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Antibiotics and disinfectants have saved millions of human lives
and cured uncountable animal diseases, but their activity is not
limited to the site of application. Downstream, these chemicals
become micropollutants, contaminating water at trace levels,
resulting in adverse impacts on soil microbial communities and
threatening crop health and productivity in agricultural settings
and perpetuating the spread of antimicrobial resistance.
Especially as resource scarcity drives increased reuse of water
and other waste streams, considerable attention is needed to
characterize the fate of antibiotics and disinfectants and to
prevent or mitigate environmental and public health impacts. In
this review, we hope to provide an overview of why increasing
concentrations of micropollutants such as antibiotics are
concerning in the environment, how they can pose health risks
for humans, and how they can be countered using
bioremediation strategies.
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Introduction: antibiotics and disinfectants as
micropollutants

We need antibiotics and disinfectants to battle infections
and to grow healthy livestock, but widespread use has
resulted in many serious problems such as emerging an-
timicrobial resistance, multidrug-resistant pathogens, and
adverse effects on environmental microbial ecosystems
[1]. In the United States alone, approximately 11 000
000 kg of antibiotics are sold and used for therapeutic and
subtherapeutic purposes [2], and particularly in response
to the COVID-19 pandemic, disinfectant use has

skyrocketed [3]. At the same time, global development is
driving changes in agricultural processes, including in-
creased water reuse and land application of biosolids, in
the name of sustainability and closing the loop on waste
streams. Neither centralized nor decentralized wastewater
treatment processes are designed to remove antibiotics or
disinfectants, and these chemicals persist in both effluent
waters and biosolids, ultimately resulting in contamina-
tion of agricultural soil (Figure 1). Understanding the fate
of antibiotics and disinfectants is thus especially im-
portant, as a significant portion will end up where re-
claimed water or biosolids are used for resource recovery
[4]. In this review, we explore the fate, environmental
impacts, and possible remediation strategies for sulfa-
methoxazole and benzalkonium chloride (BAC), as ex-
ample antibiotics and disinfectants, respectively, focusing
on their occurrence and implications in agricultural set-
tings [5]. We chose sulfamethoxazole and BAC as they are
among the most extensively used antibiotics and disin-
fectants, commonly found in nontarget environments, and
relevant to agricultural settings such as agricultural runoff,
biosolids/manure, and farmland soil (Figure 2).

Sulfonamides are bacteriostatic and inhibit the synthesis
of folic acid [6]. Sulfamethoxazole is a sulfonamide an-
timicrobial, widely used as a pharmaceutical antibiotic
for both human and animal bacterial infections. Ap-
proximately 18 000 000 kg of sulfamethoxazole enters
the biosphere each year [7]. As antibiotics cannot be
completely metabolized, sulfamethoxazole and its me-
tabolites (e.g. N-acetyl-sulfamethoxazole) are excreted
via urine and feces, entering hospital wastewater, mu-
nicipal wastewater treatment plants, aquatic environ-
ments, agricultural runoff [8], and agricultural land as
farmyard manure is applied as fertilizer [9]. A recent
review [10] reported that sulfamethoxazole appeared in
environmental matrices at the highest concentration (up
to 3460.57 ng/LL in groundwater) among commonly used
antibiotics, including p-lactams, tetracycline, and fluor-
oquinolones. As a micropollutant, sulfamethoxazole di-
rectly negatively impacts human health and
environmental quality and indirectly endangers lives via
the introduction of antibiotic-resistant bacteria and as-
sociated genes to food production [1,11,12]. Sulfa-
methoxazole was added to the European Union watch
list of pollutants that should be carefully monitored in
surface water in 2020 in response to potential risks it
posed in aquatic environments [13].
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Antibiotics and disinfectants travel from their point of use, either passing through municipal wastewater treatment facilities, decentralized treatment
(such as graywater treatment or composting), or bypassing them entirely, ultimately contaminating agricultural soil via irrigation and fertilizer. Created

with BioRender.com.

