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1 | INTRODUCTION

Abstract

Speciation rates vary substantially across the tree of life. These rates should be linked
to the rate at which population structure forms if a continuum between micro and
macroevolutionary patterns exists. Previous studies examining the link between spe-
ciation rates and the degree of population formation in clades have been shown to be
either correlated or uncorrelated depending on the group, but no study has yet ex-
amined the relationship between speciation rates and population structure in a young
group that is constrained spatially to a single-island system. We examine this correla-
tion in 109 gemsnakes (Pseudoxyrhophiidae) endemic to Madagascar and originating
in the early Miocene, which helps control for extinction variation across time and
space. We find no relationship between rates of speciation and the formation rates of
population structure over space in 33 species of gemsnakes. Rates of speciation show
low variation, yet population structure varies widely across species, indicating that
speciation rates and population structure are disconnected. We suspect this is largely
due to the persistence of some lineages not susceptible to extinction. Importantly, we
discuss how delimiting populations versus species may contribute to problems under-

standing the continuum between shallow and deep evolutionary processes.
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with recent bursts of speciation, and yet some clades show little

change in rate of speciation through time (Burbrink et al., 2012; Diaz
et al., 2019; Moen & Morlon, 2014; Springer et al., 2019). Rates of
extinction likewise vary through time (Brocklehurst et al., 2015;

Speciation rates across the tree of life vary extensively through
time (Maliet et al., 2019; Scholl & Wiens, 2016; Sepkoski Jr., 1998;

Tietje et al., 2022). Some groups experience early bursts of diversi- Ceballos et al., 2020). These differences in rates of speciation and

fication with subsequent slowdowns, others experience long fuses extinction account for why some extant groups like Squamata
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(n=11,430) have thousands of extant species, whereas their sis-
ter taxon Rhynchocephalia only has a single extant species (Vitt &
Caldwell, 2009). Despite potential issues with methodology (Louca
& Pennell, 2020), the history of speciation rate variation has been
confirmed using molecular phylogenies and from the fossil record
(Maliet et al., 2019; Pyron & Burbrink, 2013; Sepkoski Jr., 1998).

If the isolation of populations leads directly to the formation
of species, then the origins of species and subsequent changes in
rates of speciation should be related to the rates at which popula-
tion structure forms. Given this pattern, taxa with traits limiting ge-
netic connectivity should also produce greater population structure
(Burbrink & Ruane, 2021; Rabosky, 2016; Singhal et al., 2022; Vines
& Schluter, 2006; Zink, 2014). The lack of genetic connectivity can be
initiated by environmental and landscape changes, dispersal ability,
or the strength of selection (Harvey et al., 2020; Price et al., 2014;
Pyron & Burbrink, 2010; Smith et al., 2014). Therefore, there should
exist a relationship between speciation rates and the rate of popu-
lation formation within these species (Harvey et al., 2017). For ex-
ample, species groups with higher rates of speciation should then
have greater population structure within species if the causes of the
formation of lineages remain the same for populations and species.
However, if the processes by which populations form are unrelated
to the formation of species then population differentiation and rates
of diversification should be uncorrelated. Of course, how scientists
differentiate populations and species for enumeration of these
rates may introduce additional complications (Burbrink et al., 2022;
O'Hara, 1993).

There are several patterns of correlation expected between
population structure over space and the rates of speciation esti-
mated from trees. A positive correlation between speciation rate
and population structure should hold if population structure and
subsequent formation of species persists to the present (assuming
isolation of populations directly leads to the formation of species).
A negative correlation would suggest that high rates of speciation
are associated with little population structure, suggesting that
clades with high speciation rate contain young species that simply
have not had time to form strong population structure. This might
be the case given that metrics for estimating tip speciation rates
often show higher rates of speciation in groups with many young
species (Title & Rabosky, 2019). A lack of correlation indicates that
speciation rates and population structure are unrelated, and this
can occur for multiple reasons. If populations and species form
and become extinct rapidly, then standing diversity and population
structure will provide a poor estimate of the actual rate of specia-
tion (Cutter & Gray, 2016; Mayr, 1963; Rosenblum et al., 2012). Of
course, this would extend to any population structure not present
along the branches of the phylogeny and thus remain unsampled
when speciation rates are estimated. This should be the case where
populations/lineages not only form readily but also go extinct rap-
idly (Crampton et al., 2020). Blurring of how populations differ from
species may also create some difficulties in assessing if terminal
taxa used for estimating speciation rates actually represent spe-
cies and how these terminals differ from discoverable populations.

