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ABSTRACT

To protect users’ right to be forgotten in federated learning, federated
unlearning aims at eliminating the impact of leaving users’ data
on the global learned model. The current research in federated un-
learning mainly concentrated on developing effective and efficient
unlearning techniques. However, the issue of incentivizing valu-
able users to remain engaged and preventing their data from being
unlearned is still under-explored, yet important to the unlearned
model performance. This paper focuses on the incentive issue and
develops an incentive mechanism for federated learning and un-
learning. We first characterize the leaving users’ impact on the
global model accuracy and the required communication rounds for
unlearning. Building on these results, we propose a four-stage game
to capture the interaction and information updates during the learn-
ing and unlearning process. A key contribution is to summarize
users’ multi-dimensional private information into one-dimensional
metrics to guide the incentive design. We show that users who incur
high costs and experience significant training losses are more likely
to discontinue their engagement through federated unlearning. The
server tends to retain users who make substantial contributions
to the model but has a trade-off on users’ training losses, as large
training losses of retained users increase privacy costs but decrease
unlearning costs. The numerical results demonstrate the necessity
of unlearning incentives for retaining valuable leaving users, and
also show that our proposed mechanisms decrease the server’s cost
by up to 53.91% compared to state-of-the-art benchmarks.
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1 INTRODUCTION

1.1 Background and Motivations

Federated learning is a promising distributed machine learning
paradigm, in which multiple users collaborate to train a shared
model under the coordination of a central server [13]. This approach
allows users to keep their local data on their own devices and only
share the intermediate model parameters, which helps protect their
raw data. However, despite these measures, it may not provide
sufficient privacy guarantees [14, 18].

For privacy reasons, one desirable property of a federated learn-
ing platform is the users’ “right to be forgotten” (RTBF), which
has been explicitly stated in the European Union General Data
Protection Regulation (GDPR) [19] and the California Consumer
Privacy Act (CCPA) [7]. That is, a user has the right to request
deletion of his private data and its impact on the trained model,
if he no longer desires to participate in the platform. Users may
seek to leave a platform for a variety of reasons. For example, they
may feel that the benefits from the platform are not sufficient to
compensate for their potential privacy leakage from participation.
Furthermore, until they participate in the platform, they may not
have full knowledge of these benefits and costs due to incomplete
information about other users’ data. For instance, users’ privacy
costs in federated learning depend on how unique their data is [8],
which they can infer from their training loss after training [6].

To remove data from a trained federated learning model, the
concept of federated unlearning has recently been proposed [12]. In
this concept, after some users request to revoke their data, staying
users will perform additional training or calculation to eliminate
the impact of leaving users’ data and obtain an unlearned model.
A simple yet costly approach is to retrain the model from scratch
with the requested data being removed from the training dataset
[1]. To be more efficient and effective, existing literature (e.g., [6,
11, 25]) focused on alternative federated unlearning methods that
obtain a model similar (in some distance metrics) to a retrained
model with lower computational costs. However, these studies
usually assumed that users are willing to participate in federated
learning and unlearning. This assumption may not be realistic
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without proper incentives since users incur various costs during
the training process (e.g., time, energy, and privacy costs). Our goal
in this paper is to develop incentive mechanisms to help retain
valuable leaving users and create a sustainable learning platform
for both the users and the server.

There are several challenges for designing an incentive mecha-
nism for federated learning and unlearning. First, different leaving
users will lead to different unlearned model performances and
unlearning costs, the relationship among which is still an open
problem. Second, it is difficult for the server to design incentives
for a large number of heterogeneous users, when users have multi-
dimensional private information (e.g., training costs and privacy
costs) and unknown information (e.g., users’ training losses be-
fore federated learning). Third, unlearning incentives for retaining
valuable leaving users require careful design. High incentives may
encourage strategic users to intentionally request revocation to
obtain retention rewards, while low incentives may fail to retain
valuable users. It is also crucial for the server to distinguish be-
tween high-quality leaving users (e.g., with rare and valuable data)
and low-quality ones (e.g, with erroneous data), both of which can
lead to high training losses. Fourth, both learning and unlearning
incentives affect the server’s and users’ payoffs but are determined
in different stages - before or after federated learning. Meanwhile,
there are different information asymmetry levels in each stage, as
the federated learning process can reveal some information such
as users’ training losses and contributions.

The above discussion motivates us to answer the following in-
teresting question: Considering leaving users’ impact, what is the
server’s optimal incentive mechanism for federated learning and un-
learning, when heterogeneous users have strategic data revocation
decisions and multi-dimensional private and unknown information?

1.2 Contributions

We summarize our key contributions below.

o [ncentive mechanism design for federated learning and unlearning.
We propose a four-stage Stackelberg game to analyze the opti-
mal incentives of the server and the optimal strategies of users
within this game. To the best of our knowledge, this is the first
analytical study of incentive mechanisms for federated learning
and unlearning.

o Theoretical characterization of global model accuracy and unlearn-
ing communication rounds. We theoretically derive bounds on the
global model optimality gap given non-IID data for a federated
learning algorithm (Scaffold [9]) and the number of global com-
munication rounds required for a federated unlearning method.

o Optimal incentives and revocation decisions under multi-dimensional
incomplete information. Due to the complex interaction, users’
multi-dimensional private information, and dynamically updated
knowledge, the server’s optimization problem in Stage I of the
four-stage game is highly complex. We summarize users’ multi-
dimensional heterogeneity into several one-dimensional metrics
and develop an efficient algorithm with linear complexity, to
handle the exponentially large number of possible cases involved
in optimal mechanism design. We also identify and analyze a
supermodular game among the users to obtain their optimal data
revocation decisions.

o Insights and Performance Evaluation. We show that high costs and
training losses motivate users to leave, while the server will retain
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the leaving users who make significant contributions to model
accuracy but not necessarily low training losses, as small losses of
retained users will reduce privacy costs yet increase unlearning
costs. We numerically show that compared with state-of-the-
art benchmarks, our proposed incentive mechanism decreases
the server’s cost by up to 53.91%. Moreover, the results demon-
strate that it is beneficial for the server to retain valuable leaving
users and jointly optimize the federated learning and unlearning
incentive mechanisms.

