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TOWARD THE DEVELOPMENT OF 6 SYSTEM LEVEL
SIMULATORS: ADDRESSING THE COMPUTATIONAL
COMPLEXITY CHALLENGE

ABSTRACT

The advancement and standardization of the
cellular network system require thorough inves-
tigation, analysis, and experimentation of novel
protocols, architectures, and functionalities. In
this regard, computer-aided tools or simulators
allow the execution of these requirements with
the much-needed controllability, reproducibility,
cost efficiency, and convenience. Simulators have
been proven beneficial since the dawn of the cel-
lular network era and are likely to be critical for the
upcoming 6G development. However, mimicking
such a complex network requires developing intri-
cate and, at the same time, practical simulators.
One of the major concerns of the existing simula-
tors is the computational complexity of modeling
a realistic and complete network. This challenge
is anticipated to exacerbate with the advent of 6G
considering its scope and peculiarities. In this arti-
cle, we analyze the computational complexity of
incoming 6G simulators and provide solutions to
mitigate this issue. The presented novel framework
for future simulators aims to transform the tradi-
tional way of building network simulators to serve
the unprecedented demand of 6G. The presented
use case highlights the efficacy of the proposed
framework where we show a 100-fold improve-
ment in the run-time performance of the innovative
architecture compared to traditional simulators.

INTRODUCTION

The role of simulators has become increasingly
important as cellular technology evolves to sup-
port more novel use cases. These simulators
accelerate innovation and reduce the cost of
research and development toward next genera-
tion networks for researchers, network vendors,
and operators alike. This is particularly true with
the upcoming 6G network. For instance, up until
5G, one side of the network has always remained
static, that is, base station, while serving mobile
users. However, in 6G, the network nodes are
anticipated to become mobile as well, that is, sat-
ellites and drones, bringing a totally different level
of complexity in modeling the network. With this
novel network deployment, analytical modeling,
that is, point processes and stochastic geome-
try, which work in 5G and other legacy network
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deployments with static elements, might not
remain insightful anymore. Thus, it can be con-
cluded that simulators will play even more crucial
roles in modeling and simulating key technologies
and components of the upcoming 6G network.

Another major distinction of 6G vis-a-vis 5G
is the ubiquitous use of Artificial Intelligence (Al).
Unlike in 5G where Al is still an option, Al is
envisioned to become a fundamental part of 6G
playing pivotal roles in the entire 6G ecosystem.
However, the utility of the Al models is inherently
reliant on rich training data. However, real network
data for training Al models is currently sparse and
scarce due to several reasons including privacy
concerns, high cost and the potential degrading
impact on live networks of any data gathering
campaigns, among others. For a detailed review
of the sparsity challenge in cellular networks, read-
er is referred to [1]. The challenge of Al training
data sparsity in cellular networks further highlights
the crucial function of simulators in future cellu-
lar networks. Using simulators, synthetic data can
be generated to enrich the sparse data from the
real network that can be used to effectively train
the Al models. However, large data generation
through simulators can become time-consuming
if not accompanied with computationally efficient
methods. In this article, we address one of the
most notorious challenges that debilitates the utility
of simulators for the next generation networks; the
inherent computational complexity brought by the
goal to make simulators realistic and complete.
The computational and time efficiency becomes
increasingly crucial when huge data is required to
enable Al in 6G networks.

The contributions and organization of this arti-
cle can be summarized as follows: We first present
a short look ahead on what 6G is anticipated to
look like and explicate the challenge of computa-
tional efficiency, analyze how it currently affects
5G, and the future implications in developing 6G
simulators. We then present potential solutions and
recommendations to address these computationally
demanding aspects of network simulation and com-
bine these solutions in an architecture to enhance
the computational efficiency of future simulators.
This proposed architecture is computationally effi-
cient without compromising the realism and com-
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FIGURE 1. Relationship between realism, completeness, and computational efficiency in mobile network

simulators.

pleteness of the functionalities and features. Then,
we evaluate the potential of the proposed simu-
lator architecture against typical simulator designs
in generating large amounts of data to effectively
train Alimodels. Following that, we present the key
conclusions and insights of this work.

