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ABSTRACT

Wireless telemetry communication systems may be vulnerable to eavesdroppers due to their broad-
casting nature, which is a risk to confidential information transmission. This paper explores the
feasibility of low-density parity-check (LDPC) codes for wiretap coding over a Gaussian channel
for standard telemetry links. By introducing a wiretap LDPC coding method, we aim to mitigate
the risk of eavesdropping. We further explore the notion of fine-tuning the trade-off in these codes
between secrecy and reliability through artificial noise injection. Simulation results demonstrate
the effectiveness of employing an LDPC-based wiretap code over telemetry links to provide se-
crecy. The analysis of the code shows that a neural network-based mutual information estimator
can be utilized to calculate information leakage over telemetry links.

INTRODUCTION

With the advent of the information age, the rapid advancement and deployment of telemetry sys-
tems in various industries, including aerospace, telecommunication, and remote sensing, necessi-
tates error-free secure communication more than ever. The noise in the channel introduces errors
in the received data. To detect and correct those errors, intensive studies have been done in er-
ror correction coding techniques which have led to the development of some capacity-achieving
codes: LDPC codes, turbo codes, polar codes, and Reed-Muller codes [1, 2, 3, 4]. Due to capacity-
achieving capabilities and low implementation complexity, LDPC codes have been adopted into
the IRIG 106-17 standard [5]. However, the security aspect for telemetry systems is not addressed
by these codes [6, 7]. Much of the secrecy aspects for telemetry focus on cryptography, which
is employed at the upper layers of the Open System Interconnection (OSI) model [8]. Due to the
confidential nature of telemetry data, it is only natural to desire additional security for the system.
Recent progress in physical-layer security has emerged as a viable candidate for providing addi-
tional security against an eavesdropper for telemetry links [9]. Physical-layer security can provide
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an additional layer of security beyond cryptographic efforts already in place. Error control codes
have been studied extensively for physical-layer security applications since they are ubiquitous in
digital communication systems [10, 11].

LDPC codes, first introduced by Robert Gallager in 1962, are widely used due to their near-
optimum performance and ease of implementation [1]. The IRIG 106 standard has adopted sys-
tematic and quasi-cyclic LDPC codes with three different coding rates (1/2,2/3,4/5) and two
information block sizes (1024 and 4096 bits). Readers are referred to [5] for detailed descriptions
of the construction of the generator matrices and parity check matrices specified in the standard.
Since LDPC codes can provide reliability and are used in telemetry standards, the study of LDPC
codes as wiretap codes in the domain of telemetry systems is the next logical step.

The usage of error correction codes for achieving physical-layer security has gained much atten-
tion recently. The existence of LDPC wiretap codes was shown in [12]. LDPC wiretap codes have
been studied for different wiretap channels in [13, 14, 15]. However, the Gaussian channel is of
practical interest since telemetry channels are mostly modeled as additive white Gaussian noise
(AWGN) channels, sometimes in tandem with a fading effect [16]. Most of the above-mentioned
work considers asymptotic regimes for codes analyzed as blocklength tends to infinity. To employ
LDPC wiretap codes in practical telemetry links, finite blocklength codes need to be considered.
This paper aims to develop an LDPC wiretap code based on artificial noise injection called arti-
ficially noise-injected low-density parity-check (ANI-LDPC) codes and studies the feasibility of
such codes for achieving confidentiality over the Gaussian wiretap channel.

In this paper, we measure the physical-layer security using an information-theoretic approach. We
define the term leakage as the amount of mutual information between the confidential message and
the eavesdropper’s received signal. No closed-form solution exists to calculate the information
leakage to the eavesdropper for a finite blocklength code over a Gaussian channel [17]. There exist
several data-driven mutual information estimators based on discretization, kernel density estima-
tion, and k-nearest neighbor estimation [18, 19, 20, 21, 22, 23]. Due to a lack of proper scalability
with data or dimension, these estimators have failed to be general-purpose. In [24], Donsker-
Varadhan’s Kullback-Leibler divergence representation has been used to archive a general-purpose
mutual estimator that is linearly scalable and trainable, called the mutual information neural esti-
mator (MINE). In this paper, MINE has been used to calculate leakage over the Gaussian wiretap
channel due to MINE’s ability to learn the channel for high dimensional data. Due to limitations
of computing power to calculate leakage using MINE for LDPC codes with block size 1024 and
4096 bits defined in the IRIG 106 standard, this paper uses a much simpler and smaller code of
blocklength eight. Future advances in computing will surely allow the analysis of larger codes
using MINE.

