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Abstract. The first globally convergent numerical method for a coefficient inverse problem for the Riemannian
radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification
method, which has been pursued by this research group for a number of years for some other CIPs
for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman
weight function in the numerical scheme is the key element which insures the global convergence.
Convergence analysis is presented along with the results of numerical experiments, which confirm
the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they
propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially
variable dielectric constant of the medium.
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1. Introduction. The conventional steady state radiative transfer equation (RTE) governs
light propagation in the diffuse medium, such as, e.g., turbulent atmosphere and biological
media [22]. Inverse problems for the RTE have applications in, e.g., problems of seeing
through a turbulent atmosphere and in early medical diagnostics. In the latter case the
near infrared light with a relatively small energy of photons is used; see, e.g., [5]. However, it
is assumed in the RTE that photons propagate along straight lines between their collisions.
On the other hand, since the dielectric constants in heterogeneous media, such as, e.g., ones
mentioned above, vary in space, then photons actually propagate along geodesic lines between
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their collisions. These lines are generated by the Riemannian metric /e, (x) |dx|. Here and
below x = (z,9,2) € R? and &, (x) is the spatially distributed dielectric constant, so that
n(x) = /e, (x) is the refractive index. To take this into account, the so-called Riemannian
RTE (RRTE) should be used.

This is the first publication, in which a globally convergent numerical method, the so-
called convexification method, is constructed for a coefficient inverse problem (CIP) for the
steady state RRTE. In the past, numerical methods for inverse problems for the steady state
RTE were mostly developed for the case of inverse source problems [13, 14, 47]. Inverse
source problems are linear. On the other hand, CIPs are nonlinear. We refer to two recent
publications of this research team [34, 35] for two versions of the convexification numerical
method for a CIP for the RTE. The presence of the Riemannian aspect in the RRTE causes
significant additional difficulties for the corresponding CIP, as compared with the case of the
RTE in [34, 35]. The authors are unaware of other numerical methods for CIPs neither for
the RTE nor for the RRTE.

Various uniqueness and stability results for inverse problems for both RTE and RRTE,
including quite general forms of the latter equation, were published in the past. Since this
paper is concerned only with a numerical method, we refer now only to a limited number of
such publications [3, 4, 5, 17, 27, 36, 38, 41].

The phenomena of ill-posedness and nonlinearity of CIPs are well known and cause serious
challenges for their numerical solutions. Both a powerful and popular concept of numerical
methods for CIPs is based on the minimization of appropriate least squares cost function-
als; see, e.g., [1, 7, 6, 18, 19, 16, 21] and references cited therein. Since such a cost functional
is typically nonconvex, then it usually suffers from the phenomena of local minima and ravines
(see, e.g., [406]), i.e., the availability of a good first guess about the true solution is a necessary
assumption of the convergence analysis of these numerical methods.

Remark 1.1. We call a numerical method for a CIP globally convergent if a theorem
is proven, which claims that this method delivers at least one point in a sufficiently small
neighborhood of the true solution without any advanced knowledge of this neighborhood.
The size of that neighborhood should depend only on the level of noise in the data.

The key element of our numerical method is the presence of a Carleman weight function
(CWF) in a certain weighted least squares cost functional. This presence ensures the global
strict convexity of that functional. This is why we call our method “convexification.” The
CWEF is the function which is involved as the weight function in the Carleman estimate for
the corresponding PDE operator. Our convergence analysis ensures the global convergence
of the gradient descent method of the minimization of that functional to the true solution of
our CIP, as long as the level of the noise in the data tends to zero. The apparatus of the
Riemannian geometry is also used here. Results of numerical experiments are presented, and
they confirm our theory.

The convexification concept generates globally convergent numerical methods since these
methods do not rely on good first guesses about the solutions. The convexification was
originally proposed in purely theoretical works [32, 29]. Its active numerical studies have
started in 2017 after the publication [2], which has removed some obstacles for numerical
implementations. In this regard, we refer to, e.g., [26, 33, 34, 35] and references cited therein.
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Another important new element of this paper is Theorem 1 (section 3), which claims
existence, uniqueness, and positivity of the solution of the forward problem for the RRTE.
An analog of this theorem for the non-Riemannian case was proven in [34]. The proof of
Theorem 1 is constructive since it ends up with an analysis of a linear integral equation of the
Volterra type. This equation is quite helpful in our numerical studies in section 6, since we
solve it numerically to computationally simulate the data for the inverse problem. It is well
known that such computational simulations form an important part of numerical studies of
any inverse problem. The presence of the Riemannian aspect creates a significant additional
difficulty in the proof of Theorem 1, as compared with the case of RTE in [34]. This difficulty
is due to the necessity of working with differential geometry, which, however, was not necessary
to do in [34].

As to the apparatus of Carleman estimates, it was introduced in the field of CIPs in [10],
initially with the single goal of proofs of uniqueness theorems. Since then the idea of [10]
was explored in many other publications; see, e.g., [8, 11, 12, 17, 23, 28, 30, 33, 38, 50] and
references cited therein. The convexification principle represents an extension of the idea of
[10] to the topic of globally convergent numerical methods for CIPs. Those numerical methods
might be generalized and employed for important applications like, e.g., cloaking and quantum
scattering studied in [40, 39].

We consider below only real valued functions. For the sake of definiteness, we work below
in our theoretical derivations only with the three-dimensional (3d) case. On the other hand,
we present numerical results in the two-dimensional (2d) case since the theory for the 2d
case is completely similar to the one in the 3d case. In section 2 we pose both the forward
and inverse problems for RRTE. In section 3 we formulate and prove the above mentioned
Theorem 1. In section 4 we derive a version of the convexification method for our CIP. In
section 5 we provide convergence analysis. Section 6 is devoted to numerical studies, which
confirm our theory.

2. Statements of forward and inverse problems. Let numbers A,a,b,d > 0, where
(2.1) 0<a<b.
Define the rectangular prism Q C R3 and parts 0,9, 920, 939 of its boundary 09, as well as

the line I'j; where the external sources are:
Q={x:—A<z,y<Aa<z<b},
IQ={x:—A<zy<Az=a}, WA={x:—A<z,y<A,z=0>},
(2.2) BN={r=+A,yec(—A.A),z€ (a,b)}
U{y=zxA,z€(—A4,A),z€(a,b)},
Iy={xqa=(,0,0): a €[—d,d]}.
Hence, 'y is a part of the z—axis. By (2.1) and (2.2) [;,NQ=@.

Let the points of external sources x, € I'y. Let € > 0 be a sufficiently small number. To
avoid dealing with singularities, we model the § (x)-function as
[x[* >
(23) f(x)zce{eXp<x|2_€2 ’ |X| <€,

0, x| =€,
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where the constant C. is such that

2
(2.4) Ce exp in‘ dx=1.
x| <e |x|” — €2

Hence, the function f (x — x4) = f (x — a,y,2) € C® (R3) plays the role of the source function
for the point source {x,}. We choose € so small that

(2.5) f(x—%4)=0 Vx€Q Vx,€Ty.

Let T'(x,%¢) be the geodesic line generated by the Riemannian metric /e, (x)|dx| and
connecting the source xo € R? with an arbitrary point x € R3:

[ \/er (E(t))dt, where v (t):[0,1] = R3 }
ol

(2.6) I'(x,x0) = argmin {
is a smooth map with v (0) =x¢, 7(0) =x.