THE CHALLENGE OF COMPUTATIONAL EFFICIENCY IN
FUTURE MOBILE NETWORK SIMULATORS

6G ANTICIPATIONS:
A LOOK AHEAD T0 NEXT GENERATION NETWORKS

Although no standard has yet been crafted for
6G, based on the current trend, it is not difficult
to anticipate where 6G is heading and what it will
look like. At this early point in time, several stud-
ies are available in the literature ranging from the
anticipated architecture, potential applications and
use cases, to the expected enabler technologies
to support 6G [2-4]. In terms of the architecture,
one of the most evident distinctions of 6G from
5G is the utilization of diverse network types in the
form of 3D networking. In addition, 6G is likely to
sustain a much broader range of use cases and
applications compared to 5G. Some of the most
notable novel applications are flying cars, the inter-
net of everything, multisensory extended reality
(XR), and wireless brain computer interaction. To
realize these use cases, the next generation net-
works will leverage novel sets of enablers such as
ultra-massive MIMO, Thz band, quantum commu-
nication, blockchain, optical wireless technologies,
and reflective surfaces.

In the wake of the anticipations, it is evident that
6G requires trial, evaluation, and validation proce-
dures, that are more flexible and extensive than
they have ever been. As a result, the simulators
needed to support the timely development of the
incoming 6G network deserve more attention. Par-

ticularly, modeling the above-mentioned architec-
ture, use cases, and enablers of 6G realistically and
completely brings unprecedented impediments to
the computational efficiency of next generation
simulators. In the next subsection, we discuss the
foreseen challenge of computational complexity
with reference to 5G network simulators.

COMPUTATIONAL EFFICIENCY AS A BOTTLENECK
IN SIMULATOR DEVELOPMENT

The computational efficiency requirement for
6G simulators conflicts with the goal of creating
simulators that are as realistic and complete as
possible. All three of these are not only desir-
able features for the research and development
of 6G systems but are also key necessities for
generating synthetic data to train Al for enabling
zero-touch operation and optimization in 6G
networks. Fig. 1 shows the relationship between
realism, completeness, and computational effi-
ciency of system level mobile network simula-
tors. Ideally, a simulator should incorporate a
high degree of realism, completeness and at
the same time, utilize a small amount of com-
putational resources in terms of time, memory,
and processing power. Realism in this context is
measured by the degree of realistic implemen-
tation of features such as propagation model,
mobility model, PHY layer model, radio access
network procedures, and core network model
to name a few. Meanwhile, completeness refers
to aspects such as the complete implementa-
tion of technology enablers, comprehensive
incorporation of configuration and optimization
parameters (COPs) and key performance indi-
cators (KPIs), and integration of a wide range
of use cases and applications. However, with
the current approach of simulator development,
computational efficiency deteriorates rapidly
with the increase in realism and completeness.
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TABLE 1. Summary of some of the most computationally demanding aspects when running a network simulator, how it affects simula-
tion run time in simulating 5G network and the future implications on the upcoming 6G networks.

To avoid unbearable computational costs, most
of the existing simulators tend to employ more
abstraction and oversimplification of the compu-
tationally intensive tasks and incorporate fewer
features and functionalities, thereby compromis-
ing realism or completeness or both. Some well-
known academic simulators, such as ns-3 [5] and
Vienna [6], have managed to render a moderate
amount of realism and completeness, but at the
cost of high computational costs. On the other
hand, commercial simulators such as Atoll [7],
are usually utilized in network planning and thus,
give particular attention to realistically modeling
the propagation model. But to improve the com-
putational efficiency, these commercial simula-
tors usually eliminate the support for mobility or
handover and usually implement only a handful
of COPs and KPIs thereby offering little com-
pleteness. Despite the good intention, the simpli-
fication and downscaling of the nuances during
simulator development to induce efficiency in
the run time may lead to undesirable results.

