Band C, PGCN always performed
the best with either energy features only or complete sequence
and energy features. This result is remarkable because previous
energy-based scoring approaches for protease—peptide interac-
tions, which involved weighted sums of different energy terms,
did not perform as well as sequence-based learning approaches
(42, 43). A key difference between other energy-based models and
PGCN is how calculated energies of interaction are used as fea-
tures. In all models other than PGCN, energies are learned in
simple linear combinations, while PGCN takes advantage of graph
representation to encode intermolecular energies in an implicitly
nonlinear relationship. Therefore, our results show that graph-based
convolution of individual energy terms is a promising approach
for combining biophysical analysis and data-driven modeling in
a way that addresses some of the limitations of each.

Having demonstrated good performance in predicting substrate
specificities when provided training data including a large pool of
substrates and sparse protease diversity, we sought to evaluate
PGCN performance in predictions involving greater protease
diversity. Therefore, we trained PGCN on the engineered TEV
protease dataset, which had a larger set of protease variants than
our HCV set, although fewer substrates per variant were experi-
mentally assayed (45) (Table 1 and S7 Appendix, Table S1). We
trained on this TEV dataset using the same three sets of feature
encodings, either sequence-only information, energy-only infor-
mation, or complete sequence and energy information.

All ML models are able to learn some patterns for TEV data if
considering sequence features only, but tree-based approaches, SVM
(support vector machine), and ANN (artificial neural network)
achieved lower accuracy when considering energy features (Fig. 2 B
and C). PGCN’s performance is stable among different feature
encodings, with accuracies of 86.86%, 86.62%, and 87.72%
when using sequence-only (Fig. 24), energy-only (Fig. 2C), and
sequence+energy features (Fig. 2B), respectively. PGCN takes advan-
tage of encoding residue-level pairwise energies into edges of graphs
that enable PGCN to learn the local environments of residues at
each GCN layer. Furthermore, PGCN with complete sequence and
energy features outperforms the models with reduced features (e.g.,
SVM), supporting our hypothesis that the prediction of protease
specificity benefits from both sequences of substrates and physical
energies of interaction between enzyme and substrate.

To ensure that PGCN performance, especially with sequence
features, is not dominated by memorization of substrate sequence
patterns during training (and detecting similar patterns in the test
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Fig. 1. Architecture of PGCN (A) Peptide substrate (blue) in the binding pocket (yellow) of HCV protease (gray). The seven-residue substrate spans P6 to P1’,
with cleavage between P1 and P1’. The logo plot indicates the substrate sequences in the training set, where P1 and P1” were kept constant, and P6 to P2 were
variable. (B) Molecular depiction of the nodes and edges as a graph. Each substrate (blue) and binding pocket (yellow) amino acid constitutes a node of the
graph. Gray lines between pairs of residues denote edges between pairs of nodes. (C) PGCN model architecture. Nodes are represented as a N x F matrix of
nodes and node features. Edges are represented as a N x N x M tensor of node pairs and edge features, flattened by the weighted sum of overall edge features.
The PGCN model ultimately outputs probabilities of the given substrate belonging to each class, cleaved and uncleaved.

set), we also trained PGCN models using a train, validation, test
split strategy based on Kmeans clustering of substrate sequences
in cleaved and uncleaved pools such that substrate sequences in
each set are sequence-distant from the other two sets. We find that
PGCN still has the highest performance for the TEV Combined
dataset regardless of which feature encoding is considered, and it
dominates the prediction with an accuracy of 86.41% when using
sequence+energy features compared with other ML models (the
best accuracy: 75.96% for SVM) (Fig. 2D). Similar results are
obtained for HCV protease (SI Appendix, Fig. S1). Thus, we con-
clude that PGCN-based discrimination is not based on memo-
rizing or learning (nearest-neighbor) substrate sequence patterns,

and therefore employ node-edge ablation tests to further investi-
gate the sources of PGCN performance.

Node-Edge Importance Analysis to Obtain Physical Insights
from PGCN. One advantage of PGCN is that the nodes and
edges correspond directly to physical amino acid residues and
their relationships. Therefore, we reasoned that we could identify
important residues and interactions by identifying nodes and
edges found to be critical for PGCN performance. To identify
the prediction strength of each graph component by PGCN,
we perturbed feature values of each node (or edge) across all
sample graphs and computed accuracy again (see Node/Edge

Table 1. Summary of input dataset
Training Validation Test

Protease variant Cleaved Uncleaved  Total Cleaved Uncleaved Total Cleaved Uncleaved Total Total
HCV WT 1,566 4,307 5,873 175 559 734 191 544 735 7,342
HCV A171T 2,905 7,659 10,564 366 954 1,320 373 948 1,321 13,205
HCV D183A 3,538 5,953 9,491 422 764 1,186 390 797 1,187 11,864
HCV Triple” 2,496 2,974 5,470 315 369 684 324 360 684 6,838
HCV Combined 10,404 20,995 31,399 1,319 2,606 3,925 1,338 2,587 3,925 39,249
TEV Combined 2,111 2,229 4,340 259 283 542 238 305 543 5,425