Here ¢, (x) is the spatially distributed dielectric constant of the medium, 1/4/e, (x) is the
dimensionless speed of light. We assume that the function &, (x) satisfies the following condi-
tions:

(2.7) er-(x) € C3(R?),
(2.8) e (x)=1, xe{xe R} |z|>A,ly>A}U{xcR3 2<a},
(2.9) d.e0(x) >0, xR

Let 7(x,%() be the first time of arrival at the point x of light generated at the point xg. Then
[44, Chapter 3]

(2.10) (%, %0) = / /e (& (0))do,

I'(x,x0)

where do is the element of the Euclidian length. For x # x( the function 7(x,xq) is twice
continuously differentiable with respect to x,xy and is the solution of the eikonal equation
[44, Chapter 3]

(2.11) | Vx7(x,%0) ]2: er(x), 7(x,%0) =0 (|x—%0|), x— Xo.

We assume everywhere below that the geodesic lines are regular [44, Chapter 3].

Regularity assumption. Any two points x,x, € R® can be connected by a single geodesic
line T'(x,xg).

A sufficient condition guaranteeing the regularity of geodesic lines can be found in [45].
Let pq (x) and ps(x) be the absorption and scattering coefficients of light, respectively, and
let

Pa (%), ps(X) >0, pa (%), ps(x) € c! (R?)) )
(2.12) Ha (X) :,US(X) =0, X€R3\Q7

a (X) = Ha (X) + /’[/S(X)'
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The function a (x) is the attenuation coefficient. By (2.12)

(2.13) a(x)>0, xeR3 a(x)eC'(R?), a(x)=0, xeR*\Q.
Let
(2.14) A=max(A,d).

Introduce three domains G, G, and G,

G:{x:—ﬁ<x,y<ﬁ,z€(0ab)}v

(2.15)
GFr=Gu{z>a},G; =G\ G/.

It follows from (2.2), (2.14), and (2.15) that

(2.16) QCGt.

Below we sometimes write u(x, «) instead of u(x,X,).
The forward problem. Find the solution u(x,a) € C* <G x [—d, d]) of the following
problem:

(VXT(X, Xa)/\/ST(X)) - Vxu(x,a) + a(x)u(x, a)

:MS(X) K(X70‘75)u( X,B)dﬁ—i—f(X—Xa), xcG,x, €1y,
g

(2.17)

(2.18) U(Xq,Xq) =0 for x, € Iy

Definition 2.1. We call (2.17) the RRTE.

In (2.17), (2.18) u(x,a) denotes the steady state radiance at the point x generated by the
source function f(x —x4). The kernel K (x,a, ) of the integral operator in (2.17) is called
the “phase function” [22],

K(x,a,8)>0, x€Q, «a,B€][-d,d,

(2.19) K(x,o,3) € C* (ﬁ X [—d’d]Q) ‘

Coefficient inverse problem. Let the function u(x,a) € C1(Q x [~d,d]) be the solution
of the forward problem. Assume that the coefficient a(x) of (2.17) is unknown. Determine
the function a(x), assuming that the following function g (x,a) is known:

(2.20) g(x,0)=u(x,a) Vxe€IO0Q VYae(—dd).
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3. Existence and uniqueness theorem for the forward problem. Consider the unit tan-
gent vector v to the geodesic line I'(x,x,) at the point x [44, Chapter 3]:

v=VxT(X,Xqo) /\Er (X).

Hence, the directional derivative D,q of an appropriate function ¢(x,«) in the direction of

the vector v is

VxT(X,Xq)
er(x)

Hence, if the function ¢(x,x,) solves problem (3.2), then ¢ is given by formula (3.3), where

(3.1) D,q= - Vxq(x, ).

V7 (X, Xa)

(3.2) ) -Vxq(x, Xq)=0a(x), ¢(Xa;Xa)=0,
(3.3) g%, %) = / o (£(0)) do.

I'(x,xqa)
Let

(3.4) p(X,Xq) = €exp / a(&(o))do
(x,%a)
Then (3.1)—(3.4) imply
(3.5) Dup=a(x)p.
Multiply both sides of (2.17) by p and use (3.1)-(3.5). Note that by (2.5) and (2.12),
P(X,Xa)f(Xx —%q) = f( x —X,). We obtain

pDuc+ a ) pu= a0l [ K (x,0,8)u(x, )5 + fx o),
Iy
(3.6) pDyu+ a(x) pu= D, (pu) — a(x)pu+ a(x)pu= D, (pu),

D, (pu) = s (x)p / K (x, o B)u(x, B)dB + f(x — xa).
Ty

Let the equation of the geodesic line I'(x,x,) be £ =& (0,a) € I'(x,X,), where o is the
Euclidean length of the part I'¢(x,x,) of the curve I'(x,X,), which connects points ¢ and
Xo. Integrating the last line of (3.6) along the vector v and taking into account the initial
condition (2.18), we obtain for x € G,x, € 'y,

u(X,Xq) = up(X,Xq) —i—p_l(x, Xq)

x / P(E(0,0) %) E(0 ) / K(€(0,a), B)u(€(0, ), )dB | do,

I'(x,Xa)

uo(x,X0) = p (%, Xq) / f&(o,a) —x4)do.
T(x,xa)

X, X,
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Thus, we conclude that the solution of the forward problem (2.17), (2.18) is equivalent to
the solution of integral equation (3.7).

Theorem 1. Assume that conditions (2.12) and (2.19) hold. Then there exists a unique so-
lution u(x,a) € C* <G>< d, d]) of problem (2.17), (2.18). Furthermore, the following inequality
is valid:

(3.8) u(x,a0) >m >0 for (x,a) € (@: X [—d,d]) ,

(3.9) m= min up(x, @),
(x,0)€(G, x[~d,d])

where the domain G} is defined in (2.15), and, in particular, (2.16) holds. The solution of
problem (2.17), (2.18) is equivalent to the solution of equation (3.7).

Proof. The equivalency was proven above in this section. Let x* be the intersection point
of the geodesic line I'(x,x,) with the plane {z=a}. Note that by (2.1), (2.2), and (2.8)
['(x*,x%4) is an interval of a straight line. Since by (2.1), (2.12), and (2.15) us(x) = 0 for
x € G, then the first two lines of (3.7) can be rewritten as

u(X,Xq) = up(X,Xq)
(3.10) (%) / / E(&(0,0), 0, B)u(€(0, ), B)dS | do,
D(x,x*) d

where the function ug(x,X,) is given in the third line of (3.7) and

(3.11) I/(\'(x,a,ﬂ) = p(X,Xa) s (X) K (%, a0, ).

Consider now equations of the geodesic lines. Denote

(312) q1 :TZ‘(vaoé)v QQ:Ty(vaa)a q3:Tz(X7Xa)-
Then formulas (3.4) and (3.7) of [44, Chapter 3] imply that equations of the geodesic lines are

dr _q dy @ dz_ a3

ds e ds & ds &
@_&cer @_&Ua @_@ar
ds 2, ds 2, ds 2’

(3.13)

where ds = \/¢,(x(c))do is the element of the Riemannian length. In the integral (3.10),
(3.14) x(0,a) = (z(0,a),y(0,a),z(0,a)) € Q.

It follows from (2.9) and [37, Lemma 5.1] that there exists a number ¢ > 0 such that
(3.15) T: (X, Xq) > C.

