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ABSTRACT
To protect users’ right to be forgotten in federated learning, federated
unlearning aims at eliminating the impact of leaving users’ data

on the global learned model. The current research in federated un-

learning mainly concentrated on developing effective and efficient

unlearning techniques. However, the issue of incentivizing valu-

able users to remain engaged and preventing their data from being

unlearned is still under-explored, yet important to the unlearned

model performance. This paper focuses on the incentive issue and

develops an incentive mechanism for federated learning and un-

learning. We first characterize the leaving users’ impact on the

global model accuracy and the required communication rounds for

unlearning. Building on these results, we propose a four-stage game

to capture the interaction and information updates during the learn-

ing and unlearning process. A key contribution is to summarize

users’ multi-dimensional private information into one-dimensional

metrics to guide the incentive design. We show that users who incur

high costs and experience significant training losses are more likely

to discontinue their engagement through federated unlearning. The

server tends to retain users who make substantial contributions

to the model but has a trade-off on users’ training losses, as large

training losses of retained users increase privacy costs but decrease

unlearning costs. The numerical results demonstrate the necessity

of unlearning incentives for retaining valuable leaving users, and

also show that our proposed mechanisms decrease the server’s cost

by up to 53.91% compared to state-of-the-art benchmarks.

CCS CONCEPTS
•Computingmethodologies→Model development and anal-
ysis;Machine learning; • Security and privacy→ Economics
of security and privacy.
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1 INTRODUCTION
1.1 Background and Motivations
Federated learning is a promising distributed machine learning

paradigm, in which multiple users collaborate to train a shared

model under the coordination of a central server [13]. This approach

allows users to keep their local data on their own devices and only

share the intermediate model parameters, which helps protect their

raw data. However, despite these measures, it may not provide

sufficient privacy guarantees [14, 18].

For privacy reasons, one desirable property of a federated learn-

ing platform is the users’ “right to be forgotten” (RTBF), which

has been explicitly stated in the European Union General Data

Protection Regulation (GDPR) [19] and the California Consumer

Privacy Act (CCPA) [7]. That is, a user has the right to request

deletion of his private data and its impact on the trained model,

if he no longer desires to participate in the platform. Users may

seek to leave a platform for a variety of reasons. For example, they

may feel that the benefits from the platform are not sufficient to

compensate for their potential privacy leakage from participation.

Furthermore, until they participate in the platform, they may not

have full knowledge of these benefits and costs due to incomplete

information about other users’ data. For instance, users’ privacy

costs in federated learning depend on how unique their data is [8],

which they can infer from their training loss after training [6].

To remove data from a trained federated learning model, the

concept of federated unlearning has recently been proposed [12]. In

this concept, after some users request to revoke their data, staying

users will perform additional training or calculation to eliminate

the impact of leaving users’ data and obtain an unlearned model.

A simple yet costly approach is to retrain the model from scratch

with the requested data being removed from the training dataset

[1]. To be more efficient and effective, existing literature (e.g., [6,

11, 25]) focused on alternative federated unlearning methods that

obtain a model similar (in some distance metrics) to a retrained

model with lower computational costs. However, these studies

usually assumed that users are willing to participate in federated

learning and unlearning. This assumption may not be realistic
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without proper incentives since users incur various costs during

the training process (e.g., time, energy, and privacy costs). Our goal

in this paper is to develop incentive mechanisms to help retain

valuable leaving users and create a sustainable learning platform

for both the users and the server.

There are several challenges for designing an incentive mecha-

nism for federated learning and unlearning. First, different leaving

users will lead to different unlearned model performances and

unlearning costs, the relationship among which is still an open

problem. Second, it is difficult for the server to design incentives

for a large number of heterogeneous users, when users have multi-

dimensional private information (e.g., training costs and privacy

costs) and unknown information (e.g., users’ training losses be-

fore federated learning). Third, unlearning incentives for retaining

valuable leaving users require careful design. High incentives may

encourage strategic users to intentionally request revocation to

obtain retention rewards, while low incentives may fail to retain

valuable users. It is also crucial for the server to distinguish be-

tween high-quality leaving users (e.g., with rare and valuable data)

and low-quality ones (e.g, with erroneous data), both of which can

lead to high training losses. Fourth, both learning and unlearning

incentives affect the server’s and users’ payoffs but are determined

in different stages - before or after federated learning. Meanwhile,

there are different information asymmetry levels in each stage, as

the federated learning process can reveal some information such

as users’ training losses and contributions.

The above discussion motivates us to answer the following in-

teresting question: Considering leaving users’ impact, what is the
server’s optimal incentive mechanism for federated learning and un-
learning, when heterogeneous users have strategic data revocation
decisions and multi-dimensional private and unknown information?

1.2 Contributions
We summarize our key contributions below.

• Incentive mechanism design for federated learning and unlearning.
We propose a four-stage Stackelberg game to analyze the opti-

mal incentives of the server and the optimal strategies of users

within this game. To the best of our knowledge, this is the first

analytical study of incentive mechanisms for federated learning

and unlearning.

• Theoretical characterization of global model accuracy and unlearn-
ing communication rounds.We theoretically derive bounds on the

global model optimality gap given non-IID data for a federated

learning algorithm (Scaffold [9]) and the number of global com-

munication rounds required for a federated unlearning method.

• Optimal incentives and revocation decisions undermulti-dimensional
incomplete information. Due to the complex interaction, users’

multi-dimensional private information, and dynamically updated

knowledge, the server’s optimization problem in Stage I of the

four-stage game is highly complex. We summarize users’ multi-

dimensional heterogeneity into several one-dimensional metrics

and develop an efficient algorithm with linear complexity, to

handle the exponentially large number of possible cases involved

in optimal mechanism design. We also identify and analyze a

supermodular game among the users to obtain their optimal data

revocation decisions.

• Insights and Performance Evaluation.We show that high costs and

training losses motivate users to leave, while the server will retain

the leaving users who make significant contributions to model

accuracy but not necessarily low training losses, as small losses of

retained users will reduce privacy costs yet increase unlearning

costs. We numerically show that compared with state-of-the-

art benchmarks, our proposed incentive mechanism decreases

the server’s cost by up to 53.91%. Moreover, the results demon-

strate that it is beneficial for the server to retain valuable leaving

users and jointly optimize the federated learning and unlearning

incentive mechanisms.

1.3 Related Work
The concept of machine unlearning, which refers to the process of

removing the impact of a data sample from a trained model, was

first introduced by Cao et al. in 2015 [2]. Most related literature

was about centralized machine unlearning (e.g., [1]), in which the

unlearned model (not retrained from scratch) was trained on sum-

marized (e.g., aggregates of summations) or partitioned subsets

rather than individual training samples. As a result, the model only

needed to be updated on the subset(s) of data that are associated

with the requested samples. Centralized unlearning methods are

not suited to federated learning, due to (i) lack of direct data access,

(ii) the fact that the global model is updated based on the aggregated

rather than the raw gradients, and (iii) the possibility that different

users may have similar training samples [6]. This motivated the

emergence of federated unlearning.
Only a few studies proposed federated unlearning mechanisms

using methods such as gradient subtraction (e.g., [11, 12]), gradient

scaling (e.g., [6]), or knowledge distillation (e.g., [25]). Albeit with

good numerical performance, there is no theoretical guarantee

of these proposed federated unlearning methods. To fill this gap,

we propose theoretical bounds on the model optimality gap and

communication rounds for one approach to federated unlearning.

Furthermore, there is a wide spectrum of literature on incen-

tive mechanisms for various systems, including crowdsensing (e.g.,

[26]), wireless networks (e.g., [29]), data trading (e.g., [22]), and

energy sharing (e.g., [20]). Some important work studied incentive

mechanism design for federated learning to discourage valuable

clients from leaving (e.g., [4, 23, 27, 28]). However, very few of them

considered users’ multi-dimensional private information (e.g., [4]),

and none of them incorporated the unique aspects of federated

unlearning (e.g., unlearning costs) or the dynamics of users’ payoffs

(e.g., pre-/post-training and before/after some users leave). This

paper is the first to focus on incentive mechanism design for both

federated learning and unlearning.

The rest of the paper is organized as follows. In Section 2, we

characterize the models of federated learning and unlearning. We

describe the system model in Section 3 and calculate the optimal

incentive mechanisms in Section 4. Simulation results are presented

in Section 5, and we conclude in Section 6.

