
1.  Introduction
The oceanic Pacific inflow to the Arctic via the Bering Strait dominates the water properties of the Chukchi 
Sea, triggers Chukchi and western Arctic sea-ice retreat, and provides nutrients, freshwater, and heat to the 
western Arctic and beyond (e.g., Woodgate, 2018). Year-round in situ Bering Strait moorings (1990-present, 
Woodgate,  2018) show strong seasonal and interannual variability and significant long-term warming, fresh-
ening, and flow increase (1991–2021: 0.03 ± 0.02°C/year; 0.010 ± 0.007 psu/year, and 0.010 ± 0.005 Sv/year, 
i.e., 0.23 ± 0.12  cm/s/year), which in combination drive large increases in heat and freshwater fluxes to the 
Arctic (1991–2021: 6.4 ± 3.7 × 10 18 J/year relative to −1.9°C and 33 ± 15 km 3/year relative to 34.8 psu), with 
flow strengthening being a major driver of heat and freshwater flux changes (trends updated from Woodgate & 
Peralta-Ferriz, 2021). However, the causes of this long-term flow increase are unknown. Indeed, most numerical 
simulations show either no-trend, or a decreasing trend (e.g., Jahn & Laiho, 2020; Nguyen et al., 2020), contra-
dicting observational evidence.

Prior work (Woodgate et al., 2005) has typically separated the Bering Strait flow into locally and far-field forced 
components. Northward velocity (from mooring data) is well correlated (r ∼ 0.8) with the almost northward 
(heading ∼330°) local wind, explainable by geostrophic balance to a wind-driven across-strait pressure-gradient 
set-up (Woodgate, 2018). However, not all the flow variance matches local wind variability and flow is northward 
when local winds are zero. These facts are attributed to a far-field, Pacific-Arctic “pressure-head” (PH), forcing, 
which has never been directly observed, but only inferred, and it is unclear between which points this pressure 
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gradient might be measured. Originally assumed to be constant (Coachman & Aagaard, 1966), this PH term is 
generally attributed to Pacific sea-level being higher than Arctic sea-level, due to either the global freshwater 
balance (Stigebrandt, 1984) or global winds (De Boer and Nof, 2004a, 2004b). Long time-series, however, show 
the PH term to be time-variable (Woodgate et al., 2005), and studies assign its variability to Arctic/sub-Arctic 
winds or shelf waves (Danielson et  al.,  2014; Nguyen et  al.,  2020; Peralta-Ferriz & Woodgate,  2017). Note 
that observations indicate that the long-term flow increase is due to increase in the PH term (Woodgate & 
Peralta-Ferriz, 2021).

In a particular breakthrough, Peralta-Ferriz and Woodgate (2017), using satellite Ocean Bottom Pressure (OBP) 
data from the Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004, 2019), found 
a strong correlation between the PH term and the time-variability of the first Empirical Orthogonal Function 
(EOF) of OBP in the Bering/Chukchi region, that is, from the northern Bering Sea to the western Arctic (r = 0.6 
year-round, r = 0.84 in June–July–August [JJA] season). The EOF pattern—low in the Arctic's East Siberian Sea 
(ESS), high over the Bering Sea Shelf southeast of the strait—matches the sea surface height/bottom pressure 
pattern of geostrophic flow through a rotating channel (Toulany & Garrett, 1984), implying that low OBP in the 
ESS (e.g., from Ekman off-shelf transport driven by westward Arctic shelf-break winds) draws water northward 
through the strait. This mechanism shares features with Danielson et al. (2014)'s Bering Sea/ESS wind-driven 
hypothesis, although they attribute ∼90% of the variance to Bering Sea forcings. We propose now that this mech-
anism, proven for monthly variability, may also explain part of the long-term trend.

Using theory (Section 3) and satellite and in situ data sets (Section 4), we quantify trends in the Arctic and 
sub-Arctic drivers of the flow. Our work also suggests that the remarkable salinization of the ESS implied by 
these data is explainable by increased Pacific inflow (Section 5), uncovers disturbing consequences of using older 
versions of GRACE products, and offers insights into why models may be missing the observed Bering Strait 
flow increase (Sections 6 and 7).