“Mutations made for HCV Triple: R170K, A171T, D183A.
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Fig. 2. PGCN performance. We evaluate models on six datasets, four consisting of a single HCV variant (WT, A171T, D183A, or Triple (R170K, A171T, D183A)),
with various substrates, and two, Combined, one of which pools the other four, and the other consists of 10 TEV variants. (A-C) The radar plots show polygon
patterns of average test accuracies across three seeds of benchmarked ML models (labeled in different colors) on the five datasets. The highest accuracy is on
the polygon periphery. (D) Accuracy barplot of model prediction performance on the TEV Combined protease specificity data. In this analysis, the substrate were
clustered based their sequence to ensure that training, validation, and test sets have distinct sequence patterns.

Importance in Materials and Methods). The decrease in accuracy
upon perturbation is used to measure the (relative) importance
of node i (or edge f) in the PGCN graph.

We normalized the calculated importance of node/edge by the
overall accuracy of the prediction and aggregated the normalized
importance by feature type (node or edge) to see how the features
used by PGCN for training affected the classification. There are
two types of nodes (protease, substrate) and three types of edges
(protease—protease, substrate—substrate, and intermolecular)
depending on the types of nodes that are connected by a given
edge. When the sequence is the only feature (nothing on edges),
as expected only peptide nodes contribute to accuracy for
single-variant sets (Fig. 34). However, for datasets in which pro-
tease diversity is also sampled (“Combined” dataset in Fig. 34),
protease nodes, typically sites of substitutions, are also detected as
contributors to accuracy. When energy features are considered
either solely or together with sequences, protease nodes make
significantly greater contributions (Fig. 34), indicating that pro-
tease residue energies are sensitive to the changes in their environ-
ment. In the same vein, when the sequence information is
excluded, the dependence on edge features increases while the
overall accuracy of prediction is not significantly affected.
Leveraging energy information allows broader attention to resi-
due-residue interactions as more edges are deemed significantly
important, as shown in S/ Appendix, Fig. S2. These observations
show that sequences are an abstraction that PGCN uses as a

https://doi.org/10.1073/pnas.2303590120

shortcut when available, but the same information can be learned
from energy.

Next, we visualized the positions of important nodes and edges
in the HCV protease structure. For the WT and each variant
protease, a key edge was found to be between the P2 residue of
the substrate and the catalytic base H72, which presumably reflects
the proper positioning of the substrate in the active site. We also
observed that some important nodes/edges were different between
WT and variant proteases. For example, the protease edge
R138-D183 is prominent for the wild type (Fig. 3B), but it is not
a significant interaction when either A171T (Fig. 3C) or D183A
(Fig. 3D) or the Triple variant A171T, D183A, and R170K
(Fig. 3E). When D183A mutation is introduced (Fig. 3 D and E),
side chain orientations of some intermolecular edges, e.g.,
P6-R138, were different even though the protease node D183A
itself did not significantly influence classification for substrate
specificity. Conversely, we found that some other intermolecular
edges such as P3-1147, P2-A171(T), P4-A171(T), P4-V173, and
P6-V173 are at least two times more important for models trained
on D183A and Triple variants than those for models trained on
the wild type and A171T data (Dataset $4). Also, protease node
R170(K) shows its importance only if D183A is mutated (Fig. 3
D and E). However, the important edge and node lists are not
additive: for example, edges 138 to 173 and 96 to 170 are insig-
nificant for the Triple variant (Fig. 3E), while they are two of the
most important protease edges for the model trained on D183A

pnas.org
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Fig.3. Node/edge importance analysis for HCV protease. (A) Relative importance of major physical groups of nodes/edges. Node/edge importance is analyzed
by the decrease in accuracy upon perturbation normalized by the original test accuracy of the PGCN model trained on each of five HCV protease variants using
sequence-only (S), energy-only (E), or both (S+E). All nodes and edges in the PGCN graph are grouped into five major physical groups, and each group’s total
relative importance is aggregated as the sum of importance scores from nodes (or edges) of the specified type. (B-E) Structural representations of node/edge
importance for HCV protease (PDB ID 3M5N; 3M5L), calculated by the energy-only PGCN model trained on B wild type; (C) A171T; (D) D183A; (E) Triple data. Only
nodes/edges whose relative importance scores are within the first 25% quantile are displayed in the zoom-in protease structure (gray), with the substrate (cyan)
as the center and the catalytic triad (magenta) as the reference. Among those nodes that meet the criteria, the relative importance levels of protease nodes
(orange) are shown by the thickness of corresponding residue side chains, while that of peptide nodes (cyan) is reflected by the sizes of corresponding residue
spheres at CB. For those important edges that meet the criteria, different groups are highlighted in different colors, including peptide edges (blue), protease
edges (green), and intermolecular edges (yellow). All residues related to node/edge importance have labels in residue identifiers with one-letter codes (colored
in red if mutation sites), including protease residues that are only related to edges (violet).

