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A B S T R A C T

A data-driven method is presented for improving sampling designs from times series (1D approach) or spatial
arrays (2D approach) of digital information. We present the autocorrelated conditioned Latin Hypercube
Sampling (acLHS). This method combines a conditioned Latin Hypercube (cLHS) to obtain a representative
sample of the joint probability distribution function and an autocorrelation model to reproduce the spatial
or temporal dependency function (i.e., temporal or spatial variability). The acLHS method was tested with
two case studies using data of soil CO2 efflux (i.e., the CO2 flux from soils to the atmosphere known as
soil respiration) that are useful for carbon cycle science. First, we used data representing a time series (1D
approach), and then spatial data (2D approach) across the conterminous United States (CONUS). Results show
that acLHS was more efficient than other sampling methods (i.e., fixed sampling, cLHS) as it better reproduced
the joint probability distribution and the temporal or spatial variability of the variable of interest. Finally,
we use a Bernstein copula-based stochastic co-simulation method (BCSCS) and demonstrated that the acLHS
reduces modeling prediction errors compared with other methods. The acLHS is a flexible method that can be
applied to any variable of interest as a time series (1D approach) or as a spatial format (2D approach).
1. Introduction

A fundamental question for any sampling design is identifying
where and when to measure. The aim of data-driven temporal or
spatial (or geostatistical) sampling is to identify temporal locations
in a time series, or spatial positions in an area that contributes to a
representative sample of the geostatistical behaviors of the variables of
interest. This implies that the obtained sample must have comparable
statistical properties and similar spatial or temporal variability as the
original data set or phenomena of interest. Furthermore, representa-
tive samples should also be useful to derive models and predict the
variable of interest across time or space. A known challenge is that
accurate temporal or spatial sampling is limited by several factors,
including conceptual, logistical, technological, and physical constraints,
collectively known as interoperability barriers (Vargas et al., 2017).
Consequently, defining efficient methods for improving sampling de-
signs is a crucial task. Improving sampling designs has many practical
applications in environmental sciences, including modeling the spa-
tial distribution of soil properties (Carter and Gregorich, 2006; Brus
and Heuvelink, 2007; Oliver and Webster, 2015; Molla et al., 2022),
optimization of environmental observatory networks (Villarreal et al.,
2018; Barnett et al., 2019; Villarreal et al., 2019; Xiaojing et al.,
2022), or monitoring greenhouse gas fluxes (Vickers et al., 2009; Barton
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et al., 2015; He et al., 2016; Vargas and Le, 2022) among many other
scientific applications.

There are two main approaches for improving sampling designs:
probability-based, which follows the probability distribution function,
and configuration-based, following the temporal or spatial patterns.
These approaches have also been referred to as design-based and
model-based, respectively (Brus and De Gruijter, 1997). Probability-
based sampling is essentially based on univariate and multivariate
probability spaces and is focused on maximizing the reproducibility
of the statistical properties (e.g., the mean, median, quantiles) of the
resulting samples (McKay et al., 2000). Arguably, one of the most
popular methods is the conditioned Latin Hypercube Sampling (cLHS),
which presents a stratified random procedure to sample variables of
interest from their multivariate distributions (Minasny and McBrat-
ney, 2006). This method can be modified to add practical constraints
(e.g., travel time, terrain traversal, point clustering; (Roudier et al.,
2012)), sample more at the edge of the distribution (Minasny and
McBratney, 2010), or consider a high density of similar information
in the sampling design (Brungard and Johnanson, 2015). The cLHS
focuses on reproducing the univariate probability distribution functions
and the dependency relationships between the variables from the orig-
inal data to the samples. That said, cLHS is not designed to maximize
vailable online 15 January 2024
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the representation of the temporal or spatial variability of the variable
of interest. This limitation can influence the uncertainty of further
predictions using samples derived from this approach.