2.  Data, and Time Period of the Study
We use the satellite data sets of (a) GRACE JPL Mascons (primarily Release 6 version 2, but also earlier versions) 
global OBP (Watkins et  al.,  2015; Wiese et  al.,  2016,  2018), available monthly from 2002 to 2017, gridded 
at 0.5° × 0.5° resolution (effective resolution from satellite footprint ∼300 km), and (b) Envisat and CryoSat 
Dynamic Ocean Topography (DOT) data (Armitage et al., 2016), available monthly from 2003 to 2014 for 60°N 
to 81.5°N, and gridded at 0.75° × longitude × 0.25° latitude. Uncertainties are estimated as 1.1 cm for DOT, and 
between 1 and 2 cm for OBP. The GRACE data used are an updated version of those used by Peralta-Ferriz and 
Woodgate  (2017), but show essentially the same correlation/EOF analysis for the month-to-month variability 
analysis.

We restrict our analysis to the period of this original DOT data (2003–2014) to avoid spurious long-term trends 
that may arise when extending time-series by combining different satellites or analysis methods.

Monthly-mean surface wind velocity, wind stress, and sea-level pressure data are taken from the NCEP-NCAR 
Reanalysis 1 (Kalnay et al., 1996) (the reanalysis best matching Bering Strait wind observations, Woodgate, 2018), 
provided on a global 2.5° × 2.5° grid. NCEP wind stresses are defined as stress on the atmosphere. We estimate 
the surface stress on the ocean (henceforth “ocean surface stress”) as the negative of the NCEP wind stress, recog-
nizing this neglects momentum lost to sea-ice processes.

As in Peralta-Ferriz and Woodgate (2017), we use monthly estimates of the Bering Strait total northward flow 
(VVEL) and PH term, calculated from the in situ data of the midstrait “climate site” mooring (A3). The PH term 
is the residual of a monthly fit of 6-hrly NCEP wind (Kalnay et al., 1996) to the total flow (see Woodgate, 2018). 
Monthly sea-ice concentrations, spatial resolution of 25 × 25 km, are from NOAA/NSIDC Passive Microwave 
Version 3 (Meier et al., 2017; Peng et al., 2013).

Sea surface temperature (SST) data are from the version 4.1 Multiscale Ultrahigh Resolution (MUR) Level-4 anal-
ysis product (Chin et al., 2017; JPL MUR MEaSUREs Project, 2015), provided on a daily global 0.01° × 0.01° 
resolution grid.

Trends, correlations, and regressions are calculated from monthly values (for consistency across data sets) and are 
only shown when significant at the 95% level (unless indicated otherwise), using an integral timescale to estimate 
degrees of freedom (Woodgate, 2018).
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3.  Theory and Observations of Drivers of the Bering Strait Throughflow
Since GRACE data employs some trend corrections in time (e.g., Watkins et al., 2015), to ensure robustness of our 
conclusions, we first expand our prior GRACE work (Peralta-Ferriz & Woodgate, 2017) to include the independent 
data set of DOT—a measure of the inverted-barometer-corrected sea surface height relative to the geoid. Repeating the 
correlation/EOF analysis of Peralta-Ferriz and Woodgate (2017) for DOT yields nearly identical results as for the OBP 
data (correlation between first DOT EOF and PH term r = 0.48 for year-round data and r = 0.82 for June–July–August 
[JJA] data; prior OBP values r = 0.44 and r = 0.81, respectively). This is reassuring, since theoretically the two data sets 
are closely related. It does, however, pose the question of how the total flow is related to both variables.