THE WIRETAP CHANNEL AND LDPC WIRETAP CODES

The wiretap channel was introduced by Wyner in his seminal paper [25] and a version of it is
shown in Figure 1. Here Alice is sending a confidential message M to Bob by encoding it to X"
and transmitting it over the main channel. Bob sees the main channel output Y and estimates
the confidential message M. There is an eavesdropper Eve who also receives a version of the



transmission Z" over the wiretap channel. Here all the capital letters denote random variables
and lowercase letters are the realization of corresponding random variables. It is assumed that
Eve has perfect knowledge of the encoder and decoder employed by Alice and Bob. One of the
consequences of Wyner’s result is that to achieve secrecy the wiretap channel has to be noisier
than the main channel [26]. To maintain an information-theoretic security argument, secrecy is
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Figure 1: The wiretap channel.

measured by the mutual information between confidential message M and wiretap channel output
Z™, given by I[(M; Z"™).

Several criteria of information theoretic secrecy have been defined in the literature, notable
among them are strong secrecy [27] and weak secrecy [25]. Strong secrecy is achieved when

lim I(M;Z") =0, (1)
n—oo
and weak secrecy is achieved when
1
lim —I(M;Z™) = 0. 2)
n—oo M,

Both of these definitions require some sense of statistical independence between M and Z" as n
approaches infinity and a means to calculate the information leakage I(M; Z™). Weak secrecy
requires that I (M; Z™) grows sublinearly with n, and strong secrecy requires the total information
to go to zero with n approaching infinity. While strong secrecy is preferred, weak secrecy is easier
to achieve. Several LDPC codes have been constructed to achieve weak secrecy [28, 29, 30].
In [15], Klinc used punctured LDPC codes to achieve secrecy but he was unable to analyze his
scheme using information theoretic techniques. Inspired by the puncturing technique, this work
aims to implement a similar technique that uses an artificial noise injection method to the LDPC
codewords and calculates leakage as the secrecy metric.

LDPC codes can be specified by bipartite graphs, consisting of variable nodes and check nodes.
The degree distribution of the code is given by two polynomials

n

Az) = Z N (3)

and

plz) =Y pr'". (4)



The coefficient \; represents the fraction of edges connected to variable nodes of degree ¢ and
p; represents the fraction of edges connected to check nodes of degree . Let us define a noise
injection polynomial

pl) =Y pir'", )
=1

where the coefficient p; is the probability of injecting noise at the ith variable node. If artificial
noise is injected to a variable node 7, then the bit is flipped. The ANI-LDPC encoding method is
described precisely as follows: Alice generates & bits of a confidential message m = [m; my -
- my|. The message m is then converted to a codeword ¢ given by ¢ = mG where G is an
LDPC generator matrix and ¢ = [¢; ¢o - - - ¢,]. Now, for each ¢; in ¢ there exists a coefficient
p; with the same subscript in the noise injection polynomial p(x) which determines if ¢; is flipped
with a Bernoulli trial of probability p;. After the noise injection, the ANI-LDPC codeword is X™.
Provided here are the specifications of the ANI-LDPC code used for simulation in this work:

n =8,

k=4,
AMz) = 0.307 4 0.461x + 0.232%,
p(x) = 0.153z + 0.232* + 0.6152°,
p(z) = 0.14 + 0.14x + 0.142* + 0.14z".

Thus, in this work, p(z) = 0.14+0.142+0.142? +0.1427 indicates that the first, second, third, and
eighth bits of every codeword will be subject to noise injection, each with probability 0.14. Those
bits will simply be flipped in this paper, although additional methods of noise injection could be
considered in future works.

MINE

To calculate the leakage (M; Z™), this work uses the mutual information neural estimator (MINE).
MINE uses the Donsker-Varadhan representation of the Kullback-Leibler divergence

Dir(Pl|Q) = F.SélpREP[f(X’ Y)] — log(Eqle’ ™), (6)

where the supremum is taken over all functions f such that the expectations are finite for random
variables X and Y. The relation between mutual information and Kullback-Leibler divergence is
given by

I(X;Y) = Dir(Pxy||Px Py). 7
In [24], the authors proposed to choose F to be a set of functions 7y : X x ) — R parameterized

by deep neural network § € ©. Since (6) is a lower bound for Kullback-Leibler divergence with
equality with an optimal function choice,

I(X;Y) > Ie(X;Y), )

where

lo(X;Y) = 2113 Ep(aa [To(X, Y)] = 1og(Epyp(y) [T 1)), €))
€



Now, if we identify X as a confidential message M and Y as the wiretap channel output Z", then
p(M, Z™) is the joint probability distribution, and py;, pz» are the respective marginals of (M, Z™).
Then (9), can be written as

lo(M; Z") = sup Eyar o) [To(M, 27)] = log(Ep(anp(zm [eM#7]). (10)
(S

Since in practice, the true distribution p(M, Z™) is unknown, we can’t use Ig(M; Z™) to estimate
I(M; Z™). Rather we can estimate expectations presented in the equation (10) using the samples
of joint and marginal distributions, by rewriting /g (M; Z™)

l l
ZTG m;, 2] — log %Z To (i z}) (11)

where [ is the number of samples. In (11), [ samples of the joint distribution are generated by
producing uniformly distributed confidential messages m, and from wiretap channel outputs z".
The term (772;, Z}') represents samples generated from marginal distributions. The network used in
this work has five fully connected hidden layers with each layer consisting of 500 nodes and Relu
activation functions. The input layer has £+n neurons. During the training, ten thousand messages
with a batch size of 1000 were used. We also used the Adam optimizer [31] with a learning rate of
10~7 and 2.5 x 10° epochs.

