

Anthropogenic antimicrobial micropollutants and their implications for agriculture

Anahid A Moghadam, Weitao Shuai and Erica M Hartmann

Antibiotics and disinfectants have saved millions of human lives and cured uncountable animal diseases, but their activity is not limited to the site of application. Downstream, these chemicals become micropollutants, contaminating water at trace levels, resulting in adverse impacts on soil microbial communities and threatening crop health and productivity in agricultural settings and perpetuating the spread of antimicrobial resistance. Especially as resource scarcity drives increased reuse of water and other waste streams, considerable attention is needed to characterize the fate of antibiotics and disinfectants and to prevent or mitigate environmental and public health impacts. In this review, we hope to provide an overview of why increasing concentrations of micropollutants such as antibiotics are concerning in the environment, how they can pose health risks for humans, and how they can be countered using bioremediation strategies.

Address

Department of Civil and Environmental Engineering, Northwestern University, USA

Corresponding author: Hartmann, Erica M
(erica.hartmann@northwestern.edu)

Current Opinion in Biotechnology 2023, **80**:102902

This review comes from a themed issue on **Environmental Biotechnology**

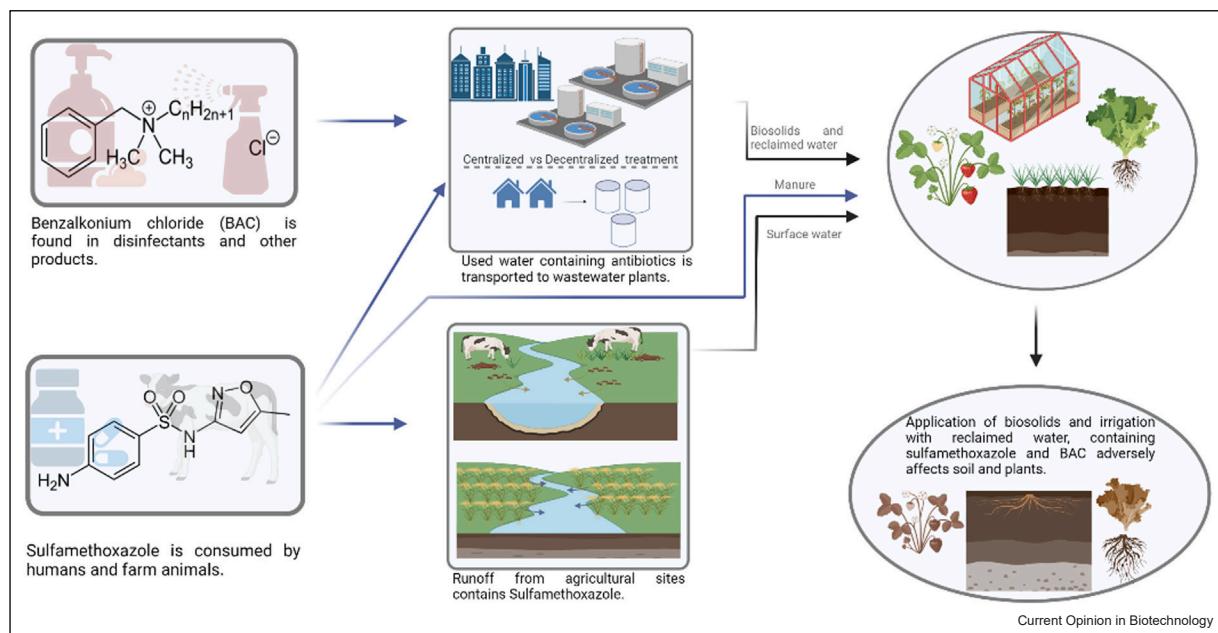
Edited by **Jaime Martinez Urtaza** and **Luis De Leon**

For complete overview of the section, please refer to the article collection, "[Environmental Biotechnology \(2023\)](#)"

Available online 20 February 2023

<https://doi.org/10.1016/j.copbio.2023.102902>

0958-1669/© 2023 Elsevier Ltd. All rights reserved.