However, if no correlation is found in scenarios where speciation
rates show little variance and the population structure varies
widely, this provides a strong conclusion that speciation rates are
unrelated to population structure regardless of how extensively
population structure variation has been investigated for the pres-
ence of distinct terminal lineages.

Previous research that examined squamates in the Cerrado of
Brazil (Singhal et al., 2022) and in Australia (Singhal et al., 2018)
failed to find a link between speciation rates and population struc-
ture. These authors concluded that decoupled speciation rates and
demographic population structure might indicate that persistence of
population structure and full reproductive isolation are limiting con-
straints for linking these macro and microevolutionary processes. In
contrast, Harvey et al. (2017) found a positive correlation between
population differentiation and species diversification in New World
Birds. Although there is not yet a consensus, these studies represent
some of the only research linking population structure and species
rates among diverse clades in large areas.

Here, using a monophyletic group comprising 109 species of
Malagasy gemsnakes (Pseudoxyrhophiidae), we examine the cor-
relation between speciation rates estimated over the 23million
years of evolution and extant population structure for 33 species.
The Malagasy gemsnakes represent an ecologically diverse group
of squamates rivaling the ecological and morphological diversity
found in their older continental relatives (Burbrink et al., 2019; Glaw
& Vences, 2007). One advantage of investigating gemsnake diversi-
fication is that the rates of speciation are confined to a single, rela-
tively young (~23 my), monophyletic group occupying a single island.
This reduces complexity introduced by diversification due to mul-
tiple colonizations from disparate and older groups and provides a
spatially constrained island-based scenario for testing if a link be-

tween speciation and population diversification exists in a young

group.

2 | METHODS
2.1 | Phylogenetic data

We used the trees inferred from 371 anchored hybrid enrich-
ment (AHE) loci representing 109 species of Malagasy gemsnakes
(Pseudoxyrhophiidae; Burbrink et al., 2019). Trees estimated using
species tree methods sampled 93% of taxa and were dated by fit-
ting genomic data back to the Astral topology and inferred using
TreePL with five fossil dates used across colubrid snakes and cross-

validating the smoothing parameter (Burbrink et al., 2019).
2.2 | Sampling details for population data
A total of 310 tissue samples were obtained throughout the ranges

for 23 previously described snake species found across the island. We
note that the use of nominate species names does not indicate that
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we disagree with previous species delimitation analyses (Burbrink
et al., 2019), but rather allows us to assess population structure and
admixture from dense population sampling. Consistent with the de-
limitations from Burbrink et al. (2019), our sampling for this study
was equivalent to 33 species (both described and undescribed but
recognized as distinct). Tissue samples (muscle, shed skin, or scale
clippings, N=126) were collected across Madagascar from 2013
to 2017 and stored in 100% ethanol to preserve DNA. Additional
samples (N=184) held in collections were used to complement
our recently collected field data (Ambrose Monell Cryo Collection,
AMCC; American Museum of Natural History, AMNH; University
of Michigan Museum of Zoology, UMMZ; Museum of Vertebrate
Zoology, MVZ; and the Université d'Antananarivo, Département de
Biologie Animale, UADBA). The number of samples per previously

recognized species ranged from 3 to 26 (x=9).

2.3 | SNP assembly and filtering

Genomic DNA was extracted using the DNeasy Blood and Tissue
Kit (Qiagen) following the manufacturer's instructions for the
following 33 taxa representing 58% of the genera on the tree of
gemsnakes (Figures 1 and 2): Compsophis infralineatus, C.laphys-
tius, C.sp.1, C.sp.2/3, C.sp.4, Dromicodryas bernieri, D.quadrilin-
eatus, D.sp.1, Langaha madagascariensis, La.sp.1., Leioheterodon
madagascariensis, Le.modestus, Le.sp.1, Liophidium torquatum,
Li.sp.4, Li.sp.5, Liopholidophis sexlineatus, Lycodryas granuliceps,
Ly. pseudogranuliceps, Ly.sp.5, Madagascarophis colubrinus, M. me-
ridionalis, M.sp.1, M.sp.2, Pseudoxyrhopus heterurus, P.microps,
P.tritaeniatus, P.spl., Thamnosophis epistibes, T.infrasignatus, T.lat-
eralis, T. stumpffi, and T.sp.1. We note that GBS data did not recover
population structure for C.sp.2 and sp.3 as identified in Burbrink
et al. (2019); therefore, these two groups were collapsed here into
C.sp.2/3.