Hence, a combination of (3.12) with the last equation in (3.13) implies

(3.16) 0s2(s,a) >0 and 0,2(o, ) > 0.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/29/23 to 188.92.139.228 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CONVEXIFICATION METHOD FOR CIP FOR RRTE 1769

Consider the equation of the geodesic line I'(x,x*) in the form

(3'17) 5(0,04) - (5(070‘)777(0:04)7C(07 a))

Change the variables in (3.17) by replacing the variable o with the variable ( = (o, ). Let
o = o((,a) be the inverse function. Then the equation of the geodesic line I'(x,x*) can be
rewritten as

£=E(¢,0) =€&(0(C,0),0) = (E(0(¢,),0),n(0(C,a),0),0), €€ (a,2).

By (3.14), (3.16), and (3.17) the inverse function o = o({,«) is monotonically increasing with
respect to ¢ along the geodesic line I'(z, 2*), i.e., O¢co (¢, ) > 0. Hence, we change variables in
the integral of (3.10) as 0 < ¢ =((0,«). Then (3.10) can be rewritten as

z

(3.18) u@md=w&#@+/ /%maawaﬁgmﬁgwﬁMﬁda

where x € G}, x, €[4 and by (3.11)
1
p(vaa)

/(...)dg

a

in (3.18), then this is the integral equation of the Volterra type. It follows from (2.7), (2.19),
(3.4), (3.11)—(3.13), and (3.19) that the kernel of (3.18) is a nonnegative continuously differen-
tiable function of its variables (x,a, 3, z) € é;_ xT'q XLy x [a,b]. Hence, there exists a number
Ko >0 such that in (3.18), (3.19)

(3.19) K(x,&a,3,¢) = K(&,a,B8)0:0(¢, ).

Since we have the integral

(3.20) 0< K(x,€,a,83,¢) < Ko< oo in (3.18).

Since (3.18) is of the Volterra type, then its solution can be obtained iteratively as

%@mwz//ﬁmaawaﬁo%q@mmﬁmmg
(3.21) a Iy

u(X,Xq) = Zun(x,xa).
n=0
It follows from (2.3), (2.4), (3.9), and (3.18)—(3.21) that
m <u(x,Xq) < [max(x,a)E(GIX[—d,d]) uo (x, xa)]

(3.22) XZ(QdKO(Z—a))n /nl, xe G,

n=0
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where the numbers m and K are defined in (3.9) and (3.20), respectively. Estimate (3.8)
follows from (3.22). Obviously the series of first derivatives of terms of (3.21) with respect to
any of the variables x,y, z, @ also converges absolutely. Hence the function u(x,x,) in (3.21)

belongs to C! (@: X fd>. We set

the right-hand side of (3.21) for (x,x,) € G} x Ty,
up(x,Xq) for (x,x4) € G, xI'yg.

u(X, Xq) —{

Hence, the so defined function u(x,x,) € C* (é X fd) . Thus, we have proven the existence
of the solution u(x,a) € C' (G x [d,d]) of the forward problem (2.17), (2.18), as well as
estimate (3.8). To prove uniqueness, one should set in (3.18) wug (x,%4) =0 and then proceed
in the classical way of the proof of the uniqueness of the Volterra integral equation of the
second kind. |

Remark 3.1. Tt follows from (3.7) and Theorem 1 that one can solve the forward problem
via the solution of the linear integral equation in (3.7). This is how we solve the forward
problem (2.17), (2.18) in the numerical section 6 to generate the data for the inverse problem.

4. Convexification numerical method for the coefficient inverse problem.

4.1. An integral differential equation without the unknown coefficient a(x). By (2.3)-
(2.5) (2.17) can be rewritten as

< xT (X, Xa)/ v/ €r(x ) Vxu(x,a) + a(x)u(x, o)
(4.1) = ps(x) /K(x,a,ﬁ)u(x,ﬁ)dﬁ, (x,a) €Q x (—d,d).

Iq

It follows from (3.8) that we can consider a new function v(x, a),
(4.2) v(x,a) =lnu(x,a), (x,a)cx(—d,d).

By (4.2) u(x, o) = "), Substituting this into (4.1), we obtain, for (x,a) € Q x (—d,d),

(4.3) ( xT (X, Xa)/V/ er(x ) Vxu(x, o +a(x):e_”(xva)lus(x)/K(X’a’ﬂ)ev(xyﬂ)dﬁ‘
g

In particular, (4.3) implies that we can use the following formula for the function a(x) in our
computations:

a(x)z—(l/Qd)/( xT (X, Xq /\/57«7> Vv (x,a)da

g
(4.4)
+(1/2d)/ <e‘”(x’a),u5(x) fK(x,a,B)e”(x’ﬁ)dﬂ> da.
g
Lq

Remark 4.1. In principle, to find a(x), one can use formula (4.3) without the integration
with respect to a. However, all terms of (4.3), except for a(x), depend on the parameter a. And
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we use below an approximate mathematical model; see (4.14) and Remark 4.2 in subsection
4.3. Therefore, in the computational practice the sum of two integrands in the right-hand side
of (4.4) depends on «, although (4.3) implies that this dependence should not take place if
using the exact model. Thus, to avoid the a- dependence of the computed function a(x), we
use in (4.4) the average value with respect to a.

Hence, we now focus on the problem of the reconstruction of the function v(x, «) from the
function g(x,a) given in (2.20). We have

T (X, @) 0 (T . 0 (T ;
) = () -5 ()
Introduce a new function w (x, ) and express v (x,«) through v (x,a) ,:
w(x,a) = (Tz (x,a) /\/er (x)) v(x,a),
v(x,0) = (Vo (/7 (x.0)).

It follows from (3.15) that the second line of formula (4.6) makes sense. Thus, (4.5) becomes
(4.7) oy, =w, — 9 (=) e w.
\/5 0z \/5 Tz

Using (4.6), transform other terms of the differential operator in (4.3),

Tx Tz ﬁ \/57" _ Tz Ta g \/a
(48) \/67%_\/678fr< . w)‘aw“{\/aax ( - )]“’

And similarly for (7,//gr) vy. Hence, (4.3) becomes

(4.6)

wy + (wa:r: + Tywy) /TZ

[/ Er) B (VEr /72) + (7 /Er) By (Vo) m2) — (Er/m2) D () B 0
(4.9) — exp (—wy/Br/7=) (%, 0) 1a (%) / K (x,0, 8) exp (wy/zr /72) (x, B)d
Ta
=—a(x), (x,a)€Qx(—d,d).

Differentiate both sides of (4.9) with respect to a and use Jdya(x) = 0. We obtain for
(x,a) €Q x (—d,d):

Oqw; + Oy ((mex + Tywy) /TZ)
+ O {[(72/V/Er) Ox (VEr/72) + (1y//Er) Oy (VEr/T2) | w}
(4_10) — Oa [(\/5/7'2) 0 (TZ/\/g) w]

— 0 | exp (~wy/Er/72) (%, 0) 1 () / K (x,0, 8) exp (wy/zr /72) (x, B)dB | =0.
T'a
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The Dirichlet boundary condition for the function w(x,«) is
T(x,a)
er (x)

g(x,a), Xeag\alﬁa o€ (_da d)7
g1(x, ) = .
u(x, ), x€01Q, ae€(—dd).

(4.11) w(x,a) = Ingi(x,0), (x,0) €00 x (—d,d),

(4.12)

Thus, we develop below a numerical method to obtain an approximate solution w(x, «) of
problem (4.10)—(4.12).

