
PARseL: Towards a Verified Root-of-Trust over seL4
Ivan De Oliveira Nunes

RIT, USA
ivanoliv@mail.rit.edu

Seoyeon Hwang
UCI, USA

seoyh1@uci.edu

Sashidhar Jakkamsetti
UCI, USA

sjakkams@uci.edu

Norrathep Rattanavipanon
Prince of Songkla Univ., Thailand

norrathep.r@phuket.psu.ac.th

Gene Tsudik
UCI, USA

gene.tsudik@uci.edu

Abstract—Widespread adoption and growing popularity of embed-
ded/IoT/CPS devices make them attractive attack targets. On low-to-
mid-range devices, security features are typically few or none due to
various constraints. Such devices are thus subject to malware-based
compromise. One popular defensive measure is Remote Attestation (RA)
which allows a trusted entity to determine the current software integrity
of an untrusted remote device.

For higher-end devices, RA is achievable via secure hardware compo-
nents. For low-end (bare metal) devices, minimalistic hybrid (hardware/-
software) RA is effective, which incurs some hardware modifications.
That leaves certain mid-range devices (e.g., ARM Cortex-A family)
equipped with standard hardware components, e.g., a memory manage-
ment unit (MMU) and perhaps a secure boot facility. In this space, seL4
(a verified microkernel with guaranteed process isolation) is a promising
platform for attaining RA. HYDRA [1] made a first step towards this,
albeit without achieving any verifiability or provable guarantees.

This paper picks up where HYDRA left off by constructing a PARseL
architecture, that separates all user-dependent components from the TCB.
This leads to much stronger isolation guarantees, based on seL4 alone,
and facilitates formal verification. In PARseL, We use formal verification
to obtain several security properties for the isolated RA TCB, including:
memory safety, functional correctness, and secret independence. We
implement PARseL in F∗ and specify/prove expected properties using
Hoare logic. Next, we automatically translate the F∗ implementation
to C using KaRaMeL, which preserves verified properties of PARseL C
implementation (atop seL4). Finally, we instantiate and evaluate PARseL
on a commodity platform – a SabreLite embedded device.

Index Terms—Remote Attestation, Root-of-Trust, TCB, Embedded
Devices, seL4 microkernel, Formal Verification

I. INTRODUCTION

Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) de-
vices have become ubiquitous in modern life, including households,
workplaces, factories, agriculture, vehicles, and public spaces. They
often collect sensitive information and perform safety-critical tasks,
such as monitoring vital signs in medical devices or controlling
traffic lights. Given their importance and popularity, these devices
are attractive targets for attacks, such as the Colonial Pipeline attack
in the American energy grid [2] and Ukraine power grid hack [3].

Attacks are generally conducted via software exploits and malware
infestations that result in device compromise. Remote Attestation
(RA) is a security service for detecting compromises on remote em-
bedded devices. It allows a trusted entity (Vrf) to assess the software
integrity of an untrusted remote embedded device (Prv). RA serves
as an important building block for other security services, such as
proof of execution [4], [5], control-flow and data-flow attestation [6],
[7], [8], [9], [10], [11], and secure software updates [12], [13].

Many prior RA techniques (e.g., [14], [15], [16], [17]) focused
on low-end devices, that run one simple application atop “bare
metal”. For example, SANCUS [17] is a pure hardware-based RA
architecture for low-end devices. Whereas, VRASED [14] is a hy-
brid (hardware/software) RA architecture, while PISTIS [18] is a
software-only one. All these architectures are unsuited for higher-end
devices that execute multiple user space processes in virtual memory.

At the other end of the spectrum, enclaved execution systems [19],
[20] implement RA for user-level sub-processes (called enclaves) on
high-end systems, e.g., desktops, laptops, and cloud servers. However,
they require substantial dedicated hardware support, thus making this
approach unsuitable for the comparatively resource-constrained mid-
range devices that we target in this work.

HYDRA [1] is an RA architecture aimed at such mid-range
devices. It does not require additional hardware support other than an
(often present) memory management unit (MMU) and a secure boot
facility. HYDRA relies on a formally verified microkernel, seL4 [21],
to provide strong inter-process memory isolation. However, neither
HYDRA’s implementation nor its integration with seL4, is formally
verified. Also, as discussed in Sections II-B and IV-A, HYDRA
implements both attestation and untrusted application-defined func-
tionalities in the same runtime process. Thus, HYDRA’s trusted
computing base (TCB) implementation is application-dependent, and
whenever an application changes, errors can be introduced within the
TCB. As a consequence, even if the RA component in HYDRA were
verified, application bugs could still undermine its security due to
the lack of guaranteed isolation. Unfortunately, moving away from
this model also introduces non-trivial architectural challenges (see
Section IV-B), requiring a clean-slate trust model.

Motivated by the above, this paper re-visits HYDRA trust model
and proposes PARseL: Provable Attestation Root-of-Trust over seL4
Microkernel – a design that separates user-dependent components
from the RA TCB. This new model addresses the aforementioned
challenges, leading to proper isolation, and facilitates formal veri-
fication. Specifically, we use formal verification to prove security
properties for the (now isolated) root-of-trust in PARseL. Proven
properties include memory safety, functional correctness, and secret
independence. We then deploy and evaluate PARseL verified C
implementation (atop seL4) on a commodity prototyping board,
SabreLite [22]. PARseL implementation is publicly available at [23].
Organization: Section II overviews background, followed by our
goals and assumptions in Section III. PARseL design is presented in
Section IV and its implementation details are in Section V, along with
formal verification. PARseL security analysis follows in Section VI
and limitations are discussed in Section VII. The paper concludes
with the related work overview in Section VIII.

II. BACKGROUND

This section provides background information on seL4, RA, and
formal verification tools. Given familiarity with these topics, it can
be skipped with no loss of continuity.

A. seL4 Microkernel [21]

seL4 is a member of the L4 family of microkernels. Functional
correctness of its implementation, including the C code transla-
tion [24], is formally verified, i.e., the behavior of seL4 C imple-
mentation strictly adheres to its specification. To provide provable

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
38

32

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

memory isolation between processes, seL4 implements a capability-
based access control model. A capability is an unforgeable token
that represents a set of permissions that define what operations can
be performed on the associated object at which privilege level. This
enables fine-grained access control by granting or revoking specific
permissions to individual components or threads. Also, user-space
applications cannot directly access or modify their own capabilities,
because each capability is stored in Capability Space (CSpace) which
is managed by seL4. User applications interact with seL4 through
system calls and operate on their capabilities indirectly. Since seL4
enforces strict access control and authorization checks for system
calls, seL4 retains the ultimate authority over capabilities and their
allocation, revocation, and manipulation.