Samples were sent out for genotyping-by-sequencing (GBS;
Elshire et al., 2011) at the Cornell Institute of Genomic Diversity.
Genomic DNA was digested with the enzyme Pstl (recognition se-
quence: CTGCAG) and sample-specific barcoded adapters as well as
a common adapter were ligated to the sticky end of the fragments.
Samples were purified, pooled for a size selection PCR, and then pu-
rified a second time. Libraries were sequenced on an lllumina HiSeq
2000 at the Cornell Core Lab Center.

We processed paired-end Illumina reads using the bioinformatics
pipeline ipyrad v0.5.13 (Eaton & Overcast, 2020; additional details
can be found in Text S1). Raw SNP files were filtered using vcftools
v0.1.13 (Danecek et al., 2011) to test different filtering schemes to
maximize the number of loci retained while maintaining the patterns
of differentiation between populations found by more conservative
filtering approaches (min depth=10; removing sites with >15% of
missing data across all individuals). We compared results for differ-
ent values of the missing data threshold and found that 20%-60%
yielded similar trends; therefore, we used the 20% value that re-
tained more SNPs.
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2.4 | mtDNA

We also used COI mtDNA data for each of these species (numbers
per species 2-26, x =8) sequenced in Burbrink et al. (2019) to under-
stand whether population structure when related to rates of specia-
tion using mtDNA was similar to the nuclear genomic data generated
here. Using mtDNA also helped determine if this locus provides ad-

equate information about population structure.

2.5 | Speciation rates

A previous study found that rates of diversification in the gemsnakes
declined significantly over the entire tree during the Pleistocene
(Kuhn et al., 2022). Since then, Louca and Pennell (2020) demon-
strated that rates of speciation estimated from molecular phyloge-
nies may be congruent with a wide range of diversification scenarios.
To examine whether the rates in gemsnakes were declining and also
estimate rates of diversification for each species, we fit the esti-
mated trees to a number of congruent scenarios using the R pack-
age CRABS (Kopperud et al., 2023). We first estimated the pulled
speciation rates from our observed tree (Helmstetter et al., 2022),
which provided values that differed from empirical rates due to
missing taxa or extinction. From this, we constructed a series of rate
congruence classes based on our empirical data. We divided these
into two broad classes, estimating changing speciation and changing
extinction rates. For the former, we modeled extinction and inferred
speciation and vice versa for the latter. We tested temporally auto-
correlated extinction rates (Model 1) and linearly and exponentially
increasing extinction rates (Models 2-6). We then used the same
models but for varying speciation rates while estimating extinc-
tion rates (Models 7-10). Finally, we tested for episodic extinction
rates with stochastic noise (Model 11). As suggested by the authors
(Kopperud et al., 2023) and in the CRABS documentation (https://
github.com/afmagee/CRABS), to estimate alternative extinction or
speciation rate changes we used the Gaussian Markov random field
(GMRF) model or horseshoe Markov random field (HSMRF) model
(for autocorrelated rates) to generate extinction or speciation rates
depending on the congruence class model. For all 11 congruence
models, we generated 100 estimates per model. We used a 0.02
threshold of detection in change of speciation or extinction rate
over 100 time slices since the origin of the gemsnakes (~23 my). For
all increases or decreases in extinction, we used a twofold change
with a maximum rate of extinction=1.0. Similarly, we used a twofold
change for speciation rates with a maximum change at 0.5; we note
that values above this failed to generate simulations.