Introduction: antibiotics and disinfectants as micropollutants

We need antibiotics and disinfectants to battle infections and to grow healthy livestock, but widespread use has resulted in many serious problems such as emerging antimicrobial resistance, multidrug-resistant pathogens, and adverse effects on environmental microbial ecosystems [1]. In the United States alone, approximately 11 000 000 kg of antibiotics are sold and used for therapeutic and subtherapeutic purposes [2], and particularly in response to the COVID-19 pandemic, disinfectant use has

skyrocketed [3]. At the same time, global development is driving changes in agricultural processes, including increased water reuse and land application of biosolids, in the name of sustainability and closing the loop on waste streams. Neither centralized nor decentralized wastewater treatment processes are designed to remove antibiotics or disinfectants, and these chemicals persist in both effluent waters and biosolids, ultimately resulting in contamination of agricultural soil (Figure 1). Understanding the fate of antibiotics and disinfectants is thus especially important, as a significant portion will end up where reclaimed water or biosolids are used for resource recovery [4]. In this review, we explore the fate, environmental impacts, and possible remediation strategies for sulfamethoxazole and benzalkonium chloride (BAC), as example antibiotics and disinfectants, respectively, focusing on their occurrence and implications in agricultural settings [5]. We chose sulfamethoxazole and BAC as they are among the most extensively used antibiotics and disinfectants, commonly found in nontarget environments, and relevant to agricultural settings such as agricultural runoff, biosolids/manure, and farmland soil (Figure 2).

Sulfonamides are bacteriostatic and inhibit the synthesis of folic acid [6]. Sulfamethoxazole is a sulfonamide antimicrobial, widely used as a pharmaceutical antibiotic for both human and animal bacterial infections. Approximately 18 000 000 kg of sulfamethoxazole enters the biosphere each year [7]. As antibiotics cannot be completely metabolized, sulfamethoxazole and its metabolites (e.g. N-acetyl-sulfamethoxazole) are excreted via urine and feces, entering hospital wastewater, municipal wastewater treatment plants, aquatic environments, agricultural runoff [8], and agricultural land as farmyard manure is applied as fertilizer [9]. A recent review [10] reported that sulfamethoxazole appeared in environmental matrices at the highest concentration (up to 3460.57 ng/L in groundwater) among commonly used antibiotics, including β -lactams, tetracycline, and fluoroquinolones. As a micropollutant, sulfamethoxazole directly negatively impacts human health and environmental quality and indirectly endangers lives via the introduction of antibiotic-resistant bacteria and associated genes to food production [1,11,12]. Sulfamethoxazole was added to the European Union watch list of pollutants that should be carefully monitored in surface water in 2020 in response to potential risks it posed in aquatic environments [13].

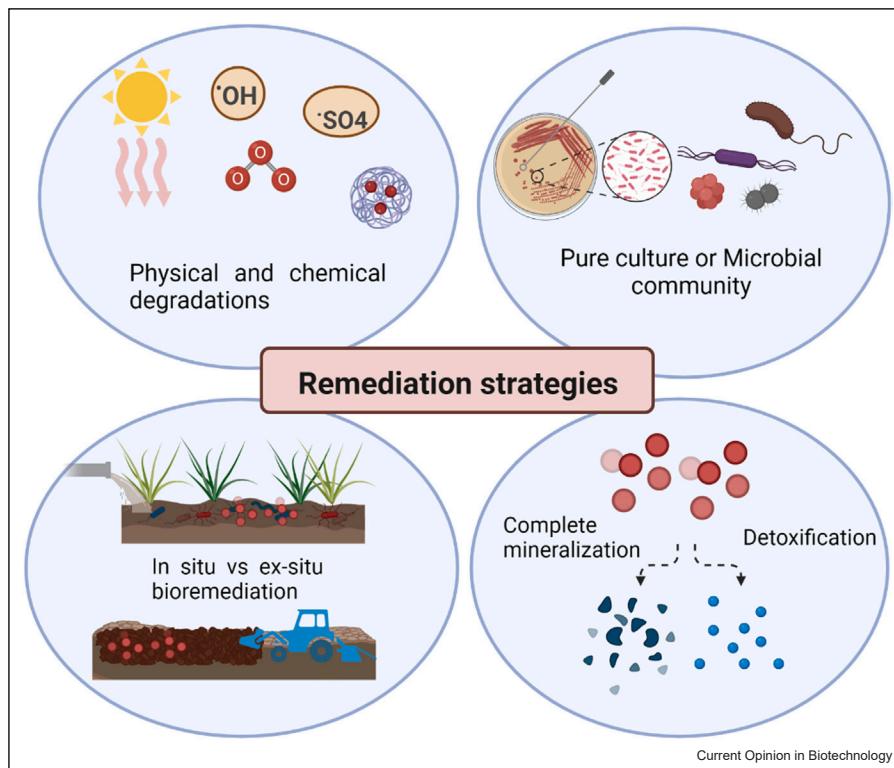
Figure 1

Antibiotics and disinfectants travel from their point of use, either passing through municipal wastewater treatment facilities, decentralized treatment (such as graywater treatment or composting), or bypassing them entirely, ultimately contaminating agricultural soil via irrigation and fertilizer. Created with BioRender.com.