Configuration-based sampling is focused on representing temporal
or spatial coverage (De Gruijter et al., 2006; Walvoort et al., 2010),
variability (Bogaert and Russo, 1999; Lark, 2002) and prediction (Zhu
and Stein, 2006; Ma et al., 2020). For logistical reasons and simplicity,
he most common approach is a fixed sampling (FS) or regular (system-
tically aligned) sampling (Pebesma and Bivand, 2005). This approach
an be as simple as systematically aligned samples for the convenience
f the experimenter, or it can be varied to sample points evenly in the
reas of spherical caps using a Fibonacci lattice (González, 2010) or
stablish even sampling intervals in spatial strata that are constructed
y k-means clustering (Walvoort et al., 2010). Configuration-based
ampling focuses on reproducing the temporal or spatial variability
nd distribution, but it has limitations in reproducing the statistical
roperties and dependency relationships of the variables of interest.
Previous attempts have been made to combine probability-based

ith configuration-based approaches. For example, Gao et al. (2016),
an et al. (2021) added spatial stratification (i.e., including 𝑋 and
coordinates as covariates) to combine cLHS with spatial coverage.
his approach is an important advancement because the statistical
roperties, the dependency relationships between the variables, and
he spatial coverage of the variable of interest are guaranteed. This
pproach does not ensure that the spatial dependence function will
e reproduced. This function is essential since, from it, the variable
f interest can be better interpolated and predicted across space. Ac-
ording to Le et al. (2020), a random variable is characterized by its
nivariate probability distribution function, the dependence function
ith other variables, and the spatial or temporal dependence function.
nce we know these three functions, the variable of interest can be
ccurately modeled. Therefore, there is a need to propose a sampling
ethod to combine probability-based approaches with configuration-
ased approaches to reproduce those three functions from the original
ata.
In this study, we combine probability-based (design-based) with

onfiguration-based (model-based) approaches and propose the auto-
orrelated conditioned Latin Hypercube Sampling (acLHS) as a new
ethod. The acLHS incorporates information on the spatial or temporal
utocorrelation function (i.e., semivariogram) as an objective function
n the optimization scheme of the commonly used cLHS method. The
cLHS focus on maximizing the representativeness of variables’ uni-
ariate probability distribution functions, the dependency relationships
etween them, and the autocorrelation function in time or space of
he variable of interest. Thus, acLHS is a novel and flexible approach
o improving sampling designs for time series or spatial information.
n addition to Pearson’s linear correlation coefficient information, we
nclude rank correlation coefficients (i.e., Spearman and Kendall) to
rovide information on non-linear dependency relationships and in-
erpretability in the resulting optimized samples. We propose that
cLHS is an efficient approach to represent better the temporal or
patial distributions of the variable of interest and improve prediction
stimates derived from these samples.
The proposed acLHS is applied in two case studies using temporal

nd spatial information of soil CO2 efflux, which is the efflux of
O2 from soils to the atmosphere (i.e., soil respiration) and is rele-
ant for the global carbon cycle (Vargas et al., 2011; Phillips et al.,
017). The global soil CO2 efflux has been estimated to be around
8 Pg/yr (Warner et al., 2019); therefore, accurate measurements to
epresent the temporal variability (Vargas et al., 2010) and spatial
epresentation (Stell et al., 2021) are needed to improve local-to-global
stimates. Temperature has been used as an essential variable to predict
oil CO2 efflux (Rayment and Jarvis, 2000; Pumpanen et al., 2003;
assal et al., 2004; Curiel Yuste et al., 2010; Capooci and Vargas, 2022)
nd here we explore the temporal and spatial relationships between
2

hese two variables using the acLHS. The first case study represents a t
ime series of soil CO2 efflux and soil temperature (1D approach), and
he second one represents the spatial distribution of soil CO2 efflux and
oil temperature across the conterminous United States (CONUS; 2D
pproach). We compared the acLHS with a fixed sampling approach
as a standard and simple configuration-based method) and using a
LHS approach (as a common probability-based method). Finally, data
imulations are performed using the Bernstein copula-based temporal
r spatial stochastic co-simulation method (Díaz-Viera et al., 2018; Le
et al., 2020; Le, 2021; Le and Vargas, 2021, 2024) from the samples
resulting from each sampling method. Our results show that acLHS is
a flexible method that could be used to improve sampling designs and
subsequent prediction efforts.