(Fig. 3D). When taking the model trained on the HCV combined
set into consideration, although most of the important nodes and
edges for single-variant sets are equally important for the com-
bined set (such as node V173, edge P2-H72, P4-V173, etc.), there
are also some important nodes/edges that are only useful for the
prediction of substrate specificity within individual variants or the
wild type, such as P3-1147 (Dataset S4). Thus, the model is able
to classify to approximately the same level of accuracy using over-
lapping but distinct sets of node and edge features.

Similar trends were apparent in the node/edge sensitivity anal-
yses for TEV protease predictions (Fig. 44). Several positions that
are the sites of amino acid substitutions in the TEV variants had
high importance, such as D148, §170, and N177 (Fig. 4B). Strong
signals of some important interactions were also identified. For
example, the interaction between the P2 residue of the substrate
and the catalytic base H46 is consistently important across all
TEV variants and the wild type (Fig. 4C), the same as in the HCV
prediction described above. In addition, several other intermolec-
ular edges, e.g., P3-S170 (Fig. 4C), intraprotein edges around the
83 pocket (Fig. 4D) and the S1 pocket (Fig. 4E) were also found
to be of high importance.

Taken together, the analyses for HCV and TEV protease variants
follow a series of general rules. First, the intermolecular edge
between P2 and the histidine in the catalytic triad (P2-H72 for
HCV in Fig. 3 B-E, and P2-H46 for TEV in Fig. 4C) is always
one of the most important edges, reflecting the proper positioning
of the substrate in the active site. Second, those interactions that
presumably provide the H-bonds that template the substrate into
the required B-sheet conformation were also identified as prominent
edges, such as P4-V173 for HCV (Fig. 3 B—E), P3-S170, P3-F217
for TEV (Fig. 4C). This is consistent with the well-known obser-
vation that protease substrates always adopt an extended confor-
mation in the active site with beta-sheet complementation (51).
Some important nodes/edges form interconnected clusters that are

PNAS 2023 Vol.120 No.39 e2303590120

consistent with the canonical substrate binding pockets (S pockets),
for example, the S3 subpocket for TEV includes residues 170, 172,
217 (Fig. 4D); the S1 pocket for TEV including interactions with
148, 167, 170 (Fig. 4E). Thus, we argue that the PGCN models
have learned to discriminate between cleaved and uncleaved sub-
strates based on criteria that can have an interpretable biophysical
basis in some cases, and reflect nonobvious statistical relationships
between various interactions in other cases.

Exploring PGCN Generalizability by Cross-Test and Leave-One-
Out Test Analyses. To investigate if the models learned by PGCN
for a single-variant protease could be further generalized to protease
variants outside the training data, we designed cross-test analysis
for HCV datasets and leave-one-out analysis for the TEV dataset.
First, we cross-tested prediction accuracy for each PGCN model
trained on one of five HCV datasets on the other four. In each cross-
test experiment, we employed the identical training subset utilized
in the previous evaluation of PGCN’s performance. Subsequently,
we conducted testing on the other four HCV datasets, excluding
substrates that exhibited redundancy in both the training and test
data. Although the AUC of the self-test PGCN model is consistently
higher than that of the cross-test model for each test dataset, cross-
test PGCN models still have a good ability to discriminate protease
specificity, reaching at least 81% AUC score when testing the
combined datasets excluded the trained variant, shown in Fig. 54.
Other metrics of performance are included in Dataset S7.

Next, to measure PGCN's ability to generalize over protease
variants with multiple substitutions, we chose three TEV vari-
ants, N176I, I1138T/N171D/N176T and E107D/D127A/
S135F/R203Q/K215E (Var2), which have one or two unique
mutation, respectively, among all of ten TEV variants for the
leave-one-out test purpose. For each of these three variants, we
divided all of its substrates in cleaved and uncleaved pools into
the test dataset, and split the remained data into training and
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are highlighted in red.

validation datasets based on the ratio of 9:1. In Fig. 58, PGCN
models always have the highest AUC (96.63% AUC for N176I
as an example) compared with the best baseline ML model
(SVM: 75.36% AUC for N176I). For other variants, PGCN
also outstands among other ML models, as shown in S7 Appendix,
Fig. S3.

Therefore, from the cross-test analysis and leave-one-out anal-
ysis, we conclude that PGCN models have the ability of transfer
learning for the prediction of protease specificity compared with
other ML models; on the other hand, PGCN models self-trained
on the single mutation can still maximize its power for prediction
of the dataset containing the same mutation.