4.2. A special orthonormal basis in Ly (—d, d). First, we introduce a special orthonormal
basis in La(—d,d), which was first discovered in [31]; also, see [33, section 6.2.3]. Consider a
linearly independent set of functions {a"e“}° , C La(—d,d), which is complete in Lo(—d,d).
The Gram—Schmidt orthonormalization procedure being applied to this set, results in the
orthonormal basis {@Q), (@)}, in La(—d,d). The Gram-Schmidt procedure is unstable when
it is applied to an infinite number of functions. However, we have not seen an instability when
applying it to a relatively small number of functions for n € [0,12]. The same was observed
in a number of previous publications of this research group; see, e.g., [26, 34], [33, Chapters
7,10,12].

Let [,] be the scalar product in Lg(—d,d). Denote bsj = [Q),Qx]. Then by [31], [33,
section 6.2.3],

1,s=k,
(4.13) bk = {0, s> k.

Consider the N x N matrix By = (bs ) (o) (0,0 - Then (4.13) implies that det By =1, which
means that this matrix is invertible. In fact, the existence of the matrix B;,l for each N > 1
is the key property of why the basis {@, (@)}, was originally constructed in [31]. Indeed,
consider, for example, either the basis of standard orthonormal polynomials or the basis of
trigonometric functions. In each of these, the first function is an identical constant, which

means that the first row of an analog of the matrix By is zero.

4.3. A boundary value problem for a system of nonlinear PDEs. We assume that the
functions w(x, o), we(x,a) can be represented as truncated Fourier-like series

N-1 N—-1
(4.14) w(x,0) =Y wa(X)Qn(@), walx,0)=> wn(x)Q(e)
n=0 n=0

N-1

n—o - Thus, we focus below on the computation of the N-D

with unknown coefficients {w, (x)}
vector function

(4.15) V(x) = (wo, i, ,wn—1) (x).

Remarks 4.2.
1. The representations (4.14) mean that this is a version of the Galerkin method. How-
ever, unlike classical well-posed forward problems for PDEs, where the Galerkin
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method is used and its convergence at N — oo is usually proven, we cannot prove
convergence of our inversion numerical procedure described below for N — oco. This
is basically because of the ill-posed nature of our CIP. Thus, we actually work below
within the framework of an approximate mathematical model. Then, however, the
question can be raised of whether this model really works numerically. The answer
is positive, and this answer is obtained computationally in section 6. We observe
that very similar truncated series were used in some other of the above cited works
on convexification, such as, e.g., [26, 34], [33, Chapters 7,10], and all of them have
demonstrated good numerical performances. Likewise, truncated Fourier series were
used in works of other authors about CIPs, such as, e.g., [20, 24, 25, 42] and also
without proofs of convergence of inversion procedures at N — oo. Those proofs were
not provided for the same reason as the one here: the ill-posed nature of CIPs.

. Finally, we refer to subsection 3.4 of [34] for more arguments in support of those of

item 1. In particular, these arguments include the well known fact that the Huygens—
Fresnel theory of the diffraction in optics is not yet rigorously derived from Maxwell’s
equations; see, e.g., a classic textbook [9, pages 412, 413]. Philosophically, this fact is
similar to the discussion of item 1.

Substitute (4.14) into (4.10). Next, sequentially multiply the obtained equation by Q,(«),

n=20,...

, N — 1, and integrate with respect to a € (—d,d). We obtain the following system

of coupled quasilinear integral differential equations

(4.16)

BNV (x) + A1(x)Ve(x) + A2 (x)Vy(x) + F(V(x),x) =0, x€,

where A;(x) and Ay(x) are N x N matrices and F (V(x),x) is a certain vector function,
which depends nonlinearly on V'(x). Explicit formulas for A;(x), Aa(x), and F (V(x),x) can
be easily written. However, we do not present them here for brevity. In addition, the boundary
condition for the vector function V(x) is

(4.17)

(4.18)

V(%) lsa= P(x) = (9o, p1,---,on-1)" (%),

d
= 7712()(,04) nlg(x, o a)da, n= —
m@%ﬁlwmwl@b)q%(m, 0,1,...,N —1.

Thus, we now have to solve the boundary value problem (4.16)—(4.18).
To numerically calculate the derivatives of Vy7(x,«) with respect to «, we represent

N-1

VxT(x,a) via the truncated Fourier series with respect to the above basis {Qn ()}, -, as

(4.19)

N-1

Var(x.0) = 3 (V) (x)@n(a)

n=0

Then we use explicit formulas for functions @, («) to get

(4.20)

N-1

0a (V) =Y (Vx7), (x)Q ().

n=0
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Then equations (4.19) and (4.20) are used in (4.16)—(4.18). Thus, it follows from (4.10) and
(4.14)—(4.20) that

A1 (x),Az(x) € Cy> (Q), and the vector function
(4.21) F(V (x),x) is continuously differentiable
with respect to its arguments for x € €.

Here and below for any integer k > 2 and for any Banach space B we denote By, = B* with
the norm || £, = /il + - + [l fillp Vf = (F1.+ fi)" € B

4.4. Minimization problem. Let R > 0 be an arbitrary number and the vector function
P (z) be the boundary condition in (4.17). Define the set S (R, P) C Hy (Q) as

(4.22) S (R, P)={V € HY (9):V(x) lon= P(), [ Wl 0 < R} -

To solve problem (4.16)—(4.18), we solve the following minimization problem.
Minimization problem 1. Let A > 1 be a parameter. Minimize the following weighted

cost functional Jx (V) on the set S(R, P):

(4.23) Iy (V) = H BNV, + A (X)Va (x) + As(x)V,,(x) + F (V(x),%)) ||

L%(Q)

5. Convergence analysis. We carry out the convergence analysis for a modified minimiza-
tion problem 1. To obtain this modification, we rewrite the differential operator in functional
(4.23) via finite differences with respect to the variables x,y while leaving the conventional
derivative with respect to z. We call this “partial finite differences.”

5.1. Partial finite differences. Let m > 1 be an integer. Let A > 0 be the number in
(2.2). Consider two partitions of the interval (—A, A),

—A=xp<r1< - <Tm=A4, a:j+1—acj:h, j=0,...,m—1,
A=y <y<-<ym=A4, yj+1—-yj=h, j=0,....m—1

(5.1)
We assume that

(5.2) h > hg = const. > 0.

Define the semidiscrete subset Q" of the domain Q as

(5.3) OF = {(zi,y:)} 50

(5.4) Q" =0l x (a,0) = { (@, 1) : (@, 1) € O, 2 € (a,0) .

Below points (z;,y;,2) € Q" are denoted as x". By (2.2), (5.3), and (5.4) the boundary 9Q"
of the domain Q" is

o0 = 9,Q" U 5,0 U 850",
Q"= x {z=a}, RO =0} x {z=1b},
839h = {(x(byj)z) bl (xm7ijz) Lz E (CL?b)} *
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Let the vector function Y (x) € C%(Q). Denote
Yhx") =Y (2i,y5,2), x"=(2i,;,2) € Q"

Thus, Y"(x") is an N-D vector function of discrete variables (z;,y;) € Q% and continuous
variable z € (a,b). Note that by (5.1) the boundary terms at 930" of this vector function,
which correspond to Y (x) |g,qn, are

{Y(20,5,2)} U{Y (@m, 4, 2)} UL{Y (@i, 90, 2) } U{Y (@i, ym, 2)} 4,5 =0, m.