1.3 Related Work

The concept of machine unlearning, which refers to the process of
removing the impact of a data sample from a trained model, was
first introduced by Cao et al. in 2015 [2]. Most related literature
was about centralized machine unlearning (e.g., [1]), in which the
unlearned model (not retrained from scratch) was trained on sum-
marized (e.g., aggregates of summations) or partitioned subsets
rather than individual training samples. As a result, the model only
needed to be updated on the subset(s) of data that are associated
with the requested samples. Centralized unlearning methods are
not suited to federated learning, due to (i) lack of direct data access,
(ii) the fact that the global model is updated based on the aggregated
rather than the raw gradients, and (iii) the possibility that different
users may have similar training samples [6]. This motivated the
emergence of federated unlearning.

Only a few studies proposed federated unlearning mechanisms
using methods such as gradient subtraction (e.g., [11, 12]), gradient
scaling (e.g., [6]), or knowledge distillation (e.g., [25]). Albeit with
good numerical performance, there is no theoretical guarantee
of these proposed federated unlearning methods. To fill this gap,
we propose theoretical bounds on the model optimality gap and
communication rounds for one approach to federated unlearning.

Furthermore, there is a wide spectrum of literature on incen-
tive mechanisms for various systems, including crowdsensing (e.g.,
[26]), wireless networks (e.g., [29]), data trading (e.g., [22]), and
energy sharing (e.g., [20]). Some important work studied incentive
mechanism design for federated learning to discourage valuable
clients from leaving (e.g., [4, 23, 27, 28]). However, very few of them
considered users’ multi-dimensional private information (e.g., [4]),
and none of them incorporated the unique aspects of federated
unlearning (e.g., unlearning costs) or the dynamics of users’ payoffs
(e.g., pre-/post-training and before/after some users leave). This
paper is the first to focus on incentive mechanism design for both
federated learning and unlearning.

The rest of the paper is organized as follows. In Section 2, we
characterize the models of federated learning and unlearning. We
describe the system model in Section 3 and calculate the optimal
incentive mechanisms in Section 4. Simulation results are presented
in Section 5, and we conclude in Section 6.

2 CHARACTERIZATION OF FEDERATED
LEARNING AND UNLEARNING MODELS

Before modeling the game-theoretic interaction between the server
and the users in the next section, we first discuss federated learning
and unlearning models in this section as a preliminary. Specifically,
we specify the learning and unlearning objectives in Sections 2.1
and 2.2, respectively. Then, we derive bounds on global model
accuracy and federated unlearning time in Section 2.3.
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2.1 Federated Learning Objective

Consider an example of data (x4, y4), where x, is the input (e.g.,
an image) and y, is the label (e.g., the object in the image). The
objective of learning is to find the proper model parameter w that
can predict the label y, based on the input x,. Let us denote the pre-
diction value as j(xg; w). The gap between the prediction §(xg; w)
and the ground truth label y, is characterized by the prediction loss
function f;(w). If user i selects a set of local data with data size d;
to train the model, the loss function of user i € I is the average
prediction loss on all his training data:

1 &
Fi(w) = 5 > fa(w).
La=1

The purpose of federated learning is to compute the model parame-
ter w by using all users’ local data. The optimal model parameter
w* minimizes the global loss function, which is an average of all
users’ loss functions [9, 15]:!

w" = arg mui}n % Z Fi(w).

iel

2.2 Federated Unlearning Objective
A federated learning process maps users’ data into a model space,
while a federated unlearning process maps a learned model, users’
data set, and the data set that is required to be forgotten into an
unlearned model space. The goal of federated unlearning is to make
the unlearned model have the same distribution as the retrained
model (i.e., retrained from scratch using the remaining data).?

A natural method for federated unlearning is to let the remaining
users (excluding leaving users) continue training from the learned
model w*, until it converges to a new optimal model parameter w*
that minimizes the global loss function of remaining users:

Fi(w),
iEI\Ileave
where Jj.44e is the set of users who leave the system through
federated unlearning. This method is typically more efficient than
training from scratch, as the minimum point may not change much
after some users leave.

1

@

®)

w* = arg min
W I = Ijeque

2.3 Model Accuracy and Unlearning Time
Given the objectives of federated learning and unlearning, we ana-
lyze the model accuracy gap and unlearning time in the following.
It has been shown that many federated learning algorithms (e.g.,
FedAvg [13]) suffer from significant communication overhead [10].
Scaffold [9] can mitigate this issue by incorporating an additional
correction term based on gradient tracking techniques during local
updates. Thus, we use Scaffold as the federated learning algorithm
when deriving the optimality gap of the global model.® In each
local iteration of the algorithm, every user computes a mini-batch
gradient with batch size s;. A batch or minibatch refers to equally
sized subsets of the training dataset over which the gradient is
calculated. In this paper, we consider the widely adopted setting

! This model treats each user equally. Some papers (e.g., [13]) adopted another objective,
a weighted sum of all users’ losses, where the weights (i.e. d,-/Zf:1 d;) reflect the
differences in data size. The two objectives are equivalent when users’ data sizes are
the same. Our results can be easily extended to the weighted case.

2The distribution is due to the randomness in the training process (e.g. randomly
sampled data and random ordering of batches).

3We can derive similar results for Fedavg if we additionally assume that local data
distributions satisfy bounded heterogeneity.
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that users’ batch sizes {s;};c r are in the same proportion to their
data sizes {d;};cr (i.e., si =ud;,Vie 1,1 € (0,1)) [1, 4, 17].

The following proposition presents a bound on the optimality
gap for the global model trained with Scaffold:

PROPOSITION 1. Suppose each user’s loss function F; is py-strongly-
convex and L-Lipschitz-smooth. Consider the federated learning algo-
rithm Scaffold with the local iteration number of user i denoted by K;
and local step size denoted by n;. Setting §j = ;K; < ﬁ we have

22?7262 Z 1
I iel Si
where wry1 and w; represent the model parameter after global round
t + 1 and t, respectively, s; is user i’s local batch size, and o2 is the
variance bound of each data sample.* Moreover, by selecting fj =

4

Bllwer = w12 < (1= EDElJwe - w'| +

C
=1
for some 0 < ¢ < ﬁ we have that the expected optimality gap of
the global model satisfies:

1
Do Hlhwo—wII.

1 b(c)o?
Bllwe — w2 < [ 2
ier !