BAC, a subset of quaternary ammonium compounds (QAC), is a type of disinfectant and cationic surfactant. They have a positive charge on the nitrogen atom and the general formula of $[C_6H_5CH_2N(CH_3)_2R]Cl$, where R represents a mixture of alkyls ranging from C8 to C16 [14]. BACs are used extensively in both household and commercial products, eventually accumulating in municipal wastewater [15]. As a result of using biosolids on agricultural fields as fertilizers, BACs are introduced to soil environments. In addition, using reclaimed wastewater for irrigation, or even through direct discharge from inadequate treatment facilities, BACs may enter soil and aquatic systems. Owing to its alkyl chains and positive charge, BAC is more likely to be retained by soil rather than becoming bioavailable by leaching [14]. BAC is usually found in the environment in low concentrations, but high concentrations can also be found in effluents of facilities such as hospitals or industries such as hydraulic fracturing. Concerns exist surrounding antibiotic resistance and cross-resistance invoked by exposure to BACs even at low concentrations [15–17]. BACs can also be genotoxic in eukaryotic cells at concentrations as low as 1.0 mg/L, adding to its environmental and health risks [18].

Micropollutants such as sulfamethoxazole and BACs accumulating in environmental matrices such as water and soil raise concerns about ecological impacts and

public health risks. They thus require careful monitoring, evaluation, and mitigation.


Impacts of antimicrobial micropollutants on soil microbiota and plants

Contamination in soil can change taxonomic and functional characteristics of microbial communities. Two major concerns about the impacts on soil microbiota are decreased productivity in terms of nutrient cycling and increased antimicrobial resistance.

Sulfamethoxazole contamination not only alters the phylogenetic profile of soil microbiota, but also changes their functional profile [12]. A study using composting material, including straw and cow manure supplemented with 25, 50, or 100 mg/kg sulfamethoxazole, monitored over 45 days, found that the protease, cellulase, and urease content in the control setting (no sulfamethoxazole) was significantly higher ($p < 0.05$) than all the sulfamethoxazole treatments. These results indicate that sulfamethoxazole has inhibitory effects on nutrient cycling.

Similarly, BAC pollution can impact nitrogen conversion [19]. A study examining two different soil samples (acidic forest soil and alkaline cultivated soil) spiked with 0.1 g of BAC and monitored for 60 days found that the relative abundance of *nifH* (which encodes nitrogenase ferritin) in acid forest soil increased by 91% and 79% in alkaline soil.

Figure 2

Remediation strategies range from abiotic methods to use of pure culture or microbial communities to biodegrade the antibiotics present in the environment. Strategies can be implemented *in situ* or *ex situ* and may or may not result in complete mineralization. Created with BioRender.com.

Also, in both soil samples, after 7, 15, and 60 days, the abundances of ammonia-oxidizing archaea (*AOA*) and bacteria (*AOB*), as indicated by their monooxygenase gene (*amoA*), were significantly higher compared with day 0. The higher abundance of *AOA* and *AOB* correlates with higher ammonia oxidation capacity of soil [20]. This suggests that the presence of BAC in soil amendments may inadvertently decrease available nitrogen. In the same vein, a three-year study on BAC-contaminated river sediments showed that these microbial communities were noticeably decreased in diversity compared with the control samples (no BAC exposure) [15].

Micropollutant exposure may also enrich antimicrobial resistance. Understanding this process is particularly important in the One Health framework, as resistance in environmental and agricultural settings is intrinsically linked to resistance in the clinic, and antimicrobial resistance is one of the most pressing global threats to public health [21]. BAC resistance in human pathogens in pure culture can be nonspecific resistance through morphological and cell surface properties (i.e. alterations in fatty acid composition) [19,22], as well as specific through efflux pumps (i.e. *mdrL*). Enrichment of both nonspecific antimicrobial resistance strategies and

specific efflux pumps is problematic for public health, as these strategies may translate both to increased resistance against the biocide in question and other clinically or commercially relevant antimicrobials. As shown in a longitudinal study conducted in a pig farm, withdrawal of antimicrobial (apramycin or trimethoprim sulfamethoxazole) decreased multidrug-resistant and increased fully susceptible *Escherichia coli*, indicating the importance of responsible use of antibiotics such as sulfamethoxazole in agriculture [24].