BAC, a subset of quaternary ammonium compounds
(QAC), is a type of disinfectant and cationic surfactant.
They have a positive charge on the nitrogen atom and
the general formula of [C(HsCH,N(CH3),R]Cl, where
R represents a mixture of alkyls ranging from C8 to C16
[14]. BACs are used extensively in both household and
commercial products, eventually accumulating in muni-
cipal wastewater [15]. As a result of using biosolids on
agricultural fields as fertilizers, BACs are introduced to
soil environments. In addition, using reclaimed waste-
water for irrigation, or even through direct discharge
from inadequate treatment facilities, BACs may enter
soil and aquatic systems. Owing to its alkyl chains and
positive charge, BAC is more likely to be retained by soil
rather than becoming bioavailable by leaching [14]. BAC
is usually found in the environment in low concentra-
tions, but high concentrations can also be found in ef-
fluents of facilities such as hospitals or industries such as
hydraulic fracturing. Concerns exist surrounding anti-
biotic resistance and cross-resistance invoked by ex-
posure to BACs even at low concentrations [15-17].
BACs can also be genotoxic in eukaryotic cells at con-
centrations as low as 1.0 mg/L,, adding to its environ-
mental and health risks [18].

Micropollutants such as sulfamethoxazole and BACs
accumulating in environmental matrices such as water
and soil raise concerns about ecological impacts and

public health risks. They thus require careful mon-
itoring, evaluation, and mitigation.

Impacts of antimicrobial micropollutants on
soil microbiota and plants

Contamination in soil can change taxonomic and func-
tional characteristics of microbial communities. T'wo
major concerns about the impacts on soil microbiota are
decreased productivity in terms of nutrient cycling and
increased antimicrobial resistance.

Sulfamethoxazole contamination not only alters the phy-
logenetic profile of soil microbiota, but also changes their
functional profile [12]. A study using composting material,
including straw and cow manure supplemented with 25,
50, or 100 mg/kg sulfamethoxazole, monitored over 45
days, found that the protease, cellulase, and urease con-
tent in the control setting (no sulfamethoxazole) was
significantly higher (p < 0.05) than all the sulfamethox-
azole treatments. These results indicate that sulfa-
methoxazole has inhibitory effects on nutrient cycling.

Similarly, BAC pollution can impact nitrogen conversion
[19]. A study examining two different soil samples (acidic
forest soil and alkaline cultivated soil) spiked with 0.1 g
of BAC and monitored for 60 days found that the relative
abundance of #/fH (which encodes nitrogenase ferritin) in
acid forest soil increased by 91% and 79% in alkaline soil.
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Remediation strategies range from abiotic methods to use of pure culture or microbial communities to biodegrade the antibiotics present in the
environment. Strategies can be implemented in situ or ex situ and may or may not result in complete mineralization. Created with BioRender.com.

Also, in both soil samples, after 7, 15, and 60 days, the
abundances of ammonia-oxidizing archaea (AOA) and
bacteria (AOB), as indicated by their monooxygenase
gene (amoA), were significantly higher compared with day
0. The higher abundance of AOA and AOB correlates with
higher ammonia oxidation capacity of soil [20]. This
suggests that the presence of BAC in soil amendments
may inadvertently decrease available nitrogen. In the
same vein, a three-year study on BAC-contaminated river
sediments showed that these microbial communities were
noticeably decreased in diversity compared with the
control samples (no BAC exposure) [15].

Micropollutant exposure may also enrich antimicrobial
resistance. Understanding this process is particularly
important in the One Health framework, as resistance in
environmental and agricultural settings is intrinsically
linked to resistance in the clinic, and antimicrobial re-
sistance is one of the most pressing global threats to
public health [21]. BAC resistance in human pathogens
in pure culture can be nonspecific resistance through
morphological and cell surface properties (i.c. alterations
in fatty acid composition) [19,22], as well as specific
through efflux pumps (i.e. mdrl). Enrichment of both
nonspecific antimicrobial resistance strategies and

specific efflux pumps is problematic for public health, as
these strategies may translate both to increased re-
sistance against the biocide in question and other clini-
cally or commercially relevant antimicrobials. As shown
in a longitudinal study conducted in a pig farm, with-
drawal of antimicrobial (apramycin or trimethoprim sul-
famethoxazole) decreased multidrug-resistant and
increased fully susceptible Escherichia coli, indicating the
importance of responsible use of antibiotics such as
sulfamethoxazole in agriculture [24].