©)

Tt+1 1

where b(-) is a function of c.

The proof of Proposition 1 is given in Appendix A in the techni-
cal report [5]. As a large optimality gap ||w; — w*||? means a high
accuracy loss of the global model, Proposition 1 presents a relation-
ship between the expected global model accuracy loss and the users’
data sizes. As shown in (5), the expected accuracy loss of the global
model decreases in the users’ training batch sizes {s;};¢ 7 (and thus
data sizes {d;};c 7). Moreover, we explain two asymptotic cases of
(5) for better understanding. When the initial point is optimal (i.e.,
wp = w"), the bound does not go to zero due to sample randomness.
When batch size s; is large enough, the randomness is then highly
reduced and the bound is only controlled by the initialization of the
algorithm, i.e., the farther the initial point wy is from the optimal
solution w*, the more iterations are needed.

Then, after applying the result in Proposition 1 to the natural
unlearning model introduced in Section 2.2, we have the following
proposition about federated unlearning rounds:

ProprosITION 2. Consider the same conditions of Proposition 1
with diminishing step size ij and suppose
(1) 2
be) < 1 (Zie Teane IVE:(W)II)
T (I~ Tieave) 12 2

It will require

1
2ie I\ Tjeqve 5,0

Tantearn = 20 3 IVRGIE =1
iEIIeave
rounds of communication to guarantee E|lwr,, ..~ —Ww"|| < € when
starting from the original learned model w*, where the new model
w* is defined in (3).

The proof of Proposition 2 is given in Appendix B in the technical
report [5]. Each user’s gradient ||VF;(w*)|| can represent his train-
ing loss (denoted as ¢;) because the calculated gradient increases
in the loss. Hence, Proposition 2 reveals the relationship between
the number of communication rounds required for federated un-
learning and the training losses of leaving users. As indicated in (6),
a larger total training loss of the leaving users Y ;c 7, . t’iz (ie,a

(6)

4To estimate the true gradient VF; (w), we uniformly sample one data point to generate
a gradient estimate g; (w) and assume E||g; (w) - VF; (w) || <o for any w.
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Contract Signing
Before Learning

Server announces the contract for federated learning (Stage 1)
Users choose which contract item to sign (Stage I1)

!

Users jointly train a model under server’s coordination

Federated
Learning

Decision Making
Before Unlearning

Users decide whether to revoke data (Stage IlI)
Server decides whether to retain the leaving users (Stage IV)

|

Server and users unlearn the leaving users’ data

Federated
Unlearning

Figure 1: Framework of federated learning and unlearning
system with incentive mechanisms.

larger Ye 7, IVFi(w") ||?) requires more communication rounds
Tunlearn to achieve unlearning.

We will apply the derived results about model accuracy loss and
unlearning rounds in building the system model in the next section.

3 SYSTEM MODEL

We consider a federated learning and unlearning system consisting
of a set of heterogeneous users with private data and a central
server. As illustrated in Fig. 1, the server first incentivizes users
as workers to participate in a federated learning phase through a
contract. However, some users may later choose to revoke their data
and leave the system. In response, the server can provide further
incentives to retain valuable users. Upon the final exit of some
users from the system, the remaining users collectively execute an
algorithm to unlearn the leaving users’ data.

In the following, we first divide the heterogeneous users into
different types for the convenience of incentive design, then for-
mulate a multi-stage game between the strategic server and users,
and finally specify the payoffs of the server and the users (i.e., their
optimization objectives), respectively.

3.1 User Type

We consider a set 7 £ {1,2,..,I} of users in the system with
two-dimensional private information: marginal cost for training
effort  and marginal perceived privacy cost £&. We refer to a user
with (6}, &;) as a type j user. We further assume that the I users
belong to a set J 21,2, J}ofJ types. Each type j has I; users,
with Y, je 4 Ij = I. The total number of users I and the number of
each type I; are public information, but each user’s specific type is
private information.’

Under private information, it is difficult for the server to pre-
dict users’ strategies. To this end, we propose to design a contract
mechanism for the server to elicit information.

3.2 Games and Strategies

We use a four-stage Stackelberg game to model the interaction
between the server and users.

o Stage I: The server designs a federated learning incentive contract
A . . .

o= {¢ j}je Ve which contains J contract items (one for each user

type). Each contract item ¢; = (d i rJL) specifies the relationship

between the required data size d; of each type-j user (for local
computation) and the corresponding learning reward rJI.“.

5The server can have knowledge about statistics of type information through market
research and past experiences, but it is hard for it to know each user’s private type.
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Table 1: The Server and Users’ Knowledge in Different Stages
Stage
Server in Stage I

Unknown
{6i, & b vitier
other users’ types,

Known
his own type (6;, &)

User in Stage II

{[i, 0j }iej
User in Stage III his own type (6;, &), | other users’ types,
{[i}iGI {Ui}ief
Server in Stage IV . {Ij}jejs -

{01, &, 6, viticr

o Stage II: Users decide which contract item to choose. Then, they
jointly implement the federated learning algorithm (Scaffold).

e Stage III: Users decide whether to revoke data after federated
learning. We denote a user i’s revocation decision as

0, if user i does not revoke data, @

1, if user i revokes his data,

and denote the set of users who revoke their data as Z;,. If a type-j

user revokes his data, then he needs to fully return the reward rjf

xi =

to the server.® We consider that the server will announce users’
training losses {#; };c 7 (without specifying users) after federated
learning to help users decide whether to revoke data.”
e Stage IV: The server decides the set of leaving users to retain
7, and designs the corresponding retention incentives {rlU}ie I
such that those receiving the retention incentives will choose to
stay in the system and those without will leave.® The remaining

users and server collectively implement federated unlearning.

In Stage I1I, we use ¢; = ||VF;(wr)]|| to represent the training loss,
where wr is the solution obtained after T iterations of Scaffold. We
assume T is large enough, such that wr and w* are close. A large
¢; implies the federated solution is far away from the minimizer of
local loss function F; and therefore a larger training loss.