T
For two vector functions Y1 (x) = (YO(l)(x),...,Yjsfl_)l(x)> and Y (x) = (YO(Q)(X), cn
Y]@l(x))T their scalar product Y (x) - Y@ (x) is defined as the scalar product in RV, and
(Y (x))? =Y (x) - Y(x). Respectively,

y(Oh(x h)_Y(2)h(xh)
1(2,5)=(m—1,m—-1)

(5.5) = Z > YO (@i, 5, 2) VM (4,5, 2),

n=0 (4,7)=(1,1)

(Yh(xh)>2 —yh(x") - YR (x ‘Yh ‘ _ \/Yh(xh) S Yh(xh).

We will use formulas (5.5) everywhere below without further mentioning. We exclude here
boundary terms with 7, j = 0 and ¢, j = m since we work below with finite difference derivatives
as defined in the next paragraph.

We define finite difference derivatives of the semidiscrete N-D vector function Y (x") with

respect to x,y only at interior points of the domain Q" with ¢,j=1,...,m — 1:Are
8:13Yh (xi)ij Z) = Yh (xlvy]72)$ = (Yh ($i+17yj7'z) - Yh (:L‘iflvyj’ Z)) / (Qh) 3
(56) ayyh (xi7yj7 Z) - Yh (ﬂfiayj?Z)y = (Yh (xi7yj+17 ) - Yh (xivyj—hz)) /(12h) )
m—

h (h) _ h h h
Ym (X )_{Y (xi,yja ) }Z_] 19 Yy ( ) {Y (xiayjaz)y}i,jzl'
We need semidiscrete analogs of spaces Ciz (), H) (), L% (). All three are defined
using the same principle. Hence, we provide here only two definitions: for the space H}\;h (Qh)
and its subspace H}V% (Qh) Others are similar. We introduce the space H}V’h (Qh) as

Y (Qh>
CORCD] PSS S F (0" (i) s
(5.7) m—1 b e ,
SR N [CICRTE e SR TERI e §
1,J a ,J a
+ Z1f( (xi,yj5,2 )) dz < 00
,J a
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(5.8) Hy) (Qh> - {Yh(xh) e L (Qh> LY (x?) |gan= 0} .
. 1,h h n (ah
By embedding theorem H; (Q ) cCy (Q ) and

(5.9) Hyh(xh)‘

SC“Yh(xh)‘

VYt e gL (Qh> ,
oy (@) HY" (@) N
where the number C' = C' (hg, A,€) > 0 depends only on listed parameters, where hg is defined
n (5.2). Also, it follows from (5.2), (5.6) that

5.10 ‘Y" h‘ H 2 h’ <CHYh ’ .
( ) x (X L2:h(QR) Y (X L2 (Qh) L2 (QR)
The following formulas are semidiscrete analogs of (4.14):
N-1 N-1
(5.11) wh(x"0) =Y wh (") Qn(@), daw"(x"0) =Y wli(x")Q}(a)
n=0 n=0
Also, let V(x") = (wg,...,w?\,fl)T(xh). Using (5.6) and (5.11), we now rewrite problem
(4.16)—(4.18), in the form of partial finite differences as
BNV (xh) + Al (Xh) Vi (Xh) + Ab <xh) Vyh (xh)
(5.12)
+ Fh (Vh <xh> ,xh> =0, x"eql
(5.13) vh (xh) loan=P" (xh) .

Suppose that we have found the vector function V" (xh) satisfying (5.12) and boundary
condition (5.13). Then it follows from (4.4), (4.6), and (4.14) that to find the semidiscrete
analog a" (xh) of the unknown coefficient a (x), we should use

o (x")

— _(1/2d) /d< XM/f) Vo ((ﬁ(/\/;@) wh> (x", a)da

—d
d

(5.14) B
rh(xh,a)ﬂs(xh)/K(xh,a,ﬂ) <rh(xh,ﬂ)> ldﬁ da,

\&

+ (1/24d)

—d
WMMwm<ﬁmz z% )Qn(a »ﬂm@

Obviously, the following semidiscrete analog of (4.21) is valid:

AR (x), Ab(x") e OFs (ﬁh) and the vector function
(5.15) Fh (Vh (xh) ,xh) is continuously differentiable

with respect to its arguments for x" € Q"
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Let M = max (|| 416 | ., [[456)]| s, ) - Then

610 ot = [ )
The following functional J? (V") is the semidiscrete analog of the functional Jy (V) in (4.23):
2
h h\ _ h hy/h hysh h h h h Az
o ()= e ()0

Let R > 0 be an arbitrary number. Define the semidiscrete analog S" (R,Ph) of the set
S(R,P)in (4.22) as

Sh (R, ph)

e ) vt (< e ()., <

To find an approximate solution V" (xh) of problem (5.12), (5.13), we consider the following
problem.
Minimization problem 2. Minimize the functional J)ff (Vh) in (5.17) on the set

(5.18)

Sh (R, P") defined in (5.18).

5.2. Formulations of theorems.

Lemma 1. Consider an n x n matriz D and assume that the inverse matriz D™' exists.
Then, there exists a number € =& (D) >0 such that |Dz||* > ¢||z||* Vz € R", where ||| is the
euclidean norm.

We omit the proof of this lemma since it is well known.

Theorem 2 (Carleman estimate). Let M be the number defined in (5.16). Assume that (5.2)
holds. There exists a sufficiently large number Ao = Ao(d, M,Q", By, 7" &P ho) > 1 depending
only on listed parameters such that the following Carleman estimate holds:

2
| (BavE+ AtvE + agvh) e

2

L3 (@)

+ (02/8) - | (Bav") )

(5.19) > (1/4)- |(Bav) e L)

Ly" (@)
e HY (91) VA= Ao,
Theorem 3 (central analytical result). Assume that (5.2) holds and let S" (R, P") be the set
defined in (5.18). Then:
1. At every point V* € Sh (R, P")and for every A > 0 the functional J)ff (Vh) defined in
(5.17) has the Fréchet derivative (J;\l)/ (Vh) € H}V’% (Qh) Furthermore, the Fréchet derivative
(Jf)/ (Vh) that satisfies the Lipschitz condition with p >0 is independent of Vlh, V2h :

(5.20) H <J§>/ <V2h) a (‘Kl)/ (Vlh)

YV Ve Sh(R, Ph).

HEM (@)

<p HVQh - Vlh‘
HY" (@n)
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2. There exists a sufficiently large number A1,
(5.21) A=\ (R,d, M, Qh,BN,Th,sﬁ,ho) >\ > 1,

depending only on listed parameters such that functional (5.17) is strictly convex on the set

S (R, Ph), i.e., there exists a number Cy = Cy (R,d, M, Q" By, th, el ho) > 0 depending only

YT
on listed parameters such that the following inequality holds:

2

T (V) = (V) = () (V) (V8 = V') = Cone [V = V[

(5.22) AN
YA> N\ YV Ve Sh(R, Ph).

3. For each A > \i there exists unique minimizer VI | € Sh (R, P")of the functional

JI (V") on the set S* (R, P") and 7
(5.23) (Jf)' (V) (V! = Vi) 20 V" € 57 (R, PP,

Remark 5.1. Below, C7 > 0 denotes different numbers depending on the same parameters
as the ones listed above.

