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ABSTRACT: The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by em-
ploying a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as
alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in good
yield and high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric
metal or organic reductants, tolerates a broad range of functional groups, and is successfully applied to dramatically simplify the
synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-
NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene (TDAE), which acts as a key reductive mediator to
mediate the electroreduction of the Cr'/chiral ligand complex.
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this Article we disclose a broadly useful method that now
achieves synthetically useful yields and enantiomeric excesses
through a combination of fine-tuned electrochemical

Figure 1. Historical context and precedent inspiring enantiose-
lective decarboxylative NHK.

Table 1. Reaction Development and Optimization



Reaction Development and Optimization

A Initial Electrochemical Reactivity Investigation and Non-electrochemical Chiral Ligands Screen
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[See Sl for full summary]

B Final Optimization

(o) In situ generated Cr-complex
[CrCl, (30 mol%), L7 (33 mol%), Proton Sponge (33 mol%

b

TESCI (2.0 equiv), TDAE (0.4 equiv), TBACIO, (0.1 M)"
(+)Al/(-)Ni foam, MeCN (c = 0.5 M), 2.5 mA, 24 h

oy

instead of electricity

5 (2.0 equiv -
4 (0.8 mmol) A* = NEP. : then TBAF work-up 6, 58%¢2 (51%)P, 90% ee
entry deviation from above yield (%)2 ee (%) iEffects of ligands (under standard conditions)
Chromium source 90— @ NMR yield (%) of 6

1 CrCly instead of CrCl, 53 60 | LRIkL
Additives :
2 w/o TDAE 20 88
3 Cp,ZrCl, instead of TESCI <10 n.d.d
Electrochemical parameters
4 DMF instead of MeCN 30 2 :
5 Ece1=5V 40 82 i
6 stainless steel as anode <10 n.d.
7 RVC as cathode 52 82
8 LiClO4 instead of TBACIO,4 40 86
Control experiments
9 no electricity <10 n.d.
10 Zn, Mn, Mg powder, TDAE <10 gl

NMe, NMe,

99 .
t-Bu OH HO
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t-Bu t-Bu
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Me,N NMe,
tetrakis(dimethylamino)ethylene
TDAE

iPr

Me Me Me

(+)- nl1-enth0| (+)-8- phenylmenthol
°=?=0 L7
Ph  L4-L9

</ )
NH
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Yields were determined by '"H NMR using 1,3,5—trimethoxybenzene as the internal standard. ®Isolated yields after TBAF work-up.
°Enantiomeric excess (ee) was determined by chiral SFC analysis. ‘Not determined. °2 equiv proton sponge was used. ‘Without proton

sponge. £Cr(I1)-L8 complex not formed.

parameters, enabling additives, and an optimized chiral lig-
and." The high functional group tolerance of this reaction
combined with the versatility of using RAE-based alkyl donors
can enable simplified access to enantioenriched alkyl-aryl alco-
hols in a variety of different contexts.

RESULTS AND DISCUSSION

The development of the asymmetric variant of decarboxylative
electrocatalytic NHK took place in a bifurcated fashion as out-
lined in Table 1A on substrates 1 and 2. Thus, parallel optimi-
zations were carried out to maximize reactivity in an

electrochemical setting and to maximize ee in a purely chemical
system. By separating the challenges of maximizing electro-
chemical reactivity and ee, the research teams could cover
ground more rapidly as it was practically simpler to explore >50
chiral ligands using superstoichiometric Cr loading under low
yielding chemical conditions as only the ee measurement was
relevant. At the same time, a variety of electrochemical param-
eters (>150 conditions screened) were explored such as solvent,
electrolyte, additives, current density, concentration, and elec-
trode material (see SI for complete summary of both endeavors).
Early in

Table 2. Scope of Enantioselective Electrochemical Decarboxylative NHK coupling



Enantioselective Electrochemical Decarboxylative Nozaki-Hiyama-Kishi Coupling

o In situ generated Cr-complex
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32, R = OFEt, 61%, 86% ee® o -
33, R = OCF,H, 54%, 83% ee® OH 41, R = 4-F, 58%, 80% ee
34, R = OTol, 48%, 86% ee’ N S ph 42, R=4-tBu, 56%, 80% ee
OH R R+ 43 R =2-Br, 51%, 71% ee
N Me N o] Z 44,R = 2-F, 5-Me, 48%, 90% ee
(o) 39, R = 3-Me, 55%, 88% ee Me OH
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[solated yields after TBAF work-up. ®20 mol% CrCl,, 22 mol% L7, and 22 mol% proton sponge were used.