After federated learning, the server and users have more informa-
tion in Stages Il and IV compared with Stages I and II. For example,
the users will know their training losses {#;};c 7. The server can
evaluate the users’ contribution to the global model (denoted by
{vi}ier), and it will know each user’s type by observing users’ con-
tract item choices. We summarize their knowledge about some key
information in the four stages in Table 1 and list the key notations
in this paper in Table 2.0

Moreover, in Stage IV, the server has enough information to know
whether the users will accept the retention incentives. Therefore,
we do not model a Stage V in which the users decide to accept or not
accept the retention incentives. After that, as in Fig. 1, the staying
users perform federated unlearning under the server’s coordination,
which makes staying users sustain unlearning costs. We will specify
the payoffs and costs of the server and users in each stage of the
game in the next subsection.
®If there is no such return policy, every user can first participate to get rewards and
then revoke data to reduce costs, resulting in a catastrophic failure of model training
collaboration and a huge cost to the server.

"It is not obvious that a strategic server would make such an announcement, but it can
be stipulated by regulations for protecting users’ right to be forgotten. If we do not
make this assumption, the problem will be even simpler. As we shall see in the analysis
in Section 4.2, we just need to replace other users’ training losses {f }xcr in (19) with
the same expected loss E[¢] and solve the problem through a similar approach.

81n this case, 7,,\ Z, is the set of users who finally leave the system, and I\ (Z;,\ Z-)
is the set of users who finally stay.

%As analyzing the four-stage game is complicated, this paper does not model the

information update in a fully Bayesian framework but specifies plausible beliefs that
the players hold in each stage.
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Table 2: Key Notations

0; Marginal training cost of type-j users
& Marginal perceived privacy cost of type-j users
I; Number of type-j users

NS Index/Set of user types in the system

i/T Index/Set of users in the system

1, Set of users who revoke their data in Stage III
I, Set of users who are retained by the server in Stage IV
éj Contract item designed for type-j users
d; Required data size for each type-j user in the contract
rj].“ Learning reward for each type-j user in the contract
riU Unlearning reward (retention incentive) for user i
Xi User i’s data revocation decision

pj Historical revocation rate of type-j users
qj Historical retention rate of type-j users

T | Number of communication rounds of federated learning

A Coeflicient related to unlearning communication rounds

o Coeflicient related to expected accuracy loss

Y Server’s weight on incentive rewards

v; User i’s contribution to global model accuracy

4 User i’s training loss (representing ||VF;(x*)|])
3.3 Payoffs

At each stage, every user or the server seeks to maximize his ex-
pected payoff (or minimize his expected cost) based on his cur-
rent knowledge. As knowledge updates occur between stages, the
payoffs of the users or the server (maximization or minimization
objectives respectively) take different forms in each stage.

3.3.1 Server’s Payoff in Stage I. The server’s objective in Stage I
is to minimize the sum of the expected accuracy loss of the global
model and the expected total incentive rewards for users.

First, we specify the expected model accuracy loss, which de-
pends on the data of users who finally stay in the system. Since
the server cannot predict which users will leave and who to retain
due to the lack of information in Stage I, it can only base its deci-
sion on user distribution expectations. Specifically, we assume that
according to the historical experience and market statistics, the
server knows the probability of a type-j user revoking his data (i.e.,
his revocation rate) p; and the probability that a type-j user who
wants to revoke data is retained (i.e., his retention rate) q;, where
pj and q; are independent. Following Proposition 1, we model the
server’s expected accuracy loss after federated unlearning as:

1
% D Li-p; +Pi9i) I

jeg /
where T is the number of communication rounds of federated learn-
ing, o is a coefficient related to the sample variance, and 1-p;j+p;q;
is the percentage of type j users remaining in the system in the
end. This captures that the expected model accuracy loss decreases

in the data sizes of all staying users.!°

The server’s payoff also includes the cost of all rewards it pays
to users, which comprises the initial contract announced in stage I
and incentives offered to encourage leaving users to remain in stage

®)

10 A5 the server aims to incentivize users to contribute data in federated learning, we
only model the impact of data sizes and omit the independent term about initial point
wp in (5). Since we consider that users’ batch sizes {s; };cs are in the same proportion
to their data sizes {d; };c7s. it is equivalent to substitute s; with d; in (5).
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IV. If all users choose to participate in the contract and choose their
corresponding contract items,!! the expected total learning reward
is Zjej Ii(1-pj +quj)er. Note that if a type-j user successfully
revokes his data, he needs to fully return the reward rJI.‘ to the
server. The server’s expected incentive for retaining leaving users
isE[Yjer, rl.U], which depends on p, g, and training losses and will
be calculated through backward induction in Section 4.4.
Combining these terms, the server’s expected cost in Stage I is

_ 1
we =§ > L(1-p; +Pid)) o
jeg J

)

U
2,

iel,

+y Z Ij(l - pj +quj)r§‘ +E
jeg
where y is how much weight the server puts on the incentive reward
payments compared to the model accuracy loss. A smaller y means
that the server is less concerned about minimizing the incentive
rewards and more concerned about reducing the accuracy loss.

3.3.2  Users’ Payoffs in Stage Il. In the overall game, there are three
possible outcomes for a user (not revoke data, revoke and retained,
revoke and not retained). However, in this stage, a user does not
have enough information to know which outcome will realize, so
he must calculate his expected payoff by considering three cases:

e Case (a): not revoke. With probability 1—p;, a type-j user will not
revoke his data after federated learning. In this case, his expected
payoff is the difference between the learning reward rjf and costs

(including the learning cost, privacy cost, and unlearning cost):

U =1} = 0;d;T - &E[¢;]d) - E[ejdja > o)
iel,\I,
where 0;d;T is the total learning cost in T rounds. As we con-
sider that each user’s sampled data size in each local round is
proportional to his total data size, the learning cost is linear
in his data size d; (e.g., [1, 4, 17]). Similarly, in the unlearning
cost 05djA Ve \ 1, t’l.z, the A Yern\z, t’l.z models the number of
communication rounds for unlearning, which increases in the
leaving users’ training losses (according to Proposition 2).!2 A
type j user’s perceived privacy cost {;E[{;]d; increases in his
expected training loss E[¢;] and data size d;. As a high training
loss ¢; reflects a large distance of user j’s data from the average
of other users’ distribution, we use it to measure the uniqueness
of a user. Thus, the model captures that the privacy cost increases
in the uniqueness and size of one’s training data (e.g., [3, 16]). As
each user cannot know his exact training loss ¢; before federated
learning, we assume that he estimates the expected loss using
the public distribution (with mean E[¢;] and variance D(¢;)).
o Case (b): revoke but retained. With probability p;q;, a type-j user
will revoke his data after federated learning but will be retained by
the server through more incentives U . In this case, his expected

payoff is the difference between total rewards (including both
learning and unlearning incentives) and costs:

11 A5 we shall see in Section 4.4, we will design the contract to ensure that each user
will participate (i.e., individual rationality) and choose the contract item designed for
his type (i.e., incentive compatibility).