Once in soil, micropollutants can affect plants both directly and indirectly via the microbiota. Inhibition of chlorophyll biosynthesis, hindering the rhizosphere microbiome and rhizosphere enzyme activity reduction are some effects of antibiotic accumulation in soil [23]. Sulfamethoxazole is no exception, acting as a competitive inhibitor of dihydropteroate synthase, which is an important enzyme in folate metabolism [20]. In strawberries (*Fragaria ananassa*), sulfamethoxazole first damages the roots and reduces the photosynthesis rate after being transported to the leaves [8]. There is also indirect damage caused by sulfamethoxazole; when photosynthesis is reduced, the excessive light energy affects the reactive oxygen species balance and damages membranes.

Although studies on QAC toxicity to terrestrial crops are scarce, it is reported that high QAC concentrations decrease root fresh weight, total root length, and photosynthetic pigment content, leading to severe inhibition of plant growth [25]. Based on evidence from multiple other organic pollutants, uptake of QAC by lettuce, cucumber, and spinach is likely. BAC has a molecular mass of approximately 300 Daltons and its solubility is greater than 500 g/L. It therefore has a high potential for uptake by plants [26]. BAC uptake by lettuce and toxicity effects such as reduced plant dry weight, necrosis, chlorosis, and wilting were observed [27].

Remediation and mitigation strategies

Remediation technologies can be categorized into physical, chemical, and biological approaches. Physical and chemical technologies such as advanced oxidation and flocculation are used despite their drawbacks of by-product toxicity and high cost [28]. Novel physical and chemical treatment methods include redox transformation of sulfamethoxazole by nanoscale zerovalent iron particles [29], reduction of pollutant bioavailability using environment-friendly biochar [30], and degradation of QACs, including BAC, using ozone/UV treatments [31]. Notably, many technology-intensive methods are designed for centralized treatment facilities rather than decentralized facilities or treatment at the point of use. Here, we focus our discussion of remediation on biodegradation-based strategies due to their cost-effectiveness and versatility.

Biocidal characteristics of sulfamethoxazole and BAC dictate that successful biodegradation relies on microorganisms with resistance to the micropollutants as well as production of degrading enzymes. Isolates from several genera biodegrade sulfamethoxazole, for example, *Rhodococcus*, *Archromobacter*, *Variovorax*, *Microbacterium*, *Arthrobacter*, *Orchrobacterum*, and *Paenarthrobacter* [23]. Biodegradation of BAC can be performed by strains in the genus *Pseudomonas*, which is known for its resistance to disinfectants and its ability to degrade various organic contaminants [32]. In addition, *Bacillus niabensis*, *Xanthomonas* sp., *Thalassospira* sp., and *Aeromonas* sp. can degrade QACs [7,15]. These degraders were enriched and isolated from traditional sources such as activated sludge [33,34] and surface water [35]. In addition, waste yeast biomass [36] (*Ogataea polymorpha*), white rot fungi (*Phanerochaete chrysosporium*) [37], and marine diatoms (*Chaetoceros muelleri*) [38] have been explored as resources to enhance treatment and expand application scenarios.

Complete mineralization of micropollutants is ideal but not always achievable. Notably, one strain of *Pseudomonas* completely mineralizes BAC, which is considered rare in the environment [14,39]. Advances in

analytical approaches such as HPLC-MS, LC-MS/MS, and GC-MS [40,41] allow for identification of putative metabolites and proposal of pathways for sulfamethoxazole and BAC biodegradation [22,42], which can further assist the assessment of toxicity reduction. From a biotechnology application standpoint, it is of interest to decipher the ‘microbial ingredients’ to successful (either complete mineralization or biotransformation to low-toxicity products) biodegradation. Growing evidence indicates that microbial communities outperform pure cultures [23], motivating investigations into micropollutant-degrading communities with molecular biology methods. Ertekin et al. revealed *Pseudomonas* sp. strain, BIOMIG1 as a key BAC degrader and proposed a responsible gene cluster in BAC-degrading microbial communities developed from four different habitats (sewage, activated sludge, soil, and sea sediment) through 16S rRNA pyrosequencing and metagenomics sequencing. Oh et al. [42] identified a candidate amine oxidase gene for BAC dealkylation using metatranscriptomics and further verified the gene product activity from cell extracts. Qi et al. [44] fed microbial community samples from wastewater treatment plants with sulfamethoxazole and 3-amino-5-methylisoxazole (3A5MI, an intermediate of sulfamethoxazole degradation) to enrich for biodegrading groups of these two chemicals. DNA-stable isotope probing (SIP) along with 16S rRNA gene sequencing and other analytical approaches revealed key players in complete sulfamethoxazole biodegradation, where *Paenarthrobacter* and *Nocardioides* were the primary degraders of sulfamethoxazole and 3A5MI, respectively, and nondegraders *Acidovorax* and *Sphingobium* enhanced 3A5MI degradation. Considering that only 1% of bacteria and archaea can be cultivated, applying the above technologies is vital in studying and screening micropollutant-degrading microbial communities. This approach is more effective, and less labor-intensive compared with the traditional ‘enrichment-isolation-verification’ route.