Once in soil, micropollutants can affect plants both di-
rectly and indirectly via the microbiota. Inhibition of
chlorophyll biosynthesis, hindering the rhizosphere mi-
crobiome and rhizosphere enzyme activity reduction are
some effects of antibiotic accumulation in soil [23]. Sul-
famethoxazole is no exception, acting as a competitive
inhibitor of dihydropteroate synthase, which is an im-
portant enzyme in folate metabolism [20]. In strawberries
(Fragaria ananassa), sulfamethoxazole first damages the
roots and reduces the photosynthesis rate after being
transported to the leaves [8]. There is also indirect da-
mage caused by sulfamethoxazole; when photosynthesis
is reduced, the excessive light energy affects the reactive
oxygen species balance and damages membranes.
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Although studies on QAC toxicity to terrestrial crops are
scarce, it is reported that high QAC concentrations de-
crease root fresh weight, total root length, and photo-
synthetic pigment content, leading to severe inhibition
of plant growth [25]. Based on evidence from multiple
other organic pollutants, uptake of QAC by lettuce, cu-
cumber, and spinach is likely. BAC has a molecular mass
of approximately 300 Daltons and its solubility is greater
than 500 g/L.. It therefore has a high potential for uptake
by plants [26]. BAC uptake by lettuce and toxicity ef-
fects such as reduced plant dry weight, necrosis,
chlorosis, and wilting were observed [27].

Remediation and mitigation strategies
Remediation technologies can be categorized into phy-
sical, chemical, and biological approaches. Physical and
chemical technologies such as advanced oxidation and
flocculation are used despite their drawbacks of by-
product toxicity and high cost [28]. Novel physical and
chemical treatment methods include redox transforma-
tion of sulfamethoxazole by nanoscale zerovalent iron
particles [29], reduction of pollutant bioavailability using
environment-friendly biochar [30], and degradation of
QAQ s, including BAC, using ozone/UV treatments [31].
Notably, many technology-intensive methods are de-
signed for centralized treatment facilities rather than
decentralized facilities or treatment at the point of use.
Here, we focus our discussion of remediation on biode-
gradation-based strategies due to their cost-effectiveness
and versatility.

Biocidal characteristics of sulfamethoxazole and BAC
dictate that successful biodegradation relies on micro-
organisms with resistance to the micropollutants as well
as production of degrading enzymes. Isolates from sev-
eral genera biodegrade sulfamethoxazole, for example,
Rhodococcus, Archromobacter, Variovorax, Microbacterium,
Arthrobacter, Orchrobacterum, and Paenarthrobacter 23).
Biodegradation of BAC can be performed by strains in
the genus Pseudomonas, which is known for its resistance
to disinfectants and its ability to degrade various organic
contaminants [32]. In addition, Bacillus niabensis, Xan-
thomonas sp., Thalassospira sp., and Aeromonas sp. can
degrade QAGCs [7,15]. These degraders were enriched
and isolated from traditional sources such as activated
sludge [33,34] and surface water [35]. In addition, waste
yeast biomass [36] (Ogataea polymorpha), white rot fungi
(Phanerochaete chrysosporium) [37], and marine diatoms
(Chaetoceros muellers) [38] have been explored as re-
sources to enhance treatment and expand application
scenarios.

Complete mineralization of micropollutants is ideal but
not always achievable. Notably, one strain of
Pseudomonas completely mineralizes BAC, which is
considered rare in the environment [14,39]. Advances in

analytical approaches such as HPL.C-MS, LC-MS/MS,
and GC-MS [40,41] allow for identification of putative
metabolites and proposal of pathways for sulfamethox-
azole and BAC biodegradation [22,42], which can further
assist the assessment of toxicity reduction. From a bio-
technology application standpoint, it is of interest to
decipher the ‘microbial ingredients’ to successful (either
complete mineralization or biotransformation to low-
toxicity products) biodegradation. Growing evidence
indicates that microbial communities outperform pure
cultures [23], motivating investigations into micro-
pollutant-degrading communities with molecular biology
methods. Ertekin et al. revealed Pseudomonas sp. strain,
BIOMIG1 as a key BAC degrader and proposed a re-
sponsible gene cluster in BAC-degrading microbial
communities developed from four different habitats
(sewage, activated sludge, soil, and sea sediment)
through 16S rRNA pyrosequencing and metagenomics
sequencing. Oh et al. [42] identified a candidate amine
oxidase gene for BAC dealkylation using metatran-
scriptomics and further verified the gene product activity
from cell extracts. Qi et al. [44] fed microbial community
samples from wastewater treatment plants with sulfa-
methoxazole and 3-amino-5-methylisoxazole (3A5MI, an
intermediate of sulfamethoxazole degradation) to enrich
for biodegrading groups of these two chemicals. DNA-
stable isotope probing (SIP) along with 16S rRNA gene
sequencing and other analytical approaches revealed key
players in complete sulfamethoxazole biodegradation,
where Paenarthrobacter and Nocardioides were the pri-
mary degraders of sulfamethoxazole and 3A5MI, re-
spectively, and  nondegraders  Acidovorax  and
Sphingobium enhanced 3A5SMI degradation. Considering
that only 1% of bacteria and archaea can be cultivated,
applying the above technologies is vital in studying and
screening micropollutant-degrading microbial commu-
nities. This approach is more effective, and less labor-
intensive  compared with the traditional ‘en-
richment-isolation—verification’ route.