those studies it was verified that the ee measurements observed active ester 4 (Table 1B). The extensive electrochemical screen-
using purely chemical conditions could be translated to non-op- ing campaign outlined above uncovered an optimal combina-
timized electrochemical conditions. With relatively optimized tion of chromium (II) chloride as the chromium source (along
conditions and chiral ligand candidates identified, final reaction with catalytic proton sponge to enhance complex formation),
development commenced with alkyl aldehyde 3 and redox- TDAE'$/TESCI



Applications
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A Synthesis of an intermediate used in an enantiospecific intramolecular Heck reaction
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Figure 2. Applications: short synthesis of four bioactive aryl-alkyl substituted secondary alcohols. * After recrystallization.

as the additives, Al/Ni electrode materials, TBACIO4 electro-
lyte, and a high concentration (0.5M) in CH3CN. Of the chiral
ligands explored, a unique sulfonamide-based structure (L7)"
emerged as the optimum ligand. This final set of conditions pro-
vided a 51% isolated yield of benzylic alcohol 6 with 90% en-
antiomeric excess (Table 1B). Replacing CrCl, with air-stable
CrCl; led to comparable yield but decreased enantio-selectivity
(entry 1). The addition of TDAE significantly increased the re-
action efficiency without impacting the enantioselectivity (en-
try 2). TESCI was found to be superior to Cp,ZrCl, in terms of
trapping the chromium alkoxides and regenerating the catalyst
(entry 3). As for the electrochemical parameters, solvent choice
was important wherein replacing CH;CN with DMF (entry 4)
lead to diminished enantioselectivity, presumably due to unde-
sired competing coordination. Constant voltage (entry 5), alter-
native anode (entry 6) or cathode (entry 7) materials as well as
the identity of the electrolyte (entry 8) decreased the observed
reaction yield. Notably, classic batch conditions with or without

external reducing agents (entries 9 and 10) displayed far lower
reactivity for this transformation.

A wide variety of chiral ligands reported in asymmetric NHK
reactions were evaluated (Table 1B, top right, see SI for full
listing), including salen ligand L1,'® Nakada’s ligand L.2" and
BOX ligand L3.2° We were pleased to determine that the chiral
sulfonamide ligands (L.4-L9) initially introduced by Kishi et al.,
gave the most promising asymmetric induction. As a result of
extensive screening of Kishi-type ligands (>40 ligands, See SI),
the R substituent on the aniline was found to play a crucial role
wherein the (+)-menthol substituent (L6) enhanced the ee value
to 67% compared to a simple methyl group (L4, 1% ee) or a
cyclohexyl group (LS5, 16% ee). Thus, we evaluated several
larger substituents at this position including (+)-8-phenylmen-
thol?! (L7), which dramatically improved the ee value to 90%.
However, an even more hindered variant containing a 2-naph-
thyl substituent (L8) did not form the required complex presum-
ably due to its inability to coordinate to the Cr(II) center.
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A Synthesis of a simplified herboxidiene aromatic hybrid
Me Me Br
\ H
0o Me 67 Ag0
3-MeOPhMgBr Py+HCI OsO, Wittig NaH K5COg Mel
*o—0 0 0 © @
ag. HCl TBSCI Nalo, (-)-lpc,BCI HF AD-mix-p
66
| BN e-NHK NaH N 0 OMe
H Q— 2 |
>I\/\/\/\ Z N - : Z
| 35%, 94:6 dr 44% =
(o] o 70
68 /U\/\/\)L [Previous] 13 steps
[4 steps] MeO = NHPI [Current] 6 steps
69 [3 steps]
B 6-Step total synthesis of gravicycle
OBn
MgBr Pd/C
OH Cu, TEA DMP DMP BnBr Ms,0 M, H,
Me0,C oBn OTBS ?Ac LAH Mo CBS TBAF LiBr RCM
71 BI‘OAc 5 [17 steps]
4 st 73 [5 strategic]
[4 steps] [12 non-strategic]
72
OBn/; OH
(o} OH
AgNP D Pd/C, H HO O O
BnO OH ghP DCC Cu, DMA, 130 °C e-NHK oo 2 OH
7 ®
X Ll 46%, 82% ee ROM
1 NHPI \/C[Br o
74 /\/\/\)j\ [6 steps]
[1 step] 51% Ox OBn = — NHPI [4 strategic] 78 icvel
75 76 [2 non-strategic] (gravicycle)
[2 steps]

Figure 3. Applications: simplifying the synthesis of a herboxidiene aromatic hybrid and gravicycle.