COMPUTATIONAL DEMANDING ASPECTS OF RUNNING
SIMULATIONS

Table 1 shows the summary of some of the most
computationally demanding tasks in simulating a
cellular network. Among these components are the
propagation model, MIMO precoding, mobility,
network element size, compulsory use of Al, and
reconfigurable intelligent surfaces. Moreover, this
table also shows how these components are affect-
ing the current 5G simulators and more importantly,
their implications for the upcoming 6G technology.

Selected computationally challenging compo-
nents for running simulations are explored in fur-
ther detail.

PROPAGATION MoDEL

The increasing number of factors that must be
considered in the propagation model to increase
accuracy (i.e., clutter type, vegetation, build-
ings, etc.) make it computationally expensive. In
mmWave used for 5G, factors such as building
materials absorption, vegetation, vehicles and
even the effect of humans as blockage should be
considered which further increases the complex-
ity of the process. The incoming 6G will require
an unprecedented amount of sophistication
when it comes to propagation modeling. This
is due to the anticipated utilization of the THz
band which, compared to the GHz band used
in 5G, is more demanding in terms of line of
sight (LoS) requirements and is highly susceptible
even to the slightest obstruction (i.e., a sheet of
paper) [4]. To realistically model these peculiari-
ties of the THz band requires considering more
factors and thus, would require immense com-
puting resources.

MIMO PRecoDING/BEAM MANAGEMENT

The multiplicity of the utilized antennas to realize
MIMO brings additional complexity due to an
increase in the precoding matrices needed to be
generated during the simulation. The available
antenna configurations for 5G massive MIMO
range from 16 x 16 to 64 x 64. With this much
antenna, precoding matrices generation consumes
more time when running simulations. The concept
of ultra-massive MIMO is proposed for 6G, where-
in a plasmonic nano antenna array of size 1024
x 1024 is envisioned [2]. With this huge antenna
configuration, the generation of precoding matri-
ces will be daunting for the simulators.
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MosiLy

The constant variation in the location and envi-
ronment as the users move leads to continuous
updating of the signal strength during simulation.
In addition, mobile users need to perform han-
dover, which is also computationally demanding.
5G is designed to support mobile users with a
maximum speed of up to 500 kph. Calculation of
the changes in the signal strength, especially for
high-speed users, is an expensive task. Moreover,
due to speed as well as the dense base station
deployment, the number of handovers increases.
The maximum speed at which 6G will be molded
is 1000 kph, making the calculation of the chang-
es in the received signal more daunting.

HUGE NUMBER OF NETWORK ELEMENTS AND
CONNECTED DEVICES

The number of network elements such as base
stations, users, types of services, connected devic-
es, configuration parameters, measured KPIs, and
supported features directly affect the simulation
run time. A recent article [8] highlights this dra-
matic increase in the simulation execution time
with an increase in the network size. Based on
this article, the simulation time showed a non-lin-
ear surge in time complexity, increasing from less
than 100 seconds for 1000 nodes to more than
2000 seconds for a 3000-node scenario. Mean-
while, it is estimated that the connectivity densi-
ty in 6G will reach far beyond 106 km?2, which is
the density threshold for designing 5G [2]. With
dense BS deployment supporting diverse types of
users, use cases, and billions of connected devic-
es, computationally inefficient simulators will fail
to mimic the vastness of the 6G ecosystem.

NETWORK DEPLOYMENT
Meanwhile, one of the major game-changers that
set 6G apart from its predecessors is the introduc-
tion of 3D networking. The conglomeration of aeri-
al and terrestrial base stations is expected to shift
the way we analyze and simulate cellular networks.
3D networking is anticipated to bring a whole
new level of complexity in simulating the network
and making the aforementioned challenges even
more daunting. For instance, the wide adaptation
of drones will give birth to 3D handover. This, in
turn, results in more sophisticated user mobility and
handover model implementations.