We calculated tip rates of speciation and correlated these to
metrics estimated using population structure with two model-based
approaches, CLaDS and BAMM, and one semiparametric approach,
the inverse splits statistic (DR). The CLaDS method uses Bayesian
inference to estimate diversification rates for each branch on the
tree and models changes in diversification rate at every specia-
tion event (Maliet et al., 2019) requiring only the dated tree and
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FIGURE 1 From the tree of gemsnakes: (a) pulled and estimated speciation rates, net diversification and pulled net diversification rates,
and extinction and relative extinction rates; (b) estimation of speciation rates, diversification rates, and relative extinction rates from
congruence classes; (c) median models over 100 simulations indicating if speciation rate is increasing, decreasing, or flat at each time interval;
and (d) posterior probability over time for increasing, decreasing, and flat speciation rates. Panels (a-d) show results for Model 1, where
autocorrelated extinction rates were modified (for all Models 1-11, see Figures S1-S3).

fraction of species present (93%). CLaDS was run in Julia (Bezanson
et al.,, 2017) with three MCMC chains stopping when Gelman sta-
tistics (Gelman et al., 2013) were below 1.05 as recommended by
the authors (Maliet et al., 2019). BAMM uses an rjMCMC approach
to explore models of diversification to detect heterogeneity in evo-
lutionary rates (Rabosky et al., 2014; Rabosky, 2014; see Burbrink

etal., 2019, for details on running BAMM with this dataset). For both
of these methods, we pulled recent speciation rates (tip rates) as
featured in each program. The DR statistic represents a weighted
mean of inverse branch lengths from the tip to the root of the tree
(Jetz et al., 2012; Title & Rabosky, 2019) and provides speciation
rate estimates at the tip of the tree. To better understand how these
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FIGURE 2 Dated phylogeny of gemsnakes using AHE loci (see Burbrink et al., 2019) and estimates of DR and CLaDS rates of tip

speciation.

tip rates related to other snakes with similar ages of origin that are
also monophyletic by region, we used CLaDS and DR to estimate
diversification rates using previously published phylogenies repre-
senting the New World ratsnakes (Lampropeltini, ~24 myo; Chen
et al., 2017), the New World watersnakes (Thamnophiini, ~18 myo;
McVay et al., 2015), and the New World pitvipers (Crotalinae, ~25
myo; Alencar et al., 2016). These trees represented 95%, 86%, and
66% of extant species, respectively (Uetz et al., 2009). We examined
the range of variation on tip rates among all four groups.

2.6 | Population structure over space

To examine population structure over space, we estimated iso-
lation by distance (IBD) using both the GBS data and mtDNA.

Following Singhal et al. (2022), we estimated Fst between indi-
viduals using the R package BEDASSLE (Bradburd et al., 2013; R
Core Team, 2010), calculated F /1 - 1F  and regressed this against
log (geographic distance), and took the slope () to represent
population structure over space. Because F is generally estimated
using populations, we also calculated nucleotide diversity (z) for
each species. Additionally, we also estimated genetic distance in
Adegenet (Jombart, 2008) and Euclidean distance and took the
slope from these two measures regressed against log (geographic
distance). We similarly calculated these last two measures (genetic
and Euclidean distance regressed against the log of geographic
distance) for mtDNA data and examined the correlation between
mtDNA and GBS estimates. Finally, all measures of slope (popula-
tion structure over space) were correlated with CLaDS, BAMM, and
DR estimates of tip speciation rate.
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We also used phylogenetic least squares to examine the rela-
tionship between population genetic metrics and speciation rate
estimates. To reduce problems with the assessment of multiple
phylogenetic regression coefficients, we eliminated multicol-
linearity among these predictor variables using the vif function
in the R package car (Fox & Weisberg, 2018). Here, we subsam-
pled variables until our final set retained variable inflation factors
below 10, leaving us with [SIBD, mean mtDNA distance, the slope
of genetic distance, the slope of Euclidian distance, and = for GBS
data. We then assessed phylogenetic signal for each of the three
estimates of tip speciation for values of lambda (Pagel, 1999) and
Blomberg's K (Blomberg et al., 2003) with 999 replicates in the
function phylosig in the caper package (Orme, 2018). We ex-
amined the relationship between the reduced population met-
ric data on estimates of tip speciation rates using the function
pgls in caper with a maximum likelihood estimate for the lambda
transformation.

3 | RESULTS
3.1 | Speciation rates

Our estimation of pulled and empirical diversification rates showed a
downturnin speciation during the Pleistocene (Figure 1). Congruence
datasets where extinction is modified as temporally autocorrelated,
linearly and exponentially increasing and decreasing (Models 1-5),
and episodic (Model 11) all showed a downturn in speciation rates
in the Pleistocene over all 100 replicates for each model (Figure 1,
and Figures S1-S3). Where speciation was modeled as temporally
autocorrelated, linearly, and exponentially increasing or decreasing,
we found that estimates of extinction rates remained generally un-
changing over most of the replicates per model (see Figures S1-S3).