With the optimal conditions in hand, the scope of this electro-
catalytic enantioselective NHK decarboxylative coupling was
explored as summarized in Table 2. With regard to the redox-
active esters, which were derived from readily available ali-
phatic carboxylic acids, we were pleased to find that aside from
simple alkyl chains (7, 8, 9, 11), a wide variety of function
groups could be tolerated, such as terminal alkenes (10), inter-
nal alkenes (28, 29), aryl halides (13, 26), esters (14), alkyl
chlorides (15, 27), silyl ethers (6), carbamates (16), imides (17),
heterocycles (18, 19, 20), ethers (21, 24, 25, 26), acetates (22),
boronate ester (25), a trifluoromethyl group (24) and tertiary
amines (27). An array of aromatic aldehydes proved to be suit-
able coupling partners, providing synthetically useful yields
and enantioselectivity. The main byproducts are decarboxyla-
tive reduction products from the RAEs and benzyl alcohols de-
rived from direct reduction of aromatic aldehydes. In general,
substituents at the meta-position of the aromatic aldehydes give
higher enantioselectivity than ortho-, and para-substituents,
and the electronic properties of substituents have little impact
on both yields and ee values. The functional group tolerance is
also broad with respect to the aldehyde coupling partner, in-
cluding aryl halides (30, 40, 41, 43, 44), ethers (32, 33, 34, 35,
3, 46, 47), thioethers (36), heterocycles (38, 45), and esters (46,
47). It is worth noting that in the case of a substrate bearing a

remote stereocenter, the stereochemistry in the products was
fully controlled by the stereochemistry of ligands (L7, ent-L7)
rather than that of the substrate (46, 47).

Of all the compounds listed in Table 1, only 7 has been previ-
ously prepared in an enantioselective fashion, all of which re-
quire pyrophoric nucleophiles (alkyl lithium and Grignard spe-
cies).”? Alcohols 30, 35, and 38 have been previously prepared
in racemic fashion through Grignard additions.” It is advanta-
geous in many cases to use carboxylic acid inputs from both a
chemoselectivity standpoint and synthetic simplicity as several
of the requisite alkyl halides would need to be derived either
from alcohol halogenation or Hunsdiecker decarboxylation*
(i.e. compounds 27, 28, and 29).

Regarding the limitations of this method, nitro groups, benzo-
nitriles, and pyridine-containing aldehydes are not suitable cou-
pling partners (49-51). Beta-branched primary RAEs such as 48
also lead to poor yield. In addition, RAEs derived from second-
ary and tertiary aliphatic carboxylic acids failed to give any de-
sired coupling products (see SI for details). Utilizing aliphatic
aldehydes instead of aromatic ones led to significant loss in
both yields and enantioselectivities (see SI for details).