In a geostrophically balanced flow,

𝑣𝑣 = −
1

𝜌𝜌𝜌𝜌

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,� (1)

where v is along-channel velocity; x, cross-channel direction; f, Coriolis parameter; ρ, density of water; and P, in 
situ pressure, in turn given by:

� (�) = �0� � + ∫

�

0
�� ��′� (2)

where g is gravitational acceleration; η, sea surface height (i.e., DOT); z, depth; and ρ0, surface density. Evalu-
ating Equation 2 at z = H, (where H is bottom depth) yields a relationship between OBP (defined in equivalent 
water height, i.e., P(H)/ρ0g), viz.:

OBP = DOT + 1
�0� ∫

�

0
�� ��′,� (3)

where the second term is the steric contribution.

To obtain the depth-integrated flow, we integrate Equation 1 with respect to z, substituting for P from Equation 2, 
following standard practice of taking ρ as ρo except where differentiated, and assuming for simplicity ∂ρ⁄∂x and 
H are not functions of z or x, resulting in

∫
𝐻𝐻

0

𝑣𝑣 𝑣𝑣𝑣𝑣 =
−𝑔𝑔𝑔𝑔

𝑓𝑓

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝐻𝐻

2 𝜌𝜌0

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

� (4)

Using differentiation of Equation 3 wrt x, we cast Equation 4 in terms of OBP and DOT, that is:

∫
𝐻𝐻

0

𝑣𝑣 𝑣𝑣𝑣𝑣 =
−𝑔𝑔𝑔𝑔

𝑓𝑓

𝜕𝜕

𝜕𝜕𝜕𝜕

(

DOT + OBP

2

)

� (5)

Integrating Equation 5 across the strait (i.e., in x) to obtain the entire strait transport, T, and acknowledging we 
only know changes in DOT and OBP, we find that changes in transport, ΔT, are given by:

Δ𝑇𝑇 =
−𝑔𝑔𝑔𝑔

𝑓𝑓
Δ

(

DOT + OBP

2

)

� (6)

This shows it is the changes of the average of DOT and OBP which drive flow changes. Indeed, repeating 
Peralta-Ferriz and Woodgate  (2017)'s correlation/EOF analysis with this average yields comparable results 
(r = 0.5 year-round, and r = 0.82 for JJA).

Furthermore, if we assume as others have (Overland & Roach, 1987) that the cross-strait pressure gradient is 
comparable to the along-strait, Equation  6 gives a quantitative way of verifying if regression fits we obtain 
(Section 4) are consistent with theory.

4.  Trends in the PH Term, OBP and DOT—Annual and Seasonal
As mentioned above, the updated mooring-based Bering Strait transport estimates (now 1991–2021), show 
a continuing, significantly increasing trend in northward flow, VVEL, 0.23  ±  0.12  cm/s/year, equivalent to 
0.01  ±  0.005  Sv/year, which over the 30-year record, amounts to a significant fraction (∼30%) of the long-
term annual mean (∼1 Sv) (Figure 1a). Updating the analysis of Woodgate  (2018), we find this trend is still 
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Figure 1.  Trends in key Bering Strait parameters. (a) For the entire mooring time-series (1990–2021), monthly (gray) and annual mean (black dots) Bering Strait 
northward velocity (VVEL), split into pressure-head (PH term) and local wind forced (W term) terms, showing significant trends for the whole time-series and our 
focus period (2003–2014) (ns indicates not significant). (b) Seasonal trends (with uncertainties, large dot indicating fit significant) for these same parameters. (c) Map 
with the sub-regions of interest. (d–j) Maps of 2003–2014 year-round trends in Ocean Bottom Pressure (OBP) from the Gravity Recovery and Climate Experiment JPL 
Mascon Release 6 version 2; Dynamic Ocean Topography (DOT); the average of these (AVG, see Section 3); NCEP Sea Level Pressure (SLP), eastward (Uwind) and 
westward (Vwind) surface winds; and Special Sensor Microwave Imager sea-ice concentration. White areas in (c)–(f) and (j) indicate no significant trend above the 90% 
confidence level. Significant trends (above 90% confidence level) in (g)–(i) are highlighted in thick color lines. Black (j) or gray stippled areas around the North Pole 
and south of 60°N in (e) and (f) indicate locations with no available DOT data. IBCAO bathymetry isobaths (Jakobsson et al., 2008) are shown every 500 m from 500 
to 4,500 m (gray lines), with land shaded gray.
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primarily attributable to an increasing PH term (0.17 ± 0.09 cm/s/year). The subset of this period used for our 
satellite-based analysis (2003–2014), chosen to match consistent satellite data sets, does not have a significant 
trend in northward velocity, VVEL (Figure 1) but does still demonstrate the significantly increasing PH term, 
making it suitable to investigate PH term drivers.