As a micro-kernel, seL4 provides minimal functionality to user-
space applications. For example, inter-processes’ data sharing re-
quires the establishment of inter-process communication (IPC) by
invoking endpoint objects, that act as general communication ports.
Each endpoint is given a capability by assigning it a unique identifier,
called a “badge”, which identifies the sender process during commu-
nication. Each process is represented in seL4 by its Thread Control
Block object which includes its associated CSpace and Virtual-
address Space (VSpace) and (optionally) an IPC buffer. CSpace
contains the capabilities owned by the process. VSpace represents the
virtual memory space of the process, defining the mappings between
virtual addresses (used by the process) and physical memory. IPC
buffer is a fixed region of memory reserved for IPC. To send or
receive messages, a process places them in its message registers
which are put in the IPC buffer and then it invokes the capabilities
within its CSpace via seL4 system calls.

B. RA & HYDRA

As mentioned earlier, the goal of RA is for a trusted Vrf to
securely assess the software integrity of an untrusted remote Prv.
To do so, Vrf issues a unique challenge to Prv. Using the received
challenge, Prv computes an authenticated measurement of its own
software state. This measurement is computed using either a Prv-Vrf
shared secret or a Prv-unique private key for which Vrf knows the
corresponding public key. Prv returns the measurement to Vrf which
authenticates it and decides on Prv’s state (i.e., compromised or not).

To the best of our knowledge, the only relevant prior result that
attempted to fuse RA with seL4 is HYDRA [1]. It operates in
three phases: Boot, seL4 Setup, and Attestation. In Boot phase, Prv
executes a ROM-resident secure boot procedure that verifies seL4
binary. Upon verification, Prv loads all executables into RAM and
passes control to the kernel. In seL4 Setup phase, the kernel sets up
the user space and initializes the first process, attestation process (AP).
The kernel then hands control to AP after assigning all capabilities for
all available memory locations to AP and verifying AP’s binary. AP is
then responsible for spawning all user processes with lower schedul-
ing priorities and user-defined capabilities, initializing the network
interface, and waiting for subsequent attestation requests. Finally, in
Attestation phase (which comprises the rest of the runtime), upon
receiving a Vrf-issued attestation request for a particular user-space
process, AP computes an HMAC [25] of the memory region of that
process, using a symmetric key pre-shared with Vrf, and returns the
result to Vrf.

HYDRA AP implements several system functions that are unrelated
to RA functionality. While this approach simplifies Boot and seL4
Setup phases, it also makes HYDRA verification challenging. We
further discuss this in Section IV-A.

C. F ∗, Low∗, and KaRaMeL

F ∗ [26] is a general-purpose functional programming language
with an effect system facilitating program verification. Developers can
write a program and its specifications in F ∗, representing that pro-
gram’s computational and side effects, and then formally verify that
it adheres to those specifications using automated theorem-proving
techniques. The type system of F ∗ includes dependent types, monad
effects, refinement types, and the weakest precondition calculus,
which together allow describing precise and compact specifications
for programs using Hoare logic [27]. For example, Fig. 1 shows two
simple functions in F ∗. While both take an integer as input and output
its absolute value, abs_pos “requires” the input integer to be positive
as pre-condition and “ensures” that the result equals the absolute
value of x as post-condition. The pre-condition of abs_pos can be
instead written with refinement type input: (x : int {x > 0}).
Both have the Pure effect, meaning that they are stateless functions,
guaranteeing deterministic results and no side effects. Tot is a special
type of Pure with no pre-condition, i.e., it is defined for all possible
values of input so that it terminates and returns an output.

1 let abs (x : int) : Tot int
2 = if x >= 0 then x else -x
3
4 let abs_pos (x : int) : Pure int
5 (requires x > 0) (ensures fun y -> y = abs x) = x

Fig. 1: Example Functions in F ∗

To support stateful programs, F ∗ provides ST effect with the form:

ST (a:Type) (pre:s→Type) (post:s→a→s→Type)

This means: for a given initial memory “h0:s” that satisfies pre-
condition “(pre h0) is true”, a computation “e” of type “ST a
(requires pre) (ensures post)” outputs a result “r:a” and
updates existing memory to final memory “h1:s”, which satisfies
the post-condition “(post h0 r h1) is true”.

One notable feature of F ∗ is machine integers and arithmetic
operations on them. Machine integers model (un)signed integers
with a fixed number of bits, e.g., uint32 and int64, while
FStar.Int.Cast module offers conversions between these types.
Using machine integers ensures that input and computation result
values fit in the given integer bit-width, preventing an unintentional
arithmetic overflow. In addition, one can express their secrecy level,
denoted by ‘PUB’ or ‘SEC’. The former is considered public and can
be safely shared, while the latter is considered secret, i.e., F ∗ guar-
antees no leaks for them. Specifically, it prevents information leakage
from timing side-channels and clears all memory that contains SEC-
level integers when they are no longer needed.

Low∗ [28] is a subset of F ∗, targeting a carefully curated subset
of C features, such as the C memory model with stack- and heap-
allocated arrays, machine integers, C string literals, and a few system-
level functions from the C standard library. To support these features,
Low∗ refines the memory model in F ∗ by adding a distinguished
set of regions modeling C call stack – so-called hyper-stack memory
model. For modeling C stack-based memory management mechanism,
Low∗ introduces a region called tip to represent the currently active
stack frame and relevant operations, such as push and pop. Low∗

also introduces the Stack effect with the form below, to ensure that
the stack tip remains unchanged after any pushed frame is popped
and the final memory is the same as the initial memory:

Stack a pre post = ST a (requires pre) (ensures

2
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

(λ h0 r h1 → post h0 r h1 ∧
(tip h0 = tip h1) ∧ (∀ x. x ∈ h1 ⇔ x ∈ h0)))

Programmers writing code in Low∗ can utilize the entire F ∗

for proofs and specifications. This is because proofs are erased at
compile-time and only low-level Low∗ code is left and compiled
to C code. Verified Low∗ programs can be efficiently extracted to
readable and idiomatic C code using the KaRaMeL [29] compiler
tool (previously known as KreMLin). KaRaMeL implements a trans-
lation scheme from a formal model of Low∗, λow∗, to CompCert
Clight [30]: a subset of C. This translation preserves trace equivalence
with respect to the original F ∗ semantics. Thus, it preserves the
functional behavior of the program without side channels due to
memory access patterns that could be introduced by the compiler.
The resulting C programs can be compiled with CompCert or other
C compilers (e.g., GCC, Clang).

D. HACL∗ Cryptographic Library [31]

HACL∗ [31] is a formally verified cryptographic library written
in Low∗ and compiled to readable C using KaRaMeL. Each crypto-
graphic algorithm specification is derived from the published standard
and covers a range of properties, including:

• Memory safety: verified software never violates memory ab-
stractions so that it is free from common vulnerabilities due
to reads/writes from/to invalid memory addresses, e.g., buffer
overflow, null-pointer dereferences, and use-after-free.