APPLICATIONS



The electrocatalytic asymmetric NHK decarboxylative cou-
pling disclosed herein, when applied strategically, can have a
dramatically simplifying impact on synthesis as outlined in Fig-
ures 2 and 3. This is due to the radical retrosynthetic logic?’
employed that departs from the conventional 2¢ strategies that
are universally employed to access such substrates. For in-
stance, alkyne 54, which previously®® required five steps in-
volving non-strategic redox fluctuations, functional group in-
terconversions, and pyrophoric nucleophiles could be prepared
in only two steps commencing from 53 (Figure 2A). Diol 58,
an intermediate previously prepared as a racemic mixture (six
steps) in a natural product total synthesis,”’” could be prepared
in only three steps in high ee (Figure 2B). The medicinally rel-
evant diol 63 that required an 8-step route could be truncated
to only two steps (Figure 2C). The first total synthesis of hors-
fieldone A%’ (65) was completed in 2 simple steps from the eas-
ily accessed RAE 64 (Figure 2D). Even more complex applica-
tions were designed and implemented as documented in Figure
3. For example, the herboxidiene analog 70, previously required
a 13-step route with many concession steps.*® In contrast, start-
ing from aldehyde 68 (four steps), an e-NHK coupling followed
by cyclization led to the same compound in only 6 total steps.
As a testament to the chemoselectivity of this reaction, RAE 69,
bearing an electrophilic acrylate moiety could be employed. Fi-
nally, a substantially truncated route to gravicycle®' (78) was
developed using a series of enabling electrocatalytic couplings.
The prior route® to this natural product relied on an inefficient
Bi-based O-arylation, pyrophoric reagents, numerous redox-
fluctuations and functional group manipulations as part ofa 17-
step route. In contrast, the simple aryl iodide 74 could be sub-
jected to electrocatalytic DCC-arylation®® with RAE 75, Ullman
coupling with 76,** e-NHK with RAE 77, RCM, and deprotec-
tion to furnish 78 in only six steps.

MECHANISTIC STUDIES

Given that addition of TDAE proved important for obtaining
good yields in the enantioselective e-NHK, mechanistic studies
were carried out to determine the role of this additive. During
the optimization process, a stoichiometric condition utilizing
excess Cr(II) complex was found to give ee values comparable
to the electrocatalytic system (Figure 4B). Addition of an acidic
deuterium source to this reaction mixture led to formation of
deuterated alkane 79 consistent with other reports of alkylative
NHK-type reactions.3> The consistent ee between the stoichio-
metric system and the electrochemical system suggests that
both the stoichiometric and catalytic conditions involve for-
mation of the same putative alkylchromium species, and that
TDAE is not required for formation of this intermediate. We
hypothesized that in the electrochemical system, TDAE medi-
ates the reduction of the L7-Cr'™. This process might be more
important with L7-coordinated Cr if the sterically encumbered
chiral ligand imposes an additional kinetic barrier to reduction
at the electrode surface.

To investigate the key electron transfer steps in the electro-
chemical system, cyclic voltammetry (CV) was performed
(Figure 4C). To simplify the experimental setup, the L7-Cr™
complex was independently synthesized by treatment of L7
with NaH (1.0 equiv) in THF followed by direct addition of

solid CrCl;-3THF to give a purple-green solid.172 L7-Cr'™ ex-
hibited quasireversible behavior with a large peak-to-peak sep-
aration (1.84V) and a cathodic peak potential of —1.53V at 100
mV/s (compared to ~—1.42V for the unligated CrCl;-3THF
complex) (Figure 4C, 1). Both CrCl; and L7-Cr'™" exhibited
scan-rate dependent shifts in the cathodic peak potential with
large half-peak to peak separation, suggesting that reduction at
the cathode is kinetically slow. When compared to CrCls, the
cathodic peak current of the L7-Cr™ catalyst is approximately
110 mV more negative, with an onset potential that is 150 mV
more cathodic, suggesting the ligand increases the reduction po-
tential of the complex or that it imposes an increased overpo-
tential. Finite element simulation of the CV supported sluggish
kinetics for the direct reduction of L7-Cr'™" | as the voltammetry
was best fit with low heterogeneous electron transfer rate con-
stant of 1x107 cm s! (for comparison, fast reversible redox cou-
ples typically exhibit rate constants near 0.1 ¢cm s™).3 RAE 2
has a peak potential of —1.63V vs Fc/Fc' under the same CV
conditions (Figure 4C, iii). This value lies close to the peak po-
tential of L7-Cr™ (-1.53V), which could result in direct reduc-
tion of 2 at the cathode competing with reduction of L7-Cr™
given the challenging nature of the direct reduction of the Cr
species. Thus, TDAE-mediated reduction of L7-Cr™ could al-
low the reaction to proceed more rapidly and at less-negative
potentials, which could then avoid possible deleterious direct
reduction of RAE 2.