Estimation of tip speciation rates varied widely across meth-
ods (Figure 3). Variance in rate estimation increased from BAMM to
CLaDS to DR. Interestingly, CLaDS and DR were negatively correlated

FIGURE 3 (a) Estimates of tip
speciation rates from BAMM, DR,
and CLaDS for Pseudoxyrhophiidae
(gemsnakes) and (b) estimates of
tip speciation rates from CLaDS for

Pseudoxyrhophiidae (gemsnakes), New
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FIGURE 4 Correlation among various
measures of population structure for
genomic (GBS) and mtDNA data, including
pi, slope (genetic variation over space
estimated as either Fst, genetic distance,
or Euclidean distance), mean geographic
distance among points, and estimates

of tip speciation rate from CLaDS,
BAMM, and DR. Correlation coefficients
are displayed, and intensity of color
represents greater positive (blue) or
negative correlation (orange). Photograph
of Dromicodryas quadrilineatus by Frank
Burbrink.

(p=-.46, p<7.38x 1077), where short branches have higher rates
as estimated by DR and CLaDS had higher rates for taxa with long
branch lengths (Figure 4). The modeling approach in CLaDS, where
the gemsnakes showed declining speciation rates (Figure 1) toward
the present, estimated a decrease in speciation rates for tips with
shorter lengths. For trees with little rate variation, most changes were
concentrated at internodes showing a decline in overall speciation
rates towards the present (O. Maliet, personal communication). This
is the opposite pattern predicted by the semiparametric method, DR,
where rate information is not modeled over the entire tree and there-
fore short terminal branches with more branching points between
the tip and root reflect higher speciation rates. The Lampropeltini,
New World Crotalinae, and Thamnophiini all had positively and sig-
nificantly correlated (p) CLaDS and DR rates, .93 (p<2.2x 107%), .46
(p<1.28x107), and .36 (p<.008). All of these groups showed greater
variability in tip speciation rates than the gemsnakes (Figure 3). The co-
efficient of variation for CLaDS estimates of tip rates was larger for the
New World Crotalinae (0.23) and Thamnophiini (0.24) when compared
to the gemsnakes (0.13) and much larger for Lampropeltini (0.73).

3.2 | Population structure and speciation rates

Significant population structure was present in all species (GBS
X £ot gist=0-44, SD=0.11). Both mtDNA and GBS genetic distances
and slopes were significantly correlated (p=.414, p=.015; p=.371,
p=.03, respectively) reflecting that both genomes were tracking the
same population structure. Most species had a significant positive
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slope (p<.05) between geographic distance and genetic distance
(mtDNA; 65%) or F/1-1F (GBS; 74%). For GBS, all measures of

slope using F_,, genetic distance, and Euclidean distance were signifi-

st?
cantly correlated (p=.70-.88; p<3.76 x 107%; Figure 4).

No measures of slope (Bgp; genetic distance/F/1-1F) from
mtDNA or GBS regressed against geographic distance were signifi-
cantly correlated with tip measures of speciation from CLaDS, BAMM,
or DR (p=.112-.90; Figures 4 and 5) even when restricting the mini-
mum number of samples to be greater than 10. Similarly, measures of
genetic distance and Euclidean distance were not significantly cor-
related with any of the tip measurements of speciation. The mtDNA
estimates of = were not significantly correlated with any of the mea-
surements of speciation at the tips; however, & using the GBS data was
significantly correlated with tip speciation rate estimates from CLaDS
(p=-.47, p=.005), suggesting that nucleotide diversity was higher in
those taxa with lower rates of speciation. Phylogenetic signal was
only significant for CLaDS using Blomberg's K (K=0.395; p=.006) and
for DR for both lambda (A=1.050, p=1.21x 107°) and for Blomberg's
K (K=0.600, p=.001). When accounting for phylogeny and multicol-
linearity among population genetic metrics, we found that no models
were significant for CLaDS (adjusted r*>=.090, p=.349), BAMM (ad-
justed r?=.058; p=.404), or DR (adjusted r?=-.279, p=.886).

4 | DISCUSSION

We find no association between the formation of population structure
over space and speciation rates in the gemsnakes of Madagascar. This
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holds for mtDNA (COIl) and nuclear genomes (Figure 4). Considering
congruent patterns across different diversification scenarios, based
on pulled diversification rates (Figure 1), we confidently show that
rates of speciation are declining in these snakes. The rate of decline
in the Pleistocene and related tip speciation rates is unlinked to the
extent of population structure in these snakes.