• Type safety: software is well-typed and type-related operations
are enforced, i.e., HACL∗ code respects interface, and all the
operations are performed on the correct types of data.

• Functional correctness: input/output of the software for each
primitive conform to simple specifications derived from pub-
lished standards.

• Secret independence: observations of the low-level behavior,
such as execution time or accessed memory addresses, are inde-
pendent of secrets used in computation, i.e., the implementation
is free of timing side-channels.

III. GOALS & ASSUMPTIONS

A. System Model

We consider Prv to be a mid-range embedded device equipped
with an MMU and a secure boot facility1. Devices in this class
include I.MX6 Sabre Lite [22] and HiFive Unleashed [32] (on which
seL4 is fully formally verified [33]). Following seL4 verification
axioms, Prv is limited to one active CPU core, i.e., it schedules
multiple user-space processes, though only one process is active at a
time. We assume that secure boot is correctly enabled prior to device
deployment.
PARseL TCB consists of seL4 microkernel, the first process

loaded by the microkernel in user-space, called Root Process (RP),
and Signing Process (SP), also in user-space (details in Section IV).
Vrf wants to use RA to establish a secure channel with a particular
attested user-space process. To facilitate this, PARseL attestation
response can also include a unique public key associated with the
process. Vrf can then use the secure channel to communicate sensitive
data with the attested process, after verifying its integrity through RA.

1Although common in mid-range embedded devices, secure boot require-
ment can be relaxed with weaker adversary model where Adv does not have
physical access to Prv and the initial deployment of seL4 and PARseL TCB
on Prv is trusted.

PARseL provides a static root of trust for measurement of user-
space process, i.e., the binary of processes are measured at their
loading time. This is plausible because PARseL, by design, enforces
that no new user process is spawned during runtime and no modifica-
tions on code occur without rebooting the device. On the other hand,
PARseL design allows the user-process updates without modifying
PARseL TCB. However, any updates require the device to reboot
to re-measure the updated programs, which limits the scalability. We
further discuss this limitation and possible alternatives in Section VII.

PARseL design is agnostic to the choice of cryptographic prim-
itives. In fact, PARseL can support both (1) symmetric-key cryp-
tography where Prv and Vrf share a master secret from which a
subsequent symmetric key can be derived, or (2) public-key crypto-
graphy where Prv has a private signing key whose public counterpart
is securely provisioned to Vrf. In both cases, the required keys can
be hard-coded as part of the PARseL TCB prior to Prv deployment.

B. Adversary Model

Based on the RA taxonomy in [34], four main types of Adv are:
1) Remote: exploits vulnerabilities in Prv software and injects

malware over the network;
2) Local: controls Prv’s local communication channels; may at-

tempt to learn secrets leveraging timing side-channels;
3) Physical non-intrusive: has physical access to Prv and attempts

to overwrite its software through legal programming interfaces
(e.g., via J-TAG or by replacing an SD card).

4) Physical intrusive: performs invasive physical attacks, physical
memory extraction, firmware tampering, and invasive probing,
e.g., via various physical side-channels.

We consider type (1) and (2) adversaries. Type (3) can be supported if
Prv hardware offers protection to prevent access to Prv’s secret key
via programming interfaces. Protection against type (4) adversaries
is orthogonal and typically obtained via standard physical security
measures [35]. This scope is in line with related work on trusted
hardware architectures for embedded systems [36], [16], [14], [15].
In terms of capabilities, if Adv compromises a user-space process
in Prv, it takes full control of that user-space process, i.e., it can
freely read and write its memory and diverge its control flow. We as-
sume user-space processes as untrusted and therefore compromisable,
except for PARseL TCB. Finally, we assume that Adv can trigger
interrupts at any time.

IV. VERIFIED ROOT-OF-TRUST OVER seL4 (PARseL)

This section starts by describing HYDRA and its limitations. It
then justifies our approach and discusses how PARseL realizes it.

A. HYDRA & Its Limitations

As mentioned above, HYDRA is composed of Boot, seL4 Setup,
and Attestation phases. AP is the very first user-space process to
run after seL4 Setup. As such, AP possesses all capabilities for all
available memory and system resources. It is responsible for creating
and managing all other processes, ensuring proper configuration of
capabilities for them, and performing RA.

We argue that this design results in an excessive and application-
dependent TCB. First, formally verifying the implementation of AP
is extremely challenging since it requires a giant manual proof effort
that might not be achievable in practice. However, without formal
verification, there is no guarantee that AP is vulnerability-free and cor-
rect. Since AP has all user-space capabilities, its compromise would
lead to a breach of all seL4 isolation guarantees provided. Even

3
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

(a) HYDRA Execution Levels (b) PARseL on Boot (c) PARseL at Runtime

Fig. 2: Comparison of HYDRA (left) and PARseL Execution Levels on Boot (middle) and at Runtime (right)

assuming the feasibility of AP formal verification, process-spawning
component of AP strictly depends on the specific user application
configuration. This is so that AP can properly assign custom (user-
defined) access control configurations to each application process.
Thus, whenever an application changes, AP implementation needs
to be adjusted accordingly. Doing so modifies the AP’s previously
verified TCB. It is clearly infeasible to re-verify AP implementation
for all possible application-dependent configurations.

B. Design Rationale

To enable verifiability, the TCB size at runtime must be reduced,
by identifying and removing unnecessary functionalities from the
privileged AP process. HYDRA AP functionalities are:

1⃝ Spawning all user processes with memory/capability settings;
2⃝ Communication with Vrf over the network interface for RA;
3⃝ Attestation of all user processes;

First, we observe that including 2⃝ in the TCB yields no benefit since
the security of RA does not depend on the availability/integrity of
the communication interface. Thus, we move this functionality out of
the TCB and handle Prv ↔ Vrf communication in a separate user-
space process. Second, 1⃝ performing initialization tasks that are not
needed at runtime (i.e., post-boot). Third, further sub-dividing 3⃝:
3⃝-(a) Measuring (reading) the code binary for each user process;
3⃝-(b) Signing the measurement with a private key and a challenge

from Vrf;
3⃝-(a) can be also done once, assuming that the code does not change

post-boot (as mentioned in Section III-A). Thus, these components
can be terminated after completion, at boot time, which effectively
limits these components’ exploitable time window to boot time.

Also, 1⃝ can be sub-divided into:
1⃝-(a) Storing access control capabilities for all processes to be

spawned;
1⃝-(b) Spawning the user processes based on given access control

capabilities;
To separate all user-dependent components from the TCB, a separate
user process can perform 1⃝-(a) and communicate with AP for 1⃝-
(b). Or it can be even just a configuration file that AP can read from.
Finally, 3⃝-(b) must be active at runtime to process RA requests
from Vrf, which represents the only potential remaining entry point
for Adv. To close this gap, this operation can be assigned to a tiny
dedicated process, called Signing Process (SP). Due to its small size
and independence of user-defined components, verifying SP is now
relatively easier.