To investigate the ability of TDAE to serve as a mediator,
TDAE*(PFs), was prepared by aerobic oxidation of TDAE in
the presence of TMSBr (see SI). CV of TDAE*(PFs), in
MeCN revealed two freely-diffusing reversible single-electron
redox features at —1.05 V and —1.13V, consistent with previous
literature reports (Figure 4C, ii).3” Upon addition of L7-Cr'™,
the cathodic peaks corresponding to TDAE?" reduction increase
in current and there is concomitant loss of the anodic features
associated with the TDAE% TDAE" and TDAE"/ TDAE?" ox-
idations, consistent with loss of TDAE" by chemical reaction
with L7-Cr'™ (EC mechanism) (Figure 4C, iv, v). The reduction
of TDAE?" is less cathodic than both substrates (1 and 2) and
L7-Cr™, consistent with a scenario where TDAE?" undergoes
preferential cathodic reduction. Additional CV studies were
carried out to evaluate whether TDAE can also mediate reduc-
tion of either RAE 2 or aldehyde 1. Addition of up to 10 equiv-
alents of RAE 2 to TDAE*'(PFs"), in the absence of TESCI led
to a negligible current increase (Figure 4C, vi). An increase in
current was observed in the presence of TESCI (Figure 4C, vii);
however, this feature disappeared after the first scan in a man-
ner consistent with a trace impurity in the TESCI, which we as-
cribe to HCI. In a recent review, Waldvogel notes challenges
of CV studies of silyl halides to due to their facile hydrolysis to
generate HCL.38 We have previously reported that the combina-
tion of TDAE and silyl halides induces reductive decarboxyla-
tion of NHP esters, but that TDAE/TESCI was determined to
reduce benzylic NHP esters at rates that are slow relative to
other silyl halides.** No significant current increase were ob-
served upon addition of aldehyde 1 (100 equiv) to TDAE>(PFs~
)2 (Figure 4C, viii). This mechanistic scheme was further sup-
ported by finite element simulations of the voltammetry (Figure
4C, ix). Simulations of both

111



Mechanistic Investigations of Electrocatalytic Asymmetric NHK Decarboxylative Coupling
A. Proposed electrocatalytic asymmetric NHK decarboxylative coupling reaction pathways
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Figure 4. Mechanistic investigations. A. Proposed electrocatalytic cycle. B. Stoichiometric Cr-mediated reaction between 1 and 2 in
the presence and absence of TFA-D;. C. CV studies. All CVs were acquired in MeCN using 0.1 M TBACIO, supporting electrolyte.
Unless otherwise noted, experiment was carried out with 100 mV/s scan rate. (i) [L7-Cr"'Cl,-2 THF] = 8.55 mM. (ii) [TDAE*"(PF¢ )]
=0.001 M. (iii)[1] = 0.01 M, [2] = 0.01 M. (iv) [L7-Cr'"'Cl,-2 THF] = 8.55 mM. [TDAE?>(PF¢"),] varied from 0.002 to 0.01 M. (v)
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L7-Cr''Cl,-2 THF [X M], TDAE*(PFs), [0.01 M], and L7-Cr"'CL,-2 THF [8.55 mM] and TDAE*(PFs), [0.002 M]. (vi)
[TDAE*(PFs ),]= 0.002 M, [2] varied from 0.002 to 0.02 M. (vii) [TDAE(PFs )s]= 0.002 M, [2] varied from 0.002 to 0.02 M,
[TESCI] varied from 0.002 to 0.02 M. (viii) [TDAE*'(PFs)2]= X M in the presence and absence of 1 [0.2 M]. D. Finite element
simulation of CV of [L7-Cr'"'Cl,-2 THF] = 8.55 mM. [TDAE?*'(PF¢),] = 0.002 M. Dark blue trace: experimental CV. Light blue
trace: simulation of no interaction between TDAE™ and L7-Cr"'Cl,-2 THF. Red trace: simulation of TDAE" complexation with
[L7-Cr'™Cl,-2 THF]. Pink trace: simulation of TDAE" complexation with [L.7-Cr'Cl,-2 THF] followed by chemical regeneration of

TDAE?.