2 CHARACTERIZATION OF FEDERATED
LEARNING AND UNLEARNING MODELS

Before modeling the game-theoretic interaction between the server

and the users in the next section, we first discuss federated learning

and unlearning models in this section as a preliminary. Specifically,

we specify the learning and unlearning objectives in Sections 2.1

and 2.2, respectively. Then, we derive bounds on global model

accuracy and federated unlearning time in Section 2.3.
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2.1 Federated Learning Objective
Consider an example of data (𝑥𝑎, 𝑦𝑎), where 𝑥𝑎 is the input (e.g.,

an image) and 𝑦𝑎 is the label (e.g., the object in the image). The

objective of learning is to find the proper model parameter𝑤 that

can predict the label𝑦𝑎 based on the input 𝑥𝑎 . Let us denote the pre-

diction value as 𝑦 (𝑥𝑎 ;𝑤). The gap between the prediction 𝑦 (𝑥𝑎 ;𝑤)
and the ground truth label 𝑦𝑎 is characterized by the prediction loss

function 𝑓𝑎 (𝑤). If user 𝑖 selects a set of local data with data size 𝑑𝑖
to train the model, the loss function of user 𝑖 ∈ I is the average

prediction loss on all his training data:

𝐹𝑖 (𝑤) =
1

𝑑𝑖

𝑑𝑖∑
𝑎=1

𝑓𝑎 (𝑤) . (1)

The purpose of federated learning is to compute the model parame-

ter𝑤 by using all users’ local data. The optimal model parameter

𝑤∗ minimizes the global loss function, which is an average of all

users’ loss functions [9, 15]:
1

𝑤∗ = arg min

𝑤

1

𝐼

∑
𝑖∈I

𝐹𝑖 (𝑤) . (2)

2.2 Federated Unlearning Objective
A federated learning process maps users’ data into a model space,

while a federated unlearning process maps a learned model, users’

data set, and the data set that is required to be forgotten into an

unlearned model space. The goal of federated unlearning is to make

the unlearned model have the same distribution as the retrained

model (i.e., retrained from scratch using the remaining data).
2

A natural method for federated unlearning is to let the remaining

users (excluding leaving users) continue training from the learned

model𝑤∗, until it converges to a new optimal model parameter 𝑤̃∗

that minimizes the global loss function of remaining users:

𝑤̃∗ = arg min

𝑤

1

𝐼 − 𝐼𝑙𝑒𝑎𝑣𝑒

∑
𝑖∈I\I𝑙𝑒𝑎𝑣𝑒

𝐹𝑖 (𝑤), (3)

where I𝑙𝑒𝑎𝑣𝑒 is the set of users who leave the system through

federated unlearning. This method is typically more efficient than

training from scratch, as the minimum point may not change much

after some users leave.

2.3 Model Accuracy and Unlearning Time
Given the objectives of federated learning and unlearning, we ana-

lyze the model accuracy gap and unlearning time in the following.

It has been shown that many federated learning algorithms (e.g.,

FedAvg [13]) suffer from significant communication overhead [10].

Scaffold [9] can mitigate this issue by incorporating an additional

correction term based on gradient tracking techniques during local

updates. Thus, we use Scaffold as the federated learning algorithm

when deriving the optimality gap of the global model.
3
In each

local iteration of the algorithm, every user computes a mini-batch

gradient with batch size 𝑠𝑖 . A batch or minibatch refers to equally

sized subsets of the training dataset over which the gradient is

calculated. In this paper, we consider the widely adopted setting

1
This model treats each user equally. Some papers (e.g., [13]) adopted another objective,

a weighted sum of all users’ losses, where the weights (i.e. 𝑑𝑖/
∑𝐼

𝑖=1
𝑑𝑖 ) reflect the

differences in data size. The two objectives are equivalent when users’ data sizes are

the same. Our results can be easily extended to the weighted case.

2
The distribution is due to the randomness in the training process (e.g. randomly

sampled data and random ordering of batches).

3
We can derive similar results for Fedavg if we additionally assume that local data

distributions satisfy bounded heterogeneity.

that users’ batch sizes {𝑠𝑖 }𝑖∈I are in the same proportion to their

data sizes {𝑑𝑖 }𝑖∈I (i.e., 𝑠𝑖 = 𝜄𝑑𝑖 ,∀𝑖 ∈ I, 𝜄 ∈ (0, 1)) [1, 4, 17].
The following proposition presents a bound on the optimality

gap for the global model trained with Scaffold:

Proposition 1. Suppose each user’s loss function 𝐹𝑖 is 𝜇-strongly-
convex and 𝐿-Lipschitz-smooth. Consider the federated learning algo-
rithm Scaffold with the local iteration number of user 𝑖 denoted by 𝐾𝑖
and local step size denoted by 𝜂𝑖 . Setting 𝜂 = 𝜂𝑖𝐾𝑖 ≤ 1

12𝐿
, we have

E∥𝑤𝑡+1 −𝑤∗∥2 ≤ (1 −
𝜇𝜂

2

)E∥𝑤𝑡 −𝑤∗∥2 +
22𝜂2𝜎2

𝐼

∑
𝑖∈I

1

𝑠𝑖
, (4)

where𝑤𝑡+1 and𝑤𝑡 represent the model parameter after global round
𝑡 + 1 and 𝑡 , respectively, 𝑠𝑖 is user 𝑖’s local batch size, and 𝜎2 is the
variance bound of each data sample.4 Moreover, by selecting 𝜂 = 𝑐

𝑡+1
for some 0 < 𝑐 ≤ 1

12𝐿
, we have that the expected optimality gap of

the global model satisfies:

E∥𝑤𝑡 −𝑤∗∥2 ≤
1

𝑡 + 1

(
𝑏 (𝑐)𝜎2

𝐼

∑
𝑖∈I

1

𝑠𝑖
+ ∥𝑤0 −𝑤∗∥2

)
, (5)

where 𝑏 (·) is a function of 𝑐 .

The proof of Proposition 1 is given in Appendix A in the techni-

cal report [5]. As a large optimality gap ∥𝑤𝑡 −𝑤∗∥2 means a high

accuracy loss of the global model, Proposition 1 presents a relation-

ship between the expected global model accuracy loss and the users’

data sizes. As shown in (5), the expected accuracy loss of the global

model decreases in the users’ training batch sizes {𝑠𝑖 }𝑖∈I (and thus

data sizes {𝑑𝑖 }𝑖∈I ). Moreover, we explain two asymptotic cases of

(5) for better understanding. When the initial point is optimal (i.e.,

𝑤0 = 𝑤∗), the bound does not go to zero due to sample randomness.

When batch size 𝑠𝑖 is large enough, the randomness is then highly

reduced and the bound is only controlled by the initialization of the

algorithm, i.e., the farther the initial point𝑤0 is from the optimal

solution𝑤∗, the more iterations are needed.

Then, after applying the result in Proposition 1 to the natural

unlearning model introduced in Section 2.2, we have the following

proposition about federated unlearning rounds:

Proposition 2. Consider the same conditions of Proposition 1
with diminishing step size 𝜂 and suppose

𝑏 (𝑐) ≤ 1

(𝐼 − 𝐼𝑙𝑒𝑎𝑣𝑒 )𝜇2

(∑
𝑖∈I𝑙𝑒𝑎𝑣𝑒 ∥∇𝐹𝑖 (𝑤

∗)∥
)
2∑

𝑖∈I\I𝑙𝑒𝑎𝑣𝑒
1

𝑠𝑖
𝜎2

.

It will require

𝑇𝑢𝑛𝑙𝑒𝑎𝑟𝑛 ≥
2(𝐼 − 1)
𝜖2𝜇2

∑
𝑖∈I𝑙𝑒𝑎𝑣𝑒

∥∇𝐹𝑖 (𝑤∗)∥2 − 1 (6)

rounds of communication to guarantee E∥𝑤𝑇𝑢𝑛𝑙𝑒𝑎𝑟𝑛 − 𝑤̃∗∥ ≤ 𝜖 when
starting from the original learned model 𝑤∗, where the new model
𝑤̃∗ is defined in (3).