The mechanism of Peralta-Ferriz and Woodgate (2017) predicts that PH term increase should be linked to trends 
in DOT and OBP—specifically decreasing in the ESS, and/or increasing over the Bering Sea Shelf, probably 
causally linked with increasing westward winds in the Arctic and/or the Bering Sea. However, of these possible 
drivers, significant annual mean trends (Figures 1d–1j) are only found in DOT over the ESS. Surprisingly, OBP 
from GRACE JPL Mascon Release 6, version 2, even increases over the ESS (with this increase being greater in 
older versions of GRACE, Figure S1 in Supporting Information S1). Westward wind trends are not significant in 
the annual mean in either relevant region. Neither are Arctic sea-ice trends (which might yield significant trends 
in ocean surface stress) significant (Figure 1j).

However, recalling Peralta-Ferriz and Woodgate  (2017) found different drivers in different seasons, and 
Woodgate (2018) and Woodgate and Peralta-Ferriz (2021) demonstrated clearer trends in monthly rather than 
annual mooring data, we examined also trends in monthly values, which we merge here for succinctness into 
4 seasons (Figure 2), chosen to combine months with common features. By season (January–March [JFM], 
April–June [AMJ], etc.), for our 2003–2014 period, VVEL and PH terms now show significant trends in 
summer (July–September, JAS) and fall (October–December, OND) (Figure 1b), and thus we consider these 
periods in detail:

Summer (July–September) trends (Figure 2, column 3) support the Peralta-Ferriz and Woodgate (2017) mecha-
nism, with OBP, DOT, and the average of these (AVG)—which theory suggests is the direct driver of the flow 
(Section 3)—all showing significant decreasing trends in the ESS. We find (Figure 3a, i) AVG in the ESS is 
significantly and highly (|r| > 0.8) correlated with the PH term, and moreover the regression coefficient between 
these values (Figure 3a, ii), is ∼0.7 ± 0.3 s −1 in the ESS, which is in good agreement with the theoretical predic-
tion (CAVG) obtained from Equation 2, viz.:

ΔPHterm =
Δ𝑇𝑇

𝐴𝐴
=

−𝑔𝑔𝑔𝑔

𝑓𝑓𝑓𝑓
Δ

(

DOT + OBP

2

)

= 𝐶𝐶AVG ΔAVG� (7)

where A is the effective cross-section area of the strait (taken as 85 km × 50 m = 4.25 × 10 6 m 2), yielding (for H 
of 50 ± 5 m) theoretical values for CAVG of 0.9 ± 0.1 s −1.

We next multiply significant regression values (maps of Figure 3a, i) with significant trends (Figure 2c, column 
3, shown also as colored dots on Figure 3a, ii) to obtain a “response” map (Figure 3a, iii), viz. the expected 
trend in the PH term due to the AVG trend at each grid point. This shows if the trend in the driver is sufficiently 
large to explain the Bering Strait trend. This response map suggests that the mooring data's summer PH trend 
(0.6 ± 0.3 cm/s/year, Figure 1b) can be largely explained by ESS AVG change (∼0.4 ± 0.3 cm/s/year when aver-
aged over the ESS, area delimited by the black dots in Figure 3a, i) (Chukchi Sea regions are neglected as being 
too close to the strait, as compared to the barotropic Rossby radius [∼170 km] or our data footprint [∼300 km] 
to be independent.).