C. PARseL Design

Combining all the above, Fig. 2 shows PARseL execution levels
at boot- and at run-time, as compared to HYDRA. PARseL sub-
divides seL4 user-space into two execution levels: Privileged and

Unprivileged. We refer to the privileged initial user process as Root
Process (RP) which has a thread (for the roles of 1⃝-(b) and 3⃝-(a)),
called Process Spawning & Measuring Thread (PSMT). In contrast,
the processes at the unprivileged level have restricted capabilities
assigned by RP. Unprivileged processes include Initial User Process
(IUP) (for 1⃝-(a)), SP, and user-defined processes (UP-s). Capabilities
of any process at the unprivileged level do not allow access to any
memory not explicitly assigned to that process. RP (including PSMT)
and IUP are terminated at the end of boot phase, and only UP-s and
SP remain during run-time, as shown in Fig. 2(c).

D. PARseL Execution Phases

PARseL has seven execution phases in total: three on boot and
four at runtime. Three phases in the boot-time are:

(Secure) Boot: The boot-loader verifies, loads, and passes control to,
seL4. Thereafter, seL4 verifies the integrity of PARseL TCB,
i.e., the software that runs in RP, and passes control to RP, once
verification succeeds.

Process Spawn: RP spawns PSMT as a thread. PSMT spawns IUP as
an unprivileged process and establishes an IPC channel with it.
Once spawned, IUP sends the configuration of user processes
and their process ID-s (PID-s) to PSMT via IPC. Upon receiving
a request, PSMT spawns a new process according to received
capabilities. It also ensures that these capabilities are valid,
not containing the write capability for its own code segment.
Finally, it spawns and sets up an IPC channel with SP. Once
all processes are spawned, PSMT sets up an IPC endpoint for
each user process, assigns a unique badge for each endpoint,
and associates this unique badge with PID.

Measurement: While spawning each user process, PSMT also mea-
sures (via hashing) its code segment, and stores the results in
measurement map (mmap) with the PID as the lookup key. Once
all measurements are complete, PSMT sends the entire mmap to
SP through IPC, and RP (including PSMT) is terminated.

Once Prv is booted and in a steady state, it repeatedly executes the
remaining four phases at runtime:

Listen: SP listens to receive messages from user processes through
the endpoint set up in the boot phase.

Request: Once a user process, UP, receives an attestation request
from Vrf with a fresh challenge, Chal, UP transmits the request
to SP through IPC system calls. The request message includes
Chal and the public key of UP, pk.

Sign: Upon receiving a request, SP identifies the sender process,
UP, from the activated endpoint badge and derives PID

2. It then

2Note that seL4 guarantees that UP cannot forge its own endpoint badge.
Therefore, the attested UP is the same process that provides pk to SP.

4
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Sequence of PARseL Execution Phases at Boot (After Secure Boot Checks)

Fig. 4: Sequence of PARseL Execution Phases at Runtime

retrieves UP’s measurement mUP from mmap using PID and signs
mUP along with the request message using its secret key, K. i.e.,

σ := Sign(K, Hash(Chal||pk||mUP)) (1)

Response: SP responds σ to UP via IPC. UP forwards σ and pk to
Vrf. Finally, after successful σ verification, Vrf establishes a
secure channel with UP using the received pk.

Fig.s 3 and 4 show the aforementioned PARseL execution phases on
boot and at run-time, respectively.

V. PARseL IMPLEMENTATION & VERIFICATION

A. Implementation Details

1) Implementation of RP: Once seL4 passes control to RP, RP
initializes user space by creating necessary boot-time objects, such
as CSpace, VSpace, and a memory allocator. Then, it initializes PSMT
by creating a new thread control block object, a memory frame for
its IPC buffer, a new page table, and a new endpoint object. Next,
RP maps the page table and IPC buffer frame into the VSpace and
configures a badge for the endpoint and thread control block priority.
RP then sets up the thread-local storage (for its own storage area) and
spawns PSMT. Finally, it waits for PSMT to complete and send ACK.

2) Implementation of PSMT: Once spawned, PSMT creates SP by
assigning it a new set of virtual memory, configuring it with two
endpoints, and associating a unique badge for each endpoint. SP uses
one endpoint for IPC with SP and the other for UP-s. PSMT similarly
creates IUP, establishes an IPC between itself and IUP, and spawns
IUP. Then, PSMT waits for a request from IUP.

A request includes all the specifications of UP to be spawned, such
as PID, binary location, and capabilities to system resources. Once
receiving the request, PSMT first ensures that the requested capabilities
do not contain the write capability to UP’s binary and then initializes
UP accordingly. Next, PSMT computes its measurement, using a hash
algorithm (e.g., SHA2-256 [37]) in HACL∗, and stores it in mmap
in order. PSMT uses a counter to make sure the number of spawned
processes does not exceed the size of mmap and assigns a badge
based on the counter to make it unique per UP endpoint. Finally,
PSMT spawns UP and waits for the next request. Once receiving the

“Done” signal from IUP, PSMT sends the entire mmap to SP via IPC,
waits for IUP to finish its tasks (if any), and sends an ACK to RP.

3) Implementation of IUP: In PARseL, all the user process
information is consolidated into a configuration file at compile-time.
IUP first parses this file and loads its information to a local object.
Then, for each UP, IUP sends a spawn request to PSMT with its PID,
and waits for an acknowledgment. After all the UP-s are spawned,
IUP sends the “Done” signal to PSMT and finishes its remaining tasks
(if any), before terminating itself. Note that if IUP contains no tasks
other than requesting to spawn UP-s, then PSMT can directly read the
configuration file and spawn UP-s, instead of having a separated IUP.

4) Implementation of SP: SP has two roles: (1) collecting all
the UP-s measurements from PSMT at boot-time, and (2) repeatedly
processing RA requests at runtime. Once SP is spawned by PSMT
during boot-time, SP uses seL4 system calls to receive the entire
mmap via IPC in the following way:

1) Using seL4_Recv(), SP listens for measurement message (PID,
m) from PSMT’s badge.

2) SP uses seL4_GetMR() to unmarshal the message and copies
(PID, m) to mmap.

3) Using seL4_Reply(), SP sends ’0’ (as a ACK).
This process is repeated until all the measurements are received from
PSMT. In the following section, we describe the verified implemen-
tation of SP’s runtime phase.

B. Formally Verification of PARseL Runtime Implementation

We describe the implementation of runtime PARseL TCB in
Low∗, with verified properties, and how to convert it to C code,
preserving the verified properties, using KaRaMeL.

1) Verifying Properties: Recall that SP runs the infinite loop of
(Listen, Request, Sign, Response) phases (see Section IV-D). To verify
SP, we prove the following invariant properties for this infinite loop:
functional correctness, memory safety, and secret independence.