The proof of Proposition 2 is given in Appendix B in the technical

report [5]. Each user’s gradient ∥∇𝐹𝑖 (𝑤∗)∥ can represent his train-

ing loss (denoted as ℓ𝑖 ) because the calculated gradient increases

in the loss. Hence, Proposition 2 reveals the relationship between

the number of communication rounds required for federated un-

learning and the training losses of leaving users. As indicated in (6),

a larger total training loss of the leaving users

∑
𝑖∈I𝑙𝑒𝑎𝑣𝑒 ℓ

2

𝑖
(i.e., a

4
To estimate the true gradient ∇𝐹𝑖 (𝑤) , we uniformly sample one data point to generate

a gradient estimate 𝑔𝑖 (𝑤) and assume E∥𝑔𝑖 (𝑤)−∇𝐹𝑖 (𝑤) ∥2 ≤𝜎2
for any 𝑤.
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Server announces the contract for federated learning (Stage I)
Users choose which contract item to sign (Stage II)

Users jointly train a model under server’s coordination 

Users decide whether to revoke data (Stage III)
Server decides whether to retain the leaving users (Stage IV)

Server and users unlearn the leaving users’ data

Decision Making 
Before Unlearning

Contract Signing 
Before Learning

Federated 
Learning

Federated 
Unlearning

Figure 1: Framework of federated learning and unlearning
system with incentive mechanisms.

larger

∑
𝑖∈I𝑙𝑒𝑎𝑣𝑒 ∥∇𝐹𝑖 (𝑤

∗)∥2) requires more communication rounds

𝑇𝑢𝑛𝑙𝑒𝑎𝑟𝑛 to achieve unlearning.

We will apply the derived results about model accuracy loss and

unlearning rounds in building the system model in the next section.

3 SYSTEM MODEL
We consider a federated learning and unlearning system consisting

of a set of heterogeneous users with private data and a central

server. As illustrated in Fig. 1, the server first incentivizes users

as workers to participate in a federated learning phase through a

contract. However, some users may later choose to revoke their data

and leave the system. In response, the server can provide further

incentives to retain valuable users. Upon the final exit of some

users from the system, the remaining users collectively execute an

algorithm to unlearn the leaving users’ data.

In the following, we first divide the heterogeneous users into

different types for the convenience of incentive design, then for-

mulate a multi-stage game between the strategic server and users,

and finally specify the payoffs of the server and the users (i.e., their

optimization objectives), respectively.

3.1 User Type
We consider a set I ≜ {1, 2, ..., 𝐼 } of users in the system with

two-dimensional private information: marginal cost for training

effort 𝜃 and marginal perceived privacy cost 𝜉 . We refer to a user

with (𝜃 𝑗 , 𝜉 𝑗 ) as a type 𝑗 user. We further assume that the 𝐼 users

belong to a set J ≜ {1, 2, ..., 𝐽 } of 𝐽 types. Each type 𝑗 has 𝐼 𝑗 users,

with

∑
𝑗 ∈J 𝐼 𝑗 = 𝐼 . The total number of users 𝐼 and the number of

each type 𝐼 𝑗 are public information, but each user’s specific type is

private information.
5

Under private information, it is difficult for the server to pre-

dict users’ strategies. To this end, we propose to design a contract

mechanism for the server to elicit information.

3.2 Games and Strategies
We use a four-stage Stackelberg game to model the interaction

between the server and users.

• Stage I: The server designs a federated learning incentive contract

𝝓 ≜
{
𝜙 𝑗

}
𝑗 ∈J , which contains 𝐽 contract items (one for each user

type). Each contract item 𝜙 𝑗 ≜
(
𝑑 𝑗 , 𝑟

𝐿
𝑗

)
specifies the relationship

between the required data size 𝑑 𝑗 of each type- 𝑗 user (for local

computation) and the corresponding learning reward 𝑟𝐿
𝑗
.

5
The server can have knowledge about statistics of type information through market

research and past experiences, but it is hard for it to know each user’s private type.

Table 1: The Server andUsers’ Knowledge inDifferent Stages
Stage Known Unknown

Server in Stage I J , {𝐼 𝑗 }𝑗 ∈J {𝜃𝑖 , 𝜉𝑖 , ℓ𝑖 , 𝑣𝑖 }𝑖∈I
User in Stage II his own type (𝜃𝑖 , 𝜉𝑖 )

other users’ types,

{ℓ𝑖 , 𝑣𝑖 }𝑖∈I
User in Stage III

his own type (𝜃𝑖 , 𝜉𝑖 ),
{ℓ𝑖 }𝑖∈I

other users’ types,

{𝑣𝑖 }𝑖∈I
Server in Stage IV

J , {𝐼 𝑗 }𝑗 ∈J ,
{𝜃𝑖 , 𝜉𝑖 , ℓ𝑖 , 𝑣𝑖 }𝑖∈I

• Stage II: Users decide which contract item to choose. Then, they

jointly implement the federated learning algorithm (Scaffold).

• Stage III: Users decide whether to revoke data after federated

learning. We denote a user 𝑖’s revocation decision as

𝑥𝑖 =

{
0, if user 𝑖 does not revoke data,

1, if user 𝑖 revokes his data,
(7)

and denote the set of users who revoke their data asI𝑢 . If a type- 𝑗
user revokes his data, then he needs to fully return the reward 𝑟𝐿

𝑗

to the server.
6
We consider that the server will announce users’

training losses {ℓ𝑖 }𝑖∈I (without specifying users) after federated

learning to help users decide whether to revoke data.
7

• Stage IV: The server decides the set of leaving users to retain

I𝑟 and designs the corresponding retention incentives

{
𝑟𝑈
𝑖

}
𝑖∈I𝑟 ,

such that those receiving the retention incentives will choose to

stay in the system and those without will leave.
8
The remaining

users and server collectively implement federated unlearning.

In Stage III, we use ℓ𝑖 = | |∇𝐹𝑖 (𝑤𝑇 ) | | to represent the training loss,
where𝑤𝑇 is the solution obtained after𝑇 iterations of Scaffold. We

assume 𝑇 is large enough, such that𝑤𝑇 and𝑤∗ are close. A large

ℓ𝑖 implies the federated solution is far away from the minimizer of

local loss function 𝐹𝑖 and therefore a larger training loss.

After federated learning, the server and users have more informa-

tion in Stages III and IV compared with Stages I and II. For example,

the users will know their training losses {ℓ𝑖 }𝑖∈I . The server can
evaluate the users’ contribution to the global model (denoted by

{𝑣𝑖 }𝑖∈I ), and it will know each user’s type by observing users’ con-

tract item choices. We summarize their knowledge about some key

information in the four stages in Table 1 and list the key notations

in this paper in Table 2.
9

Moreover, in Stage IV, the server has enough information to know

whether the users will accept the retention incentives. Therefore,

we do not model a Stage V in which the users decide to accept or not

accept the retention incentives. After that, as in Fig. 1, the staying

users perform federated unlearning under the server’s coordination,

which makes staying users sustain unlearning costs. We will specify

the payoffs and costs of the server and users in each stage of the

game in the next subsection.

6
If there is no such return policy, every user can first participate to get rewards and

then revoke data to reduce costs, resulting in a catastrophic failure of model training

collaboration and a huge cost to the server.

7
It is not obvious that a strategic server would make such an announcement, but it can

be stipulated by regulations for protecting users’ right to be forgotten. If we do not

make this assumption, the problem will be even simpler. As we shall see in the analysis

in Section 4.2, we just need to replace other users’ training losses {ℓ𝑘 }𝑘∈I in (19) with

the same expected loss E[ℓ ] and solve the problem through a similar approach.

8
In this case, I𝑢\I𝑟 is the set of users who finally leave the system, and I\(I𝑢\I𝑟 )
is the set of users who finally stay.

9
As analyzing the four-stage game is complicated, this paper does not model the

information update in a fully Bayesian framework but specifies plausible beliefs that

the players hold in each stage.

14
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Table 2: Key Notations
𝜃 𝑗 Marginal training cost of type- 𝑗 users

𝜉 𝑗 Marginal perceived privacy cost of type- 𝑗 users

𝐼 𝑗 Number of type- 𝑗 users

𝑗/J Index/Set of user types in the system

𝑖/I Index/Set of users in the system

I𝑢 Set of users who revoke their data in Stage III

I𝑟 Set of users who are retained by the server in Stage IV

𝜙 𝑗 Contract item designed for type- 𝑗 users

𝑑 𝑗 Required data size for each type- 𝑗 user in the contract

𝑟𝐿
𝑗

Learning reward for each type- 𝑗 user in the contract

𝑟𝑈
𝑖

Unlearning reward (retention incentive) for user 𝑖

𝑥𝑖 User 𝑖’s data revocation decision

𝑝 𝑗 Historical revocation rate of type- 𝑗 users

𝑞 𝑗 Historical retention rate of type- 𝑗 users

𝑇 Number of communication rounds of federated learning

𝜆 Coefficient related to unlearning communication rounds

𝜚 Coefficient related to expected accuracy loss

𝛾 Server’s weight on incentive rewards

𝑣𝑖 User 𝑖’s contribution to global model accuracy

ℓ𝑖 User 𝑖’s training loss (representing | |∇𝐹𝑖 (𝑥∗) | |)

3.3 Payoffs
At each stage, every user or the server seeks to maximize his ex-

pected payoff (or minimize his expected cost) based on his cur-

rent knowledge. As knowledge updates occur between stages, the

payoffs of the users or the server (maximization or minimization

objectives respectively) take different forms in each stage.