Experimental Evaluation of PGCN Generalizability Using
Protease Design. To further test if PGCN is able to generalize its
classification ability to protease variants that are not in the training

dataset, we turned to TEV protease specificity design. WT TEV

protease demonstrates a preference for an ENLYFQ/X motif at
the P6-P1’ positions of its canonical substrate (X = A,G,S) (45,
52, 53). We aimed to design proteases against altered substrates
with single-residue substitutions within the canonical recognition
motif (P6: KNLYFQ/A, P2: ENLYYQ/A). A substitution of K at
P6 orY at P2 resulted in no cleavage of the substrate by WT TEV
(SI Appendix, Fig. S4), providing a well-posed problem for designs
using PGCN — given a set of designs, predict which designed
variants would lead to cleavage of P6 and P2 target substrates.
We applied Rosetta-based computational design (S Appendix;
Computational Design Process for TEV Protease) to propose sequences
(4,320 P6-targeted designs and 280 P2-targeted designs) that
included stabilizing interactions with the target substrates (Fig. 64).
We then used our pretrained TEV protease model to score designs,
and identified those with a high predicted probability of cleavage
(Fig. 6B). PGCN selected 200 of 280 P2-targeted designs and
126 of 4,320 P6-targeted designs with high predicted cleavage

1.0 B
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Fig.5. PGCN generalizability. (A) AUC for HCV cross-test among HCV WT, HCV A171T, HCV D183A, HCV Triple data using sequence+energy features. (B) AUC for
leave-one-out tests of three TEV variants which have unique mutations among all TEV variants.
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experimental results on 19 clonally tested designs.

probability. Based on visual inspection, we selected 96 energetically
favorable designs targeting P6 and 18 energetically favorable designs
targeting P2 for further evaluation. To cost-effectively test these
designs in experiments as well as generate negative (uncleaved)
examples for classification, we identified amino acid substitutions
that were enriched in the selected designs (S7 Appendix, Fig. S5)
and generated a combinatorial library sampling these protease sub-
stitutions. The library of selected designs was subjected to our pre-
viously reported version of the YESS (Yeast endosomal sequestration
screening) assay (54) (Fig. 6C). Briefly, the assay detects cleavage by
the presence/absence of HA and FLAG® tags on either side of the
chosen substrate using anti-tag fluorescently labeled antibodies, and
fluorescence-activated cell sorting (FACS) is used to isolate pools
of “cleaved” and “uncleaved” cells. Several individual colonies from
plating the cleaved and uncleaved pools of the P6- and P2-targeted
TEV libraries were clonally validated (Fig. 6D). We selected 19
designs for clonal validation, 9 from the cleaved pool and 10 from
the uncleaved pool. As shown in Fig. 6F, all 9 cleaved designs are
correctly predicted by PGCN with high confidence (probability >
0.75) whereas 7 out of the 10 uncleaved designs are correctly pre-
dicted. Predictions are robust across 10 different Rosetta
FastRelax-generated models of designs (ST Appendix, Fig. S6).

Discussion

Current computational methods for protease specificity prediction
largely rely on statistical pattern detection in datasets of known sub-
strates and nonsubstrates for learning specificity, and are therefore
not generalizable for use in protease design, and do not provide
insights into the underlying biophysical bases of substrate—protease
molecular recognition. We developed PGCN to include residue-level

PNAS 2023 Vol.120 No.39 e2303590120

energies as features and decompose the Rosetta-computed energies
into the node and edge features. PGCN shows high accuracy in
classification tasks for HCV and TEV protease variants. A PGCN
model utilizing sequence and energy-based features and trained on
experimental data for TEV protease was used to evaluate and select
designed TEV protease variants for cleaving noncanonical sub-
strates. Evaluated protease diversity included residue positions and/
or amino acid substitutions not present in the training dataset.
Experimental validation showed that PGCN scoring led to high-
accuracy selection of cleaved designs. Thus, PGCN was able to be
generalized and our studies show proof-of-principle for the chal-
lenging task of protease design using ML-enabled structure-aware
computational modeling.

As energies implicitly encode distance information, we also
compared the contribution of energy information and distance
information in models along with sequence features. The models
incorporating additional distance information did not exhibit
greatly improved accuracy of prediction (SI Appendix, Table S5).
However, we found that PGCN can achieve comparable accuracy
to sequence+energy models when utilizing sequence+distance
features. This can be attributed to the primary role of sequence
features in the model’s ability to discriminate (Figs. 3 and 4). Thus,
for specificity prediction where sequence information is available
for training, distance features perform equivalent to energy.
However, energy features are required for design tasks where
sequence and distance features have limited utility as interresidue
distance does not change during design and sequence at all posi-
tions is not known a priori.