Functional correctness ensures that each loop iteration performs all
the functionalities as intended. In this context, it means each iteration
of SP correctly computes the signature according to Equation (1) for
the given input and returns the computed result without modifying SP
internal states. Memory safety and secret independence guarantee that
no additional information beyond the signature result is leaked from
SP. This applies to both memory-based leakages as well as timing
side channels. In Section VI, we show that these three properties are
sufficient to provide secure RA in PARseL.

2) Runtime SP Implementation in Low∗ and C: To prove these
properties, we first specify all seL4 APIs used by SP in Low∗.
Then, we implement the Low∗ code for all SP execution phases and
integrate it with the Low∗-specified seL4 APIs and HACL∗ verified
cryptographic functions. Next, we formally verify the combined
implementation via Low∗ memory model, intermediate assertions,

5
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

and post-condition of the SP execution. Finally, we convert the final
Low∗ code to C using the verified KaRaMeL compiler.

[Specifying seL4 APIs in Low∗] While SP is implemented in Low∗,
the functional correctness of seL4 implementation (including system
calls) is verified with a different formal specification language called
Isabelle/HOL [38]. Hence, we represent them as axioms, using the
construct ‘assume val’ in F ∗. F ∗ type checker accepts the given
assumption without attempting to verify it, and these axioms are
converted to ‘extern’ in the generated C code. We specify the
input/output of each seL4 system call with required type definitions.

For example, Fig. 5 shows in order, the original C code for a system
call, seL4_GetMR from seL4 APIs, corresponding Low∗ implemen-
tation as an axiom, and the generated C code using KaRaMeL.
seL4_GetMR has an integer input i and simply outputs the i-th
element of msg array in seL4_IPCBuffer with type seL4_Word.
Including the new type seL4_Word for uint643, all the definitions or
structs in seL4 (lines 1-12 of original C code) are properly converted
into Low∗ (lines 1-17 of Low∗ code). Note that since there is no
concept of the global variable in functional programming, all global
variables or structs used in SP are represented in state type (lines
5-7 of Low∗ code), initialized in st_var (lines 8-15) and defined in
function st (lines 16-17). Once the Low∗ axiom is compiled with
KaRaMeL, generated C code only contains one line of declaration
(line 12 of generated C code) without implementation. The rest
of seL4 system calls used in SP, seL4_Recv, seL4_Reply, and
seL4_SetMR, are similarly written as axioms.

[Writing SP in Low∗, combining HACL∗ library] The Sign phase
is implemented using cryptographic operations in HACL∗ which is
also implemented in Low∗ and formally verified according to their
specification. Thus, three HACL∗ functions for concatenation, hash,
and sign, are integrated into one signing function for Equation (1).
We use HMAC [25] for the symmetric signing algorithm with SHA2-
256 [37] hash function and EdDSA [39] for the asymmetric one.
Runtime SP with the four execution phases is implemented by
combining this signing function and the seL4 axioms.

First, to receive/send a message through the IPC buffer or store
intermediate computation results, we need some local C arrays in
Low∗. For representing C arrays, Low∗ provides the Buffer module.
In Low∗, a buffer is a reference to a sequence of memory with a
starting index and a length. We use alloca (or create from
HACL∗) for stack allocation, and retrieve/update the buffer contents
using index/upd with the proper indices.

Then, since the Sign phase is in between two seL4 system calls for
Request and Response phases, proper type conversions are required.
Specifically, seL4 system calls use the type seL4_Word and HACL∗

functions require the uint8 input type. To safely convert back and
forth between uint8 buffer and seL4_Word buffer (with big-endian),
we use uints_to_bytes_be and uints_from_bytes_be of the
Lib.ByteBuffer module in HACL∗.

[Formal Verification] To verify the functional correctness of runtime
SP, we first specify necessary pre-/post-conditions for each seL4
axiom. For example, the Low∗ code in Fig. 5 shows that the function
seL4_GetMR correctly returns with the i-th element of msg array in
seL4_IPCBuffer (line 22). Also, some properties are needed to be
specified to verify that SP internal states are not modified. In Fig. 5,
the post-condition B.(modifies loc_none h0 h1) indicates that

3It is defined either uint32 or uint64 depending on the underlying
architecture, and the example code is shown with uint64 seL4_Word.

1 #define _seL4_int64_type long long int
2 typedef unsigned _seL4_int64_type seL4_Uint64;
3 typedef seL4_Uint64 seL4_Word;
4 typedef struct seL4_IPCBuffer_ {
5 seL4_Word msg[seL4_MsgMaxLength]; // seL4_MsgMaxLength = 120
6 } seL4_IPCBuffer __attribute__((__aligned__(sizeof(struct

seL4_IPCBuffer_))));
7 extern __thread seL4_IPCBuffer *__sel4_ipc_buffer;
8 __thread __attribute__((weak)) seL4_IPCBuffer *__sel4_ipc_buffer;
9 LIBSEL4_INLINE_FUNC seL4_IPCBuffer *seL4_GetIPCBuffer(void)

10 {
11 return __sel4_ipc_buffer;
12 }
13 LIBSEL4_INLINE_FUNC seL4_Word seL4_GetMR(int i)
14 {
15 return seL4_GetIPCBuffer()->msg[i];
16 }

1 type seL4_Word = uint64
2 noeq type seL4_IPCBuffer = {
3 msg : mbuffer seL4_Word 120;
4 }
5 noeq type state = {
6 ipc_buffer: ipc:seL4_IPCBuffer;
7 }
8 let st_var: state =
9 let msg = B.gcmalloc HS.root (I.u64 0) 120ul in

10 let ipc_buffer = {
11 msg = msg;
12 } in
13 {
14 ipc_buffer = ipc_buffer;
15 }
16 val st (_:unit):state
17 let st _ = st_var
18 assume val seL4_GetMR
19 (i : size_t)
20 : Stack seL4_Word
21 (requires fun h0 -> (size_v i < 120) /\ (size_v i >= 0))
22 (ensures fun h0 a h1 -> B.(modifies loc_none h0 h1) /\ a == B.get h1 (

st ()).ipc_buffer.msg (v i))

1 typedef uint64_t seL4_Word;
2 typedef uint64_t *seL4_IPCBuffer;
3 typedef struct state_s
4 {
5 uint64_t *ipc_buffer;
6 } state;
7 state st_var;
8 state st()
9 {

10 return st_var;
11 }
12 extern uint64_t seL4_GetMR(uint32_t i);

Fig. 5: Simplified example seL4 API in original seL4 library (top),
axiom in F ∗ (middle), and generated header file in C (bottom)

no locations are modified from seL4_GetMR function call (line 22).
Next, we insert an assertion detailed in Fig. 6 after the Sign phase

to ensure the functional correctness of the signing function, i.e., it
correctly computes the signature according to Equation (1).