Successful bioremediation of micropollutants is limited by poor bioavailability, as well as suboptimal environmental conditions [45]. *Sphingobacterium mizutaii* can achieve 93.87% degradation of 50 mg/L sulfamethoxazole in 7 days under optimal conditions (30.8°C, pH 7.2), while degradation as low as <40% was observed under nonoptimal conditions [43]. Co-contamination might also be an important factor, as biodegradation of one BAC was inhibited in the presence of another BAC with different R-chains [18]. The limitations of operational conditions of bioremediation technologies (e.g. temperature, pH, and initial targeted micropollutant concentrations) can be challenging because of high energy and operation costs even in centralized treatment facilities where system control is possible. Owing to the characteristics of the routes of micropollutants entering agricultural settings (Figure 1), *in situ* bioremediation at

the source, reservoir, or decentralized treatment facilities is desired for more effective mitigation. In this context, limited working conditions of bioremediation should be addressed since environmental conditions are usually not subject to control for *in situ* remediation. To this end, immobilization of micropollutant-degrading microbes on biochar [45], agriculture residues (bagasse) [46], and amendment with *in situ*-generated biogenic manganese oxides [40] to enhance biodegradation under wider environmental conditions or low pollutant concentrations were investigated. In addition to combining biological approaches with physical and chemical approaches, 'non-conventional' biological resources can also facilitate *in situ* bioremediation. For example, *Chaetoceros muelleri*, a marine diatom that can be applied as an aquaculture feed and agriculture fertilizer, was able to remove 38.9% sulfamethoxazole over 6.3 days [38]; *Ogataea (Hansenula) polymorpha* as a resource for BAC contamination bioremediation was evaluated in the context of recycling waste yeast biomass from bioethanol production [36]. These explorations, although not immediately effective or successful, broaden the possibilities of applying bioremediation technologies *in situ*, inspiring the development of fertilizers or feeds containing micropollutant-degrading microbes.

Conclusions and outlook

Antibiotics and disinfectants such as sulfamethoxazole and BAC are necessary, as is water reuse and resource recovery. However, when present as micropollutants, these compounds threaten soil and crop health by disrupting microbial communities and damaging plant tissues directly and indirectly and contribute to the global threat of antimicrobial resistance. While biological processes that are commonly employed in wastewater treatment can degrade micropollutants, they need to be engineered intentionally to target such chemicals individually or in mixtures. This lens needs to be applied not only to large-scale centralized facilities but also to decentralized facilities, which are increasingly adopted for on-site water reuse or composting [47]. Such facilities are considerably different from their municipal counterparts and require special considerations for risk assessment [48]. Incomplete mineralization and constraints on environmental and operational conditions are major challenges faced by bioremediation technologies, especially for *in situ* applications that benefit agricultural settings the most. Advanced analytical tools such as mass spectrometry and molecular biology tools such as metagenomics [49], metatranscriptomics, and SIP can be used to study processes occurring *in situ*, revealing potential problems, helping to quantify risk, and suggesting potential bio-based solutions. Combining physical, chemical, and biological approaches and exploring unconventional resources for micropollutant degraders enable new advancements in cost-effective and

easy-to-apply bioremediation technologies for *in situ* contamination mitigation. Given the prospect of increasing production of antibiotics and disinfectants, as well as increasing resource reuse and agricultural demand for water and nutrients, we need to rethink and manage how these products are used, transported through environmental matrices, and treated to ensure that they remain effective and do not cause harm.

CRedit authorship contribution statement

AAM: Investigation, Visualization, Writing – original draft; **WS:** Writing – review & editing; **EMH:** Conceptualization, Writing – review & editing, Supervision.

Conflict of interest statement

The authors have no conflicts to declare.

Data availability

No data were used for the research described in the article.