12WWe use the simplified model of (6) in Proposition 2 to capture the key relationship
between the unlearning communication rounds Ty, nieqrn and leaving users’ training
losses (represented by || VF; (w*)])).



MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

Usy Z £

iel,\1,
The unlearning incentive rjU will be determined by the server in

= r§7+E [r;J]_ejdjT_ng[fj]dj—E[dej/l . (11)

Stage IV based on users’ training losses, contributions, and data
revocation, which are unknown in this stage. Thus, each user
can only calculate the expectation of the unlearning incentive.

o Case (c): revoke and not retained. With probability p;(1 - g;), a
type-j user will revoke his data and will not be retained by the
server, i.e., the user’s data will be unlearned. The user needs to
return the reward rl to the server but will not incur any privacy
cost or unlearning cost. In this case, his expected payoft is

-2 _
U;,c = —dojT, (12)
which is the sunk training cost from federated learning.
In summary, a type-j user’s expected payoff in Stage II is
-2 -2 -2 -2
U; =(l—pj)U;’a +qujU;,b +pj(1—qj)U;’C . (13)

If U;_z > 0, the type-j user will choose to participate in the feder-
ated learning in Stage IL.

3.3.3  Users’ Payoffs in Stage Ill. After federated learning, each user
i has knowledge about his training loss #;. If user i chooses not to
revoke his data, his expected payoff in Stage III is (updating (10) in
Case (a) with the realized training loss ¢;):
2
2

kel \ I,
The reason for using expectation here is that users do not know
the set of retained users 7, determined in Stage IV. Users’ expected
payoffs of Cases (b) and (c) in Stage III follow the same approach
(i.e., updating (11) and (12) with the realized training loss ¢;).

Note that users of the same type may have different training
losses and thus different payoffs, so the payoff in Stage III is user-
specific instead of type-specific. Moreover, after some users leave,
the remaining users’ training losses may change as the global model
will be updated. Since users cannot accurately predict their future
expected loss even if they know all users’ current losses, we assume
that each user still approximates his future expected loss as equal
to his current loss.

Ui’ = ri = 0idiT - &itid; — E[Gidi/l . (19

3.3.4 Server’s Payoff in Stage IV. When some users want to leave
the system, it is important for the server to know their contributions
to the global model for retaining valuable users.

A fair and effective method to compute a user’s contribution to
a coalition is the Shapley value [24]. Wang et al. [21] introduced
a related concept called federated Shapley value to evaluate each
user’s contribution in a federated learning setting. The federated
Shapley value for user i, denoted as v;, is calculated by the server
during the federated learning process and is unknown to the users.

Once obtaining users’ contributions (federated Shapley values),
the server can calculate its realized cost in Stage IV. This cost is the
sum of two factors: the realized accuracy loss, which is estimated
by the sum of federated Shapley values of all users who remain in
the system, and the realized incentives.

by 7.

iel,

w4 = vi+y
ieI\(L\1y)

(15)

ieI\(L\1)
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The first term in (15) represents the model accuracy loss, the second
is the learning reward paid to all remaining users for participation in
federated learning, and the last term is the total retention incentive.
The additivity property of federated Shapley values allows the
server to compare all the possible sets of users to retain and find the
optimal one. Note that a smaller federated Shapley value is better, as
it means a larger contribution to the accuracy of the global model,
and the federated Shapley values can be negative.

4 OPTIMAL INCENTIVE MECHANISM

In this section, we analyze an optimal incentive mechanism for
federated learning and unlearning. Based on backward induction,
we will derive the optimal strategies from Stage IV to Stage I in
Sections 4.1-4.4, respectively.

4.1 Server’s Retention Strategies in Stage IV
Given the server’s contract ¢ in Stage I, the users’ contract item
choices in Stage II, and the users’ revocation decisions 7, in Stage
III, the server needs to determine which users to retain 7, and the
corresponding retention incentives {r,-U}ie 7, in Stage IV.

As we discussed in Section 3.3.4, the server seeks to minimize
the cost in (15) in Stage IV, which can be formulated as follows:

PROBLEM 1 (SERVER’S OPTIMIZATION PROBLEM IN STAGE IV).

L U

min vity Z ri+ Z T (162)
ieI\(ZL\1;) ieI\(L,\1y) iel,

s.t. rl-U + r’iL —0;d;T - &itid; — 0;d;A Z [lz > —0;d;T,Vi € I,
ke N\,

(16b)

var. I, C I, {V,U}ieI,~ (16¢)

The constraint (16b) is to ensure that the retention incentives
are enough to make the target users stay in the system. The left-
hand side of the constraint is a user i’s payoff after accepting the
retention incentive (including unlearning reward, learning reward,
learning cost, privacy cost, and unlearning cost), and the right-hand
side is his payoff of not accepting (i.e., he has to return the learning
reward to the server and only has sunk learning cost).

The following proposition presents the solution to Problem 1.