Overall thus, it appears the observed summer PH trend for our period may be well explained by a drop in AVG in 
the ESS. In turn, this is likely attributable to an increase in westward winds in this region (Figure 2e, column 3). 
Creating a “response” map from the ocean surface stress trend and the regression of ocean surface stress with the 
PH term yields a weaker predicted trend in PH term of ∼0.2 ± 0.15 cm/s/year (Figure 3b, i–iii) (We use surface 
stress for this regression, rather than wind velocity, as stress is linearly related to the theoretical Ekman trans-
port.). The lesser agreement with this prediction may reflect that our estimate of surface stress neglects sea-ice 
effects, or simply the noisiness/deficiencies of the winds.

(Note also the positive relationship between the PH term and the Beaufort Gyre AVG [increased PH flow corre-
lated with increased Beaufort Gyre AVG], which [rather than being causal] is most likely because the latter is 
increased by the same wind stress as lowers AVG in the ESS.)

Fall (October–December) trends, in contrast, are not well related to DOT, OBP, or AVG trends (Figures 2a–2f, 
column 4) in the ESS. The only significant trend in a driver that increases the PH term is an increase in westward 
winds in the Bering Sea (Figure 2e, column 4). Fall zonal surface stress over both the ESS and the Bering Sea 
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Figure 2.  Seasonal trends in key Bering Strait parameters (2003–2014). Row (a–f) variables as per Figures 1d–1j, column indicating season (i.e., column 1 = JFM 
[January, February, March]; 2 = AMJ [April, May, June]; 3 = JAS [July, August, September]; and 4 = OND [October, November, December]). Trends are plotted only 
when significant above the 90% confidence level.
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Shelf are well correlated with the PH term (Figure 3c, i), as would be expected from an Ekman relationship, 
that  is,

ΔPHterm (in cm∕s) =
Δ𝑇𝑇

𝐴𝐴
=

100

𝜌𝜌𝜌𝜌 𝜌𝜌
Δ𝜏𝜏surface𝑥𝑥 𝐿𝐿 = 𝐶𝐶WSTR Δ𝜏𝜏

surface
𝑥𝑥� (8)

where 𝐴𝐴 𝐴𝐴surface𝑥𝑥  is the zonal surface stress and CWSTR is the regression coefficient, which is dependent on L, the 
east-west distance over which the wind operates. This distance is poorly defined, but CWSTR matches calculated 
values (Figure 3c, ii, 40–60 [cm/s]/[N/m 2]) for Ls of 100–150 km south of the strait (comparable with the Bering 
Strait channel width, 85 km at the strait widening to ∼300 km south of the strait) and ∼400 km around the ESS 
(comparable with length scales of Arctic weather systems [∼100–500 km, Stoll, 2022]). The fall trends in surface 
stress in the northern Bering Sea (∼10 −2 N/m 2/year, not shown) acting over a distance of ∼400 km would give 
∼1 cm/s/year trend in PH term, comparable to the observed (0.8 ± 0.5  cm/s/year, Figure 1b). Surface stress 
response maps (Figure 3c, iii) show smaller values (∼0.3 ± 0.2 cm/s/year), but given the substantial errors still 
may explain a large portion of the observed trend, or, as per the summer results, reflect the generic problem of 
clear trend estimates from noisy wind data.

Winter (January–March) and Spring (April–June) trends are not significant in the VVEL or PH terms (Figure 1b), 
and so are not considered further here.

In summary, for our time period (2003–2014), the significant trends in PH term (summer and fall) can likely 
be explained by increasing westward Arctic winds in summer (decreasing ESS DOT and OBP) and increasing 
westward Bering Sea winds in fall.