2. Methodology

We propose a methodology to optimize a data sampling design us-
ing an autocorrelated conditioned Latin Hypercube Sampling (acLHS).
Here, we present a workflow that consists of four steps: (1) Input data,
(2) Sampling design, (3) Sample-based modeling, and (4) Prediction
(Fig. 1).

2.1. Input data

The input data represents two case studies: time series of soil
CO2 efflux and temperature (1D approach); and spatial information
of soil CO2 and temperature across CONUS (2D approach). Let 𝑆 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)} be observations of the variables 𝑋 and
either as a time series or in a spatial distribution array, where
is an independent environmental variable (e.g., temperature), 𝑌 is
dependent variable such as soil CO2 efflux (i.e., soil respiration).
ariables 𝑋 and 𝑌 must have the same quantity of data distributed
ver the same time frame (e.g., 1D array) or across the same spatial
ocations (i.e., 2D array). In this work, we use a 365-day full-year time
eries with a fixed 1-day temporal separation and a 903-point spatial
istribution array across the conterminous United States (CONUS) with
n equidistance of 100 km in longitudinal and latitudinal directions. We
larify that there are no specific requirements for initial observations
o use this algorithm. Initial observations are completely defined by the
ser and the algorithm resolves the optimization based on the user’s
election. This is a data-driven approach, so the initial observations
nfluence the algorithm’s output as they will influence the statistical
roperties and the temporal or spatial dependency that the algorithm
ptimizes for. Therefore, the algorithm is flexible to optimize spatial or
emporal sampling, and the user decides which is the input information
o inform this analytical optimization. The next step is to explore and
ompute their geostatistical properties, such as the univariate empirical
robability distribution of 𝑋 and 𝑌 ; the scatterplot between 𝑋 and
, their correlation coefficients (i.e., Pearson, Spearman, and Kendall);
nd the empirical semivariogram of the variable of interest 𝑌 .

.2. Sampling design

The sampling design is performed by applying different methods
i.e., fixed sampling, cLHS, and acLHS). Note that many previous
tudies have shown that the cLHC is more efficient for sampling than a
andom sampling approach (McKay et al., 2000; Minasny and McBrat-
ey, 2006; Worsham et al., 2012). Therefore, we have decided not to
nclude the random sampling method in this work. Validation is then
erformed to conclude which sampling method yields a result that best
epresents the original data. This validation is performed by comparing
he sampling results with the original data on aspects of geostatis-
ical properties such as univariate probability distribution of 𝑋 and
, dependency relationship coefficients between 𝑋 and 𝑌 (i.e., Pear-
on, Spearman, and Kendall), and the temporal or spatial dependence
unction (i.e., semivariogram) of the variable of interest 𝑌 . We used
he Kolmogorov–Smirnov test to compare the univariate probability
istribution and the L1 norm (i.e., the sum of absolute difference) for

he correlation coefficients and empirical semivariogram.
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.2.1. Autocorrelated conditioned Latin Hypercube Sampling method
First, we describe the autocorrelated conditioned Latin Hypercube

ampling (acLHS). In geostatistical sampling, the objective is to obtain
sample subset 𝑠 of size 𝑘 that is representative of the observations

𝑆; this means that 𝑠 and 𝑆 must have the equivalent geostatistical
properties, such as the univariate statistical properties of 𝑋 and 𝑌 ,
the dependency relationships between 𝑋 and 𝑌 , and last but not least,
the temporal or spatial autocorrelation of the variable of interest 𝑌 .
The acLHS is an extension of the widely used cLHS (McKay et al.,
2000; Minasny and McBratney, 2006), which consists of adding the
rank correlation coefficients (i.e., Kendall and Spearman) and the auto-
correlation function (i.e., semivariogram model) to the cLHS. The cLHS
is a data-driven sampling method, and it focuses on obtaining a sample
subset 𝑠 that has similar statistical properties and linear dependency
relationship between variables of 𝑆; however, cLHS does not emphasize
nonlinear dependence relationships (i.e., Kendall and Spearman) or the
temporal or spatial autocorrelation function (i.e., semivariogram) of
the variable of interest 𝑌 . In contrast, the acLHS is designed to ensure
that all geostatistical properties are reproducible, such as the univariate
probability distribution function of 𝑋 and 𝑌 , the linear and nonlinear
dependency relationships between 𝑋 and 𝑌 (i.e., Pearson, Kendall and
Spearman), and the temporal or spatial autocorrelation function of the
variable of interest 𝑌 . Here we describe step by step the acLHS method.