Let § > 0 be the level of the noise in the data. Our goal now is to estimate the accuracy
of the minimizer Vn}fin y depending on 4. Following the classical concept for ill-posed problems
[48], we assume the existence of the exact solution

(5.24) v e gh <R, Ph*>

of problem (5.12)—(5.13) with the exact, i.e., noiseless data P"*. Hence,

By VI (Xh> +AD (Xh> v (Xh) +Ab (Xh> v (Xh>

(5.25) +Fh (vh* (xh> ,xh) —0, x" e Q"

(5.26) v (xh) logn= P"* (xh) .

Let two vector functions G"* (x") and G (x") be such that

(5.27) Gh <xh) e gt (R, Ph*) Nel (xh) e 5t (R, Ph> ,
(5.28) HGh _gh .

Theorem 4. Assume that conditions (5.24)—(5.28) hold. Consider the number Ay,

(5.29) Ao = A1 (2R, d, M, Q" By, " & h0> > Al

»~=ro

where A\ (QR, d, Qh,Mh,BN,Th,EQ,hO) is the number in (5.21). Let Vrﬁm,h be the minimizer

of functional (5.17) on the set S* (R, P), which was found in Theorem 3. Let a € (0, R) be a
number. Suppose that (5.24) is replaced with

(5.30) Vi e gh (R —a, Ph*> , where o> C16.
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Then the vector function thin’)\2 belongs to the open set S™ (R, Ph) and the following accuracy
estimate holds:

< Cho.

H min,dg H}\;h(ﬂh)

Consider now the gradient descent method of the minimization of functional (5.17) on the
set S* (R, P"). Let V' € B (R/3,P") be an arbitrary point of this set. We take V{' as the
starting point of our iterations. Construct the sequence of the gradient descent method as

/!
(5.31) vh=yh —5<J§2) (Vnh_1> n=1,2,...
where 8 > 0 is a small number. Since by Theorem 2 functions (J/’\Z)/ (Vh) € H}V% (Qm),

then all vector functions V,” have the same boundary conditions P"; see (5.8) and (5.18).

Theorem 5. Let conditions of Theorem 4 hold, except that (5.30) is replaced with

Vi e gh (R;a,Ph*> , where a/3 > C10.

Then there exists a sufficiently small number >0 and a number v = (5) € (0,1) such that
in (5.31) all functions V' € Sh (R, Ph) , and the following convergence estimates hold,

h h _
HV rnm/\2 HLM (M) <5n V mln)\z th(Qh)?
h hx h
(5.32) i -v HH” Qn) <C1é+ 6" ||V ~ Vinin HY o)
h hx
Han_a HL?\}}L(Q}I)<C]~5+IB/’L ‘/0 mln)\g H;;L(Qh)’

where al! (x) and al* (x) are functions which are obtained from V' and V"*, respectively,
via (5.14).

Remarks 5.2.

1. By Remark 1.1 estimates (5.32) imply that the gradient descent method (5.31) of
the minimization of the functional J ;\‘ (Vh) converges globally for A = A9. Indeed,
its starting point Voh is an arbitrary point of the set § (R/3,Ph), and R > 0 is an
arbitrary number.

2. We fix A = Ay in Theorem 3 only for the sake of the definiteness. In fact, obvious
analogs of these theorems are valid for any A > As.

3. Even though the above Theorems 3-5 require sufficiently large values of the parameter
A, we have numerically established in our computations in section 7 that actually A=5
is sufficient. A similar observation has been consistently made in all the above cited
works about the convexification method. Conceptually, this is similar with the well
known fact from almost any asymptotic theory. Indeed, such a theory typically claims
that if a certain parameter X is sufficiently large/small, then a certain formula Y is
valid with a good accuracy. However, for any specific numerical implementation with
its specific range of parameters only numerical studies can establish which exact value
of X is sufficient to obtain a good accuracy of Y.

4. Proofs of Theorems 2, 4, and 5 are similar to the proofs in [34] of Theorems 4.1, 4.4,
and 4.5, respectively. Therefore, we prove in this paper only Theorem 3.
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5.3. Proof of Theorem 3. Consider two arbitrary points V", Vi € Sh (R, P"). Let
(5.33) Wh=v - v

Then by (5.8), (5.18), and the triangle inequality

(5.34) Whe St (2R) = {vh e Hy" (Qh> : th‘

< QR} |
HY" (@)

Consider the vector function F" (V" (x"),x") in (5.12). It follows from (5.15), (5.33), Re-
mark 5.1, and the multidimensional analog of the Taylor formula [49] that the following rep-

o ) 2= ) ) )
P (vt () o) o (1) ) 5 ()
R (v () () 0 () )

(5.35) :
x
where Fy, Fy are such that

(5.36) ‘ﬁl (Vlh <xh> ,xh) ’ <0,
(5.37) ‘ﬁz (vlh (xh> v <xh) Tt xh) xh ‘ <0 (Wh (xh)>2.

In particular, (5.35) implies that the expression B (Vlh (xh) ,xh) wh (xh) is linear with respect
to W (x"). By (5.33), (5.35), and (5.37)

w0 (v () + () )

() +
L+ ) ]
LW

)
By (Vi (x), Vi (x) + W (x) %)
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I (VIR ")

=22 (W) + P (7 () )] [ (W () W () 4 () )]
(5.41)

18 (VW ")
= (L (Wh> + ﬁl (Vlh (xh) ,xh> wh (xh) + ﬁg (Vlh <xh> ,Vlh (xh> + Wwh (Xh> ,xh>)2.
)

By (5.33) and (5.38)—(5.41

oay L) TP ()] = [+ 8 (v () )]

~ I (V1h7Wh’Xh) 7 (V1 W x ) r(l) (Vl W x )

(5.40)

nonlln onlin

It follows from (5.37), (5.40), and (5.41) that
(wh( %)) vwhespen),

(2 (vharh o) < [ (w2 () (w0 ()] vt et
(

where SI (2R) is defined in (5.34). By

2

nonhn

(5.43) B (9" ))wl

5.17), (5.33), and (5.42)

(5.44) J;\l <V2h) ( ) J)\ (Vlh n Wh> Vl )
N-1 (ij)=(m-1,m-1) b
= Z /Inn (Vlh (4,95, 2) W (21,95, 2) ,fvi,yj,z) YR
n=0 GH=(1,1) 5
N—-1 (45)=(m—-1,m—1)
* Z /er(llj)nhn Vl TiyYj,2 )7Wh (mi,yjyz) 7377;7?/]',2) 2Ny
n=0 (ij)=(L1)

Using (5.9), (5.43), and (5.44), we obtain

m 1,m— 1 2
Z Z /Zlnonhn wlaijz)?Wh (l‘i,yj,Z),xi,yj,Z) €2>\de
(4,5)=(1,1) k=1
(5.45) < Cre? HwhH YW e St (2R) .
Hy"(Qh)

It follows from (5.39)—(5.41) that the expression in the second line of (5.44) is linear with
respect to W". On the other hand, the expression in the third line of (5.44) is nonlinear with
respect to W".

Consider the linear functional J{ Min (V1 ) (Wh) cH }Vh (Qh) — R, which is the expression
in the second line of (5.44). It follows from (5.7)—(5.10), (5 33), (5.36), (5.39), and (5.44) that

[ () ()] < cret [

o Yt e HL! (Qh> .
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Hence, J} . (Vlh) (Wh) 1 h (Qh) — R is a bounded linear functional. By the Riesz theorem
there exists a vector functlon Jh \ lin (Vlh) € H}V% (Qh) such that

(5.46) (f/’{nn (V{‘) ,Yh> = T (W) (Yh> vyt e By (Qh) .
Also, using (5.43)—(5.46), we obtain
TV (VW) = T (V) = Ty, (V) (W)

5.47 lim : =0.
(547 W™ oy =0 W g

Hence, J} i (V1 ) H 1 h (Qh) — R is the Fréchet derivative of the functional J¢ (Vh) at the
point V/*. We denote 1t as

(59 ()’ () = I ().

