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ABSTRACT

We identify a novel method of using feedback to provide enhanced information-theoretical security
in the presence of an eavesdropper. This method begins with a fixed linear coset code providing
both secrecy and error detection/correction, as has been described by several authors. The legiti-
mate receiver then sends the syndrome information for the received codeword, and based on this
feedback, the transmitter can provide further error correction information specifically tailored to
assist only the legitimate receiver. We show that this method allows secure communication with
the legitimate receiver even when the eavesdropper’s channel is superior to that of the legitimate
receiver.

INTRODUCTION

Introduced in 1975 by Wyner, wiretap coding is the technique of encoding data for transmission
with the goal of keeping the encoded data secure from an eavesdropper [1]. Although wiretap
coding was conceived of and developed for many years as an alternative to encryption, recent
work has focused on hybrid systems using both encryption and coding. These systems reduce the
costs of encryption [2] while providing the benefits of secrecy coding such as information-theoretic
security guarantees [3].

A.  Coset Secrecy Codes

Among the first practical implementations of wiretap coding was a class of codes called coset
codes [4]. In coset coding, a base linear code C is defined, and each of the possible messages m is
assigned to one of the cosets of C. Then to transmit a message, a codeword is selected at random
from the appropriate coset. Coset codes have been designed and analyzed at both asymptotic [4, 5]
and finite [6] blocklength.

The correct approach for providing both secrecy and reliability via coset codes was described
in [4] and expanded upon in [7] and involves first selecting an error-correcting code C*, then
selecting a subcode C of C* as the base code, with all the cosets of C within C* being mapped to
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the different messages m. In this work, we use the notation and conventions detailed in [7]. To
implement a combined secrecy and reliability code for blocklength n, message size k, and [ bits of
obfuscation, we first define a base code C with [ X n generator matrix G. Next, we define a k X n
auxiliary generator matrix G’ such that the combined matrix G* given by

. |G
G = [G’] &)

has full row rank. The message m is then prefixed to an [-bit auxiliary message m’. (m’ is chosen at
random to confuse the eavesdropper and contains no useful information for the legitimate receiver).
The resulting combined message m* = [m m' } is multiplied by G* to obtain the n-bit codeword

x = [m m’] [g] =m'G". 2)

The combined generator matrix G* has size (k +1) x n, and therefore n — k — [ bits of overhead
are used for error control. The parity check H* of the code defined by G* has size (n — k — ) x n.
An auxiliary parity check matrix H” of size [ x n may also be defined such that the combined
matrix H is a parity check matrix for G and is given by

Hx
H= { H//} . 3)
B.  Secrecy Via Feedback

Among the difficulties associated with wiretap coding is the dependency on the specifics of the
legitimate receiver’s channel and the eavesdropper’s channel (factors which may change rapidly
in telemetering applications). In particular, in the original formulation of wiretap coding, it was
shown that security requires that the legitimate receiver must have a superior channel to that of
the eavesdropper [1]. Subsequent works have attempted to overcome this difficulty by various
methods, including the use of a feedback channel from the legitimate receiver to the transmitter.
Recent advances in newtork-based telemetry architectures make the use of feedback a potential
resource for security enhancements [8].

A natural approach for utilizing feedback is to allow a request for retransmission of certain bits
needed by the legitimate receiver. This is particularly simple in, e.g., the case of the binary erasure
channel (BEC), where the locations of the errors are known explicitly. In channels such as the addi-
tive white Gaussian noise channel (AWGN), it is also simple to select the bits that are less reliable.
In channels such as these, the hybrid automatic repeat request (HARQ) methodology designed for
data reliability may be employed to provide security. A number of authors have used various im-
plementations of HARQ to allow for secure communication even when an eavesdropper’s channel
is superior to that of the legitimate receiver [9].

In channels such as the binary symmetric channel (BSC), the challenge of designing a HARQ
protocol for security is more difficult, as there are no a priori indications of which bits are unreli-
able. In such cases, authors have resorted to the use of frame-based retransmission, where entire
frames are retransmitted if required [10] or using LDPC codes with belief propagation decoding to
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Figure 1: Wiretap Channel Model

identify unreliable bits [11]. In all of these cases, it is possible that the retransmitted bits or frames
may give some useful information to the eavesdropper. This problem is mitigated, however, by
the fact that the eavesdropper’s unreliable data is often reliably received by the legitimate receiver.
Thus the retransmitted data benefits the legitimate receiver more than the eavesdropper.