1. Divide the quantile distribution of 𝑋 and 𝑌 into 𝑘 strata, each
stratum 𝑖 with the same probability of 1

𝑘 and its boundary
[𝑄̃𝑖

𝑋 , 𝑄̃
𝑖+1
𝑋 ]; [𝑄̃𝑖

𝑌 , 𝑄̃
𝑖+1
𝑌 ], for 𝑖 = {1,… , 𝑘}. For each stratum or

interval [𝑄̃𝑖
𝑌 , 𝑄̃

𝑖+1
𝑌 ], a sample of 𝑌 must be taken. Through this

stratification strategy, an initial representative subset of the
univariate probability distribution of the variable 𝑌 will be
obtained. Note that this initial representative subset has its
corresponding temporal or spatial coordinates. Our next step is
to perturb to obtain an optimal sample from each stratum that
minimizes the following functions.

2. To ensure that the univariate probability distribution of the
variable 𝑋 of the sample subset 𝑠 and of the observations 𝑆 are
statistically equivalent, we must insert the objective function 1:

𝑂𝐹1 =
𝑘
∑

𝑖=1
|𝑐𝑜𝑢𝑛𝑡(𝑄̃𝑖

𝑋 ≤ 𝑥𝑖 < 𝑄̃𝑖+1
𝑋 ) − 1| (1)

To ensure a good spatial or temporal distribution of the sam-
ple points, the spatial or temporal coordinates can be entered
together with the variable X.

3. An objective function 2 is added to guarantee that the depen-
dency relationships between the variables 𝑋 and 𝑌 of the sample
subset s and of the observations S are similar:

𝑠 𝑆 𝑠 𝑆 𝑠 𝑆
3

𝑂𝐹2 = |𝑟𝑋𝑌 − 𝑟𝑋𝑌 | + |𝜌𝑋𝑌 − 𝜌𝑋𝑌 | + |𝜏𝑋𝑌 − 𝜏𝑋𝑌 | (2) n
where 𝑟𝑠𝑋𝑌 , 𝜌
𝑠
𝑋𝑌 , 𝜏

𝑠
𝑋𝑌 , 𝑟

𝑆
𝑋𝑌 , 𝜌

𝑆
𝑋𝑌 , 𝜏

𝑆
𝑋𝑌 are Pearson’s linear correla-

tion coefficient, and Spearman’s and Kendall’s rank correlation
coefficient between 𝑋 and 𝑌 of 𝑠 and of 𝑆, respectively.

4. Objective function 3 is to aim that the spatial or temporal
autocorrelation of 𝑌 , the sample subset 𝑠, and the observations
𝑆 are equal:

𝑂𝐹3 =
𝑚𝛥𝑢
∑

ℎ=𝛥𝑢
|𝛾𝑠𝑌 (ℎ) − 𝛾𝑆𝑌 (ℎ)| (3)

where 𝑚 ≥ 1 and 𝛾𝑠𝑌 (ℎ), 𝛾
𝑆
𝑌 (ℎ) are empirical semivariograms of 𝑠

and of 𝑆, respectively. These are calculated as follows:

𝛾(ℎ = 𝛥𝑢) = 1
2𝑁(𝛥𝑢)

𝑁(𝛥𝑢)
∑

𝑖=1
[𝑌 (𝑢𝑖 + 𝛥𝑢) − 𝑌 (𝑢𝑖)]2 (4)

where 𝑁(𝛥𝑢) is the number of pairs 𝑌 (𝑢𝑖 +𝛥𝑢) and 𝑌 (𝑢𝑖) that are
separated by a time or distance lag 𝛥𝑢.