5.  Implied Salinization of the East Siberian Sea (ESS)
It is noteworthy that annual (and seasonal) ESS trends in OBP are significantly different to trends in DOT 
(Figures 1 and 2). If both data sets are reliable, this must indicate a change in density of the ESS waters over our 
time period, which we quantify to be an annual average densification of order 0.14 kg/m 3/year. MUR SST data 
(not shown) indicates no significant trend and anyway, at these temperatures (∼−1 to 1°C), temperature has only 
a small influence on density. Thus, as Armitage et al. (2016), we conclude the data indicate a significant saliniza-
tion of the region (Figure 3d), 0.17 ± 0.06 psu/year averaged over the ESS (delimited by black dots in Figure 3d), 
with near coastal areas salinizing by ∼0.4 ± 0.2 psu/year over our 11-year record.

We are unaware of any in situ observations from this period that could test this conclusion. Satellite Surface Salin-
ity products (e.g., Soil Moisture and Ocean Salinity, SMOS, Martínez et al., 2022, and the joint U.S./Argentinian 
Aquarius/Satélite de Aplicaciones Científicas [SAC]-D mission, Melnichenko et al., 2016) commence only in 
2011. Our estimated salinity trends are larger than those of Steele and Ermold (2004), who use World Ocean Data 
Center data to calculate a trend of 0.07 psu/year for the surface (0–15 m) ESS (1988–2000). However, their value 
is for a much longer time-period, and Soil Moisture Active Passive data from a different (and shorter) period, 
2015 to 2020 (Zhuk & Kubryakov, 2021), indicate substantial (∼10 psu) salinity changes in the region, caused by 
relocation of the fresh Lena River plume in the Laptev Sea, west of the ESS (Figure 1c).

Indeed, displacement of river water by Pacific waters seems the most likely cause of our observed saliniza-
tion. Other possible causes seem insufficient. Alkire et  al.  (2017) estimate ESS Precipitation minus Evapo-
ration (P  −  E) as ∼200  km 3/year. Removing that entire input (assuming ESS salinities of ∼30  psu, area of 
1,082 × 10 3 km 2 (Jakobsson et al., 2008), and mixing into a 50 m water column) is equivalent to a ∼0.1 psu salin-
ization, only 5% of our 11-year change of 1.87 psu. To achieve this salinization by brine rejection would require 
2 m more ice formation in 2014 than in 2003, an almost 50% increase of the estimated existing seasonal cycle 
(∼4 m, Arctic Subpolar gyre sTate Estimate [ASTE] data (Nguyen, Pillar, Ocaña, Bigdeli, et al., 2021; Nguyen, 
Pillar, Ocaña, Smith, & Heimbach, 2021)) and note there are no significant trends in sea-ice concentration in the 
region (Special Sensor Microwave Imager data, Figure 1j). Even generous estimates of upwelling (e.g., ∼34 psu 
water from ∼100 m depth) would need to fill ∼10% of the existing depth of the ESS, which seems unlikely. In 
contrast, increasing the ∼0.1 Sv flow of Pacific water through Long Strait (Woodgate et al., 2005) by only 0.02 Sv 
per year could yield the observed salinization (assuming Pacific water salinity of 32.5 psu). Furthermore, surface 
geostrophic velocity (calculated from gradients of DOT, Figure 3e) shows consistent westward flow (∼1–2 cm/s) 
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Figure 3.  Drivers of Bering Strait and East Siberian Sea (ESS) change. (a) Relationship between summer (July, August, September) AVG and pressure-head (PH) 
term, showing significant (>95%) coefficients of (i) correlation and (ii) regression (i.e., B of “PH term = A + B × AVG”), and (iii) response (i.e., regression coefficient 
multiplied by trend, Section 4). Significant trends in AVG (from Figure 2c, column 3) shown also as dots on middle panel. (b) and (c) as per (a) but for surface ocean 
stress and PH term for (b) summer and (c) fall (October, November, December). Dots in middle panels show significant trends in ocean surface stress (not shown 
in Figure 2). (d) 2003–2014 annual mean trend in water column average salinity derived from difference of Ocean Bottom Pressure (OBP) and Dynamic Ocean 
Topography (DOT). (e) 2003–2014 averaged surface geostrophic velocity inferred from DOT (only every tenth vector plotted); and (f) 2003–2014 annual mean trend in 
surface geostrophic velocity derived from DOT (vectors plotted as in (e)). See Section 5 for discussion.
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of Pacific water into the ESS north of Wrangel Island, with a suitably large increasing trend of 0.024 ± 0.006 Sv 
(estimated by summing westward flow along a line from the coast up to 74°N, the 100 m isobath, at 180°W and 
assuming an average depth of 50 m). Thus, it seems that salinization from increased infiltration of Pacific water 
into the ESS can explain the different OBP and DOT trends.