IMZ”'

Nl}—l

COMMUNICATION MODEL

The communication model is designed as follows. Alice generates k bits of a confidential message
M and encodes them to form a codeword X" using ANI-LDPC described above. Then a BPSK
modulated version of the codeword is transmitted over the AWGN channel as

Y™ = X"+ N, (12)
Z" = X" + N, (13)

where Y™ and Z™ are received signal outputs of the main channel and wiretap channel respectively,
and X™ has been mapped to {£1}". Nj and N}, are zero-mean Gaussian random vectors with
variances o and o respectively, where each random variable in the vector is independent. Since
the wiretap channel has to be noisier than the main channel, oy > op. The confidential message
M and wiretap channel output Z" are then used as inputs to the neural estimator to calculate
the leakage. To compare the leakage of ANI-LDPC codes with LDPC codes, the confidential
message M has been encoded using the LDPC code described by A(z) and p(z) without any kind
of addition of artificial noise, and the codewords are transmitted over the AWGN channel and the
leakage between confidential message and AWGN output for LDPC codes have been calculated.
Since the ANI-LDPC code can also be used to correct errors introduced by the noisy channel, the
bit error rate (BER) for both ANI-LDPC and LDPC codes have been calculated and compared.

RESULTS

The output of MINE for an SNR of 15 dB for the case using ANI-LDPC codes is shown in Figure
2. The overall trend of the output gradually converges to the maximum amount of information, four
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bits, but the output contains a large variance. Therefore, the output of MINE has been processed
by applying a moving average filter with a window size of 10* points. After the application of the
filter, the mutual information converges to four bits with roughly 1.5 x 10° epochs. The moving
average filter is used to process the MINE outputs for all results following.

Leakage vs Epoch using MINE for ANI-LDPC code
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Figure 2: The output of MINE at SNR 15 dB.

For the AWGN channel, the leakage I(M; Z™) for different signal-to-noise ratio (SNR) values is
shown in Figure 3. From this figure, we can see that at high and low SNR, the LDPC code leaks
almost the same amount of information as the ANI-LDPC code. At high SNR, both the LDPC
code and the ANI-LDPC code leak all of the information because the channel is almost noise
free. Even with the artificial noise injection, the eavesdropper can utilize a state-of-the-art LDPC
decoder to extract all the information. Similarly, at low SNR the received signal contains almost
no information, and therefore cannot leak any information. By comparing both codes, it can be
seen that ANI-LDPC can mitigate leakage between —10 dB and 10 dB. Since many radios operate
in this region, this technique can aid security efforts at higher layers in the protocol stack (e.g.,
cryptography) in keeping telemetry data secure during wireless transmission.

ANI-LDPC codes can also be used to correct errors introduced by the channel. To compare the
BER between LDPC codes and ANI-LDPC codes, the output of the wiretap channel for both the
LDPC code and the ANI-LDPC code used in this work were decoded using the standard belief
propagation (BP) decoder [32]. The tradeoff between BER for the LDPC code and the ANI-LDPC
code under test is shown in Figure 4. Though the ANI-LDPC code used in this work provides error
correction capabilities up to the probability of bit error 1072, it fails to match the performance of
the LDPC code for correcting errors due to the artificial noise injected in the ANI-LDPC code. Due
to the high probability of noise injection used in this work, the BER curve of ANI-LDPC reaches
something akin to an error floor at 1072 for an SNR of 7 dB. This is because at high SNR the
AWGN channel noise is very low and can be corrected by the BP decoder while the noise injected
by the noise injection polynomial p(x) remains in the received codeword. The BER performance
coupled with the leakage performance indicates a trade-off between reliability and secrecy. More
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Leakage vs SNR for LDPC code and ANI-LDPC code
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Figure 3: The leakage for AWGN channel.

work is required to fully explore parameter optimization for desired performance levels in both
areas.

Bit error rate for LDPC code and ANI-LDPC code
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Figure 4: Comparison of BER for LDPC codes and ANI-LDPC codes.



CONCLUSIONS

In conclusion, an example of wiretap coding is provided to demonstrate the wiretap code’s capa-
bility to mitigate leakage in the practical operating SNR regions of wireless telemetry. The results
show that the ANI-LDPC codes can be utilized over AWGN telemetry links to achieve secrecy,
but at the expense of some reliability. The employed code in this paper can mitigate leakage up to
0.3 bits from the eavesdropper. This work also shows the application of MINE to estimate leakage
over the AWGN channel. MINE’s general-purpose analysis technique can be applied to other more
advanced wiretap codes as well, which may pave the way for wiretap coding in telemetry links.
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