PROPOSITION 3. The server’s optimal set of users to retain is

1" = arg_min vi+yOidid Y G HyEdi|,  (17)
=Y e, keI, \I,
and the optimal retention incentives are
PV = 0id;A Z &+ &bd; —rhvie I} (18)

ke \I}

The proof of Proposition 3 is given in Appendix C in the tech-
nical report [5]. Proposition 3 highlights a trade-off regarding the
retention of users and their training losses. Users who have larger
training losses incur higher privacy costs and thus require higher
incentives to retain (indicated by y¢&;¢;d; in (17)). However, retain-
ing such users also helps reduce the unlearning costs since the
objective in (17) increases with the aggregated loss of the leaving
users. Furthermore, the server has the incentive to retain users
who contribute more to the model accuracy, which corresponds to
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smaller values of v;. Additionally, users with smaller marginal costs
0; and ¢; are also desirable to reduce unlearning incentives.!3

4.2 Users’ Revocation Decisions in Stage III
Considering the server’s optimal retention strategies in Stage IV,
each user i decides whether to revoke his data in Stage III given the
information announced in Stages I and IL

Based on the server’s optimal retention incentives (18) and the
user’s payoffs in Stage III (i.e., the updated (11) and (12) with realized
losses), a user i’s payoff after revoking data is —0;d;T, regardless
of whether the user is retained by the server or not. Thus, user i’s
expected payoff in Stage III can be rewritten as

U3 (xis x—i) = x; (—0;d;T)
+ (1= 1) |rf = 0idiT = &itydi — 0:did ) x(1- )t |, 19

kel

where x_; = {Xg}rer\ (i) is the revocation decisions of all users
except user i and g = E[q;] is the expected retention rate of all
users, as users do not know each other’s type.14 As shown in (19),
each user’s payoff depends on the other users’ revocation decisions,
S0 users engage in a non-cooperative game in Stage IIL.

We formally define users’ non-cooperative sub-game as follows.

SuB-GAME 1 (USERS’ REVOCATION SUB-GAME IN STAGE III).

o Players: all users in set I .

o Strategy space: each useri € I decides whether to revoke his data,
i.e, x; € {0,1} (0: not revoke, 1: revoke).

o Payoff function: each user i € I maximizes his payoff in (19).
The following proposition characterizes the Nash equilibrium

(NE) of Sub-Game 1:

PROPOSITION 4. Sub-Game 1 is a supermodular game, where pure
NE exists but may not be unique. Algorithm 1 converges to one NE.

Algorithm 1: Users’ optimal revocation decisions

Input :{rf &, 6,di,0i}icr. N q
Output: Optimal revocation decisions {x] };¢ 1

1 Initialize x;‘ —0,iel;
2 while

HX? =0& riL —&itid; — 0;diA(1 - q) ZkeI\{i} xkflz < 0do
3 L x} « 1,Vi satisfying conditions in line 2;

The proof of Proposition 4 is given in Appendix D in the technical
report [5]. Based on Algorithm 1, we can find the set of users who

3Note that in (17), the server may not only include users with a negative value in
the brackets, as retaining some users with positive values may reduce the server’s
objective through the aggregated losses. This is an integer programming problem with
complexity O (2/#). When the number of leaving users I, is large, the server can
reduce the complexity by classifying the leaving users into several categories to retain,
each category with similar contributions and costs.

4Here we use the historical retention rate g to calculate the expected payoffs instead
of the retention rate obtained in Stage IV (i.e., | 77|/ |, ). This is because users do
not know their federated Shapley values and cannot calculate Z,*. If they calculate
the expectation E[ 7' ] based on type statistics, according to (17), the result will be
user type retention instead of user retention (e.g., retain all type-i users and not retain
all type-j users regardless of different data distributions and losses of the same type
of users), which is not true. Conversely, historical rates ranging between [0, 1] allow
for more realistic partial retention of same-type users. Therefore, we assume that the
users have a belief at this stage in the retention rate which is the same as the historical
rate. In the following analysis in Stages I and II, we will also use the historical rates
for calculating the expected cost/payoffs for similar reasons.
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revoke data in one NE, i.e., 7] = {i : xlf‘ = 1,i € I}. Basically,
Algorithm 1 corresponds to doing best response updates of the
users starting from all users choosing not to revoke (i.e., 0). It
is well known that for supermodular games, these updates will
converge monotonically to a NE. Algorithm 1 will terminate within
I iterations.!® The resulting equilibrium strategies and insights will
be illustrated through simulation in Section 5.2.1.

4.3 Users’ Contract Item Choices in Stage II

Based on the analysis in Stages IIl and IV, a type-j user’s expected
payoff in Stage II (13) can be rewritten as:

U = (1-pj)ry - x5dj, (20)

where
Kj e (1 —pj)ng[fj] + QjT

+0;(1=p)A Y Tnpm(1 = gm) (Elem)? +D(t)), PV
meyg
and D(#,,) is the variance of type-m users’ training losses.
Each type-j user in Stage II will choose a contract item that
gives him a maximum non-negative expected payoff, leading to the
constraints that the server needs to consider in Stage L.

4.4 Server’s Contract in Stage I
In Stage I, the server designs a contract to minimize its expected
cost, considering the results in Stages II-IV.

When designing the contract, the server needs to ensure that
each user achieves a non-negative payoff, so that the user will
accept the corresponding contract item. Moreover, since the server
does not know each user’s type in Stage I, the server also needs to
make a user choose the contract item intended for him (i.e., the user
does not misreport his type).'® In other words, a contract is feasible
if and only if it satisfies Individual Rationality (IR) and Incentive
Compatibility (IC) constraints:

DEFINITION 1 (INDIVIDUAL RATIONALITY). A contract is individ-
ually rational if each type-j user receives a non-negative payoff by

accepting the contract item ¢ = (a' B rf) intended for his type, i.e.,

(1—pjri —xjdj = 0¥je J. (22)

DEFINITION 2 (INCENTIVE COMPATIBILITY). A contract is incen-
tive compatible if each type-j user maximizes his own payoff by

choosing the contract item ¢; = (d~, r]L) intended for his type, i.e.,

(1= pjri —xjdj = (1= pj)riy — kjdmVism € J. (23)

Considering the constraints in Definitions 1 and 2, the server in
Stage I seeks to design the contract ¢ = {(d;, rJI.“)}j e.g to minimize
its expected cost in (9), which is rewritten as follows after combining
the results in Stages II-IV:

I5We can also initialize all the users’ decisions as 1 and check whether there exists
a user who wants to change his action from 1 to 0 for payoff improvement. If the
equilibrium is the same as that found by Algorithm 1, it is the unique NE, as Game 1 is
a supermodular game.