1 // h0 is the initial memory state and h1 is the state right after the
signing function call, using ST.get ()

2 assert (B.as_seq h1 sign_result_u8 ==
3 Spec.Ed25519.sign (B.as_seq h0 s.sign_key)
4 (Spec.Agile.Hash.hash alg
5 (Lib.Sequence.concat #uint8 #64 #32
6 (Lib.Sequence.concat #uint8 #32 #32
7 (B.as_seq h chal) (B.as_seq h pk))
8 (B.as_seq h measurement_process))
9)

10);

Fig. 6: Assertion for Functional Correctness of Sign, equation (1)

Finally, we check the invariance of K and mmap throughout the SP
execution via intermediate assertions and the post-condition of the
runtime SP function. Similar to the assertion above, it compares the
K and mmap contents in the memory (h) after executing each function
call with the ones in the initial memory (h0), specified in Fig. 7.
This invariance along with the post-conditions of seL4 APIs and the
assertion in Fig. 6 implies the functional correctness of runtime SP.

For memory safety, we first implement all SP components with
Stack effect, which prevents any memory leakage due to deallocated
heap regions. We also check the “liveness” and “disjointness” of

6
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

1 assert (B.as_seq h0 s.mmap == B.as_seq h s.mmap);
2 assert (B.as_seq h0 s.sign_key == B.as_seq h s.sign_key);

Fig. 7: Assertion for K and mmap invariance

all buffers before they are referenced (via live and disjoint
clauses), which prevents stack-based memory corruption. The former
guarantees that a buffer must be properly initialized and not de-
allocated (so “live") before it is used, whereas the latter ensures that
all buffers used in SP are located in separate memory regions without
any overlap. Lastly, we specify a post-condition for every function in
SP to ensure that it modifies only the intended memory region. This
can be done through the modifies clause with the form of modifies
s h0 h1, which ensures that the memory h1 after the function call
may differ from the initial memory h0 (before the function call) at
most regions in s, i.e., no regions outside of s are modified by the
function execution. For example, in Fig. 5, seL4_GetMR function
ensures not to modify any memory location (with ‘loc_none’) in its
post-condition (line 22).

Finally, for the secret independence, we use the same technique
employed by HACL∗. We use the secret machine integers for private
values (i.e., K), including all intermediate values, and do not use
any branch on those secret integers. This ensures that the execution
time or the accessing memory addresses are independent of the secret
values so that the implementation is timing side-channel resistant.

[Generating C code using KaRaMeL] Finally, we carefully write
a build system and generate readable C code from our verified Low∗

code using KaRaMeL. It takes an F ∗ program, erases all the proofs,
and rewrites the program from an expression language to a statement
language, performing optimizations. If the resulting code contains
only Low∗ code with no closures, recursive data types, or implicit
allocations, then KaRaMeL proceeds with a translation to C.
KaRaMeL generates a readable C library, preserving names so

that one not familiar with F ∗ can review the generated code before
integrating it into a larger codebase. For example, the refinement type
(b: B.buffer uint32 B.length b = n) in Low∗ is compiled to
a C declaration (uint32_t b[n]), while referred to via (uint32_t
*) as C pointer.

C. Secure Boot of seL4 and PARseL TCB

Similar to HYDRA, PARseL relies on a secure boot feature to
protect against a physical Adv attempting to re-program seL4 and
PARseL TCB when Prv is offline. In HYDRA, this feature works
by having a ROM boot-loader validate seL4 authenticity before
loading it. Once seL4 is running, it authenticates the user-space
TCB by comparing it to a benign hash value, hard-coded within
the seL4 binary. Since HYDRA TCB is user-dependent, updating
a user application implies a software update not only to the TCB but
also to the seL4 binary that stores the TCB referenced hash value,
which can be inconvenient in practice. Conversely, PARseL TCB is
user-independent, allowing user applications to be updated directly
without the need to modify PARseL TCB or seL4 binary.

D. Evaluation

Our source code including verification proofs is available at [23].
1) Evaluation Setup: To demonstrate the practicality of PARseL,

we developed our prototype on a commercially available hardware
platform: SabreLite [22] – on which seL4 is fully verified [33]
including all proofs for functional correctness, integrity, and informa-
tion flow. SabreLite features an ARM Cortex-A9 CPU core (running

1 2 3
Number of User Processes

0

200

400

600

800

1000

1200

Ti
m

e
(in

 m
illi

on
 c

yc
le

s)

RP

PSMT

Boot-time Performance of PARseL

1 2 3
Number of User Processes

0

200

400

600

800

Ti
m

e
(in

 m
illi

on
 c

yc
le

s)

SP (HMAC)

SP (EdDSA)

Run-time Performance of PARseL

Fig. 8: PARseL Performance while varying the number of spawned user
processes (excluding SP)

at 1 GHz), with RAM of size 1 GB, and a microSD card slot (which
we use to boot and load PARseL image). PARseL is implemented on
seL4 version 12.0.1 (latest at the time of writing). Besides seL4 IPC
kernel APIs, RP uses seL4 Runtime, seL4 Utils, and seL4 Bench
user-space libraries (offered by seL4 Foundation) to implement PSMT
process spawning procedure.

2) PARseL Performance: The left sub-figure of Fig. 8 shows the
boot-time performance of RP and PSMT, and the right one shows
the run-time performance of SP (using either HMAC or EdDSA).
Reported results are averaged over 50 iterations. The size of each
spawned process is ≈ 0.4 MB.
RP takes constant 40 ms (40 million cycles @ 1 GHz), as it initiates

the device and spawns PSMT, independent of the number of UP-s
spawned. The time taken for PSMT increases linearly to the number of
UP-s, as expected because PSMT loads, measures, and spawns each UP
sequentially. Spawning each 0.4 MB UP takes ≈ 150 ms. Concretely,
when there are 3 UP-s, the boot-time of PARseL is 1.3s.

Using HMAC requires significantly fewer cycles than using Ed-
DSA, due to its relatively expensive operations in the latter. The
attestation time for one UP using EdDSA is 282 ms while the one
using HMAC is 1.2 ms. As the number of UP-s increase, the time
taken for SP also increases. This is due to frequent kernel context
switching, as seL4 (fully verified implementation) uses only one core.

3) PARseL TCB size: PARseL TCB contains 3.9K lines of C
code, including 0.6K lines for RP + PSMT (excluding the seL4 user-
space libraries), and 3.3K lines for SP. Out of 3.3K lines of SP, 3.2K
lines are verified, including 3K lines from HACL∗ EdDSA and 0.2K
lines from SP run-time attestation function.

VI. PARseL SECURITY ANALYSIS

To argue PARseL security with respect to the adversary model in
Section III-B, we start by formulating PARseL security goal.