PROPOSED ARCHITECTURE T0 ADDRESS THE
COMPUTATIONAL COMPLEXITY OF NEXT GENERATION
NETWORK SIMULATORS

The usability and performance of a simulator
are severely undermined if it fails to immediately
test the use cases and generate results rapidly.
Therefore, the new design, protocol, or algorithm
evaluation, as well as the data generation through
such a simulator can become time-consuming if
not accompanied by computationally efficient
methods. Currently, several methods to speed
up the simulation process for 5G networks are
being leveraged. For example, several simulators,
such as Atoll, OMNET++ [9], MATLAB-Simulink
[10], and SiMoNe [11], exploit parallel processing
to improve the run-time of simulations. Similarly,

other simulators attempted to explore simulation
speedup options to make up for high computa-
tional complexity either due to a large number
of network elements, realistic modeling, or com-
pleteness. For instance, Vienna 5G has pre-gen-
erated channel traces while ns-3 tries to perform
link-to-link computation in parallel. Meanwhile,
WIiSE incorporates MIMO precoding matrices
pre-generation and smart beam sweeping link
selection, in addition to parallel processing, to
improve time efficiency [12].

Although some efforts are made to improve the
computational efficiency of simulators, our exten-
sive analysis of existing simulators shows that the
bulk of the computational load is caused by their
object-oriented architecture, where extensive iter-
ative functions (e.g., for-loops) are used in each
transmission time interval (TTI) to calculate KPls.
Taking this into consideration, there is a call for a
major shift in designing a simulator that minimiz-
es the use of iterative functions. In addition to the
above-mentioned approaches, we highlight some
key techniques for addressing computational effi-
ciency while maintaining a high level of realism and
completeness below.

Pre-generation and Pre-Loading of COP-De-
pendent KPIs: The performance of cellular net-
works, measured in terms of Key Performance
Indicators (KPIs) may vary depending on configura-
tion and optimization parameters (COPs) settings.
COPs are the backbone of any cellular network
system. These tunable COPs, depending on the
set values, affect how the network performs. For
instance, COPs such as tilt, azimuth, tower heights
and azimuth determine several KPIs like coverage
and reference signal quality that do not change
with time-variant factors such as user mobility or
channel variations but only with respective COP
values. Therefore, these types of KPIs can be
pre-calculated even before the start of the simu-
lation. Meanwhile, other KPIs vary not only with
COPs but also with time variant factors. Examples
of KPIs include throughput, handover success
rate and quality of service and user experience.
Although these KPIs are also affected by COPs,
their actual values cannot be predetermined unless
the simulation is started, and users start to move
around the network and request resources. Hav-
ing this knowledge, instead of calculating all KPIs
in each TTI, the simulator design can divide KPI
modeling into two categories: time-dependent and
COP-dependent. All COP dependent KPlIs such
as reference signal received power (RSRP), refer-
ence signal received quality (RSRQ), geometric
signal-to-noise-plus-interference ratio (SINR) also
known as G-Factor, and slow shadowing can be
pre-calculated only once at the beginning of the
simulation thus incurring only a small computa-
tion cost despite using extremely realistic models.
These pre-generated KPIs can then be preloaded
at the start of the simulation process. This leaves
only time dependent KPIs such as instantaneous
user SINR, physical resource block (PRB) usage,
handover evaluation metrics, and throughput to be
calculated in each TTI

Nonetheless, generating such voluminous
amounts of pre-generated COP-KPI data would
need huge storage space, particularly if flexibility in
the simulated scenario, for example, in user mobili-
ty, is desired. To overcome this issue, cloud storage

The number of network
elements such as base
stations, users, types

of services, connected
devices, configuration
parameters, measured
KPIs, and supported
features directly affect
the simulation run time.
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FIGURE 2 Proposed Python-based simulator architecture to enhance the computational efficiency of

future simulators.

may be a viable alternative. Instead of keeping the
pre-generated data on a local system, they can be
saved in a data lake on the cloud. This data lake
will include a rich collection of network scenari-
os and will be expanded further as new scenarios
are executed. When needed, the pre-generated
network data can be readily retrieved from the
data lake. Given that storage is usually cheaper
than processing power and is not as constrained
resource in simulators as the simulation run time,
this solution can offer the desired degree of trade-
off between the simulator’s use case flexibility, stor-
age capacity and run time.