The physically based graphical structure of PGCN enables
overcoming to some extent the black-box nature of ML methods
as applied to protein modeling. Sensitivity analysis of nodes/
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edges that are mapped to a residue (a node) or the link between
two residues (an edge) helps identify residues and pairwise resi-
dues that are most influential for selectivity, suggesting that the
latent space of the PGCN model is rich and has the potential to
further our understanding of molecular bases of protease selec-
tivity. For example, identified important intermolecular edges
influence the relative placement of the scissile bond with respect
to the catalytic base, a key geometric requirement for the acylen-
zyme formation step protease hydrolysis. Furthermore, PGCN
identified subgraphs or networks of interacting residues that are
key for specificity in recognizing a single peptide residue. Current
implementation of PGCN gives as output probabilities for a
binary classification, thus the results are qualitative. A quantita-
tive or semiquantitative prediction (i.e., ranking with respect to
a known variant) of the catalytic parameters of the enzyme may
become possible with protease activity datasets of sufficiently
large size generated using experiments in which proteolysis is
measured as a function of time. Due to its physical grounding,
PGCN may be generally applicable in the specificity prediction
and design of other proteins that bind peptide substrates, espe-
cially when only small experimental datasets (a few hundred or
thousand peptide substrates) are available (55). As PGCN only
needs the structure of one protein:peptide complex as input, the
availability of predicted structures of protein—peptide complexes
opens the door to tackling specificity modeling on a large scale,
provided accurate complex structures can be built (56, 57). These
efforts are currently ongoing in our laboratory.

Materials and Methods

Protease Specificity Data.HCV protease. The experimental dataset for
HCV protease was obtained in previous yeast surface display experiments
conducted in our lab using yeast surface display coupled with deep sequenc-
ing (42). This method allowed for rapid sampling of many candidate P6-P2
sequences with a given protease (WT HCV or one of three variants shown in
Sl Appendix, Fig. S74) and determining each of those substrates to be either
cleaved or not cleaved. Specifically, it sampled 7,342 substrates for wild type
(1,932 of which were confirmed as cleaved), 13,208 substrates for A17 1T vari-
ant (3,644 of which were confirmed as cleaved), 11,864 substrates for D183A
variant (4,350 of which were confirmed as cleaved) and 6,838 substrates for
R170K/A171T/D183A variant (3,135 of which were confirmed as cleaved). All
data points for HCV proteases are combined into a new single dataset (named
HCV Combined). For each protease variant, substrate identity within each pool
is less than 80% to avoid overfitting to the input because of data redundancy
with a number of samples for each variant shown in Table 1. Experiments
enable the sampling of P6-P2 substrates across all amino acids (S/ Appendix,
Fig. S7 B-F). As the datasets for WT, A171T, and D183A are imbalanced (the
number of uncleaved samples is at least twice of the cleaved samples), metrics
besides accuracy, such as precision, recall, F1 score, etc., were also considered
during the analysis.

TEV protease. The experimental dataset for TEV protease was obtained from
directed evolution and deep sequencing profiling data of the phage substrate
display collected in Packer et al. (45). Briefly, substrates of nine designed TEV
variants (S/ Appendix, Table S1) were profiled based on single-mutation sub-
strate libraries, and each variant has between 4,000 and 6,000 substrates,
including 2,000 to 3,000 cleaved sequences. L2F variant and WT variant were
also profiled based on a triple-mutation substrate library (three substrate posi-
tions are randomized simultaneously). Up to ~55,000 cleaved sequences and
~80,000 uncleaved sequences for the L2F variant were obtained, while ~30,000
cleaved sequences and ~40,000 uncleaved sequences were obtained for the
WT. However, due to the noise in the high-throughput sequencing assays, we
observed considerable overlap between the cleaved and uncleaved pools for all
variants. Therefore, we developed a data processing pipeline (S/ Appendix, Fig. S8)
to preprocess raw deep sequencing data to identify nonoverlapping substrate
sets (S/ Appendix, TEV Deep Sequencing Data Processing). Sequence data were
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filtered based on empirical threshold to minimize overlap between cleaved and
uncleaved populations (S/ Appendix, Figs. $9-512), resulting in a final tally of
5,425 high-confidence substrates among ten TEV protease types (including the
wild type or variants), 48% of which are determined to be cleaved.

Observed substitutions in the engineered TEV variants are dispersed within
the TEV protease structure (Fig. 74). Additionally, there is variation in both P1
and P1" positions of substrates shown in Fig. 7B, in contrast with HCV data. Other
than Q/S, other P1/P1” combinations, such as H/l, N/S, H/G, and Q/W, have been
included. The top frequentamino acids atall positions in the cleaved population
are the same as in the uncleaved population, and those from Pé to P1” consist of
ENLYFQ/S, known as the canonical sequence of TEV protease. Thus, the differences
between cleaved and uncleaved sets are subtle.