5. The sum value of the three objective functions is defined as:

𝑂𝐹 = 𝑤1𝑂𝐹1 +𝑤2𝑂𝐹2 +𝑤3𝑂𝐹3 (5)

where 𝑤𝑖 are weights of each objective function. The weight of
the objective functions can vary depending on the case study.
We explored the sensitivity of the weights of each function to
optimize the algorithm while minimizing the error. The selected
weights for Case Study 1 were: 𝑤1= 0.3, 𝑤2= 100, 𝑤3= 1.0.
The selected weights for Case Study 2 were: 𝑤1= 10, 𝑤2= 1000,
𝑤3= 0.001. There are multiple methods for global optimiza-
tion processes including, but not limited to, ant colony opti-
mization (Aragón-Royón et al., 2020), swarm-based optimiza-
tion (Ciupke, 2016), simulated annealing (Xiang et al., 2013),
and differential evolution (Storn and Price, 1997), among oth-
ers. In this study, we chose differential evolution optimization
because of several advantages such as simplicity, efficiency, and
ease to use (Rout et al., 2013; Storn and Price, 1997). We
clarify that this algorithm can be applied using other global
optimization methods.

6. Iteration of steps 2–6.

Repeat steps 2 through 6 until the sum value of the objective func-
ions (𝑂𝐹 ) reaches the error tolerance or until a maximum specified
umber of iterations (e.g., 1000 iterations) have been completed. We
larify that the algorithm either stops when it reaches a declared error
r a maximum specified number of iterations, whatever is reached
irst. In this study, we declare an error tolerance of 10−6 and 10,000
terations for Case Study 1 and an error tolerance of 10−6 and 20,000
terations for Case Study 2. In both case studies, the optimization
rocess does not reach error tolerance, and only reaches the maximum

umber of iterations. Note that this global optimization process, like
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all optimization methods, always has costs and benefits (Qin et al.,
2009). The cost here is the high computational time and the benefit
is obtaining the representative optimized samples. Furthermore, this
method is considered a data-driven sampling because the optimized
samples are based on information from target and independent vari-
ables (i.e., univariate and multivariate distributions, and temporal or
spatial correlation function).

At the end of this workflow, the acLHS will represent the probability
space with the univariate distributions, the dependency relationships
maintained, and the temporal or spatial autocorrelation of the variable
of interest 𝑌 will be reproducible. This algorithm is implemented using
the RGEOSTAD tools (Díaz-Viera et al., 2021) and is coded using
the R software (R Core Team, 2022). Note that the proposed method
‘‘acLHS’’ is an extension of cLHS to obtain representative samples in the
following aspects: univariate and multivariate statistics; and temporal
or spatial dependence. Based on those representative samples, we can
build a model to generate additional samples, as described by Iman
and Conover (1980). Furthermore, in the next sections, we will also
adopt Latin Hypercube sampling to generate representative realizations
or simulations (conditional) from a non-Gaussian random field model
using the BCSCS method, as described in Pebesma and Heuvelink
(1999) and Kyriakidis and Gaganis (2013).

2.3. Sample-based modeling

Sample-based modeling is then performed using Bernstein copula-
based stochastic co-simulation method (BCSCS) (Díaz-Viera et al., 2018;
Le et al., 2020; Le, 2021; Vázquez-Ramírez et al., 2023) from the
sample resulting from different methods mentioned above. We used
the BCSCS method because of its capability to simulate the geosta-
tistical properties of the target variables (Le et al., 2020). Therefore,
we build a geostatistical model based on the samples obtained using
the aforementioned sampling methods. This modeling aims to obtain
a representative geostatistical model of the natural phenomenon we
are investigating (e.g., soil respiration). Then, using this model, the
variable of interest 𝑌 can be simulated or predicted using the variable
𝑋 as an auxiliary variable. For this, the BCSCS method is applied
from the samples obtained to construct the characteristic functions such
as the univariate probability distribution functions of 𝑋 and 𝑌 , the
dependency relationships between 𝑋 and 𝑌 , and the temporal or spatial
dependence of the variable of interest 𝑌 . The univariate probability
distribution functions of 𝑋 and 𝑌 are modeled using the Bernstein
polynomial approximation. The dependency relationship between 𝑋
and 𝑌 is modeled using the Bernstein copula, and the temporal or
spatial autocorrelation function of 𝑌 is modeled by a semivariogram
unction (more detail can be seen in Le et al. (2020), Le (2021)).