Successful bioremediation of micropollutants is limited
by poor bioavailability, as well as suboptimal environ-
mental conditions [45]. Sphingobacterium mizutaii can
achieve 93.87% degradation of 50 mg/L. sulfamethox-
azole in 7 days under optimal conditions (30.8°C, pH
7.2), while degradation as low as <40% was observed
under nonoptimal conditions [43]. Co-contamination
might also be an important factor, as biodegradation of
one BAC was inhibited in the presence of another BAC
with different R-chains [18]. The limitations of opera-
tional conditions of bioremediation technologies (e.g.
temperature, pH, and initial targeted micropollutant
concentrations) can be challenging because of high en-
ergy and operation costs even in centralized treatment
facilities where system control is possible. Owing to the
characteristics of the routes of micropollutants entering
agricultural settings (IFigure 1), iz situ bioremediation at
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the source, reservoir, or decentralized treatment facilities
is desired for more effective mitigation. In this context,
limited working conditions of bioremediation should be
addressed since environmental conditions are usually
not subject to control for 7z situ remediation. To this end,
immobilization of micropollutant-degrading microbes on
biochar [45], agriculture residues (bagasse) [46], and
amendment with 7z situ-generated biogenic manganese
oxides [40] to enhance biodegradation under wider en-
vironmental conditions or low pollutant concentrations
were investigated. In addition to combining biological
approaches with physical and chemical approaches, ‘non-
conventional’ biological resources can also facilitate i
situ bioremediation. For example, Chaetoceros muelleri, a
marine diatom that can be applied as an aquaculture
feed and agriculture fertilizer, was able to remove 38.9%
sulfamethoxazole over 6.3 days [38]; Ogataea (Hansenula)
polymorpha as a resource for BAC contamination bior-
emediation was evaluated in the context of recycling
waste yeast biomass from bioethanol production [36].
These explorations, although not immediately effective
or successful, broaden the possibilities of applying
bioremediation technologies 7z situ, inspiring the devel-
opment of fertilizers or feeds containing micropollutant-
degrading microbes.

Conclusions and outlook

Antibiotics and disinfectants such as sulfamethoxazole
and BAC are necessary, as is water reuse and resource
recovery. However, when present as micropollutants,
these compounds threaten soil and crop health by dis-
rupting microbial communities and damaging plant tis-
sues directly and indirectly and contribute to the global
threat of antimicrobial resistance. While biological pro-
cesses that are commonly employed in wastewater
treatment can degrade micropollutants, they need to be
engineered intentionally to target such chemicals in-
dividually or in mixtures. This lens needs to be applied
not only to large-scale centralized facilities but also to
decentralized facilities, which are increasingly adopted
for on-site water reuse or composting [47]. Such facilities
are considerably different from their municipal coun-
terparts and require special considerations for risk as-
sessment  [48]. Incomplete  mineralization and
constraints on environmental and operational conditions
are major challenges faced by bioremediation technolo-
gies, especially for 7z situ applications that benefit agri-
cultural settings the most. Advanced analytical tools such
as mass spectrometry and molecular biology tools such as
metagenomics [49], metatranscriptomics, and SIP can be
used to study processes occurring iz situ, revealing po-
tential problems, helping to quantify risk, and sug-
gesting potential bio-based solutions. Combining
physical, chemical, and biological approaches and ex-
ploring unconventional resources for micropollutant de-
graders enable new advancements in cost-effective and

easy-to-apply bioremediation technologies for i situ
contamination mitigation. Given the prospect of in-
creasing production of antibiotics and disinfectants, as
well as increasing resource reuse and agricultural de-
mand for water and nutrients, we need to rethink and
manage how these products are used, transported
through environmental matrices, and treated to ensure
that they remain effective and do not cause harm.
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