Modeling Mobility Innovatively Through Bin-
ning: In current simulators, especially those that
are developed to provide a very high level of cov-
erage prediction fidelity, such as Atoll, mobility
modeling is avoided as it is computationally very
expensive, that is, the next location of each UE
must be calculated in each TTI and all the KPIs
must be recalculated with respect to the new
location of the UE. However, being the raison
d’etre of mobile cellular networks, mobility is an
essential feature of mobile networks and must be
considered to achieve holistic performance eval-
uation and optimal design that consider mobility
related KPIs and not only static coverage predic-
tions. Particularly optimal mobility management's
contribution to system performance will increase

drastically in 6G, where ultra-high user speeds of
up to 1000 km/h are anticipated to be supported.
To model user mobility while eliminating the asso-
ciated computational cost, the binning approach
can be leveraged. The key idea here is to divide
the network area into bins (cubes in the case of
a 3D network) and to model COP-dependent
KPIs with respect to spatial bins in the network
instead of the UE locations. Thus, pre-calculated
COP-dependent KPIs, as explained above, can
be used in each TTI for the bins with which the
user is associated. This approach eliminates the
need for recalculation of all KPIs in each TTI, even
with a large number of mobile users. Secondly,
the binning approach will require recalculation of
UE-specific KPIs only when the UE changes bin
location and not at every TTI. Finally, the bin size
can be utilized to explore the tradeoff between
the flexibility of the simulator in terms of accuracy
and the volume of the pre-generated data. For
example, a larger bin size can reduce the size of
pre-generated data at the expense of KPI accura-
cy, and vice versa.

Leverage Al to Model Computationally Inten-
sive Tasks: Pathloss calculation is another compu-
tationally expensive task if modeled realistically,
for example, using raytracing. For instance, Atoll,
by utilizing the ray-tracing model, yields far supe-
rior fidelity in coverage prediction than Vienna
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and ns-3, which use simple empirical and hence
unrealistic propagation models. However, to off-
set the huge computational cost of raytracing’s,
Atoll omits all dynamics in the simulation, such as
dynamic PRB allocation and scheduling, as well as
user mobility and detailed handover procedures
and signaling. Therefore, Atoll, while being very
powerful for cell planning, cannot be used for
research and development of realistic mobile net-
works or optimization of any of the dozens of
mobility related KPIs and COPs. In other words,
the Atoll architecture, like many other simulators,
trades realism in certain aspects for incomplete-
ness to keep the computational cost low. To
address this tradeoff in a more optimal fashion,
the potential of Al is leveraged to model compu-
tationally demanding tasks such as radio propaga-
tion. This idea is recently demonstrated in a study
[13] that shows it is possible to leverage machine
learning to achieve comparable accuracy to ray-
tracing in propagation modeling. Results from this
recent study show that Light Gradient Boosting
Machine (LightGBM)-based propagation model
outperforms all empirical models (e.g., used in
Vienna and ns-3) in terms of accuracy while being
12x faster than raytracing used in Atoll. Similarly,
authors in [14] propose a practical and accurate
channel estimation for cell-free mmWave Massive
MIMO framework based on the fast and flexible
denoising convolutional neural network.

Enabling Parallelization and Distributed
Processing: Although several existing simulators
already support parallel and distributed process-
ing, operations of the majority of the existing sim-
ulators remain forloops-based that do not allow
parallelization. To enable parallelization, the con-
ventional for-loop approach should be avoided
by replacing them with paralleled matrix manip-
ulations for most calculations. For example, inter-
ference calculation per PRB in each TTI can be
modeled as a parallel-able matrix operation. In
addition, the pre-loading will enable the parallel
processing of different COPs for COP-KPI combi-
natorial exploration and hence, reduce the time
complexity of COP-KPI data generation with higher
computational resources.