Acknowledgements

WS and EMH are supported in part by the National Science Foundation Chemical, Bioengineering, Environmental, and Transport Systems Division, USA (grant ID: 2043156).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Peixoto PS, *et al.*: **Development of a screening method for sulfamethoxazole in environmental water by digital colorimetry using a mobile device.** *Chemosensors* 2022, **10**:25, <https://doi.org/10.3390/chemosensors10010025>
2. Ghirardini A, Grillini V, Verlicchi P: **A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure – Environmental risk due to antibiotics after application to soil.** *Sci Total Environ* 2020, **707**:136118, <https://doi.org/10.1016/j.scitotenv.2019.136118>
3. Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J: **Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety.** *ACS Chem Health Saf* 2022, **29**:27-38, <https://doi.org/10.1021/acs.chas.1c00026>
4. Khan AH, Macfie SM, Ray MB: **Sorption and leaching of benzalkonium chlorides in agricultural soils.** *J Environ Manag* 2017, **196**:26-35, <https://doi.org/10.1016/j.jenvman.2017.02.065>
5. Helmecke M, Fries E, Schulte C: **Regulating water reuse for agricultural irrigation: risks related to organic micro-contaminants.** *Environ Sci Eur* 2020, **32**:4, <https://doi.org/10.1186/s12302-019-0283-0>
6. Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H: **Effects of sulfamethoxazole on soil microbial communities after adding substrate.** *Soil Biol Biochem* 2009, **41**:840-848, <https://doi.org/10.1016/j.soilbio.2009.02.001>
7. Qiu J, *et al.*: **Residual veterinary antibiotics in pig excreta after oral administration of sulfonamides.** *Environ Geochim Health* 2016, **38**:549-556, <https://doi.org/10.1007/s10653-015-9740-x>

8. Lv Y, Li Y, Liu X, Xu K: **Effect of soil sulfamethoxazole on strawberry (*Fragaria ananassa*): Growth, health risks and silicon mitigation.** *Environ Pollut* 2021, **286**:117321, <https://doi.org/10.1016/j.envpol.2021.117321>.
This study is one of the few which investigates how sulfamethoxazole as a pharmaceutical antibiotic can end up in soil and affect edible plants and fruits, specifically strawberry.

9. A Goulas, et al., Assessing the environmental availability of sulfamethoxazole and its acetylated metabolite in agricultural soils amended with compost and manure: an experimental and modeling study, *vol*, 19, 2017, 6782.

10. Chaturvedi P, et al.: **Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants.** *Environ Res* 2021, **194**:110664, <https://doi.org/10.1016/J.ENVRES.2020.110664>

11. Song T, et al.: **Comparative effects of different antibiotics on antibiotic resistance during swine manure composting.** *Bioresour Technol* 2020, **315**:123820, <https://doi.org/10.1016/j.biortech.2020.123820>

12. Sardar MF, Li H, Zhu C, Dar AA, Zhang B, Waqas MA: **Differential effects of sulfamethoxazole concentrations on the enzymatic dynamics of aerobic composting.** *Bioresour Technol* 2021, **336**:125330, <https://doi.org/10.1016/j.biortech.2021.125330>

13. Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document number C(2020) 5205) (Text with EEA relevance) - Publications Office of the EU. (<https://op.europa.eu/en/publication-detail/-/publication/5bd350f7-d7b1-11ea-adf7-01aa75ed71a1>) (accessed Dec. 18, 2022).

14. Fortunato MS, et al.: **Biodegradation and detoxification of benzalkonium chloride in synthetic and industrial effluents in upflow biofilm aerobic reactors.** *Water Air Soil Pollut* 2019, **230**:79, <https://doi.org/10.1007/s11270-019-4126-9>

15. Barber OW, Hartmann EM: **Benzalkonium chloride: a systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies.** *Crit Rev Environ Sci Technol* 2022, **52**:2691-2719, <https://doi.org/10.1080/10643389.2021.1889284>.
This review explains BAC increased use in pandemic times and its fate in soils and possible mitigation strategies with a focus on bioremediation.

16. Pereira BMP, Tagkopoulos I: **Benzalkonium chlorides: uses, regulatory status, and microbial resistance.** *Appl Environ Microbiol* 2019, **85**:e00377-19, <https://doi.org/10.1128/AEM.00377-19>

17. Zhang C, et al.: **Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment.** *Sci Total Environ* 2015, **518-519**:352.