The proof of the Lipschitz continuity property (5.20) of (J ;\‘)I (V") is omitted here since it is
completely similar to the proof of Theorem 3.1 of [2].
Using (5.36), (5.37), (5.41), and the Cauchy-Schwarz inequality, we estimate now

% Vi, Wh x™) from

Lontin(
(549) 12, (W) = L (2 (wh))
= [ (v () ) () o (1 () o) 9 o) o)
25 (L (W) e (w (<))
Thus, Theorem 2, (5.44), and (5.48)—(5.49) imply

() ) - (1) 1) ()

S . L<Wh> Az _C HWh Az

(5'50) - 2 H L2:h(Qh) 1 L2:h(Qh)
= (5 2) s+ 5 [ () e
— 4 i Lyh@ny 8 Loy L2 (QR)

By Lemma 1 there exists a number Cy =0, (Bn,N) >0 such that

[zt

- 2
> 0, H Whes
LY (@)

L3 (@)

YWh e L2 (Qh) YA >0,
and the same for H (BNWZh) e)‘zHig,h(Qh) . Hence, (5.50) implies for all A > \g

/
(5.51) Jh (Vh + Wh) - Jf (Vlh) - (Jf) (Vh) (Wh)

(S )

/\QHWh Az

L% h(Qh L2 h(Qh)
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where A\g > 1 was chosen in Theorem 2. Choose the number A\; > )y depending on the
parameters listed in (5.21) such that Ci A?/2 > C} and keep in mind Remark 5.1. Then (5.51)
implies (5.22). Given (5.22), the existence and uniqueness of the minimizer Vn}{im ) € Sh (R, Ph)
of the functional J{ (V") on the set S (R, P") for every A > A; as well as inequality (5.23)
follow immediately from a combination of Lemma 2.1 and Theorem 2.1 of [2].

6. Numerical studies.

6.1. Data simulation. We have conducted our numerical studies in the 2d case. Below,
x=(z,y) in (2.1) and in (2.2) a=1,0=2,A=1/2, and d =1/2. Hence, we obtain
Q:{X::EE (_1/271/2)73/6 (172)}7

Fy={xq=(a,0): € [-1/2,1/2]}.
In accordance with the conventional practice in the theory of inverse problems, we obtain the
boundary data (2.20) via a computational simulation, i.e., via the numerical solution of the
forward problem (2.17), (2.18). Following Theorem 1, we solve this problem via the solution

of the integral equation (3.7). To solve this equation, we consider the partition of the intervals
(1,2) and (—1/2,1/2) in (6.1) as

l=yo<y1 < - <Ym, =2, Yj+1—Y; =y,
hy>0, j=0,....my—1,
—1/2:a0<a1<-~<ama:1/2, Ozj+1—04j:ha,
ho>0, §=0,....my—1,

(6.1)

(6.2)

where m,, m, > 1 are two integers. Define the discrete subsets (1,2)Zy and (—1/2,1/2)he of
the intervals (1,2) and (—1/2,1/2) as (1,2)y = {y]} Yy and (—1/2,1/2)he = {aj};.n:ao. The

fully discrete subset Q" of the domain € is

discr
Quiser ={—1/2=z0 <31 <+ <z =1/2} X (172)21,7
(6.3) |

xj+1—xj:h,j:(),...,m—1;

see (5.1). Denote the corresponding sets of discrete points:

(6.4) Xdiser = {(wz‘,yk) € Qé’m} s Qiser = {(Oéz‘,()v ,0)ro € (—1/2, 1/2)2‘“} :

To compute the numerical solution u(Xg;ser, Qgiser) of the forward problem (2.17), we need
to perform the numerical integration in the integral equation (3.7). We note that the points
in the integrals along the geodesic line I'(x,x,) do not necessarily belong to the set Qgiscr-
Hence, we describe now our numerical interpolation. For any point (a:F Lyt ) € T'(x,%q), we
use the following formula of the numerical interpolation to approximate the value U (a:r, yr)
of any function U involved in the numerical computation of the integral over I'(x, X, ):

U (") ~ g (a5 =) (o =9 Ul )
(o =) (0 — ) Uyt
+ (JUF — ;) (yk+1—y ) U(zjs1,yx)
)

+ (2" —2;) (v" —vk) Ulzjs1, ys1)]
for (zV,y") € [j,2j41] X [Yk, Y1) 5 see (6.2),(6.3).

Yk
r
Y
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As to the kernel K(x,a,f) of the integral operator in (2.17), we work below with the
2d Henyey—Greenstein function [22]:
1 1—g° 1
~2d |1+¢%2—2gcos(a—p3)]’ 9=

(6.6) K(x,a,8)=H(«,p) 5

Here, g = 1/2 means an anisotropic scattering, which is half ballistic with ¢ = 0 and half

isotropic scattering with g = 1 [13, 14, 15]. We take the same function f(x) as the one in
(2.3), (2.4) with €= 0.05.

6.2. Numerical results for the inverse problem. Just as in [34], we set
(6.7) ps(x) =5, x€Q, ps(x)=0, xcR?\ Q.

We use the third line of (2.12) for the coefficient function a(x), and we take in this formula

(6.8)

(x) cq =const. >0 inside the tested inclusion,
X)) =
fa 0 outside the tested inclusion.

By (2.12), (6.7), and (6.8) we set

(6.9) correct inclusion/background contrast =1+ ¢,/5,

(6.10) computed inclusion/background contrast
' =1+ max (computed p4(x)) /5.

In all numerical tests below

1+2%In(y), y>1,
(6.11) er (x) =¢r(w,y) = { 1, v otherwise.
This function e, (z,y) satisfies conditions (2.7)—(2.9). Using the fast marching toolbox “Tool-
box Fast Marching” [43] in MATLAB, we obtain the geodesic lines, and display examples on
Figure 1.

The mesh sizes were chosen as hy = hy = h, =h =1/20. Hence, we had total 20 x 20 x N
unknown parameters in our minimization procedure. To solve the minimization problem, we
have used the MATLAB built-in function fminunc with the quasi-Newton algorithm. The
iterations of the function fminunc were stopped at the iteration number k as soon as

’VJA (th) ‘ <1072
The random noise was introduced in the boundary data g;(x,«) in (4.12) as
(6.12) gi(x,0) =g1(x,0) (14+0-(x), x€00.

Here (x is the uniformly distributed random variable in the interval [0,1] depending on the
point x € 90 with § =0.03 and § = 0.05, which correspond, respectively, to 3% and 5% noise
levels.
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c(x, y)

2 .

. H1.1
0 1
-0 0.5

5 g
i x,u = (07 0)

0.5

Figure 1. Samples of geodesic lines for the function €,(x), which is given in (6.11).