Build on a Computationally Efficient Platform
(i.e., Python): Most of the existing simulators are
built in either C++ or MATLAB. For example, ns-3
is a C++ based simulator, but it requires a highly
C++ specific skill set. The need for an extremely
experienced and skilled workforce hinders the use
of ns-3 to some extent despite its ability to utilize
the high-performance computing power of C++.
On the other hand, MATLAB-based simulators are
relatively easier to learn, but open-source MAT-
LAB lacks the high-performance computing power
to fully utilize the available resources. This limita-
tion makes the MATLAB-based simulators such
as Vienna, Simulink, and C-RAN, relatively slow.
However, Python possesses both the advantages
of C++ and MATLAB; it is open source and utiliz-
es high-performance computing like C++ and it is
easier to learn like MATLAB. In addition, Python
has a plethora of Al and DL libraries, which are
far richer than those of C++ and MATLAB. This
capability makes Python a better choice for the
development of a system level 6G simulator, as
it will enable easier integration and testing of Al
solutions on emerging networks.

Parameters Values

Number of Base Stations 100

Number of Users 100.200. 500. 1000. 2000

Number of COP-KPl combinations 3575

COPs A3-Offset, A3-TTT, A2-Threshold, A2-TTT

KPI Throughput

A3-Offset [0.1.2.4,5.6.7.8.9.10| dB

A3TIT 164,128, 256. 512, 640] ms

A2-Threshold 95, -97, -99, -101, -103, -105, -107, -109, -111,

Simulation Time (Data Generation) 5s
TABLE 2. Network simulation settings.

To accelerate the simulation time regardless of
the size of the network, with high degree of realism
and completeness, and to generate a large amount
of dataset in a short amount of time, the approach
toward developing future simulators demands an
overhaul. In this regard, next generation simulators
will require leveraging innovative simulator archi-
tecture, parallel, and distributed processing capabil-
ities, as well as time and computationally efficient
modeling of time complex functions like mobility
and propagation. Figure 2 illustrates the proposed
architecture and techniques to improve the com-
putational efficiency of future simulators. The goal
of this article is not to list all the possible novel
techniques to implement all the idiosyncrasies of
6G in a simulator or to address all the challenges
that may arise therefrom. Instead, the emphasis of
this article is on presenting and addressing only the
core challenge in building a 6G simulator, that is,
the computational complexity problem, which if
not addressed can become the bottleneck. More
specifically, we propose and present a simulator
architecture that can leverage innovative tech-
niques to address the computational complexity of
developing system level simulators for future cel-
lular networks. Implementation of other 6G-spe-
cific features and use cases will become feasible
only if this core challenge is addressed first (e.g., by
adapting the computationally efficient architecture
proposed in the article) at the very early stages of
6G simulator design. In summary, this framework
aims to investigate and develop novel techniques
to expedite simulation time, which include:
= A novel architecture leveraging the fast and effi-

cient matrix implementation instead of for loop-

based structure
« Reducing the number of computational and
time-hungry calculations of user mobility traces,

RSRP, RSRQ, and SINR in each TTI
= Utilizing ML-based pathloss models with sig-

nificantly less time complexity than ray-tracing

based pathloss model

= Exploring innovative ways to model user mobili-
ty in a large cellular network

« Fully utilizing the powerful parallel processing
capabilities on one client without compromis-
ing the quality of the data

« Proposing a decentralized simulator architec-
ture to integrate multi-client data generation.

-113, -115, -117, -119] dBm
A2-TIT [32. 64,128, 256, 512] ms
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FIGURE 3. Run-time comparison between simulators with and without the pro-
posed method to improve computational efficiency.