.4. Prediction

Finally, we predict the temporal or spatial distribution of the target
ariable (i.e., CO2 efflux) conditioned by temperature, as an essential
nvironmental control, using inferred models based on samples from a
ime series (1D approach) or spatial distribution (2D approach) from
he previous step. The representative geostatistical models obtained
rom the samples from the different sampling methods are used to
redict the variable of interest 𝑌 conditioned by all the information
f the variable 𝑋 as an auxiliary variable. These predictions can be
onsidered as the simulations of the variable 𝑌 , aiming to represent
he geostatistical properties of the samples obtained from the different
ampling methods. Finally, the prediction results of varying sampling
ethods are compared with the original data on their temporal or
patial distribution and the geostatistical properties. We propose that if
he samples are better representative of the original population or data,
heir predictions should be close to the original data. We highlight that
his framework is flexible and can be applied to any target variable of
nterest.
4

3. Application

3.1. Case study 1: Temporal sampling

The input data are time series of CO2 efflux [μmol m−2 s−1; de-
endent variable] and Temperature [◦C; independent variable] from
a temperate forest described in the previous studies (Petrakis et al.,
2018; Barba et al., 2021). We used daily resolution of these variables
taken during one year of measurements. The target sampling was 48
days out of 365 possible data points, equivalent to about one sample
per week during a year (i.e., about 4 times per month and 12 months
times 4 is 48 samples). We applied three sampling methods: (1) Fixed
sampling (FS), is a sampling method with a fixed equidistant in time or
x, y coordinates. In this case, data points are selected approximately
every 8 days within the 365 data points. This method represents a
traditional configuration-based approach. It is common practice that re-
searchers visit a study site once a week to simplify logistical challenges
(e.g., transportation, limited human resources), and aims to represent
the general temporal variability within a year. (2) Traditional cLHS
using the clhs package in R (Roudier, 2011) with two variables: CO2
efflux and Temperature. This method represents a common probability-
based approach focused on representing the statistical properties of
CO2 efflux and Temperature. (3) The proposed acLHS, described in the
previous section, where 𝑋 is Temperature and 𝑌 is CO2 efflux. The
acLHS is a method to combine probability-based and configuration-
based approaches. For this case study, 10000 iterations were chosen
to find an optimal sample with a computational time of about 8 min
using a PC with an Intel® Core™ i7-6700HQ CPU @ 2.60 GHz × 8
processors and 16 GB of RAM. Figure S1 illustrates the optimization
process of the objective function for acLHS, where the value of the
objective function decreases as the number of iterations applied by the
differential evolution method increases. Note that the first sampling
method only takes into account the temporal configuration (i.e., time),
while the last two sampling methods use the information of the target
variable (i.e., soil CO2 efflux) and the covariate (i.e., temperature).

All three sampling methods (FS, cLHS, and acLHS) selected 48
samples distributed across the year (Fig. 2). The FS method purposely
targets this temporal coverage across a year (i.e., fixed systematic
sampling). The other methods (i.e., cLHS, acLHS) did not predispose
this temporal coverage. Still, the natural variability (i.e., univariate
probability distribution functions, the dependency relationship, the
temporal dependency function) of CO2 efflux and Temperature resulted
in samples distributed across the year. The scatterplots between the
CO2 efflux and Temperature derived from all three sampling methods
show a apparently similar dispersion when compared to the original
data (Figure S2). Still, the methods have substantial differences, as
described here.