Three further spin-offs are noteworthy:

�a)	� Increased westward winds in the ESS promote all of these mechanisms—increased Pacific water into the 
region, upwelling, and sea-ice formation in coastal polynyas.

�b)	� Surface geostrophic velocity maps (Figures 3e and 3f) suggest a much greater proportion of Pacific Water 
enters the ESS region during this period than is generally realized—the accepted picture being that Pacific 
Water generally flows eastward along the Alaskan Coast, or enters the Beaufort Gyre (Spall et  al.,  2018; 
Timmermans et  al.,  2014; Timmermans & Toole,  2023). We suggest this increasing westward diversion 
(yellow region north of Long Strait, Figure 3f) relates to the western displacement of the Arctic's transpo-
lar drift, and this Pacific water infiltration is a hitherto underappreciated corollary of westward displace-
ment of Russian river water entering the Arctic (e.g., Morison et al., 2012; Semiletov et al., 2005; Steele & 
Boyd, 1998).

�c)	� This mechanism gives a stabilizing feedback. More Pacific water into the ESS densifies the waters, increasing 
the OBP, and thus slowing the Pacific inflow.

6.  Greater Salinization From Older Versions of GRACE
Our calculations with intermediate (i.e., GRACE JPL Mascon Release 6, version 1) and older (i.e., GRACE 
JPL Mascon Release 5, version 2) versions of GRACE yield intermediate and larger ESS salinization trends 
(0.27  ±  0.05  psu/year and 0.4  ±  0.06  psu/year, respectively) (see Figure S1 in Supporting Information  S1). 
GRACE JPL Mascon Release 6 and newer use an improved Glacial Isostatic Adjustment model (i.e., ICE-6G_D, 
Peltier et al., 2018), and Release 6, version 2 (used primarily here) additionally applies updated coefficients to 
account for the Earth's oblateness and a different processing correction for temporal change in the static gravity 
field model (Wiese et al., 2018, see release notes). What is remarkable is how much difference this makes—not 
only to the implied salinization (numbers above), but also to the drivers of the flow. Particularly, the GRACE JPL 
Mascon versions prior to Release 6, version 2, show either no significant ESS OBP trends in summer (Release 6, 
version 1), or significant increasing ESS OBP trends in summer (Release 5, version 2, and older versions) (see 
Figure S2 in Supporting Information S1). These scenarios are either neutral or act to slow down the Bering Strait 
throughflow.

Overall, this suggests differences between updates of GRACE data are sufficiently large to substantially change 
forcings of the flow and estimates of salinization.

7.  Conclusions and Implications for Modeling of the Bering Strait Throughflow
Using satellite Ocean Bottom Pressure (OBP) and Dynamic Ocean Topography (DOT), we find plausible drivers 
(westward winds over the East Siberian Sea [ESS] in summer and over the Bering Sea in fall) to explain observed 
increasing trends in the northward Bering Strait throughflow in those seasons for 2003–2014. Longer satellite 
data sets are necessary to confirm the drivers of the longer-term increase observed by in situ measurements, and 
to assess if Arctic or sub-Arctic drivers dominate. For other seasons, we are unable to identify possible drivers, 
due (we suggest) to noisiness in the data being greater than any trends. Also, even further afield forcing (e.g., de 
Boer et al., 2018; Nguyen et al., 2020) are not ruled out by our analysis. Our results suggest increased flow of 
Pacific Water into the ESS significantly salinifies the region (0.17 ± 0.06 psu/year) and the resultant densification 
in turn diminishes the northward flow through the strait. We find that drivers and salinification are extremely 
sensitive to the version of GRACE OBP data used.