CASE STUDY: EFFICIENT GENERATION OF SYNTHETIC
NETWORK DATA FOR TRAINING Al MODELS

To quantify the advantage of the proposed sim-
ulator architecture over the state-of-the-art archi-
tectures, this article examines the data generation
time in three types of simulators: a legacy simula-
tor, a simulator with parallel processing, and our
proposed architecture-based simulator, that is, a
simulator that leverages binning and pre-genera-
tion, paired with parallel processing to reduce run
time/online computational complexity. Specifical-
ly, the use case demonstrates the increase in the
simulation runtime as the number of nodes (i.e.,
connected devices) increases and quantifies the
potential of the proposed architecture to address
this issue. As 6G is anticipated to support a great-
er number of connected devices, the case study
analyzes the capabilities of various simulation
techniques/architectures to accommodate a high
user density in terms of simulation completion
time. In addition, the use case highlights the effec-
tiveness of the proposed solution in generating
data for more effective machine learning model
training. This is accomplished by evaluating the
performance variation of Al solutions trained on
data generated using different simulation strategjes.

SIMULATION SETup

We exploit a 3GPP-compliant, state-of-the-art
system-level simulator named SyntheticNet [15]
to validate our proposed simulator architecture.
SyntheticNet is a modular, flexible, and versatile
simulator supporting advanced features like adap-
tive numerology, handover, and futuristic data-
base-aided edge computing, to name a few. In
this article, we have created three versions of Syn-
theticNet. The first version is the legacy simulator,
which has none of the aforementioned innova-
tive approaches implemented in it to improve the
computational efficiency. In the second version,
we equip off-theshelf SyntheticNet with the ability
to perform parallel processing, similar to the cur-
rent state-of-the-art approach of other simulators
such as OMNET++, Simone, MATLAB-Simulink,

and Atoll. In this version of the simulator, we allo-
cate 20 cores capable of running the simulation
in parallel. Finally, in the third simulator version,
we implement the proposed innovative approach-
es to reduce computational complexity, such as
pre-generation and pre-loading of COP-depen-
dent KPIs and mobility modeling through binning.
In addition, this version is also capable of per-
forming parallel simulations.

For the first part of the use case, we run the
three versions of the simulator using similar settings
as shown in Table 2. To see the impact of varying
the number of network elements in the simulation
runtime, we vary the number of users from 100
to 2000. Each simulator version is run to gener-
ate data equivalent to 15 seconds of real network
data. The generated data is composed of several
combinations of COPs: A3-Offset, A3-Time to trig-
ger (TTT), A2-Threshold, A2-Time to trigger (TTT)
with the corresponding KPI (Throughput) for each
of the combinations. In total, each simulator ver-
sion generated data of around 3,575 combinations
of COPKPL. Meanwhile, for the second part of the
use case, each of the simulator versions is run for 1
hour with 100 users. After this period, simulations
are stopped, and the data generated are gathered
to train Al models.

RUN-TIME COMPARISON AND ANALYSIS

The first set of results is the comparison of the
total run time of the three simulator versions
shown in Fig. 3. As expected, for all versions of
the simulator, the run time increases as the num-
ber of users increases. More importantly, results
reveal that as user density increases, traditional
simulators require exponentially higher time to
complete the simulation compared to the simula-
tor with the proposed approach. From almost 100
hours for 100 users, the run time grows to more
than 2166 hours. This means the legacy simula-
tor architecture cannot be scaled to simulate 6G
networks. Meanwhile, a simulator with parallel
processing demonstrates it can better deal with
the higher user density compared to the legacy
simulator. Since the simulations are run in parallel
using 20 cores, the simulation time is reduced
by 20x the original. Simulator with parallel pro-
cessing takes around 5 hours for 100 users and
approximately 109 hours for 2000 users to fin-
ish the simulation. Although parallel processing
showcased the ability to cut the runtime, the sim-
ulator with the proposed innovations surpasses
its performance. With the proposed approach,
a simulation with 100 UEs takes only one hour
to complete, whereas a simulation with a maxi-
mum of 2,000 UEs requires around 21.7 hours to
generate the data. In summary, the performance
of the proposed simulator architecture is 5x fast-
er than the state-of-the-art parallel processing
approach and 100x faster than most legacy simu-
lators that do not allow parallel processing. These
results demonstrate the potential of the proposed
architecture to simulate networks with high user
density scenarios that are the hallmark of 6G.
While this is a considerable improvement over
the legacy simulator, the fact that the simulation
still requires a large amount of time (1 hour for
15000 TTIs) leaves a lot of innovation margin
before real-time network emulations can be
realized. In addition, for a simulator to have the
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FIGURE 4. Comparison of Al models trained with different amounts of data generated from the legacy sim-
ulator, parallel processing-capable simulator, and simulator based on our proposed architecture.