3.3.1 Server’s Payoff in Stage I. The server’s objective in Stage I

is to minimize the sum of the expected accuracy loss of the global

model and the expected total incentive rewards for users.

First, we specify the expected model accuracy loss, which de-

pends on the data of users who finally stay in the system. Since

the server cannot predict which users will leave and who to retain

due to the lack of information in Stage I, it can only base its deci-

sion on user distribution expectations. Specifically, we assume that

according to the historical experience and market statistics, the

server knows the probability of a type- 𝑗 user revoking his data (i.e.,

his revocation rate) 𝑝 𝑗 and the probability that a type- 𝑗 user who

wants to revoke data is retained (i.e., his retention rate) 𝑞 𝑗 , where

𝑝 𝑗 and 𝑞 𝑗 are independent. Following Proposition 1, we model the

server’s expected accuracy loss after federated unlearning as:

𝜚

𝑇

∑
𝑗 ∈J

𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )
1

𝑑 𝑗
, (8)

where𝑇 is the number of communication rounds of federated learn-

ing, 𝜚 is a coefficient related to the sample variance, and 1−𝑝 𝑗 +𝑝 𝑗𝑞 𝑗
is the percentage of type 𝑗 users remaining in the system in the

end. This captures that the expected model accuracy loss decreases

in the data sizes of all staying users.
10

The server’s payoff also includes the cost of all rewards it pays

to users, which comprises the initial contract announced in stage I

and incentives offered to encourage leaving users to remain in stage

10
As the server aims to incentivize users to contribute data in federated learning, we

only model the impact of data sizes and omit the independent term about initial point

𝑤0 in (5). Since we consider that users’ batch sizes {𝑠𝑖 }𝑖∈I are in the same proportion

to their data sizes {𝑑𝑖 }𝑖∈I , it is equivalent to substitute 𝑠𝑖 with 𝑑𝑖 in (5).

IV. If all users choose to participate in the contract and choose their

corresponding contract items,
11

the expected total learning reward

is

∑
𝑗 ∈J 𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )𝑟𝐿𝑗 . Note that if a type- 𝑗 user successfully

revokes his data, he needs to fully return the reward 𝑟𝐿
𝑗
to the

server. The server’s expected incentive for retaining leaving users

is E[∑𝑖∈I𝑟 𝑟
𝑈
𝑖
], which depends on 𝑝 , 𝑞, and training losses and will

be calculated through backward induction in Section 4.4.

Combining these terms, the server’s expected cost in Stage I is

𝑊 𝑠−1 =
𝜚

𝑇

∑
𝑗 ∈J

𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )
1

𝑑 𝑗

+ 𝛾 ©­«
∑
𝑗 ∈J

𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )𝑟𝐿𝑗 + E
[ ∑
𝑖∈I𝑟

𝑟𝑈𝑖

]ª®¬ ,
(9)

where𝛾 is howmuchweight the server puts on the incentive reward

payments compared to the model accuracy loss. A smaller 𝛾 means

that the server is less concerned about minimizing the incentive

rewards and more concerned about reducing the accuracy loss.

3.3.2 Users’ Payoffs in Stage II. In the overall game, there are three

possible outcomes for a user (not revoke data, revoke and retained,

revoke and not retained). However, in this stage, a user does not

have enough information to know which outcome will realize, so

he must calculate his expected payoff by considering three cases:

• Case (a): not revoke.With probability 1−𝑝 𝑗 , a type- 𝑗 user will not
revoke his data after federated learning. In this case, his expected

payoff is the difference between the learning reward 𝑟𝐿
𝑗
and costs

(including the learning cost, privacy cost, and unlearning cost):

𝑈 𝑠−2

𝑗,𝑎 = 𝑟𝐿𝑗 − 𝜃 𝑗𝑑 𝑗𝑇 − 𝜉 𝑗E[ℓ𝑗 ]𝑑 𝑗 − E
[
𝜃 𝑗𝑑 𝑗𝜆

∑
𝑖∈I𝑢\I𝑟

ℓ2

𝑖

]
, (10)

where 𝜃 𝑗𝑑 𝑗𝑇 is the total learning cost in 𝑇 rounds. As we con-

sider that each user’s sampled data size in each local round is

proportional to his total data size, the learning cost is linear

in his data size 𝑑 𝑗 (e.g., [1, 4, 17]). Similarly, in the unlearning

cost 𝜃 𝑗𝑑 𝑗𝜆
∑
𝑖∈I𝑢\I𝑟 ℓ

2

𝑖
, the 𝜆

∑
𝑖∈I𝑢\I𝑟 ℓ

2

𝑖
models the number of

communication rounds for unlearning, which increases in the

leaving users’ training losses (according to Proposition 2).
12

A

type 𝑗 user’s perceived privacy cost 𝜉 𝑗E[ℓ𝑗 ]𝑑 𝑗 increases in his

expected training loss E[ℓ𝑗 ] and data size 𝑑 𝑗 . As a high training

loss ℓ𝑗 reflects a large distance of user 𝑗 ’s data from the average

of other users’ distribution, we use it to measure the uniqueness

of a user. Thus, the model captures that the privacy cost increases

in the uniqueness and size of one’s training data (e.g., [3, 16]). As

each user cannot know his exact training loss ℓ𝑗 before federated

learning, we assume that he estimates the expected loss using

the public distribution (with mean E[ℓ𝑗 ] and variance 𝐷 (ℓ𝑗 )).
• Case (b): revoke but retained.With probability 𝑝 𝑗𝑞 𝑗 , a type- 𝑗 user

will revoke his data after federated learning butwill be retained by

the server through more incentives 𝑟𝑈
𝑗
. In this case, his expected

payoff is the difference between total rewards (including both

learning and unlearning incentives) and costs:

11
As we shall see in Section 4.4, we will design the contract to ensure that each user

will participate (i.e., individual rationality) and choose the contract item designed for

his type (i.e., incentive compatibility).

12
We use the simplified model of (6) in Proposition 2 to capture the key relationship

between the unlearning communication rounds𝑇𝑢𝑛𝑙𝑒𝑎𝑟𝑛 and leaving users’ training

losses (represented by ∥∇𝐹𝑖 (𝑤∗) ∥).
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𝑈 𝑠−2

𝑗,𝑏
= 𝑟𝐿𝑗 +E

[
𝑟𝑈𝑗

]
−𝜃 𝑗𝑑 𝑗𝑇−𝜉 𝑗E[ℓ𝑗 ]𝑑 𝑗−E

[
𝜃 𝑗𝑑 𝑗𝜆

∑
𝑖∈I𝑢\I𝑟

ℓ2

𝑖

]
. (11)

The unlearning incentive 𝑟𝑈
𝑗
will be determined by the server in

Stage IV based on users’ training losses, contributions, and data

revocation, which are unknown in this stage. Thus, each user

can only calculate the expectation of the unlearning incentive.

• Case (c): revoke and not retained.With probability 𝑝 𝑗 (1 − 𝑞 𝑗 ), a
type- 𝑗 user will revoke his data and will not be retained by the

server, i.e., the user’s data will be unlearned. The user needs to

return the reward 𝑟𝐿
𝑗
to the server but will not incur any privacy

cost or unlearning cost. In this case, his expected payoff is

𝑈 𝑠−2

𝑗,𝑐 = −𝜃 𝑗𝑑 𝑗𝑇, (12)

which is the sunk training cost from federated learning.

In summary, a type- 𝑗 user’s expected payoff in Stage II is

𝑈 𝑠−2

𝑗 = (1 − 𝑝 𝑗 )𝑈 𝑠−2

𝑗,𝑎 + 𝑝 𝑗𝑞 𝑗𝑈
𝑠−2

𝑗,𝑏
+ 𝑝 𝑗 (1 − 𝑞 𝑗 )𝑈 𝑠−2

𝑗,𝑐 . (13)

If 𝑈 𝑠−2

𝑗
≥ 0, the type- 𝑗 user will choose to participate in the feder-

ated learning in Stage II.