16Revelation principle demonstrates that if a social choice function can be implemented
by an arbitrary mechanism, then the same function can be implemented by an incentive-
compatible-direct-mechanism (i.e. in which users truthfully report types) with the
same equilibrium outcome. Thus, requiring IC will simplify the mechanism design
without affecting optimality.
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PROBLEM 2.
. oli(1—pj+pjq)) .
min Z (—de +yIj(1—pj)r].
jeg
#jpyayaty + 3D
I (29)
s.t. (1 —pj)rj -k;jdj 20,VjeJ,
(1 —pj)er —Kjd; > (1 —pj)r,I;I —Kjdm,Vj,me J,
L
var. {(d],rj)}jej,
where
a2 Y (1 -q)) (IG5 +D(&y)). (25)

jeg

Solving Problem 2 involves two challenges. First, users’ multi-
dimensional heterogeneity leads to a challenging multi-dimensional
contract design for the server. We will simplify the analysis by
summarizing users’ multi-dimensional heterogeneity into several
one-dimensional metrics, to guide the server’s design of the optimal
rewards and data sizes in the contract. Second, as the total number
of IR and IC constraints is large (i.e., J), it is challenging to obtain
the optimal contract directly. To overcome such a complexity issue,
we transform the constraints into a smaller number of equivalent
ones. Next, we first derive the server’s optimal reward {rj.“* (d}jeq
for any given data size d = {dj};c g (Lemma 1) in Section 4.4.1.
Then, we calculate the optimal data size d* (Proposition 5 and
Theorem 1) in Section 4.4.2.

4.4.1 Optimal Rewards in Contract. Without loss of generality, we
assume that users are indexed in ascending order of
a K
TP =
1-pj

= &E[¢] + 1

H_JT -+ 04 Z Impm(1 = qm) (E[f’m]2 + D(fm)) )
J megJ

which can be regarded as a type-j user’s aggregated marginal cost.

That is,

(26)
The following Lemma 1 characterizes the server’s optimal learn-

ing rewards for any feasible data size:

m <m L. Sy

LEmMMA 1. For any given data sized = {d;}jc g (even if it is not
optimal), the unique optimal reward for a type j user is:

ol -

o 27
7l'jdj + Z{n=j+1(7[m — Tm—1)dm, ifj=1,..,J—1. 27)

The proof of Lemma 1 is given in Appendix E in the technical
report [5]. Lemma 1 indicates that all user types except the boundary
type J will obtain positive expected payoffs (type-J users receive
zero expected payoff), which can be interpreted as the information
rent in economics due to information asymmetry.

4.4.2 Optimal Data Sizes in Contract. Based on Lemma 1, we can

significantly simplify Problem 2 but still need to derive the optimal

values of ] variables {d;} je 7 under J constraints d; > ... > dj > 0.
For the convenience of presentation, we define

48 olj(1-pj+pjq;))
j = =

T (28)
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Bj £y1; (pjq; (a6 + &E[6]) + (1 - pj) 75)
j-1
+ " Vm(1 = pm) () = 7j-1).
=1

m

(29)

Based on these two metrics, we first present two special cases of the
optimal data sizes, which we call all-independent and all-dependent.
ProPOSITION 5. Two special cases of the optimal data sizes follow:
o All-independent. If
A
A A2
B

> > —

3, ; (30)

then the optimal data sizes in the contract are

& Aj 7
=4l e d.
7= \B;’

o All-dependent. If

A J A
Zmeg Am > Z;."—l B Vi=12..]-1,
Zm=1Bm

then the optimal data sizes in the contract are

A
oo |EmeT Am o
J Zmeij

The proof of Proposition 5 is given in Appendix F in the technical
report [5]. The all-independent case means that if {A;/B;}jc s
follow a descending order, then the optimal data size for each type-
Jj user only depends on his own parameters (A}, B;). The condition
for the all-dependent case means that for any type j, there always
exists at least one type m > j with Ap, /By, larger than A;/Bj (i.e.,
not in descending order). In this case, each type’s optimal data size
depends on all types’ parameters {(A;, Bj)}jec.7.

Next, we give an efficient algorithm to compute the optimal data
sizes in any possible case based on the insights in Proposition 5.

(1)

(32)

ZmEij

(33)

THEOREM 1. For a fixed J, there are 271 possible cases of the
optimal data sizes depending on the values of {(Aj, Bj)} je . For any
given {(Aj, Bj)}je g, the unique optimal data sizes can be calculated
by Algorithm 2.

The proof of Theorem 1 is given in Appendix G in the tech-
nical report [5]. The computation complexity of Algorithm 2 is
O(ch(:1 Jx), which is no larger than O(J). We can interpret Algo-
rithm 2 as greedily merging non-descending types based on A;/B;,
so that all merged types have }.; A;/3.; Bj in a descending order.??
The optimal data sizes of the merged types are the same and follow
the dependent form (33) in Proposition 5, while the optimal data
sizes of the not-merged types follow the independent form (31), as
illustrated in footnote 17.

A

A4>ﬁ> As

16 i A1 47 -
Forexample,lflT1 > B, 2B, 2 B, > Bs > Bg > Be > E,thenX-Z,

Ji =1{2,3,4},and J = {6,7,8}.