These results may illuminate why many models fail to correctly simulate the observed Bering Strait flow increase.

�a)	� GRACE JPL Mascon Release 6 version 1 and older versions do not show the necessary decreasing summer 
trend in OBP. Thus, models assimilating/tuned to these older satellite data sets will be missing a vital forcing 
of the strait flow. To our knowledge, this includes ASTE (Nguyen, Pillar, Ocaña, Bigdeli, et al., 2021; using 
JPL Mascon Release 5, version 2), but not Nguyen et al. (2012), which has a more accurate simulation of the 
Bering Strait flow.
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�b)	� Since the Pacific Water is found to enter the ESS driving region, correct simulation of the salinity of the 
Bering Strait throughflow appears essential to maintain the correct forcing. We note that Nguyen et al. (2012), 
which reproduced the Bering Strait flow well, also well-matched Bering Strait salinities, whereas ASTE 
(Nguyen, Pillar, Ocaña, Bigdeli, et al., 2021), which does not obtain the increasing flow trend, has Bering 
Strait salinities (Nguyen, Pillar, Ocaña, Smith, & Heimbach, 2021) ∼0.6 psu higher than observations. By 
Equation  7, assuming DOT remains constant, that salinity change in the ESS would reduce the flow by 
∼1.4 cm/s, equivalent to ∼7 years of the long-term observational trend.

�c)	� Since wind-driven lowering of OBP and DOT in the ESS is a dominant mechanism, model results may also 
be sensitive to inadequacies in wind-water coupling in a region with seasonal sea ice.

These sensitivities suggest a rather fine balance of forces determining the trend in the Bering Strait through-
flow. While it implies that observed freshening of the throughflow (0.03  psu/year in winter, Woodgate & 
Peralta-Ferriz, 2021), attributed to increased runoff from the Alaskan coast, may also have a modest dynamic and 
accelerating effect on the throughflow, that effect is only (currently) small (PH term increase ∼0.07 cm/s/year), 
order 10% of the observed long-term trend. However, sensitivities to versions of satellite data products leaves us 
currently unable to reliably estimate changes in the flow from remote data alone, leaving in situ moorings as the 
only reliable way of quantifying change in the Pacific inflow to the Arctic.

Data Availability Statement
Our data sources are: Bering Strait mooring data from the National Centers for Environmental Information (https://
www.ncei.noaa.gov/), with data and products (e.g., monthly and annual means) from the Bering Strait project 
website, http://psc.apl.washington.edu/BeringStrait.html (Woodgate, 2018; Woodgate et al., 2015; Woodgate & 
Peralta-Ferriz, 2021); Arctic DOT and geostrophic currents from University College London's Center for Polar 
Observation and Modeling, http://www.cpom.ucl.ac.uk/dynamic_topography/ (Armitage et al., 2016); GRACE 
JPL Mascon Release 6, version 2, as well as Release 6 version 1 and Release 5 version 2, OBP data from 
NASA's PO.DAAC, https://podaac.jpl.nasa.gov (Watkins et al., 2015; Wiese et al., 2018); NCEP-NCAR Reanal-
ysis 1 atmospheric data from NOAA PSL, https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (Kalnay 
et al., 1996); NOAA/NSIDC Passive Microwave Sea Ice Concentrations from the National Snow and Ice Data 
Center (Meier et al., 2017; Peng et al., 2013); MUR SST from NASA'S PO.DAAC (Chin et al., 2017; JPL MUR 
MEaSUREs Project, 2015); and bathymetry data from the International Bathymetric Chart of the Arctic Ocean 
(IBCAO) version 2.23, https://www.gebco.net/about_us/committees_and_groups/scrum/ibcao/ibcao_v2_23.
html (Jakobsson et al., 2008).
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