ADAPTIVE LINEAR SECRECY CODE CONCEPT

In this work, we introduce a method for secure communication over the wiretap channel illustrated
in Figure 1. In this channel, the sender “Alice” sends a binary length-n codeword z to the legitimate
receiver, “Bob”. Bob receives the codeword through a binary symmetric channel (BSC) with
transition probability p;. Bob’s received codeword y is then equal to x plus an error pattern eg. (As
usual, binary vector addition indicates the XOR operation.) An eavesdropper, “Eve”, receives the
codeword through a different BSC with transition probability p,. Eve’s codeword z is then given
by z = x + e, with eg being Eve’s error pattern. A perfect feedback channel is also available from
Bob to Alice, and Eve also receives everything sent on the feedback channel. The approach we
introduce here involves Alice using Bob’s feedback to design supplementary transmissions tailored
to preferentially aid Bob’s error correction over that of Eve. Unlike the HARQ-based approaches
described above, however, Alice does not simply retransmit part of the original codeword. Instead,
her transmissions are linear functions of the original combined message m*.

In particular, the approach outlined here involves three essential components. First, a standard
linear code providing both secrecy and error correction is used to encode and transmit the mes-
sage. Second, Bob transmits the syndrome yT" H* of the received message y back to Alice. Third,
Alice selects a supplementary message as a linear function of the original combined message and
transmits it. To illustrate the benefits of this approach, consider the following simplified example
of a length-8 code with a one-bit message and a three-bit auxiliary message. The initial code is
defined by the generator matrix
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Error Pattern | Original Codeword | Message | Auxiliary Message | Probability
11000000 00000000 0 000 P2(1—p1)®
11111001 00111001 0 001 PS(1 —py)?
10010101 01010101 0 010 1= p)?
10101100 01101100 0 011 pﬂ1—pg4
01010011] 10010011 0 100 (1= py)?
01101010| 10101010 0 101 (1= py)?
00000110 11000110 0 110 (1 —p)"
00111111] 11111111 0 111 P5(1 = py)?
01001101| 10001101 1 000 P —pr)?
01110100| 10110100 1 001 P —p )2
00011000 11011000 1 010 P2(1—p1)®
00100001 11100001 1 011 p2(1—p1)®
11011110] 00011110 1 100 pi(1 — p1)?
11100111 00100111 1 101 P51 = py)?
10001011 01001011 1 110 1= py)?
10110010 01110010 1 111 P —pi)?

Table 1: Bob’s possible error patterns, most likely options shown in bold.

with auxiliary generator matrix
G=[1000110 1]. 5)

The resulting G* is self-dual, so the parity check matrix for the code is

) (6)
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Suppose Alice sends message m = [0] with auxiliary message m’ = [0 0 0]. Then the
resulting codeword is the all-zero codeword. Now suppose Bob’s received codeword has the first
two bits flipped, so y = [1 100 000 O]. Eve then receives a codeword z with the
first and third bits flipped, so z = [1 01 0000 O]. Bob’s possible error patterns, their
likelihood, and their corresponding codewords and message values are shown in Table 1, with
similar information for Eve shown in Table 2.

Bob and Eve both have four most-likely codewords and four most-likely values for m*, with
two each for a message value of zero and one. At this point, Bob and Eve both have a message
equivocation of one bit, so neither has obtained any information on m. Furthermore, from Bob’s
perspective, all of the eight bits of y are equally likely to be in error. Thus if Bob requests re-
transmission of individual bits, the retransmitted bits are equally likely to help Eve as Bob. For
example, suppose Bob requests retransmission of bits sequentially. Knowledge of the first bit will
reveal to Bob that the message is likely m = [0} , but it will reveal the same information to Eve.



Error Pattern | Original Codeword | Message | Auxiliary Message | Probability
10100000 00000000 0 000 P2(1—p1)®
10011001| 00111001 0 001 P =)
11110101 01010101 0 010 P51 — p1)?
11001100 01101100 0 011 P = p )2
00110011] 10010011 0 100 pi(l—pi)?
00001010 10101010 0 101 p2(1—p1)®
01100110| 11000110 0 110 pil —p1)*
01011111] 11111111 0 111 P5(1 = py)?
00101101| 10001101 1 000 P —pr)?
00010100 10110100 1 001 P2(1—py)®
01111000| 11011000 1 010 pi(l—pi)?
01000001 11100001 1 011 p2(1—p1)®
10111110] 00011110 1 100 P51 — p1)?
10000111] 00100111 I 101 THIES DR
11101011 01001011 1 110 P5(1 = py)?
11010010 01110010 1 111 P —pi)?

Table 2: Eve’s possible error patterns, most likely options shown in bold.