In terms of the degree of protease variation in the TEV dataset, up to 23 dif-
ferent substitutions are present in comparison with the TEV WT protease (Fig. 7
C, Left). As depicted in the Sankey diagram (Fig. 7C), among 10 TEV protease var-
iants (including wild type), R203Q, K215E, and 1138T are present in one variant;
T17S, H28L, T30A, N68D, F132L, T146S, D148P, S153N, F162S, S170A, N171D,
N177M,V209M, W2111, M218F (cyan), and K229E are present in two variants;
N176T (orange) is present in three variants; E107D, D127A, S135F (magenta)
are present in four variants. L2F variant has the largest number of amino acid
substitution sites among all variants and accounts for the majority of the dataset.

Protease-Substrate Complex Model Generation Using Rosetta. For HCV
protease, models of protease-substrate complexes were based on crystal struc-
tures of inhibitor-bound (PDB code: 3M5N) and peptide-bound inactive (PDB
code: 3M5L) variants of HCV protease (58). The structures were superimposed,
and the peptide substrate of 3m5| was copied into the unmutated active site of
3mbn, replacing the inhibitor, and then the complex was minimized using the
Rosetta FastRelax protocol (59) with coordinate constraints on all Cot atoms. A
similar process was used with crystal structures of inhibitor-bound (PDB code:
1LVM) and peptide-bound inactive (PDB code: 1LVB) for TEV (52).

Mutant complexes were generated by substituting the appropriate residues
in the WT complex and then minimizing all interfacial side chains (interfacial
residues were defined as those with Ca-Cax distance <5.5 A, or with distance
<9 A and Ca-Cp vectors at an angle <75°) with an immobile backbone. We
generated models for each possible substrate (3 9 x 10° possibilities within
P5-P2)as part of a complexincluding the peptide from P7 to P4” bound to each
of the four HCV variants and the peptide from P7 to P3” bound to each of the
ten TEV variants in PyRosetta (23), using the Rosetta FastRelax protocol (59).
Coordinate constraints minimized the movement of C, for the peptide back-
bone, and the protease backbone was held fixed. Distance, angle, and dihedral
constraints were applied to the catalytic triad (H72, D96, and S154 for HCV and
H46,D81,and C157 forTEV) and the P1and P1” residues to enforce the catalytic
geometry required for cleavage. A single FastRelax trajectory was performed for
each protease-substrate complex.

Protein Graph Representation. The protein complex obtained from Rosetta
modeling was encoded as a fully connected graph (i.e., there is an edge between
every pair of nodes). The nodes of this graph are the amino acids of the substrate
and the binding pocket of the protease, and the edges represent the pairwise
residue interactions between nodes (Fig. 1B). Each node contains the features
of a single residue, including a 1-hot encoder for amino acid type, a binary
variable to indicate whether a residue is part of the substrate or the protease,
and all 1-body Rosetta energy terms (60). These 1-body terms include statistical
energy terms describing the likelihood of backbone (rama, omega) and side-
chain torsions (fa_dun) compared to the values observed for high-resolution
protein structures, and backbone-dependent probability of observing a given
amino acid (p_aa_pp) and a reference energy (ref) that models the unfolded
state. Each edge contains relational features between the pair of residue nodes it
connects, including binary indications of whether the edge is between a substrate
and a protease residue and whether the residues are covalently bonded (i.e.,
adjacent residues in sequence), and all Rosetta 2-body energy terms. Rosetta
2-body energies measure various types of interactions, including Van der Waals
interactions, electrostatics, solvation, hydrogen bonding. Listand brief explana-
tions of node and edge features are listed in S/ Appendix, Table S2, and further
details of Rosetta energy functions used to compute these values can be found
in ref. 60. Since residues that are far away from the substrate are less likely to
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Fig.7. TEVinputdata variety. (A) TEV protease mutation sites (gray) are shown all together in the TEV WT protease structure, located around the substrate (cyan).
(B) Substrate sequence logos for TEV input data from P6-P1’ positions. X axis splits data into cleaved (above x axis) and uncleaved (below x axis) populations,
where the higher frequency of amino acids appeared in the cleaved population, the higher it is located in the logo plot; the lower if considering the uncleaved
population. (C) Sankey diagram of mutation sites for TEV variants, combined with a horizontal barplot, showing the number of samples for different TEV variants
(along x axis). Variants are named based on their mutation sites except for the following four variants: Var1 (T146S_D148P_S153N_S170A_N177M), Var2 (E107D_
D127A_S135F_R203Q_K215E), Var3 (T17S_N68D_E107D_D127A_F132L_S135F_F162S_K229E), and L2F. See Dataset S5 for complete mutation sites in the table.

influence specificity and more likely to introduce noise into the model, we only
consider a subgraph including the substrate and interfacial residues that are
within 10 Angstroms from the substrate (see S/ Appendix, Tables S3 and S4
for node indices for HCV/TEV input graphs), selected based on proximity and
sidechain orientation toward the substrate.