A=38
.H“)m | | .Hu)
5 5 5 5

A=4 A=5 A=20
.H10.H10 | iﬂﬂ’
5 5 5 5

Figure 2. Test 1. The reconstructed coefficient a(x), where the function pq(x) is given in (6.8) with ca =5
inside of the letter “A.” The goal here is to test different values of the parameter A = 0,1,2,3,4,5,6,8,20
for N = 3. The value of A can be seen on the top side of each square. The images have a low quality for
A=0,1,2,3. Then the quality is improved and is stabilized at A\=5. Thus, we select A=>5 as an optimal value
of this parameter for all follow-up tests. On the other hand, the last image is for the case A = 20. This image
demonstrates that the quality of the reconstructions deteriorates for too large value of A.

Exact A=0

To solve the minimization problem, we need to provide the starting point VJ*(x") for
iterations. In all numerical tests below we choose the starting point as the discrete version of

: : ~ (© © "
the following vector function Vo(z,y) = (wy ", ..., wy_,) (z,y):

a9 = (VDo + )
019 (e (y-a)

+ b—a

5\ 5 wal@a)+

fwn(aj,b)) , n=0,...,N—1.
Expression (6.13) represents the average of linear interpolations of the boundary condition for
wy, (z,y) inside of the square 2 with respect to z-direction and y-direction.

There are two parameters we need to choose: N and A\. We find the optimal pair (N, \) =
(5,3) of these parameters in Test 1; see captions for Figures 2 and 3. Interestingly, the same
optimal pair was found in [34] for a similar CIP for the regular RTE.
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N=3
.Hm
5
N=12
.Hm
5

Figure 3. Test 1. The reconstructed coefficient a(x), where the function pq(x) is given in (6.8) with ca =5
inside of the letter A. We took the optimal value of the parameter A =5 (see Figure 2) and have tested different
values of the parameter N =1,2,3,5,7,12. A low quality can be observed for N =1,2. The reconstructions are
basically the same for N =3,5,7,12. However, the computational cost increases very rapidly with the increase
of N. We conclude, therefore, that to balance between the reconstruction accuracy and the computational cost,
we should use N =3. Thus, we use below A=5 and N = 3.

Remark 6.1. To test the computational performance of the version of the convexification
method of this paper, we have chosen letter-like shapes of abnormalities. This is because letters
actually have complicated shapes for imaging via solutions of CIPs: they are nonconvex and
have voids.

We work with the noiseless data in Tests 1-3 and we work with the noisy data in Test 4.

Test 1. We test the letter A with ¢, =5 in (6.8). We use this test to figure out optimal
values of parameters N and A.

First, we select an appropriate value of N. We use the value of the norms [jwy, (x)||1,q)
to indicate the information contained in w,, (x). Corresponding to the forward problem (2.17)
and (2.18) for the case when the functions pus(x) and p, (x) are given in (6.7) and (6.8),
respectively, and ¢, = 5 in (6.8), we calculate norms |wy ()|, for n = 0,...,11 and
display them in Table 1. One can see that the Lo (€2)-norm of the function wy,(x) decreases
very rapidly when the number n is growing, and these norms, starting from n = 3, are much
less than those for n =0,1,2. More precisely, we have obtained that

11
2 lon ()l 0

(6.14) =0.0039,

11
> lhun (91,0

which means 0.39%. We conclude, therefore, that in our tests we should take N = 3.

Next, given the value of N = 3, we select the optimal value of the parameter A of the
CWF e*? in (5.17). To do this, we test the same letter A with ¢, =5 inside of it for values of
the parameter A =0,1,2,3,4,5,6,8,20. Our numerical results are presented in Figure 2. We
observe that the images have a low quality for A =0, 1. Then the quality is improved, and it
is stabilized at A =15. Hence, we treat A =5 as the optimal value of this parameter. Thus, in
all our tests below we use

N=3)\=5.
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Table 1
The L2()-norms of functions w,(x), n=0,1,...,11 for the reference Test 1 with ca =5 in (6.8).

n 0 1 2 3 4 5
wn ()]l 6.5365 1.8766 0.1924 0.0091 0.0071 0.0027
n 6 7 8 9 10 11
wn ()], 0.0057 0.0020 0.0035 0.0012 0.0017 0.0008
20 25 35
15 A A
15 20

15
10
10 ' '
5 5 5 5
15 25 35
f
10 ) 15 20
5 5 5

Figure 4. Test 2. Ezact (top) and reconstructed (bottom) coefficient a(x) for ca =10,15,20,30 (from left to
right) inside of the letter A as in (6.8). Thus, by (6.9) the inclusion/background contrasts now are, respectively,
3:1,4:1,5:1, and 6: 1. The image quality remains basically the same for all these values of the parameter
Ca, although a slight deterioration of this quality can be observed for c, = 20 and c, = 30. The computed
inclusion/background contrasts (6.9) are reconstructed accurately.

At last, we want to demonstrate numerically again that N = 3 is indeed a good choice
of N for our optimal value of A = 5. Taking A =5, we test the same letter A as above with
cq =5 in it, but for N =1,2,3,5,7,12. The results are displayed in Figure 3. One can observe
that reconstructions have a low quality for V =1,2. Next, the reconstructions are basically
the same for N = 3,5,7,12. However, the computational cost increases very rapidly with the
increase of N. Thus, we conclude that to balance between the reconstruction accuracy and
the computational cost, we should use N =3, which coincides with the above choice.

Test 2. We test the reconstruction of the coefficient a(x) with the shape of the letter
A where the function g, (x) is given in (6.8). We test different values of the parameter
¢, = 10,15,20,30 inside of the letter A. Thus, by (6.9) the inclusion/background contrasts
now are respectively 3:1,4:1,5:1 and 6 : 1. The function ¢,(x) = E,(nl)(X) as in (6.11).
Our computational results for this test are displayed on Figure 4. One can observe that the
quality of these images is good for all four cases, although it slightly deteriorates for ¢, =20
and ¢, = 30. The computed inclusion/background contrast is accurate; see (6.10) and compare
with (6.9).

Test 3. We test the reconstruction of the coefficient a(x) with the shape of two letters
SZ, where the function p, (x) is given in (6.8) with ¢, =5 inside of each of these two letters,
and i, (x) = 0 outside of each of these two letters. SZ are two letters in the name of the
city (Shenzhen) where the second and the fifth authors reside. The results are displayed on
Figure 5.

Test 4. We now use the noisy data as in (6.12) with § = 0.03 and ¢ = 0.05, i.e., with
3% and 5% noise level. We test the reconstruction of the coefficient a(x) with the shape of
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10 10
5 5

Figure 5. Test 3. Exact (left) and reconstructed (right) coefficient a(x) for the case when the function
Ha(x) is given in (6.8) with co = 5 with the shape of two letters SZ. In (6.8) co = 5 inside of each of these
two letters and pq(x) =0 outside of each of these two letters. Here N =3,A=05. The quality is good and the
computed inclusion/background contrasts are accurately reconstructed in both letters; see (6.9) and (6.10).

o=3% o =5% 0=3% o=5%

AANNC R

Figure 6. Test 4. Reconstructed coefficient a(x) with the shape of letters A and Q2 with ca =5 from noise
polluted observation data as in (6.12) with § = 0.03 and 6 = 0.05, i.e., with 3% and 5% noise level. One
can observe accurate reconstructions in all four cases. In particular, the inclusion/background contrasts are
reconstructed accurately;, see (6.9) and (6.10).

either the letter A or the letter ', where the function p, (x) is given in (6.8) with ¢, =5
inside of each of these two letters. The results are displayed in Figure 6. One can observe
accurate reconstructions in all four cases. In particular, the inclusion/background contrasts
are reconstructed accurately; see (6.10) and compare with (6.9).
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