3.3.3 Users’ Payoffs in Stage III. After federated learning, each user
𝑖 has knowledge about his training loss ℓ𝑖 . If user 𝑖 chooses not to

revoke his data, his expected payoff in Stage III is (updating (10) in

Case (a) with the realized training loss ℓ𝑖 ):

𝑈 𝑠−3

𝑖,𝑎 = 𝑟𝐿𝑖 − 𝜃𝑖𝑑𝑖𝑇 − 𝜉𝑖 ℓ𝑖𝑑𝑖 − E
[
𝜃𝑖𝑑𝑖𝜆

∑
𝑘∈I𝑢\I𝑟

ℓ2

𝑘

]
. (14)

The reason for using expectation here is that users do not know

the set of retained users I𝑟 determined in Stage IV. Users’ expected

payoffs of Cases (b) and (c) in Stage III follow the same approach

(i.e., updating (11) and (12) with the realized training loss ℓ𝑖 ).

Note that users of the same type may have different training

losses and thus different payoffs, so the payoff in Stage III is user-

specific instead of type-specific. Moreover, after some users leave,

the remaining users’ training losses may change as the global model

will be updated. Since users cannot accurately predict their future

expected loss even if they know all users’ current losses, we assume

that each user still approximates his future expected loss as equal

to his current loss.

3.3.4 Server’s Payoff in Stage IV. When some users want to leave

the system, it is important for the server to know their contributions

to the global model for retaining valuable users.

A fair and effective method to compute a user’s contribution to

a coalition is the Shapley value [24]. Wang et al. [21] introduced

a related concept called federated Shapley value to evaluate each

user’s contribution in a federated learning setting. The federated

Shapley value for user 𝑖 , denoted as 𝑣𝑖 , is calculated by the server

during the federated learning process and is unknown to the users.

Once obtaining users’ contributions (federated Shapley values),

the server can calculate its realized cost in Stage IV. This cost is the

sum of two factors: the realized accuracy loss, which is estimated

by the sum of federated Shapley values of all users who remain in

the system, and the realized incentives.

𝑊 𝑠−4 =
∑

𝑖∈I\(I𝑢\I𝑟 )
𝑣𝑖 + 𝛾

©­«
∑

𝑖∈I\(I𝑢\I𝑟 )
𝑟𝐿𝑖 +

∑
𝑖∈I𝑟

𝑟𝑈𝑖
ª®¬ . (15)

The first term in (15) represents the model accuracy loss, the second

is the learning reward paid to all remaining users for participation in

federated learning, and the last term is the total retention incentive.

The additivity property of federated Shapley values allows the

server to compare all the possible sets of users to retain and find the

optimal one. Note that a smaller federated Shapley value is better, as

it means a larger contribution to the accuracy of the global model,

and the federated Shapley values can be negative.

4 OPTIMAL INCENTIVE MECHANISM
In this section, we analyze an optimal incentive mechanism for

federated learning and unlearning. Based on backward induction,

we will derive the optimal strategies from Stage IV to Stage I in

Sections 4.1-4.4, respectively.

4.1 Server’s Retention Strategies in Stage IV
Given the server’s contract 𝝓 in Stage I, the users’ contract item

choices in Stage II, and the users’ revocation decisions I𝑢 in Stage

III, the server needs to determine which users to retain I𝑟 and the

corresponding retention incentives {𝑟𝑈
𝑖
}𝑖∈I𝑟 in Stage IV.

As we discussed in Section 3.3.4, the server seeks to minimize

the cost in (15) in Stage IV, which can be formulated as follows:

Problem 1 (Server’s Optimization Problem in Stage IV).

min

∑
𝑖∈I\(I𝑢\I𝑟 )

𝑣𝑖 + 𝛾
©­«

∑
𝑖∈I\(I𝑢\I𝑟 )

𝑟𝐿𝑖 +
∑
𝑖∈I𝑟

𝑟𝑈𝑖
ª®¬ (16a)

s.t. 𝑟𝑈𝑖 + 𝑟
𝐿
𝑖 − 𝜃𝑖𝑑𝑖𝑇 − 𝜉𝑖 ℓ𝑖𝑑𝑖 − 𝜃𝑖𝑑𝑖𝜆

∑
𝑘∈I𝑢\I𝑟

ℓ2

𝑘
≥ −𝜃𝑖𝑑𝑖𝑇,∀𝑖 ∈ I𝑟

(16b)

var. I𝑟 ⊆ I𝑢 , {𝑟𝑈𝑖 }𝑖∈I𝑟 . (16c)

The constraint (16b) is to ensure that the retention incentives

are enough to make the target users stay in the system. The left-

hand side of the constraint is a user 𝑖’s payoff after accepting the

retention incentive (including unlearning reward, learning reward,

learning cost, privacy cost, and unlearning cost), and the right-hand

side is his payoff of not accepting (i.e., he has to return the learning

reward to the server and only has sunk learning cost).

The following proposition presents the solution to Problem 1.

Proposition 3. The server’s optimal set of users to retain is

I∗𝑟 = arg min

I𝑟 ⊆I𝑢

∑
𝑖∈I𝑟

©­«𝑣𝑖 + 𝛾𝜃𝑖𝑑𝑖𝜆
∑

𝑘∈I𝑢\I𝑟
ℓ2

𝑘
+ 𝛾𝜉𝑖 ℓ𝑖𝑑𝑖

ª®¬ , (17)

and the optimal retention incentives are

𝑟𝑈𝑖
∗
= 𝜃𝑖𝑑𝑖𝜆

∑
𝑘∈I𝑢\I∗𝑟

ℓ2

𝑘
+ 𝜉𝑖 ℓ𝑖𝑑𝑖 − 𝑟𝐿𝑖 ,∀𝑖 ∈ I

∗
𝑟 . (18)

The proof of Proposition 3 is given in Appendix C in the tech-

nical report [5]. Proposition 3 highlights a trade-off regarding the

retention of users and their training losses. Users who have larger

training losses incur higher privacy costs and thus require higher

incentives to retain (indicated by 𝛾𝜉𝑖 ℓ𝑖𝑑𝑖 in (17)). However, retain-

ing such users also helps reduce the unlearning costs since the

objective in (17) increases with the aggregated loss of the leaving

users. Furthermore, the server has the incentive to retain users

who contribute more to the model accuracy, which corresponds to

16
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smaller values of 𝑣𝑖 . Additionally, users with smaller marginal costs

𝜃𝑖 and 𝜉𝑖 are also desirable to reduce unlearning incentives.
13

4.2 Users’ Revocation Decisions in Stage III
Considering the server’s optimal retention strategies in Stage IV,

each user 𝑖 decides whether to revoke his data in Stage III given the

information announced in Stages I and II.

Based on the server’s optimal retention incentives (18) and the

user’s payoffs in Stage III (i.e., the updated (11) and (12) with realized

losses), a user 𝑖’s payoff after revoking data is −𝜃𝑖𝑑𝑖𝑇 , regardless
of whether the user is retained by the server or not. Thus, user 𝑖’s

expected payoff in Stage III can be rewritten as

𝑈 𝑠−3

𝑖 (𝑥𝑖 ;𝑥−𝑖 ) = 𝑥𝑖 (−𝜃𝑖𝑑𝑖𝑇 )

+ (1 − 𝑥𝑖 )
[
𝑟𝐿𝑖 − 𝜃𝑖𝑑𝑖𝑇 − 𝜉𝑖 ℓ𝑖𝑑𝑖 − 𝜃𝑖𝑑𝑖𝜆

∑
𝑘∈I

𝑥𝑘 (1 − 𝑞)ℓ2

𝑘

]
,

(19)

where 𝑥−𝑖 = {𝑥𝑘 }𝑘∈I\{𝑖 } is the revocation decisions of all users

except user 𝑖 and 𝑞 = E[𝑞 𝑗 ] is the expected retention rate of all

users, as users do not know each other’s type.
14

As shown in (19),

each user’s payoff depends on the other users’ revocation decisions,

so users engage in a non-cooperative game in Stage III.

We formally define users’ non-cooperative sub-game as follows.

Sub-Game 1 (Users’ Revocation Sub-Game in Stage III).

• Players: all users in set I.
• Strategy space: each user 𝑖 ∈ I decides whether to revoke his data,
i.e., 𝑥𝑖 ∈ {0, 1} (0: not revoke, 1: revoke).
• Payoff function: each user 𝑖 ∈ I maximizes his payoff in (19).

The following proposition characterizes the Nash equilibrium

(NE) of Sub-Game 1:

Proposition 4. Sub-Game 1 is a supermodular game, where pure
NE exists but may not be unique. Algorithm 1 converges to one NE.