Security Definition: Let B be an arbitrary software binary
selected by Vrf. In the context of a static root of trust for
measurement of user-level processes, an RA scheme is considered
secure if and only if Vrf is able to use the RA scheme to establish
a secure channel with program P , where:
* P is an isolated user-level process running on the correct Prv;
* At boot time, P was loaded with the Vrf-selected binary B;

Security Argument: Assuming that Vrf uses pk, included in σ (recall
Equation 1), to establish the secure channel, Adv can attempt to
circumvent PARseL security by:
(1) Loading the Right Software on the Wrong Device. Adv can
load process PAdv with the expected binary B on a different device
(PrvAdv), also equipped with an instance of PARseL. Then, Adv
forwards Vrf’s request (intended to the original Prv) to PrvAdv.
PrvAdv inadvertently issues a PARseL attestation response that

7
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

matches software B (loaded on PAdv). However, as the secret key K
is unique to each Prv, Vrf would not accept the received σ, thereby
refusing to establish the secure channel.
(2) Loading the Wrong Software on the Right Device. Adv
can load a user-space process on the correct Prv but with an
incorrect/malicious binary BAdv. This can be accomplished with
physical access to Prv or by exploiting a vulnerability on a user-
space process to perform persistent code injection, re-booting Prv
thereafter. In either case, σ would be signed with the expected secret
key K. However, mmap would be updated at boot to reflect BAdv, i.e.,
the hash result mUPAdv

. Consequently, Vrf would refuse to establish
a secure channel with a process on Prv loaded with BAdv ̸= B.
(3) Loading the Wrong Software on the Wrong Device. It follows
from both arguments above that this option is infeasible to Adv due
to the mismatches on both secret key K and measurement mUPAdv

.
Therefore, PARseL satisfies the security definition above.

This argument assumes confidentiality of K. In PARseL, this is
supported through formal verification of SP functional correctness,
secret independence, and memory safety. It also assumes that each
process is appropriately measured at boot. In PARseL, this is
implemented by PSMT when computing mmap. The association of
pk with the correct mUP is guaranteed by seL4 badge assignments.
Finally, the scheme relies on inter-process isolation for SP and any
attested process P , once the secure channel is established. The latter
is inherited from seL4 provable isolation.

VII. DISCUSSION

Limitations: Only PARseL runtime TCB is verified. The integrity of
PARseL boot time TCB is ensured via secure boot, while the correct
implementation of secure boot/boot TCB are assumed. Furthermore,
PARseL measures processes at boot time. Thus, RP configures a
write-xor-execution memory permission to prevent a user process
from modifying its own code. By default, although seL4 guarantees
strong inter-process isolation, it gives each process full control of
its own code/data segments. Due to this write-restriction, PARseL
does not support run-time updates to user-level processes. Currently,
benign updates must be done physically and require rebooting the
device (in order to measure the updated program on boot). However,
we believe that any software update framework compatible with seL4
(e.g. [12]) can be used alongside with PARseL for remote updates.
The only requirement then would be to reboot the device after the
update, so that PARseL re-measures all UP-s including the new
updated UP.
(Unexpected) Termination of UP does not cause any issues because
no other user process can transfer the signature (from Vrf) on behalf
of another process to SP. In Vrf’s view, no response will arrive (in
a certain amount of time) so it can deduce that UP or Prv are no
longer running. This is similar to any RA protocol.
SP Stack Erasure is obviated in PARseL because SP is never
terminated at run-time and seL4’s inter-process isolation guarantees
that only SP has access to its own stack.

VIII. RELATED WORK

RA: techniques can be classified into SW-based, HW-based,
and hybrid (HW/SW co-design) architectures. Although SW-based
methods such as [40], [41], [42], [43] require minimal overall costs,
they rely on strong assumptions about precise time-based checksum,
which is mostly unsuitable for the IoT ecosystem with the multi-
hop network. HW-based methods [17], [44], [45], on the other hand,

rely on some additional hardware support for RA, e.g., some dedi-
cated hardware components [44], or extension of existing instruction
sets [19], which introduce cost and other barriers, especially for low-
end and mid-range devices. Hybrid approach [14], [15], [16], [46]
is considered to be more suitable for IoT ecosystems because it
aims for minimal hardware changes while keeping the same security
levels as HW-based RA. Using the hybrid RA as a building block,
many security services have been also suggested, such as proof of
execution [4], [5], control-flow and data-flow attestation [6], [7], [8],
[47], [9], [10], [11], and secure software updates [12], [48], [13].
Since PARseL also provides a hybrid RA, it can be also used for
such security services. Several recent papers on hybrid RA/RA-based
security services [4], [14], [48], [13], [46] provide formal verification
of their suggested architectures/implementations. They use model
checking with temporal logic to verify their implementations while
they use theorem proving to show that their proved properties are
sufficient for their security goal(s).

Verfied security applications in F ∗: [49] lists papers that apply
F ∗ in security, including HACL∗ [31]. DICE∗ [50] is a notable
paper related to PARseL, which proposes a verified implementa-
tion of Device Identifier Composition Engine (DICE), an industry-
standard measured boot protocol, for low-cost IoT devices. Similar
to PARseL, it has layered architecture with static components whose
implementations are verified over Low∗. The main difference is how
to guarantee the K confidentiality. DICE enforces the access control
to the master secret key by locating it in a read-only and latchable
memory so that only a hardware reset can disable/restore access to it.
The first hardware layer (called DICE engine) only has access to the
secret, and it authenticates the next layer (L0) and derives the secret
for L0 from its master secret and L0 measurement. This ensures the
same derived secret only when L0 firmware is not compromised.
Once received control, L0 derives a unique key pair from this
secret and the next-layer firmware (L1); this key pair can then be
used for L1 attestation and secure key exchange. Although PARseL
assumes a secure boot for correct seL4 deployment, both PARseL
and DICE∗ present verified implementations for the static root of
trust for embedded devices, with different ways of guaranteeing the
access control.

Architectures/applications over seL4: After being released in
2009 [51], seL4 has been actively implanted and used in both
academia and industries in various domains, including automo-
tive [52], aviation [53], and medical devices [54]. Apart from massive
research from the Trustworthy Systems group in UNSW Sydney,
many projects such as [1], [55] leverage their architecture atop seL4.

IX. CONCLUSIONS

This paper presented PARseL, a verifiable RA root-of-trust over
seL4. We implemented it on SabreLite and demonstrated its overall
feasibility and practicality. We also formally verified its runtime
component in terms of functional correctness, memory safety, and
secret independence, using the Low∗ tool-chain. All source code,
including verification proofs, is available at [23].

Acknowledgements: We thank ICCAD’23 reviewers for constructive
feedback. This work was supported by funding from NSF Awards
SATC-1956393, SATC-2245531, and CICI-1840197, NSA Awards
H98230-20-1-0345 and H98230-22-1-0308, as well as a subcontract
from Peraton Labs.