18. Khan AH, Topp E, Scott A, Sumarah M, Macfie SM, Ray MB: **Biodegradation of benzalkonium chlorides singly and in mixtures by a *Pseudomonas* sp. isolated from returned activated sludge.** *J Hazard Mater* 2015, **299**:595-602, <https://doi.org/10.1016/j.jhazmat.2015.07.073>

19. Yang R, Zhou S, Zhang L, Qin C: **Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride.** *J Environ Sci* 2022, **126**, <https://doi.org/10.1016/j.jes.2022.04.004>.
Very insightful study that helps understand that how bactericide accumulation in soil could affect not only soil microbial community structure, but also its functional profile, with a focus on N cycle-related genes in microorganisms.

20. Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R: **A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae.** *Plant Biotechnol J* 2019, **17**:638-649, <https://doi.org/10.1111/pbi.13004>

21. Jin L, et al.: **Integrating environmental dimensions of 'one health' to combat antimicrobial resistance: essential research needs.** *Environ Sci Technol* (21) 2022, **56**:14871-14874, <https://doi.org/10.1021/acs.est.2c01651>

22. Keenum I, et al.: **Metagenomic tracking of antibiotic resistance genes through a pre-harvest vegetable production system: an integrated lab-, microcosm- and greenhouse-scale analysis.** *Environ Microbiol* (8) 2022, **24**:3705-3721, <https://doi.org/10.1111/1462-2920.16022>

23. Lv Y, et al.: **Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin.** *Environ Pollut* 2020, **262**:114203, <https://doi.org/10.1016/j.envpol.2020.114203>

24. de Lucia A, et al.: **Reduction in antimicrobial resistance prevalence in *Escherichia coli* from a pig farm following withdrawal of group antimicrobial treatment.** *Vet Microbiol* 2021, **258**:109125, <https://doi.org/10.1016/J.VETMIC.2021.109125>

25. Li Y, et al.: **Phytotoxicity and oxidative effects of typical quaternary ammonium compounds on wheat (*Triticum aestivum* L.) seedlings.** *Environ Sci Pollut Res* 2019, **26**:25985.

26. Wu X, Ernst F, Conkle JL, Gan J: **Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables.** *Environ Int* 2013, **60**:15-22, <https://doi.org/10.1016/j.envint.2013.07.015>

27. Khan AH, et al.: **Uptake and phytotoxic effect of benzalkonium chlorides in *Lepidium sativum* and *Lactuca sativa*.** *J Environ Manag* 2018, **206**:490-497, <https://doi.org/10.1016/j.jenvman.2017.10.077>

28. Shang Y, Xu X, Gao B, Wang S, Duan X: **Single-atom catalysis in advanced oxidation processes for environmental remediation.** *Chem Soc Rev* 2021, **50**:5281-5322, <https://doi.org/10.1039/d0cs01032d>

29. Shanableh A, et al.: **Assessment of sulfamethoxazole removal by nanoscale zerovalent iron.** *Sci Total Environ* 2021, **761**:143307, <https://doi.org/10.1016/j.scitotenv.2020.143307>

30. Keerthan S, Jayasinghe C, Bolan N, Rinklebe J, Vithanage M: **Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil.** *Chemosphere* 2022, **297**:134073, <https://doi.org/10.1016/j.chemosphere.2022.134073>

31. Yu X, Kamali M, Van Aken P, Appels L, Van der Bruggen B, Dewil R: **Advanced oxidation of benzalkonium chloride in aqueous media under ozone and ozone/UV systems – Degradation kinetics and toxicity evaluation.** *Chem Eng J* 2021, **413**:127431, <https://doi.org/10.1016/j.cej.2020.127431>

32. McFarland AG, Bertucci HK, Littman E, Shen J, Hutterhower C, Hartmann EM: **Triclosan tolerance is driven by a conserved mechanism in diverse *Pseudomonas* species.** *Appl Environ Microbiol* 2021, **87**:1-17, <https://doi.org/10.1128/AEM.02924-20>

33. Song J, et al.: **Biodegradation and metabolic pathway of sulfamethoxazole by *Sphingobacterium mizutaii*.** *Sci Rep* 2021, **11**:1-12, <https://doi.org/10.1038/s41598-021-02404-x>.
Study on sulfamethoxazole bioremediation with a focus on finding new species with high tolerance and biodegrading abilities and different ranges of environmental conditions.