The node features for HCV protease are encoded into a N X F node feature
matrix X, where N = 34 is the number of nodes, and f = 20 + 8 s the number
of node features if combining both sequence and energy features for HCV data.
The edge features are encoded as a M -length list of N x N edge feature matrices,
where M = 8is the number of edge features.

For TEV data, the number of nodes is N = 47, while node and edge feature
encodings are the same as HCV data. To better introduce the architecture of our
model, we use HCV data under combined (Sequence + Energy) feature encoding
as the reference in the following paragraphs.

Transformation of Energy Features. Rosetta energies are negative for favora-
ble interactions and positive for unfavorable interactions and penalties. However,
for leaming, it is preferable if all features are positive values when updating
node weights during convolution. To accomplish this conversion, we performed

a two-step transformation. First, we transformed each elemente;; , in the edge

PNAS 2023 Vol.120 No.39 e2303590120

tensor to a modified Boltzmann weight, elflj’q(Eq. 1), where i and j are the nodes
comprising the edge and q is the edge feature, numbered 1 to 8.

€, = exp(—e;,) (1]

This converts negative Rosetta energies to larger positive values and positive
Rosetta energies to small positive values, thereby assigning more appropriate
weights to stabilize interactions. Second, since each edge of the graph is shared
by two nodes, we followed Kipf (61) to further normalize each edge weight by
degrees of two ends of nodes to match normalized Laplacian. The normalized
Laplacian is written in the matrix format, which is similar to Eq. 2,

B _ p-1/2p1n-1/2
Eq_Dq Equ . [2]

Herein,Eé represents gth edge feature matrix, and each element of the matrixE"l is

el ,derived from Eq. 1.0, is the diagonal degree matrix of £/, of which diagonal
elementisthe sum of gth edge features for edges that are linked to a specific node.
After the transformation and normalization, the original edge data are trans-

formed into a list of M matrices labeled by E; g; F’. Each matrix is of
1 roeee g q
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the size N by N, where N = 34 denotes the number of nodes. Next, PGCN trans-
forms the M = 8 edge matrices to a weighted sum N x N matrix £. In other
words,f — 0wk whereW1 Wy, oot W, are learned weights. Those

weights are |n|t|a||zed W|th|n the range of [0, 1) and updated throughout the
training process.

PGCN. After PGCN has transformed edge feature matrices into the matrix £ with
the size of N by N, each node from the node feature matrix X with the size of N
by N is able to learn from all other nodes based on weights assigned by edge
features. E matrix is used as the weight matrix for convolution. Then the weight
matrix £ is fed toa GCN (61) layer (Fig. 1C), which in fact results in that each edge
feature matrle performs matrix multiplication with node feature matrix X, and
independent multlpllcatlon outputs are concatenated and linearly transformed
to N by F dimension, which aligns with the idea of multihead attention (62).

To reduce computational complexity, we used two GCN layers, and the number
of hidden nodes of the second layer is the same as the first GCN layer. Therefore,
the output of two GCN layers is

H = olEc(EXW)W,) . [3]

where & is the nonlinear activation function (63), here we use
o = RelU(x) = max(x, 0) element-wise applied on each output of the GCN
layer, W,, W, are learned weight matrices both with the size of F x C for hidden
layers with C = 20feature maps. Each GCN layer s followed by a BatchNorm layer
(64), which aims at avoiding slow convergence.

Next, PGCN drops out a proportion of hidden nodes over nodes to avoid the
overfitting problem (65). Finally, PGCN flattens the output matrixH € R¥*Cfrom
the dropout layer into a one-dimensional vector 7 < g1x#. Then we transform
H’ to the expected dimension by applying a linear layer,

Y =HW, + 8B (4]

whereY € R™is the output, W; € R¥™Tis the learned vector, B € R™is the
learned bias. Herein, we could apply the sigmoid as the activation function to
calculate probabilities of being cleaved/uncleaved.

We followed a previously described approach to initialize weights (25). For
training, PGCN does backpropagation to update all parameters mentioned
above and the set of tuning hyperparameters: batch size, learning rate, drop-
out rate, and weight decay coefficient. The weight decay coefficient is a part of
the L2 regularization term that multiplies the sum of learned weights for the
antioverfitting procedure. Learned parameters are updated through epochs.
The trained PGCN model is used for testing, in which test data pass through
each layer of the PGCN model but skip the dropout process. The loss function
is cross-entropy loss. PGCN is trained on training datasets using PyTorch, and
tested on validation sets for hyperparameter tuning. PGCN performances are
reported on test datasets.