First, the samples from the acLHS method reproduce better the cor-
relation coefficients (i.e., Pearson, Kendall, Spearman) of the original
data than the samples from other sampling methods (Table S1). Second,
the points of the cumulative univariate probability distributions of the
samples from cLHS and acLHS are comparable to the original data. In
contrast, samples from the FS sometimes deviate (Figure S3 and Figure
S4). The Kolmogorov–Smirnov test shows p-values equal to 1 between
the original data and samples from cLHS and acLHS, while samples
from FS have p-values < 1. These results show that the cumulative
probability distributions of the samples derived using cLHS or acLHS
are closer to the original data distribution than those derived from FS.
Third, the samples from acLHS reproduce the experimental temporal
semivariogram of the original CO2 efflux data, while the samples from
cLHS do not (Fig. 3). We highlight that the experimental temporal
semivariogram of the samples from FS cannot be calculated for lags < 8
days because the fixed sample resolution is 8 days. Therefore, samples
from FS cannot reproduce the temporal dependency of the original
data.
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Fig. 2. Temporal distribution of: (a) CO2 efflux data in black circles, and sampling days resulted from three sampling methods: (b) FS in green squares, (c) cLHS in red triangles,
and (d) acLHS in blue diamonds.
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Fig. 3. The experimental temporal semivariogram for the CO2 efflux data in black
ircles, and for samples resulted from three sampling methods: FS in green squares,
LHS in red triangles and acLHS in blue diamonds, and the fitted semivariogram model.

We used BCSCS for predictions of CO2 efflux using data selected by
each of the three sampling methods. Predictions of CO2 efflux were con-
itioned with information from Temperature (independent variable)
or calculations on 365 days (Fig. 4). We argue that a geostatistical
imulation from the samples is preferred to generating realizations with
imilar or equivalent univariate probability distribution functions and
ependency relationships and the temporal or spatial autocorrelation
unction of those samples (Le et al., 2020; Le, 2021).
The sum of the absolute differences between the CO2 efflux original

ata and the simulations from FS, cLHS, and acLHS are 521.654,
72.232, 405.600 [μmol m−2 s−1], respectively. This indicates that
he prediction derived from the acLHS has a 29% and 22% less error
han the predictions from cLHS and FS, respectively. The scatterplots
etween predicted CO2 efflux and Temperature show relatively similar
ispersion compared to the original data (Figure S5). Quantitatively,
he predictions from the acLHS method reproduce better the correlation
oefficients (i.e., Pearson, Kendall, Spearman) of the data than the
imulations from the samples of cLHS and FS (Table S2). In addition,
he points of the cumulative univariate probability distributions of
5

he predictions from cLHS and acLHS are comparable to the original
ata points. In contrast, the predictions from the FS sometimes deviate
Figure S6). In addition, the p-values of the Kolmogorov–Smirnov test
etween the original CO2 efflux data and predictions from cLHS and
cLHS are equal to 0.975, 0.951 respectively, while the FS is 0.644.
inally, the predictions derived from acLHS reproduce the experimental
emporal semivariogram of the original CO2 efflux data, while the
redictions from cLHS and FS do not (Fig. 5). Quantitatively, the sum of
he semivariogram absolute differences between the original CO2 efflux
ata and predictions from FS, cLHS, and acLHS methods are 14.653,
7.690, and 0.847, respectively.
Overall, our results show that the acLHS method is an improved

pproach to obtaining representative samples to better reproduces the
nivariate probability distribution functions of Temperature and CO2
fflux, the dependency relationships between them, and the temporal
utocorrelation function of CO2 efflux. Consequently, predictions of
O2 efflux conditioned by Temperature are improved when using
amples derived from the acLHS method.