Algorithm 1: Users’ optimal revocation decisions

Input : {𝑟𝐿
𝑖
, 𝜉𝑖 , ℓ𝑖 , 𝑑𝑖 , 𝜃𝑖 }𝑖∈I , 𝜆, 𝑞

Output :Optimal revocation decisions {𝑥∗
𝑖
}𝑖∈I

1 Initialize 𝑥∗
𝑖
← 0, 𝑖 ∈ I;

2 while
∃𝑥∗

𝑖
= 0 & 𝑟𝐿

𝑖
− 𝜉𝑖 ℓ𝑖𝑑𝑖 − 𝜃𝑖𝑑𝑖𝜆(1 − 𝑞)

∑
𝑘∈I\{𝑖 } 𝑥𝑘 ℓ

2

𝑘
< 0 do

3 𝑥∗
𝑖
← 1,∀𝑖 satisfying conditions in line 2;

The proof of Proposition 4 is given in Appendix D in the technical

report [5]. Based on Algorithm 1, we can find the set of users who

13
Note that in (17), the server may not only include users with a negative value in

the brackets, as retaining some users with positive values may reduce the server’s

objective through the aggregated losses. This is an integer programming problem with

complexity O(2𝐼𝑢 ) . When the number of leaving users 𝐼𝑢 is large, the server can

reduce the complexity by classifying the leaving users into several categories to retain,

each category with similar contributions and costs.

14
Here we use the historical retention rate 𝑞 to calculate the expected payoffs instead

of the retention rate obtained in Stage IV (i.e., |I∗𝑟 |/ |I𝑢 |). This is because users do
not know their federated Shapley values and cannot calculate I∗𝑟 . If they calculate

the expectation E[I∗𝑟 ] based on type statistics, according to (17), the result will be

user type retention instead of user retention (e.g., retain all type-i users and not retain

all type-𝑗 users regardless of different data distributions and losses of the same type

of users), which is not true. Conversely, historical rates ranging between [0, 1] allow
for more realistic partial retention of same-type users. Therefore, we assume that the

users have a belief at this stage in the retention rate which is the same as the historical

rate. In the following analysis in Stages I and II, we will also use the historical rates

for calculating the expected cost/payoffs for similar reasons.

revoke data in one NE, i.e., I∗𝑢 = {𝑖 : 𝑥∗
𝑖
= 1, 𝑖 ∈ I}. Basically,

Algorithm 1 corresponds to doing best response updates of the

users starting from all users choosing not to revoke (i.e., 0). It

is well known that for supermodular games, these updates will

converge monotonically to a NE. Algorithm 1 will terminate within

𝐼 iterations.15 The resulting equilibrium strategies and insights will

be illustrated through simulation in Section 5.2.1.

4.3 Users’ Contract Item Choices in Stage II
Based on the analysis in Stages III and IV, a type- 𝑗 user’s expected

payoff in Stage II (13) can be rewritten as:

𝑈 𝑠−2

𝑗 = (1 − 𝑝 𝑗 )𝑟𝐿𝑗 − 𝜅 𝑗𝑑 𝑗 , (20)

where

𝜅 𝑗 ≜ (1 − 𝑝 𝑗 )𝜉 𝑗E[ℓ𝑗 ] + 𝜃 𝑗𝑇

+ 𝜃 𝑗 (1 − 𝑝 𝑗 )𝜆
∑
𝑚∈J

𝐼𝑚𝑝𝑚 (1 − 𝑞𝑚)
(
E[ℓ𝑚]2 + 𝐷 (ℓ𝑚)

)
,

(21)

and 𝐷 (ℓ𝑚) is the variance of type-𝑚 users’ training losses.

Each type- 𝑗 user in Stage II will choose a contract item that

gives him a maximum non-negative expected payoff, leading to the

constraints that the server needs to consider in Stage I.

4.4 Server’s Contract in Stage I
In Stage I, the server designs a contract to minimize its expected

cost, considering the results in Stages II-IV.

When designing the contract, the server needs to ensure that

each user achieves a non-negative payoff, so that the user will

accept the corresponding contract item. Moreover, since the server

does not know each user’s type in Stage I, the server also needs to

make a user choose the contract item intended for him (i.e., the user

does not misreport his type).
16

In other words, a contract is feasible

if and only if it satisfies Individual Rationality (IR) and Incentive

Compatibility (IC) constraints:

Definition 1 (Individual Rationality). A contract is individ-
ually rational if each type- 𝑗 user receives a non-negative payoff by

accepting the contract item 𝜙 𝑗 =

(
𝑑 𝑗 , 𝑟

𝐿
𝑗

)
intended for his type, i.e.,

(1 − 𝑝 𝑗 )𝑟𝐿𝑗 − 𝜅 𝑗𝑑 𝑗 ≥ 0,∀𝑗 ∈ J . (22)

Definition 2 (Incentive Compatibility). A contract is incen-
tive compatible if each type- 𝑗 user maximizes his own payoff by

choosing the contract item 𝜙 𝑗 =

(
𝑑 𝑗 , 𝑟

𝐿
𝑗

)
intended for his type, i.e.,

(1 − 𝑝 𝑗 )𝑟𝐿𝑗 − 𝜅 𝑗𝑑 𝑗 ≥ (1 − 𝑝 𝑗 )𝑟
𝐿
𝑚 − 𝜅 𝑗𝑑𝑚,∀𝑗,𝑚 ∈ J . (23)

Considering the constraints in Definitions 1 and 2, the server in

Stage I seeks to design the contract 𝝓 = {(𝑑 𝑗 , 𝑟𝐿𝑗 )}𝑗 ∈J to minimize

its expected cost in (9), which is rewritten as follows after combining

the results in Stages II-IV:

15
We can also initialize all the users’ decisions as 1 and check whether there exists

a user who wants to change his action from 1 to 0 for payoff improvement. If the

equilibrium is the same as that found by Algorithm 1, it is the unique NE, as Game 1 is

a supermodular game.

16
Revelation principle demonstrates that if a social choice function can be implemented

by an arbitrarymechanism, then the same function can be implemented by an incentive-

compatible-direct-mechanism (i.e. in which users truthfully report types) with the

same equilibrium outcome. Thus, requiring IC will simplify the mechanism design

without affecting optimality.

17
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Problem 2.

min

∑
𝑗 ∈J

(
𝜚𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )

𝑇𝑑 𝑗
+ 𝛾𝐼 𝑗 (1 − 𝑝 𝑗 )𝑟𝐿𝑗

+ 𝛾𝐼 𝑗𝑝 𝑗𝑞 𝑗 (𝛼𝜃 𝑗 + 𝜉 𝑗E[ℓ𝑗 ])𝑑 𝑗
)
,

s.t. (1 − 𝑝 𝑗 )𝑟𝐿𝑗 − 𝜅 𝑗𝑑 𝑗 ≥ 0,∀𝑗 ∈ J ,

(1 − 𝑝 𝑗 )𝑟𝐿𝑗 − 𝜅 𝑗𝑑 𝑗 ≥ (1 − 𝑝 𝑗 )𝑟
𝐿
𝑚 − 𝜅 𝑗𝑑𝑚,∀𝑗,𝑚 ∈ J ,

var.

{(
𝑑 𝑗 , 𝑟

𝐿
𝑗

)}
𝑗 ∈J

,

(24)

where
𝛼 ≜ 𝜆

∑
𝑗 ∈J

𝐼 𝑗𝑝 𝑗 (1 − 𝑞 𝑗 )
(
E[ℓ𝑗 ]2 + 𝐷 (ℓ𝑗 )

)
. (25)

Solving Problem 2 involves two challenges. First, users’ multi-

dimensional heterogeneity leads to a challengingmulti-dimensional

contract design for the server. We will simplify the analysis by

summarizing users’ multi-dimensional heterogeneity into several

one-dimensional metrics, to guide the server’s design of the optimal

rewards and data sizes in the contract. Second, as the total number

of IR and IC constraints is large (i.e., 𝐽 2
), it is challenging to obtain

the optimal contract directly. To overcome such a complexity issue,

we transform the constraints into a smaller number of equivalent

ones. Next, we first derive the server’s optimal reward {𝑟𝐿∗
𝑗
(𝒅)}𝑗 ∈J

for any given data size 𝒅 = {𝑑 𝑗 }𝑗 ∈J (Lemma 1) in Section 4.4.1.

Then, we calculate the optimal data size 𝒅∗ (Proposition 5 and

Theorem 1) in Section 4.4.2.