On the other hand, suppose Bob instead transmits his syndrome, s = yH*T = [1 11 O],
to Alice. (Note that Bob’s syndrome reveals no message information to Eve.) Bob’s syndrome is
sufficient to inform Alice of Bob’s possible error patterns and their relative likelihood. Now Alice
transmits a supplemental bit that is a linear combination of the bits of m*. The option that provides
the best information to Bob about m (without actually broadcasting m) is to send the sum of the
first and second bits of m’. This has the overall effect of appending the column [0 11 O]T
to the combined generator matrix G*. This additional bit, if received correctly, allows Bob to
rule out both of the most-likely codewords associated with m = 1. For Eve, this additional bit
leaves two most-likely messages with different values for m. Thus, this arrangement provides
more message-distinguishing help to Bob than to Eve. Note also that all the information needed to
select the supplemental column for G* is available to both Bob and Alice, so Alice does not need
to communicate the specifics of the linear combination selected for the supplemental codeword bit.

IMPLEMENTATION METHODS

This section details the methods used to generate a proof of concept test of adaptive linear secrecy
coding. A simple adaptive linear secrecy coding algorithm is implemented, along with a HARQ-
based retransmission algorithm for comparison. The purpose of these tests is to show that adaptive
linear secrecy codes can provide secrecy even when Eve’s channel is superior to Bob’s, and fur-
thermore, that this advantage is greater than that provided by simple bit retransmission methods.
The adaptive linear secrecy coding algorithm uses a small initial (k + ) X n code defined by
generator matrix G’(*O). The message m and auxiliary message m’ are selected, and the combined
codeword m™ is then encoded and sent to Bob and Eve through their respective channels. Several



stages of supplementary transmission are then performed. At each stage, a single column g,
is appended to G’(“i_l), where ¢ is the stage number. The supplementary codeword bit x,,; is
then calculated, transmitted, and received by Bob and Eve. Bob then calculates the supplemental
syndrome bit s,,_; associated with the new bit and transmits it back to Alice.

The main point still to be specified in this implementation of adaptive linear secrecy coding
is the method for selecting the columns g(;) to be added to the combined generator matrix for
the supplementary transmissions. In this work, we simply use a brute force search of all possible
columns at each stage of transmission to find the optimal column at that stage. The metric on which
optimality is defined is simply the difference between Bob’s equivocation and Eve’s equivocation.
The pseudocode for the entire implementation is given in Algorithm 1.

Algorithm 1: Adaptive Linear Secrecy Coding

Input: pi, po, k, 1 //Channel and code properties

Input: m //Message to be sent

Input: ngart, Nend /Mnitial and final codeword length

Input: G (0)7 H ) //nitial combined generator matrix and parity check matrix

G* + G’E‘O) //Augmented generator matrix for the adaptive linear secrecy code.
m' < Random [-bit string

x +— m*G*

Alice transmits =
Bob receives y

s yH*T //Set syndrome to the initial syndrome.
for i = 1 t0 nepq — Ngtart dO
b+ —1 //Best equivocation differential so far for g
for g € IF';H do //Find best new column g to append to G*.
if L([G" [ g],5,p1) — L(IG" | 9], [ ], p2) > [ then
b< g
B« L(IG* | g],5,p1) — L([G* | ], [ ]. p2)
end
end
G* «+ [G* | V] //Update G*.
H* < Parity Check Matrix of G* //Update H*.
z; +— m*b
Alice transmits x;
Bob receives y;
y < [ylyi]
s« yH*T
end

The retransmission algorithm starts with the same generator matrix Gfo) used for the adaptive
linear secrecy code. At each stage, Bob identifies the bit of his received codeword y which most
reduces his own message entropy and requests retransmission of that bit. (Note that retransmitting
a bit of the original codeword is equivalent to appending the corresponding column of the original
generator matrix.) The pseudocode for the retransmission algorithm is given in Algorithm 2.
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Algorithm 2: Retransmission-based Secrecy Method

Input: p,, £, //Channel and code properties

Input: m //Message to be sent

Input: ngart, Nend /Mnitial and final codeword length

Input: ¢ 2*0), H (*0) /Mnitial combined generator matrix and parity check matrix

G* + G’(“O) //Augmented generator matrix for the adaptive linear secrecy code.
m’ <— Random [-bit string

x — m*'G*

Alice transmits x
Bob receives y

s 4 yH*T //Set syndrome to the initial syndrome.
for i = 1 to nepq — Ngtart do
a+k /[Lowest message entropy so far g
for v € columns of G”(*O) do //Find best column ~y of GZ‘O) to append to G*.

if L([G* | 7], s,p1) < o then
a7y

o <= L([G* | ’7]7 Svpl)

end
end
G* + [G* | d //Update G*.
H* < Parity Check Matrix of G* /[Update H*.
z; < mta

Alice transmits x;
Bob receives y;

y < [ylvil
s yH*T

end

In both Algorithm 1 and Algorithm 2, the function L(G*, s, p) returns the expected message
equivocation resulting from transmitting m* using G* over a BSC with transition probability p,
given that the received codeword has syndrome s. If the length of s is less than the length of
G™, then the expected equivocation across all possible syndromes that match s up to its length is
returned.