Our results are similar to studies on squamates in Brazil and
Australia (Singhal et al., 2018, 2022) that also fail to show a link
between speciation and population divergence over space. The
gemsnakes have less variation in rates of speciation over all terminal
taxa than other groups of colubrid snakes that are monophyletic by
region that also have a similar age of origin (Figure 3). This shows
that there is no link between the degree of population structure over
space and speciation rates in gemsnakes; tip-estimated speciation
rates have little variation despite population structure varying mas-
sively for those same terminal species (Figure 5). We also note that
tip rates of speciation from our selection of terminal species for ex-
amining population structure account for 91.5% of the range of all
speciation rate estimates. These results are in contrast to studies on

birds that showed a positive correlation between speciation rates
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and population divergence or the formation of subspecies (Harvey
et al., 2017; Haskell & Adhikari, 2009; Phillimore, 2010). It is unclear
yet whether there is a general trend, but all squamates so far exam-
ined fail to show this link. The aforementioned studies on squamates
sampled a much deeper group of taxa using population genome data
(target-capture loci) and a phylogeny of all squamate species driven
mainly by mtDNA data including imputed data (Tonini et al., 2016)
also failed to find a link. In the gemsnakes, this lack of correlation
indicates that populations form or go extinct at variable rates de-
spite declining rates of speciation throughout the Pleistocene. If this
general relationship holds, it suggests the processes that form pop-
ulations are unrelated to the persistence of species in squamates,
but not in birds. To note, the bird study (Harvey et al., 2017) investi-
gated 173 taxa and used mtDNA data for estimating both the phy-
logenetic tree and population structure, so it is unclear whether this
relationship is valid for a more diverse estimate of the genome. We
note that our mtDNA and nuclear genomic data results are largely
correlated.

Previous studies (Harvey et al.,, 2017; Singhal et al., 2022)

showed high variation in the estimation of speciation rates across a
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FIGURE 5 Scatterplots showing the relationship between log slope (B, for GBS and genetic distance over space for mtDNA) for log
speciation rate estimates from CLaDS and DR for taxa with more than four samples.
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more diverse sampling of taxa. Depending on the measure, CLaDS
and BAMM show much less variation (SD=0.016) around specia-
tion rates than the DR method (SD=0.085; Figure 3), though no
methods are significantly correlated with population structure.
The former two methods model rates of speciation using the entire
tree structure and therefore may be detecting overall trends better
than the DR method. In a study comparing methods for estimating
speciation rates at tips, it was shown that BAMM is more accurate
than DR, particularly given extinction and changes in rates (Title &
Rabosky, 2019); however, no comparisons between ClaDS and any
methods for estimating tip rates exist. If modeling-based methods
are preferred given that they account for rate changes over the en-
tire tree, such as ClaDS, then this indicates that rates of speciation
are similar despite large variance on population structure. These pat-
terns are similar with BAMM.

Even though isolation by distance and isolation by ecology (IBE)
are often considered the first steps for the formation of species
(Arnold & Fristrup, 1982; Avise et al., 1987; Baptestini et al., 2013;
Jablonski, 2008; Rundle & Nosil, 2005), resulting patterns of di-
versification may be later offset and eroded by population/species
persistence. Therefore, the continuum between microevolutionary
processes and macroevolutionary patterns may be disrupted due
to variance in the persistence of populations, a necessary step to
be considered as distinct lineages. This variance may be associated
with extinction by forces such as environmental change, competi-
tion, disease, or hybridization (Burbrink et al., 2022; Raia et al., 2016;
Rhymer & Simberloff, 1996; Vonlanthen et al., 2012). It could be ar-
gued that additional processes are relevant to prevent extinction via
hybridization, such as increasing genomic incompatibilities thus en-
hancing reproductive isolation (Mayr, 1963; Wolf & Ellegren, 2017,
Wu, 2001). Our results therefore indicate that the formation of
population structure is not a rate-limited step for the formation of
species but rather may be offset and disrupted by rapid extinction.
That is, if the isolation of populations directly leads to the formation
of species.