Comparison with Baseline ML methods. We compared the prediction perfor-
mance obtained for the PGCN with that obtained from five other ML methods. We
used the Scikit-learn 0.20.1 (66) to implement logistic regression (lg), random
forest (rf), decision tree (dt), SYM classification, and Tensorflow 1.13.1 (67) for
ANN. The ANN model in this experiment is a one-layer fully connected neural
network with 1,024 hidden nodes and allows a dropout rate between 0.1t0 0.9.
To better compare performances between PGCN and other ML models, energy
features are formed by residue-level energies, including single residue ener-
gies and pairwise energies flattened into a 1-dimensional vector, together with
the protease type identifier (encoded in 10-dimensional one hot encoder) and
sequence one hot encoder. In this case, PGCN and other MLmodels have the same
feature encoding on energies to ensure proper comparison. We also followed the
same rule as PGCN of splitting data into training, validation, and test datasets.

Node/Edge Importance. We would like to derive biological insights about
important residues or relationships between pairs of residues that contribute
to the discrimination of cleaved and uncleaved substrates in PGCN. Since the
test graphs fora PGCN model all come from the same protein family, they share
the same graph structure. Therefore, we can discover the important residue (or a
pair of residues) of the same node (or edge) across all test graphs. To efficiently
determine the importance of a specific node (or edge), we perturbed values of
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each node feature for the same node (or edge feature for the same edge) across
all test samples and inspected how much the test accuracy drops. By doing this,
we avoid retraining the PGCN and the time complexity of perturbation is O(1).
By following the procedure above, we were able to evaluate the importance of all
nodes and edges on test graphs. We further normalized the change of accuracy
by (Original_Accuracy - Perturbed_Accuracy)/Original_Accuracy.

Combinatorial Library Preparation and Yeast-Surface Display.
Oligonucleotides containing degenerate codons at positions K141, N171,
1173, T175, N176 (P6-targeted residues) or V209, W211 and M218 (P2-
targeted residues) of the TEV protease sequence were purchased from IDT Inc.
Application of degenerate codons increased the theoretical library size from 96
to 432 in the P6 targeted library and from 18 to 48 in the P2 targeted library.
The double-stranded insert DNA sequence (varying from 150-300 bp in length)
coding for the combinatorial amino acid library was assembled through overlap
assembly PCR followed by agarose gel extraction and column purification. The
integrity of the assembled insert was verified by Sanger sequencing through
Genewiz Inc.

An LY104 vector backbone (obtained from Y. Li, B. Iverson, and G. Georgiou at
University of Texas at Austin) containing the gene sequence for TEV protease and
P6-P2 region of the corresponding substrate was linearized through PCR with
primers to create sufficient overlap with the insert sequence for effective homol-
ogous recombination. Electrocompetent EBY100 yeast cells were transformed
with the DNA library through electroporation on a Micropulser™ electroporation
apparatus at 1.8 kV. The cultures were grown overnight in selective dextrose cas-
amino acid media. While the 0.D of the cultures was less than 6, the cells were
resuspended in selective galactose casamino acid induction media to induce
display of the constructs on the surface of yeast.

Library FACS and cytometric analysis of individual designs. The induced
combinatorial yeast-surface displayed libraries were tested separately using flow
cytometry. 3 x 107 cells were pelleted at 2,250 rcf for 3 min and washed with
1 mL of PBS + 0.1%BSA at 3,000 rcf for 5 min. Washed cells were incubated
with antibody stains (1:25 of anti-FLAG(DYKDDDDK)-PE(Phycoerythrin), 130-
101-576, and 1:50 of anti-HA-fluorescein isothiocyanate (FITC) from Miltenyi,
130-120-722) for 1 h at 4 °C. Following incubation, the cells were washed with
1 mLPBS with 0.1% BSA, pelleted and then resuspended in 1 mLPBS. Samples
were diluted to achieve a final concentration of 5 x 10° cells/mLfollowing which,
FITC (anti-HA) and PE (anti- FLAG) intensities were detected using the Beckman
Coulter Gallios flow cytometer.

Gates for cell sorting of cleaved and uncleaved populations were defined using
the MoFlo Astrios Cell Sorter. Cells from the two gates—cleaved and uncleaved
underwent one round of sorting and were collected until a cell count of 10°
was reached. DNA was collected from each population by using a Zymoprep Kit
(Omega).

Data, Materials, and Software Availability. All related analytical results
in this study are provided in supporting information. All scripts to generate
data and pre-trained HCV/TEV models, all classification files for cleavage activ-
ities, and HCV/TEV input datasets for PGCN model selection are available at
Zenodo (68). TEV designs for PGCN screening and for flow cytometry analysis
are also available at Zenodo with https://doi.org/10.5281/zenod0.7653923
(68). All other source data are available on request from the authors. All codes
and scripts to replicate PGCN results are available in https://doi.org/10.5281/
zen0do.7653923 (68). See instructions in https://github.com/Nucleus2014/
protease-gcnn-pytorch/ (69).
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