7In the example of footnote 16. If %Z > 2;:35 , then f, can be divided into two

A
subsets {6} and {7, 8}. The optimal data sizes in this example are d; = \/Bj;,j =

« _ [Ag+Az+Ay . _ |AgtAg .
15,6,d; = \| Frpig.j = 23,4, and dj = [ FEEE. j = 7.8,

A Ap+A3z+A, A
YIn the example of footnotes 16 and 17, 7} > B§+Bz+B: > ?g 2

Ag o AprAg
By = By+Bg -
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Algorithm 2: Optimal data sizes in contract

Input :Parameters {(A}, Bj)};ec g indexed based on (26)
Output: Optimal data sizes {(d;f)} jeT

I Aj
1 Initialize d; — 1/3—;,] SIVE

2 Find all non-descending types
{j:EIm>j,%: > %or3m<j,g—z < g—j};
3 Put each group of non-descending types that have adjacent
indexes into one auxiliary set Jx;
4 X « the number of these auxiliary sets;17// i.e. ,
xe{1,2,.,X}
5 for x=1;x < X;x++do

6 check(Jx);18// divide each auxiliary set Jx
B into subsets {J7} that satisfy (32)
7 Function check(J):
8 Reindex the types in J with 14,2,..., J 7.
9 if | 7| # 1 then
10 flage—1;
1 form=1gto(J-1)qdo
Z'EjAj ZT:IJAJ‘
12 fmSTjB]// j does not
satisfy (32)
13 then
14 flag—0;
2:1:1 An
* J i .
15 dj = leljBn’] €{lqg,...m};
16 check({m+1,...,J7});
17 break;
18 if flag=1then
s [ZmegAm oo o .
19 i dj =\ oy B € J;// J satisfies (32)

5 SIMULATIONS

In this section, we use simulations to evaluate the performance of
our mechanism. In Section 5.1, we specify our experiment setting. In
Section 5.2, we validate the users’ and the server’s optimal strategies
and compare our mechanism with state-of-the-art benchmarks.
5.1 Experiment Setting

We consider | = 5 types of users with marginal training costs 6 =
[1,4,6,9,10] and marginal perceived privacy costs & = [0.8,1.7, 1.4,
2.2,1.2] x 103.20 Each type has Ij = I/J = 1000 users. Heteroge-
neous users’ training losses follow a truncated normal distribution

2Different orders of magnitude are to balance different units of users’ training costs
and privacy costs.

MobiHoc *23, October 23-26, 2023, Washington, DC, USA
1

o
=
Users” Revocation Decision

600
User

200 400 600 800 1000

User

800 1000 200

400
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historical {¢;};. 7.

19

cation decisions {x] };c7.

N(0.5,0.2) over the support [0, 1], and users’ federated Shapley val-
ues follow a normal distribution N (5 x 107>, 0.04).2! Users perform
T = 100 rounds of federated learning, and the unlearning rounds
coefficient A = 4. The server’s accuracy loss coefficient o = 1 and
its weight on the incentives y = 10717 (to balance different units of
incentives and model accuracy loss).

We perform experiments to find the appropriate values of histor-
ical revocation rate p and retention rate q. As shown in Fig. 2 and
Fig. 3, when we set different values of p and g, both the realized re-
vocation rate | 7,/|/I and retention rate | 7,*|/|Z,; | at the equilibrium
have a stationary point, i.e., (2.8 X 1073, 2.8 X 1073) in Fig. 2 and
(0.5,0.5) in Fig. 3, respectively. Therefore, we take the historical
revocation rate p = 0.28% and the historical retention rate ¢ = 50%
in the following simulations.

5.2 Experiment Results

5.2.1 Users’ Revocation Decisions and Server’s Retention Decision.
As shown in Fig. 4, we rank each type of users in ascending order
of their training losses for the convenience of presenting insights.

Fig. 5 shows that at the equilibrium, users with larger aggregated
marginal costs 7 (i.e., type 5) and training losses ¢ (i.e., user 986-
1000) are more likely to revoke their data. This is because (i) users
with larger costs receive smaller learning incentives from the server
in the contract (Lemma 1); (ii) they do not know their high training
losses before federated learning and their realized privacy costs
(training losses) significantly exceed their expectations.

Fig. 6 illustrates the server’s optimal retention decision. We rank
the users who want to revoke their data in ascending order of their
federated Shapley values {v;};c 7, . Users with smaller federated
Shapley values are more likely to be retained by the server, as
smaller Shapley values represent larger contributions to the global
model accuracy. Users with smaller training losses have lower pri-
vacy costs and may require fewer incentives from the server, com-
pared to users with larger losses. However, Fig. 6 shows that the
server does not necessarily retain users with smaller training losses.
This is because given a fixed set of users, reducing the total training
losses of retained users means increasing the total losses of leaving
users, resulting in higher unlearning costs (Proposition 3).

5.2.2  Comparison with Benchmarks. We compare our incentive

mechanism with two benchmarks to evaluate the performance.
e No Retention Incentive (NRI): the server does not retain users

who want to revoke their data.
e Limited Look Ahead (LLA) (adapted from [4]): the server first op-

timizes the incentive mechanism for federated learning without
considering the unlearning part, and then designs the retention
incentive in unlearning (i.e., separate optimization).
21 future work, we will use real-world datasets to calculate users’ true training losses
and federated Shapley values. The simulation data here can also demonstrate our

results. As in Appendix H in the technical report [5], we further validate that if we
change the simulation setting, we will obtain similar experiment results and insights.
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Figure 6: Server’s optimal retention deci-
sions 7%,
e Our proposed incentive mechanism (RAR): the server is Rational
in jointly optimizing both federated learning and unlearning And
designs Retention incentive to retain valuable leaving users.

Fig. 7 shows the server’s costs in the three mechanisms under
different numbers of users. Our proposed RAR reduces the server’s
cost by around 53.91% (black dotted line) compared with LLA. The
reduced cost of RAR compared with NRI can reach 11.59% (black
dashed line) and will increase in the number of users, as the server
retains more valuable users when the number of users increases.
Therefore, it is beneficial for the server to retain valuable leaving
users and make joint optimization of federated learning and un-
learning incentive mechanisms. As the objective of our incentive
mechanism design is to minimize the server’s cost, the server’s cost
reduction is at the expense of users’ payoffs (as shown in Fig. 8).

6 CONCLUSION

To the best of our knowledge, this paper is the first study to fo-
cus on the important issue of incentive design for federated learn-
ing and unlearning. We derive theoretical bounds on the global
model optimality gap of Scaffold and the number of communica-
tion rounds of natural federated unlearning. Our approach tackles
a challenging problem in incentive design, by summarizing users’
multi-dimensional heterogeneity into one-dimensional metrics and
developing an efficient algorithm for an exponentially large number
of possible cases. We identify what types of users will leave the
system or be retained by the server. The experiments demonstrate
the superior performance of our proposed incentive mechanism
and the benefits of unlearning incentives for retaining leaving users.
We will design incentive mechanisms for federated unlearning to
maximize social welfare in future work.
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