TDAE?" and L7-Cr'" in solution with no mediation step pro-
vided a simulated CV with a clear shoulder at -1.13 V corre-
sponding to the TDAE'/TDAE® couple, a feature completely
absent in the experimental CVs. Incorporation of an association
step between TDAE" and L7-Cr'™ into the simulation provided
a voltammogram with no associated TDAE*/TDAE’ wave,
providing evidence of a reaction between the reduced TDAE®
and the Cr complex. Finally, incorporation of a turnover step
(generating the reduced L7-Cr" and regenerating TDAE?") once
again resulted in the TDAE'/TDAE? wave, leading to the con-
clusion that dissociation of TDAE" is slow, but still orders of
magnitude faster than the direct reduction of L7-Cr'™ (full sim-
ulation details can be found in the SI). TDAE is known to form
charge-transfer complexes with organic molecules and metal
surfaces.* Collectively, these results are consistent with TDAE
serving as an electrochemical mediator to reduce L7-Cr'™. It is
also possible that TDAE can scavenge trace impurities such as
HCI or O, that could decompose intermediates in the catalytic
cycle.*! The latter observation is corroborated by the generally
improved performance of TDAE over TDAE?" in the reaction,
which may result from the capability of TDAE to scavenge
trace impurities before electrolysis is commenced.

In principle, if TDAE mediates reduction of L7-Cr™, then it
should be possible to use stoichiometric TDAE to drive the re-
action L7-Cr" in the absence of current. Indeed, TDAE has been
used as the stoichiometric reductant for Cr-catalyzed addition
of alkenyl bromides and allyl bromides to aldehydes.*> How-
ever, during the optimization process, <10% yield 3 was ob-
served using stoichiometric TDAE and no electricity (see Table
1, entry 10). Based on a recent report by Wenger and coworkers
in which TDAE" was invoked as an H-atom source, we hypoth-
esized that with high concentrations of TDAE" (as under the
stoichiometric conditions), hydrogen atom transfer (HAT) to
the primary alkyl radical derived from 2 outcompetes addition
of this species to L7-Cr"' to generate the alkyl Cr'" species.”* In
contrast, prior work from the Reisman lab showed that benzylic
radicals undergo radical-radical dimerization faster than HAT
in the presence of TDAE".* We ascribed this difference in re-
activity to the difference in stability of the primary and benzylic
radicals. This also highlights the enabling nature of using cata-
lytic TDAE under electrochemical conditions: while TDAE"™
can mediate reduction of L7-Cr', its presence in high concen-
trations can intercept the radical generated from the RAE and
prevent productive coupling. This is a distinct challenge for the
alkyl NHK, which proceeds via formation of highly reactive al-
kyl radicals, relative to prior work.

CONCLUSION

In summary, an enantioselective alkyl e-NHK has been devel-
oped. This reaction allows the addition of simple, primary alkyl
substrates to aldehydes to give secondary alcohols in high en-
antioselectivity. This class of substrates has not previously been
rendered enantioselective for NHK reactions driven by canoni-
cal metal dust reductants. This asymmetric alkyl e-NHK was

enabled by using TDAE as a key reductive mediator. CV stud-
ies and stoichiometric experiments suggest that the role of
TDAE is to mediate reduction of the L7-Cr'™ complex, which
in the previous, non-asymmetric alkyl e-NHK, was found to be
the rate determining step. This is especially beneficial for the
asymmetric reaction, in which the chiral ligand is proposed to
kinetically slow reduction of the catalyst at the electrode. The
ability to use catalytic TDAE mediator is critical to avoid com-
peting HAT processes between the alkyl radical and TDAE".
The usefulness of this method is demonstrated by multiple syn-
thetic campaigns, which highlight the strategic deployment of
the asymmetric alkyl e-NHK to increase synthetic ideality and
reduce step count.
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Electrocatalytic Asymmetric Nozaki-Hiyama-Kishi Decarboxylative Coupling
Mechanistic cathodic

R" "H NHPI O TDAE TDAE*+

[aldehyde] [redox-active ester] [ch|r:||::ﬁglr]|dary L CL
[> 40 examples] [undivided cell] [6 applications] L'Cr”‘L L. \L
[2 natural products] [high FG tolerance] [carboxylic acid as| C|*~, *So| cl cl
aIkyI nucleophile synthon] Sol Sol
CO,Me [Previous] 17 steps

(o) cat. [Cr]

[5 strategic]
[12 non-strategic]
[Previous] 13 steps [29% ideality]
CI [Current] 6 steps
[Current] 6 steps
[4 strategic]
Cl O Q [2 non-strategic]
[67% ideality]

[Previous] 8 steps
[Current] 2 steps gravicycle