4.4.1 Optimal Rewards in Contract. Without loss of generality, we

assume that users are indexed in ascending order of

𝜋 𝑗 ≜
𝜅 𝑗

1 − 𝑝 𝑗

= 𝜉 𝑗E[ℓ𝑗 ] +
𝜃 𝑗𝑇

1 − 𝑝 𝑗
+ 𝜃 𝑗𝜆

∑
𝑚∈J

𝐼𝑚𝑝𝑚 (1 − 𝑞𝑚)
(
E[ℓ𝑚]2 + 𝐷 (ℓ𝑚)

)
,

which can be regarded as a type- 𝑗 user’s aggregated marginal cost.

That is,

𝜋1 ≤ 𝜋2 ≤ ... ≤ 𝜋 𝐽 . (26)

The following Lemma 1 characterizes the server’s optimal learn-

ing rewards for any feasible data size:

Lemma 1. For any given data size 𝒅 = {𝑑 𝑗 }𝑗 ∈J (even if it is not
optimal), the unique optimal reward for a type 𝑗 user is:

𝑟𝐿∗𝑗 (𝒅)=
{
𝜋 𝑗𝑑 𝑗 , if 𝑗 = 𝐽 ;

𝜋 𝑗𝑑 𝑗 +
∑𝐽
𝑚=𝑗+1 (𝜋𝑚 − 𝜋𝑚−1)𝑑𝑚, if 𝑗 = 1, ..., 𝐽 − 1.

(27)

The proof of Lemma 1 is given in Appendix E in the technical

report [5]. Lemma 1 indicates that all user types except the boundary

type 𝐽 will obtain positive expected payoffs (type-𝐽 users receive

zero expected payoff), which can be interpreted as the information
rent in economics due to information asymmetry.

4.4.2 Optimal Data Sizes in Contract. Based on Lemma 1, we can

significantly simplify Problem 2 but still need to derive the optimal

values of 𝐽 variables {𝑑 𝑗 }𝑗 ∈J under 𝐽 constraints 𝑑1 ≥ ... ≥ 𝑑 𝐽 ≥ 0.

For the convenience of presentation, we define

𝐴 𝑗 ≜
𝜚𝐼 𝑗 (1 − 𝑝 𝑗 + 𝑝 𝑗𝑞 𝑗 )

𝑇
, (28)

𝐵 𝑗 ≜𝛾𝐼 𝑗
(
𝑝 𝑗𝑞 𝑗

(
𝛼𝜃 𝑗 + 𝜉 𝑗E[ℓ𝑗 ]

)
+

(
1 − 𝑝 𝑗

)
𝜋 𝑗

)
+

𝑗−1∑
𝑚=1

𝛾𝐼𝑚 (1 − 𝑝𝑚) (𝜋 𝑗 − 𝜋 𝑗−1).
(29)

Based on these two metrics, we first present two special cases of the

optimal data sizes, which we call all-independent and all-dependent.

Proposition 5. Two special cases of the optimal data sizes follow:

• All-independent. If

𝐴1

𝐵1

≥ 𝐴2

𝐵2

≥ ... ≥
𝐴𝐽

𝐵 𝐽
, (30)

then the optimal data sizes in the contract are

𝑑∗𝑗 =

√
𝐴 𝑗

𝐵 𝑗
, 𝑗 ∈ J . (31)

• All-dependent. If∑
𝑚∈J 𝐴𝑚∑
𝑚∈J 𝐵𝑚

>

∑𝑗

𝑚=1
𝐴𝑚∑𝑗

𝑚=1
𝐵𝑚

,∀𝑗 = 1, 2, ..., 𝐽 − 1, (32)

then the optimal data sizes in the contract are

𝑑∗𝑗 =

√∑
𝑚∈J 𝐴𝑚∑
𝑚∈J 𝐵𝑚

, 𝑗 ∈ J . (33)

The proof of Proposition 5 is given in Appendix F in the technical

report [5]. The all-independent case means that if {𝐴 𝑗/𝐵 𝑗 }𝑗 ∈J
follow a descending order, then the optimal data size for each type-

𝑗 user only depends on his own parameters (𝐴 𝑗 , 𝐵 𝑗 ). The condition
for the all-dependent case means that for any type 𝑗 , there always

exists at least one type𝑚 > 𝑗 with 𝐴𝑚/𝐵𝑚 larger than 𝐴 𝑗/𝐵 𝑗 (i.e.,
not in descending order). In this case, each type’s optimal data size

depends on all types’ parameters {(𝐴 𝑗 , 𝐵 𝑗 )}𝑗 ∈J .
Next, we give an efficient algorithm to compute the optimal data

sizes in any possible case based on the insights in Proposition 5.

Theorem 1. For a fixed 𝐽 , there are 2
𝐽 −1 possible cases of the

optimal data sizes depending on the values of {(𝐴 𝑗 , 𝐵 𝑗 )}𝑗 ∈J . For any
given {(𝐴 𝑗 , 𝐵 𝑗 )}𝑗 ∈J , the unique optimal data sizes can be calculated
by Algorithm 2.

The proof of Theorem 1 is given in Appendix G in the tech-

nical report [5]. The computation complexity of Algorithm 2 is

O(∑𝑋
𝑥=1

𝐽𝑥 ), which is no larger than O(𝐽 ). We can interpret Algo-

rithm 2 as greedily merging non-descending types based on 𝐴 𝑗/𝐵 𝑗 ,
so that all merged types have

∑
𝑗 𝐴 𝑗/

∑
𝑗 𝐵 𝑗 in a descending order.

19

The optimal data sizes of the merged types are the same and follow

the dependent form (33) in Proposition 5, while the optimal data

sizes of the not-merged types follow the independent form (31), as

illustrated in footnote 17.

16
For example, if

𝐴
1

𝐵
1

≥ 𝐴
4

𝐵
4

≥ 𝐴
3

𝐵
3

≥ 𝐴
2

𝐵
2

≥ 𝐴
5

𝐵
5

≥ 𝐴
8

𝐵
8

≥ 𝐴
6

𝐵
6

≥ 𝐴
7

𝐵
7

, then 𝑋 = 2,

J1 = {2, 3, 4}, and J2 = {6, 7, 8}.
17
In the example of footnote 16. If

𝐴
6

𝐵
6

≥ 𝐴
7
+𝐴

8

𝐵
7
+𝐵

8

, then J2 can be divided into two

subsets {6} and {7, 8}. The optimal data sizes in this example are 𝑑∗𝑗 =

√
𝐴𝑗

𝐵𝑗
, 𝑗 =

1, 5, 6, 𝑑∗𝑗 =
√

𝐴
2
+𝐴

3
+𝐴

4

𝐵
2
+𝐵

3
+𝐵

4

, 𝑗 = 2, 3, 4, and 𝑑∗𝑗 =
√

𝐴
7
+𝐴

8

𝐵
7
+𝐵

8

, 𝑗 = 7, 8.

19
In the example of footnotes 16 and 17,

𝐴
1

𝐵
1

≥ 𝐴
2
+𝐴

3
+𝐴

4

𝐵
2
+𝐵

3
+𝐵

4

≥ 𝐴
5

𝐵
5

≥ 𝐴
6

𝐵
6

≥ 𝐴
7
+𝐴

8

𝐵
7
+𝐵

8

.

18
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Figure 2: Revocation rate
|I∗𝑢 |/𝐼 versus historical revo-
cation rate 𝑝.
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Figure 3: Retention rate
|I∗𝑟 |/|I∗𝑢 | versus historical
revocation rate 𝑞.
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Figure 4: Users’ training losses
{ℓ𝑖 }𝑖∈I .
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Figure 5: Users’ optimal revo-
cation decisions {𝑥∗

𝑖
}𝑖∈I .