Most species of gemsnakes investigated here show population
structure over space, though three taxa have larger than average
range sizes with little genetic variation (and thus probably repre-
sent recent widespread expansion). Therefore, while the estimated
rates of speciation and population differentiation are disconnected,
there is still a general trend for extant species to show significant
population structure across the island associated with range size.
Even though the area of Madagascar and phylogenetic diversity is
smaller in comparison with most other studies examining this link,
the gemsnakes and other taxa on this island show major phylogeo-
graphic structure at the intersection of six starkly contrasting biomes
(Burbrink etal.,2019; Kuhn etal., 2022; Raxworthy et al.,2007; Yoder
& Heckman, 2006) and species endemism is also apparent in much
smaller climatic zones (Pearson & Raxworthy, 2009). Thus, it appears
that this structure across these biomes is not directly translated into
stable lineages/species over longer periods of time. Additionally, his-
torical demographic dynamics, such as recent widespread expansion
possibly associated with Quaternary climate change, are commonly
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recovered for squamates in Madagascar (Burbrink et al., 2019; Florio
et al., 2012; Kuhn et al., 2022; Raxworthy et al., 2007; Yoder &
Heckman, 2006) and may also enhance the rate of population for-
mation via IBD or IBE (isolation by ecology) or reduce this rate via
hybridization (Delrieu-Trottin et al., 2017; Marques et al., 2017). We
show strong support for decreased speciation rates in the gemsnakes
during the Pleistocene, which may have been due to diversity-
dependent diversification processes (or see alternative explanations
in Burbrink et al., 2019). Understanding complex population struc-
ture and processes responsible for that structure for each species
is out of scope of this paper and also constrained by the number
of samples available. However, we advocate further exploration of
phylogeographic lineage structure within the gemsnakes to better
understand genetic diversity within geographically structured pop-
ulations and relate those speciation rates as well.

One potential limitation for all studies connecting rates of spe-
ciation and population formation is the difficulty determining when
a population becomes a species. All of the aforementioned studies
implement a two-step process influenced by how taxa are chosen
for each step: (1) estimating speciation rates with trees and (2) es-
timating population structure within taxa. If users cannot quan-
tify how a population differs from a species (Burbrink et al., 2022;
Kizirian & Donnelly, 2008), then terminal taxa used to estimate spe-
ciation rates may be arbitrarily selected. This could either increase
or decrease rates of speciation estimates depending on if more or
less taxa are used in that step. Additionally, if all populations in a
particular species are actually species but not included in Step 1,
then these have been selectively restricted from the speciation rate
estimation and kept in Step 2 for estimating population structure. If
these populations/lineages are considered species and used in Step
1, then estimates of population structure in Step 2 for the remaining
terminals are likely to be reduced. This would suggest that it should
generally be unclear whether higher rates of speciation should be
positively correlated with increased population structure within spe-
cies owing to the propensity to speciate, or, alternatively, negatively
correlated with decreased population structure following rapid spe-
ciation. Furthermore, it is possible that with younger and diverse
groups, accurate estimates of speciation could be obtained without
an abundance of extinction events and could be better correlated to
population structure. If, however, delimitation is performed idiosyn-
cratically, then there should be no link between speciation rates and
population formation. Therefore, analyses that address the contin-
uum between population rate formation and speciation rates may
be forcing the key units of measure into categories unable to reveal
this continuum.

Estimates of speciation rates on trees only yield speciation rates
for those taxa which persist over long periods of time and therefore
cannot account for extinction of ephemeral species (ghost lineages).
These considerations regarding species delimitation and how species
differ from population structure in a phylogenetic context should
be kept in mind when developing new ways to link the formation
of population speciation rates. Perhaps to better understand this
continuum, all lineages, regardless if they are species or populations,
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should be included in phylogenetic analyses of diversification to
test for temporal autocorrelation of speciation rates between shal-
low (population level) and deep nodes. Results that have previously
delimited species using coalescent methods (Burbrink et al., 2019)
may be free from some of these confounding factors and therefore
provide a strong inference that speciation and population formation
are uncorrelated. Therefore, understanding the rate at which popu-
lations or lineages persist or go extinct through time is key to testing
links between microevolutionary processes and macroevolutionary
patterns. Future work investigating how species form with regard to
genomic structure in the gemsnakes and how this relates to popu-
lation/lineage persistence is a logical step to better estimating the
rate at which species form and are lost via hybridization. Extending
this to taxa of varying ages will provide insight into the length of time

that lineages, and logically species, persist on Madagascar.
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