A combined test algorithm is also implemented to perform a comparison of the adaptive linear
secrecy code and the retransmission algorithm. This combined algorithm provides exact results
averaged across all possible transmission error patterns for both Bob and Eve. To accomplish this,
the algorithm first considers each possible initial syndrome, then it implements Algorithm 1 and 2
stage by stage, branching at each possible value of each supplemental syndrome bit. Each time the
last stage is reached, the overall equivocation at each preceding stage is calculated and multiplied
by the overall probability of the final combined syndrome. These stage by stage equivocation val-
ues are then accumulated, and once all possible syndromes have been considered, the equivocation
totals are returned. The pseudocode for the overall combined test is given in Algorithm 3.



Algorithm 3: Combined Test Algorithm
Input: p;, po, £, 1
Input: ngart, Nena //nitial and final codeword length
Input: G’(“O) /Mnitial combined generator matrix
G* GZ‘O) //Augmented generator matrix for the adaptive linear secrecy code.
™ < G’(“O) /fAugmented generator matrix for the retransmission algorithm.

for s € F2~*~'do  //For each possible initial syndrome
S 4= S(0) //Set syndrome to the initial syndrome.
140 //Stage number.
while i > 0 do
i < L(G*,s,p1) //Bob’s message entropy for G* with syndrome s.
wi < L(G*,[],p2)  //Eve’s message entropy for G*.
pi < L(I'*,s,p1) //Bob’s message entropy for ['* with syndrome s.
d; < L(T'*,[],p2) //Eve’s message entropy for I'*.
if i > Nepg — Nstart then //1f we have a completed codeword
A+ A+ Pr(s)A //Record Bob’s message entropy for G*.
Q<+ Q+ Pr(s)w //Record Eve’s message entropy for G*.
R+ R+ Pr(s)p //Record Bob’s message entropy for I'™*.
A A+ Pr(s)d //Record Eve’s message entropy for ['*.
while s; ., ... =1do //Backtrack
| i1 —1
end
Sitnggar—k—1 < 1
else
Find best new columns b and a for G* and ['* using Algorithms 1 and 2.
G* « [G* | D] //Update G*.
" < [[* | g //Update I'*.
s < [s]0] //Set new syndrome bit to zero initially.
14—1+1 //Move to next stage.
end
end
end

RESULTS

Algorithm 3 was executed using parameters p; = 0.25, po = 0.2, k = 1, | = 4, ngax = 8,
Nend = 16, and initial combined generator matrix
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Figure 2: Performance of secrecy coding methods, calculated using Algorithm 3.

The resulting equivocation by stage for Bob and Eve are given for the adaptive linear secrecy
code in Figure 2(a) and for the retransmission algorithm in Figure 2(b). The results shown in these
figures indicate that the security gain provided by adaptive linear secrecy coding is superior to that
of the retransmission-based secrecy method.

OPEN QUESTIONS AND FUTURE WORK

While the findings presented above show the potential of the adaptive linear secrecy coding, the
results presented in this work are only an initial proof of concept for this new technique. There are
many opportunities to optimize the algorithm presented here, especially in relation to practicality
of implementation. A few of these possible optimizations are listed here:

* The current form of Algorithm 1 requires a brute force search of columns to extend G*, a
procedure which is not practical at higher code dimensions.

* The metric  used in Algorithm 1 provides no guarantees regarding Bob’s successful decod-
ing probability.

 After the initial transmission, Algorithm 1 transmits one bit at a time on the main and feed-
back channels. This likely presents latency problems for a practical implementation.

In addition to the optimizations listed above, many opportunities also exist to generalize the
technique as presented here and to potentially gain even greater performance benefits over retransmission-
based methods. Several of these are listed here:

* In addition to extending the code by adding columns to G*, it may be valuable to lengthen
the code by adding both columns and rows to G* to further improve secrecy gain.

* The initial generator matrix Gz‘o) could have all-zero rows corresponding to the bits of the
message m. The transmission of any information about the message would then be put off
until later stages of transmission, potentially further decreasing information leaked to Eve.

* The dependency of the new columns on Bob’s feedback could be altered with the goal of
making it resilient to errors in the feedback channel.
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CONCLUSIONS

In this work, we introduce the technique of adaptive linear secrecy coding and present a demon-
stration of its effectiveness in principle. Specifically, we show that the overall performance (in
terms of legitimate vs. eavesdropper equivocation) of adaptive linear secrecy coding exceeds that
of retransmission-based methods such as HARQ when used for secrecy. The results presented here
demonstrate the value of further development and study of adaptive linear secrecy coding.
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