potential to act as a digital twin, it should have a  tecture have the lowest RMSE. The average RMSE

comparable run time with the real network (i.e., of the models trained with a large amount of data
Tms for 1 TTI). using the proposed architecture is 8.87 kb/s, better
than the 9.38 kb/s and 12.90 kb/s average RMSE

Al MODEL TRAINING ANALYSIS of legacy and only parallel processing-capable sim-

One of the potential applications of Al in 6G is ulators, respectively. This implies that the proposed
the prediction of network behavior. Al models  architecture-based simulator is more capable of
have the capability to model and map out func-  enabling the training of Al models for existing (i.e.,
tions that cannot be directly or mathematically =~ 5G) and emerging complex cellular networks such
interpreted in the data. With available data, these  as 6G. This further highlights the utility of the pro-
models give insights into the traffic patterns and  posed architecture for various R&D use cases for
network behavior. However, to effectively train Al 6G, particularly for aiding data driven modeling
models, a representative amount of data is need-  and Al-based network optimization.

ed. In this use case, we analyze the effect of data

sparsity caused by the inefficient data generation CUNCLUSI(]N

capabilities of traditional simulators. We build In this article, we analyze the computational com-
models that can map out the relations between plexity challenge in simulator development for
mobility-related parameters, that is, A3-Offset, future 6G networks and discuss the root cause

A3-TTT, A2-Threshold, A2-TTT against certain of this challenge. We analyze some of the most
KPI, that is, throughput. The performance of the =~ computationally expensive tasks in running simu-

model is measured by the root mean square error  lations in the current 5G network and map them
(RMSE) metric. Lower values of RMSE correspond ~ out to anticipate how they will affect the future
to a well-trained model, while large values indi-  6G network. We then explicate innovative poten-
cate insufficient training. We train and evaluate  tial solutions to address this issue. These solutions
several Al models, namely Linear Regression, include pre-generation and pre-loading of COP
Polynomial Regression, Support Vector Regres-  dependent KPIs, modeling mobility innovatively

sion (SVR), Decision Tree, Random Forest, and  through binning, leveraging Al to model compu-
XGBoost using the data generated by the three  tationally intensive tasks (i.e., propagation model),
simulator versions. enabling parallelization, and building on a compu-
The second set of results shows the effect of  tationally efficient platform (i.e., Python). Utilizing
the simulators’ capacity to generate the required  these solutions, we propose a novel Python-based
amount of data needed to train machine learning  simulator architecture to transform the simulator’s
models. As legacy simulators are inherently slow, computational efficiency. We evaluate the effica-
they generate the least data points in 1 hour run- ¢y of the proposed architecture by presenting a
time (50 combinations of COPKPI data), followed  use case. The results show the superiority of the
by the simulator with only parallel processing (700  proposed architecture against the state-of-the-art
data points). Lastly, due to its computational effi-  approach not only in terms of higher computa-
ciency, the proposed simulator generates more  tional efficiency but also as a better enabler for
than 3500 data points in 1 hour. We use the data-  Al-based model training using synthetic data.
sets generated by the three simulation techniques

separately to train Al models for throughput pre- ACKNOWLEDGMENT
diction and compare the performance in Fig. 4. It ~ This work is supported by the National Science
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