34. Khan AH, Topp E, Scott A, Sumarah M, Macfie SM, Ray MB: **Biodegradation of benzalkonium chlorides singly and in mixtures by a *Pseudomonas* sp. isolated from returned activated sludge.** *J Hazard Mater* 2015, **299**:595-602, <https://doi.org/10.1016/j.jhazmat.2015.07.073>

35. Fortunato MS, et al.: **Biodegradation and detoxification of benzalkonium chloride in synthetic and industrial effluents in upflow biofilm aerobic reactors.** *Water Air Soil Pollut* 2019, **230**:79, <https://doi.org/10.1007/s11270-019-4126-9>

36. Muter O, et al.: **Evaluation of the enhanced resistance of *Ogataea (Hansenula) polymorpha* to benzalkonium chloride as a resource for bioremediation technologies.** *Process Biochem* 2019, **87**:157-163, <https://doi.org/10.1016/J.PROCBIO.2019.08.026>

37. Guo XL, Zhu ZW, Li HL: **Biodegradation of sulfamethoxazole by *Phanerochaete chrysosporium*.** *J Mol Liq* 2014, **198**:169-172, <https://doi.org/10.1016/J.MOLLIQ.2014.06.017>

38. Mojiri A, Baharlooian M, Zahed MA, Carrillo JM, Tomás García-Bermejo J, Anta Alvarez J: **The potential of *chaetoceros muelleri***

in bioremediation of antibiotics: performance and optimization. *Int J Environ Res Public Health* 2021, **18**:977, <https://doi.org/10.3390/IJERPH18030977>

39. Ertekin E, Hatt JK, Konstantinidis KT, Tezel U: **Similar microbial consortia and genes are involved in the biodegradation of benzalkonium chlorides in different environments.** *Environ Sci Technol* 2016, **50**:4304-4313, https://doi.org/10.1021/ACS.EST.5B05959/SUPPL_FILE/ES5B05959_SI_001.PDF

40. Liang DH, Hu Y, Cheng J, Chen Y: **Enhanced performance of sulfamethoxazole degradation using *Achromobacter* sp. JL9 with *in-situ* generated biogenic manganese oxides.** *Bioresour Technol* 2021, **333**:125089, <https://doi.org/10.1016/J.BIOTECH.2021.125089>

41. Patrauchan MA, Oriel PJ: **Degradation of benzylidimethylalkylammonium chloride by *Aeromonas hydrophila* sp. K.** *J Appl Microbiol* 2003, **94**:266-272, <https://doi.org/10.1046/J.1365-2672.2003.01829.X>

42. Oh S, et al.: **Microbial community degradation of widely used quaternary ammonium disinfectants.** *Appl Environ Microbiol* 2014, **80**:5892-5900, https://doi.org/10.1128/AEM.01255-14/SUPPL_FILE/ZAM999105598SO1.PDF

43. Song J, et al.: **Biodegradation and metabolic pathway of sulfamethoxazole by *Sphingobacterium mizutaii*.** *Sci Rep* 2021, **11**:1-12, <https://doi.org/10.1038/s41598-021-02404-x>

44. Qi M, et al.: **Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes.** *Environ Sci Technol* 2021, **55**:3270-3282, <https://doi.org/10.1021/acs.est.0c06687>.
Novel study that uses different new techniques for identifying role of various microbial species in sulfamethoxazole catabolism in a complex community of activated sludge.

45. Chen X, Lin H, Dong Y, Li B, Liu C, Yin T: **Mechanisms underlying enhanced bioremediation of sulfamethoxazole and zinc(II) by *Bacillus* sp. SDB4 immobilized on biochar.** *J Clean Prod* 2022, **370**:133483, <https://doi.org/10.1016/j.jclepro.2022.133483>

46. Hu S, Hu H, Li W, Ke Y, Li M, Zhao Y: **Enhanced sulfamethoxazole degradation in soil by immobilized sulfamethoxazole-degrading microbes on bagasse.** *RSC Adv* 2017, **7**:55240-55248, <https://doi.org/10.1039/C7RA10150C>

47. Keenum I, Williams RK, Ray P, Garner ED, Knowlton KF, Pruden A: **Combined effects of composting and antibiotic administration on cattle manure-borne antibiotic resistance genes.** *Microbiome* 2021, **9**:81, <https://doi.org/10.1186/s40168-021-01006-z>

48. Garner E, et al.: **Towards risk assessment for antibiotic resistant pathogens in recycled water: a systematic review and summary of research needs.** *Environ Microbiol* 2021, **23**:7355-7372, <https://doi.org/10.1111/1462-2920.15804>

49. Dai D, et al.: **Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge.** *Microbiome* 2022, **10**:20, <https://doi.org/10.1186/s40168-021-01216-5>