Algorithm 2: Optimal data sizes in contract

Input :Parameters {(𝐴 𝑗 , 𝐵 𝑗 )}𝑗 ∈J indexed based on (26)

Output :Optimal data sizes {(𝑑∗
𝑗
)}𝑗 ∈J

1 Initialize 𝑑∗
𝑗
←

√
𝐴 𝑗

𝐵 𝑗
, 𝑗 ∈ J ;

2 Find all non-descending types

{ 𝑗 : ∃𝑚 > 𝑗,
𝐴𝑚

𝐵𝑚
>

𝐴 𝑗

𝐵 𝑗
or ∃𝑚 < 𝑗,

𝐴𝑚

𝐵𝑚
<

𝐴 𝑗

𝐵 𝑗
};

3 Put each group of non-descending types that have adjacent

indexes into one auxiliary set J𝑥 ;
4 𝑋 ← the number of these auxiliary sets;

17// i.e.,

𝑥 ∈ {1, 2, ..., 𝑋 }
5 for 𝑥 = 1; 𝑥 ≤ 𝑋 ; 𝑥 + + do
6 check(J𝑥);18// divide each auxiliary set J𝑥

into subsets {J 𝑦
𝑥 } that satisfy (32)

7 Function check(J):
8 Reindex the types in J with 1J , 2J , ..., 𝐽J .
9 if |J | ≠ 1 then
10 flag←1;

11 for𝑚 = 1J to (𝐽 − 1)J do

12 if
∑

𝑗∈J 𝐴 𝑗∑
𝑗∈J 𝐵 𝑗

≤
∑𝑚

𝑗=1J 𝐴 𝑗∑𝑚
𝑗=1J 𝐵 𝑗

// J does not

satisfy (32)

13 then
14 flag←0;

15 𝑑∗
𝑗
=

√∑𝑚
𝑛=1J 𝐴𝑛∑𝑚
𝑛=1J 𝐵𝑛

, 𝑗 ∈ {1J , ...,𝑚};

16 𝑐ℎ𝑒𝑐𝑘 ({𝑚 + 1, ..., 𝐽J });
17 break;

18 if flag=1 then

19 𝑑∗
𝑗
=

√∑
𝑚∈J 𝐴𝑚∑
𝑚∈J 𝐵𝑚

, 𝑗 ∈ J ;// J satisfies (32)

5 SIMULATIONS
In this section, we use simulations to evaluate the performance of

our mechanism. In Section 5.1, we specify our experiment setting. In

Section 5.2, we validate the users’ and the server’s optimal strategies

and compare our mechanism with state-of-the-art benchmarks.

5.1 Experiment Setting
We consider 𝐽 = 5 types of users with marginal training costs 𝜽 =

[1, 4, 6, 9, 10] and marginal perceived privacy costs 𝝃 = [0.8, 1.7, 1.4,
2.2, 1.2] × 10

3
.
20

Each type has 𝐼 𝑗 = 𝐼/𝐽 = 1000 users. Heteroge-

neous users’ training losses follow a truncated normal distribution

20
Different orders of magnitude are to balance different units of users’ training costs

and privacy costs.

𝑁 (0.5, 0.2) over the support [0, 1], and users’ federated Shapley val-
ues follow a normal distribution 𝑁 (5× 10

−5, 0.04).21 Users perform
𝑇 = 100 rounds of federated learning, and the unlearning rounds

coefficient 𝜆 = 4. The server’s accuracy loss coefficient 𝜚 = 1 and

its weight on the incentives 𝛾 = 10
−10

(to balance different units of

incentives and model accuracy loss).

We perform experiments to find the appropriate values of histor-

ical revocation rate 𝑝 and retention rate 𝑞. As shown in Fig. 2 and

Fig. 3, when we set different values of 𝑝 and 𝑞, both the realized re-

vocation rate |I∗𝑢 |/𝐼 and retention rate |I∗𝑟 |/|I∗𝑢 | at the equilibrium
have a stationary point, i.e., (2.8 × 10

−3, 2.8 × 10
−3) in Fig. 2 and

(0.5, 0.5) in Fig. 3, respectively. Therefore, we take the historical

revocation rate 𝑝 = 0.28% and the historical retention rate 𝑞 = 50%

in the following simulations.

5.2 Experiment Results
5.2.1 Users’ Revocation Decisions and Server’s Retention Decision.
As shown in Fig. 4, we rank each type of users in ascending order

of their training losses for the convenience of presenting insights.

Fig. 5 shows that at the equilibrium, users with larger aggregated

marginal costs 𝜋 (i.e., type 5) and training losses ℓ (i.e., user 986-

1000) are more likely to revoke their data. This is because (i) users

with larger costs receive smaller learning incentives from the server

in the contract (Lemma 1); (ii) they do not know their high training

losses before federated learning and their realized privacy costs

(training losses) significantly exceed their expectations.

Fig. 6 illustrates the server’s optimal retention decision. We rank

the users who want to revoke their data in ascending order of their

federated Shapley values {𝑣𝑖 }𝑖∈I𝑢 . Users with smaller federated

Shapley values are more likely to be retained by the server, as

smaller Shapley values represent larger contributions to the global

model accuracy. Users with smaller training losses have lower pri-

vacy costs and may require fewer incentives from the server, com-

pared to users with larger losses. However, Fig. 6 shows that the

server does not necessarily retain users with smaller training losses.

This is because given a fixed set of users, reducing the total training

losses of retained users means increasing the total losses of leaving

users, resulting in higher unlearning costs (Proposition 3).

5.2.2 Comparison with Benchmarks. We compare our incentive

mechanism with two benchmarks to evaluate the performance.

• No Retention Incentive (NRI): the server does not retain users

who want to revoke their data.

• Limited Look Ahead (LLA) (adapted from [4]): the server first op-

timizes the incentive mechanism for federated learning without

considering the unlearning part, and then designs the retention

incentive in unlearning (i.e., separate optimization).

21
In future work, we will use real-world datasets to calculate users’ true training losses

and federated Shapley values. The simulation data here can also demonstrate our

results. As in Appendix H in the technical report [5], we further validate that if we

change the simulation setting, we will obtain similar experiment results and insights.
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Figure 6: Server’s optimal retention deci-
sions I∗𝑟 .
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Figure 7: Server’s cost comparison of
NRI, LLA, and RAR.
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Figure 8: Users’ average payoff compari-
son of NRI, LLA, and RAR.

• Our proposed incentive mechanism (RAR): the server is Rational

in jointly optimizing both federated learning and unlearning And

designs Retention incentive to retain valuable leaving users.

Fig. 7 shows the server’s costs in the three mechanisms under

different numbers of users. Our proposed RAR reduces the server’s

cost by around 53.91% (black dotted line) compared with LLA. The

reduced cost of RAR compared with NRI can reach 11.59% (black

dashed line) and will increase in the number of users, as the server

retains more valuable users when the number of users increases.

Therefore, it is beneficial for the server to retain valuable leaving

users and make joint optimization of federated learning and un-

learning incentive mechanisms. As the objective of our incentive

mechanism design is to minimize the server’s cost, the server’s cost

reduction is at the expense of users’ payoffs (as shown in Fig. 8).

6 CONCLUSION
To the best of our knowledge, this paper is the first study to fo-

cus on the important issue of incentive design for federated learn-

ing and unlearning. We derive theoretical bounds on the global

model optimality gap of Scaffold and the number of communica-

tion rounds of natural federated unlearning. Our approach tackles

a challenging problem in incentive design, by summarizing users’

multi-dimensional heterogeneity into one-dimensional metrics and

developing an efficient algorithm for an exponentially large number

of possible cases. We identify what types of users will leave the

system or be retained by the server. The experiments demonstrate

the superior performance of our proposed incentive mechanism

and the benefits of unlearning incentives for retaining leaving users.

We will design incentive mechanisms for federated unlearning to

maximize social welfare in future work.

ACKNOWLEDGEMENT
This workwas supported in part by the National Science Foundation

under grant ECCS-2030251.

REFERENCES
[1] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.

Machine unlearning. In IEEE Symposium on Security and Privacy (SP).
[2] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine

unlearning. In IEEE Symposium on Security and Privacy.
[3] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D

Blondel. 2013. Unique in the crowd: The privacy bounds of human mobility.

Scientific reports 3, 1 (2013), 1–5.
[4] Ningning Ding, Zhixuan Fang, and Jianwei Huang. 2020. Optimal contract design

for efficient federated learning with multi-dimensional private information. IEEE
Journal on Selected Areas in Communications 39, 1 (2020), 186–200.

[5] Ningning Ding, Zhenyu Sun, Ermin Wei, and Randall Berry. 2023. Techinical

Report. https://www.dropbox.com/s/f2b2z8t9kajs5ax/Appendix.pdf?dl=0.

[6] Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji, Peng

Cheng, and Jiming Chen. 2022. VeriFi: Towards Verifiable Federated Unlearning.

arXiv preprint arXiv:2205.12709 (2022).
[7] Elizabeth Liz Harding, Jarno J Vanto, Reece Clark, L Hannah Ji, and Sara C

Ainsworth. 2019. Understanding the scope and impact of the California Consumer

Privacy Act of 2018. Journal of Data Protection & Privacy 2, 3 (2019), 234–253.
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