8
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “HYDRA: hybrid
design for remote attestation (using a formally verified microkernel),” in
Wisec, 2017.

[2] W. Englund, E. Nakashima, and T. Telford, “Colonial pipeline
‘ransomware’ attack shows cyber vulnerabilities of u.s. energy
grid,” https://www.washingtonpost.com/business/2021/05/10/
colonial-pipeline-gas-oil-markets/, May 2021.

[3] K. Zetter, “Inside the cunning, unprecedented hack of
ukraine’s power grid,” https://www.wired.com/2016/03/
inside-cunning-unprecedented-hack-ukraines-power-grid/, March
2016.

[4] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“APEX: A verified architecture for proofs of execution on remote
devices under full software compromise,” in USENIX’20.

[5] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” ser.
ICCAD ’18. IEEE.

[6] T. Abera et al., “C-flat: Control-flow attestation for embedded systems
software,” in CCS ’16, 2016.

[7] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in DAC’17.

[8] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Dialed: Data integrity
attestation for low-end embedded devices.”

[9] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under mem-
ory attacks,” in Proceedings of the 36th International Conference on
Computer-Aided Design. IEEE Press, 2017, pp. 384–391.

[10] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity of
embedded devices,” in 2020 IEEE Symposium on Security and Privacy.

[11] M. Geden and K. Rasmussen, “Hardware-assisted remote runtime at-
testation for critical embedded systems,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). IEEE.

[12] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik,
“ASSURED: Architecture for secure software update of realistic em-
bedded devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

[13] I. De Oliveira Nunes, S. Jakkamsetti, Y. Kim, and G. Tsudik, “Casu:
Compromise avoidance via secure update for low-end embedded sys-
tems,” ser. ICCAD ’22.

[14] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner,
and G. Tsudik, “VRASED: A verified hardware/software co-design for
remote attestation,” in USENIX Security, 2019.

[15] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A security architecture for tiny embedded devices,” in EuroSys, 2014.

[16] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: Tiny trust anchor for tiny devices,” in DAC, 2015.

[17] J. Noorman, J. V. Bulck, J. T. Mühlberg et al., “Sancus 2.0: A low-cost
security architecture for iot devices,” ACM Trans. Priv. Secur., 2017.

[18] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PISTIS: Trusted
computing architecture for low-end embedded systems,” in 31st USENIX
Security Symposium, Aug. 2022, pp. 3843–3860.

[19] Intel, “Intel Software Guard Extensions (Intel SGX),” https://software.
intel.com/en-us/sgx.

[20] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium, 2016.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in SIGOPS. ACM, 2009.

[22] B. Devices. Boundary devices bd-sl-i.mx6. https://boundarydevices.com/
product/bd-sl-i-mx6/.

[23] Anonymous, “Parsel open-source code,” https://anonymous.4open.
science/r/parsel-submission-1EC5/.

[24] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation validation
for a verified os kernel,” ACM SIGPLAN Notices, 2013.

[25] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Advances in Cryptology — CRYPTO ’96.

[26] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. For-
est, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzin-
dohoue, and S. Zanella-Béguelin, “Dependent types and multi-monadic
effects in f*,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016.

[27] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, 1969.

[28] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy, “Verified low-level programming
embedded in f*,” Proc. ACM Program. Lang., aug 2017.

[29] “The karamel compiler (2017),” https://github.com/FStarLang/karamel.
[30] S. Blazy and X. Leroy, “Mechanized Semantics for the Clight Subset of

the C Language,” Journal of Automated Reasoning, 2009.
[31] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,

“Hacl*: A verified modern cryptographic library,” in CCS, 2017.
[32] SiFive. Hifive unleashed specifications. https://www.sifive.com/boards/

hifive-unleashed.
[33] seL4 Team, “sel4 supported platforms with verification status,” https:

//docs.sel4.systems/Hardware/.
[34] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi,

and G. Tsudik, “Invited: Things, trouble, trust: on building trust in IoT
systems,” in DAC’16.

[35] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mech-
anisms for secure embedded systems,” in VLSI Design, 2004.

[36] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and minimal architecture for (establishing dynamic) root of trust,” in
NDSS, 2012.

[37] S. H. Standard, “Fips pub 180-2,” 2002.
[38] U. of Cambridge and T. Munich, “Isabelle,” https://isabelle.in.tum.de/.
[39] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-

speed high-security signatures,” in Journal of Cryptographic Engineer-
ing, 2011.

[40] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in USENIX Security Symposium, 2003.

[41] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT: Software-
based attestation for embedded devices,” in IEEE Symposium on Re-
search in Security and Privacy (S&P). Oakland, California, USA:
IEEE, 2004, pp. 272–282.

[42] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of
peripherals’ firmware,” in CCS. ACM, 2011.

[43] V. D. Gligor and S. L. M. Woo, “Establishing software root of trust
unconditionally.” in NDSS, 2019.

[44] Trusted Computing Group., “Trusted platform module (tpm),”
2017. [Online]. Available: http://www.trustedcomputinggroup.org/
work-groups/trusted-platform-module/

[45] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in 2012 IEEE
Symposium on Security and Privacy, 2012, pp. 239–253.

[46] I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik,
“On the TOCTOU problem in remote attestation,” in CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security,
Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds., 2021.

[47] I. De Oliveria Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-CFA:
Minimalistic control-flow attestation using verified proofs of execution,”
in Design, Automation and Test in Europe Conference (DATE), 2021.

[48] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“Pure: Using verified remote attestation to obtain proofs of update, reset
and erasure in low-end embedded systems.”

[49] “Project everest bibiliography,” https://project-everest.github.io/papers/.
[50] Z.-Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V. Thakur, “Dice*:

A formally verified implementation of dice measured boot,” in USENIX
Security Symposium, 2021.

[51] G. Klein, K. Elphinstone, G. Heiser et al., “seL4: Formal verification of
an OS kernel,” in ACM SIGOPS, 2009.

[52] “Darpa high assurance cyber military systems (hacms) heavy equipment
transporter,” https://www.youtube.com/watch?v=6cllzGGxRfE, 2017.

[53] D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer,
M. Podhradsky, G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stu-
art, “A formal approach to constructing secure air vehicle software,”
Computer, 2018.

[54] M. Russell, “Enable the security potential and versatility of
sel4 in medical device development,” https://dornerworks.com/blog/
sel4-medical-products/, 2020.

[55] A. Petz, G. Jurgensen, and P. Alexander, “Design and formal verification
of a copland-based attestation protocol,” in ACM-IEEE International
Conference on Formal Methods and Models for System Design, 2021.

9
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on February 08,2024 at 20:20:00 UTC from IEEE Xplore. Restrictions apply.