.2. Case study 2: Spatial sampling

The input data are the spatial distribution of soil CO2 efflux [g C
−2 year−1; dependent variable] and Temperature [◦C; independent
ariable] across CONUS. These data points were extracted from spatial
xplicit information of global soil respiration (Stell et al., 2021). We
p-scaled the native resolution of the spatial information from 1 km
o 100 km to obtain a dataset with 903 data points. This was done
o simplify the case study as a proof-of-concept and facilitate BCSCS
imulations. From 903 data points across CONUS, we tested the three
ethods mentioned above (i.e., FS, cLHS, acLHS) to extract 50 rep-
esentative data points. We chose 50 samples because 50 samples are
omparable with our selection of 48 samples for the 1D approach.
his was an arbitrary number that represented a distance of about
50 km among sampling points. The data points using the FS method
ere selected by systematically aligned sampling (Pebesma and Bivand,
005). Then, 50 data points across CONUS were selected using cLHS
s a probability-based approach, and another 50 data points using
cLHS to combine probability-based and configuration-based methods.
e performed 20000 iterations to find an optimal sample with a
omputational time of about 18 min using a PC with an Intel® Core™
7-8700 CPU @ 3.20 GHz × 12 processors and 32 GB of RAM. Figure S7
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Fig. 4. Temporal distribution of: (a) CO2 efflux data in black circles, and simulations resulted from three sampling methods: (b) FS in green squares, (c) cLHS in red triangles,
nd (d) acLHS in blue diamonds.
Fig. 5. The experimental temporal semivariogram (black circles) and the fitted model
(black line) of the CO2 efflux data; and the experimental temporal semivariogram of
he simulations from samples the 3 sampling methods: FS in green squares, cLHS in
ed triangles and acLHS in blue diamonds.

Fig. 6. The sampling results by the 3 methods: FS in green squares, cLHS in red
triangles, and acLHS in blue diamonds; and data in black squares.
6

Fig. 7. The experimental spatial semivariogram (black squares) and the fitted model
(black line) of the soil CO2 efflux data; and the experimental spatial semivariogram of
the resulting samples from the 3 sampling methods: FS in green squares, cLHS in red
triangles, and acLHS in blue diamonds.

illustrates the optimization process of the objective function for acLHS,
where the value of the objective function decreases as the number
of iterations applied by the differential evolution method increases.
Note that the first sampling method only takes into account the spatial
configuration (i.e., 𝑥 and 𝑦 coordinates), while the last two sampling
methods use the information of the target variable (i.e. soil CO2 efflux)
and the covariate (i.e., temperature).

The spatial distribution of the samples across CONUS reflects the
predisposed conditions of each of the three methods (i.e., FS, cLHS,
and acLHS; Fig. 6). The scatterplots between soil CO2 efflux and
Temperature from all three sampling methods show an apparent similar
dispersion compared to the original data (Figure S8). Still, important
differences are similar to those described in the first case study. First,
the samples of the acLHS method reproduce better the correlation
coefficients (i.e., Pearson, Kendall, Spearman) of the data than the
samples from other sampling methods (Table S3). Second, the points
of the cumulative univariate probability distributions of the samples
from cLHS and acLHS are comparable to the original data. In contrast,
samples from the FS sometimes deviate (Figure S9 and Figure S10). In
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Fig. 9. The experimental spatial semivariogram and the fitted model of the soil CO2
efflux data; and the experimental spatial semivariogram of the simulations from samples
the 3 sampling methods: FS in green, cLHS in red, and acLHS in blue.

addition, the Kolmogorov–Smirnov test also shows p-values equal to 1
between the original data and samples from cLHS and acLHS, while
samples from FS have p-values < 1. These results also show that the
cumulative probability distributions of the samples derived using cLHS
and acLHS are closer to the original data distribution than those derived
from FS. Third, the cLHS samples do not reproduce the experimental
spatial semivariogram of the original data, and neither can the FS
samples since the sampling distance is fixed at 400 km (Fig. 7). In
contrast, the acLHS sample accurately reproduces the original data’s
experimental spatial semivariogram (Fig. 7).

We also used BCSCS to predict spatial variability of soil CO2 efflux
onditioned with information on Temperature across CONUS using
amples derived from each tested method. Our results show that the
7

s

patial patterns of soil CO2 efflux predictions derived using the acLHS
ethod were more similar to the original data than the predictions
rom FS and cLHS (Fig. 8). We calculated the sum of the soil CO2
fflux across CONUS and found that the original data estimates a total
f 6.91 [PgC year−1]. Our results show that the FS method estimates
ith an absolute difference from the original data 2.33 [PgC year−1],
he cLHS 2.56 [PgC year−1], and the acLHS 1.71 [PgC year−1]. This
ndicates that the prediction derived using the acLHS reduces a 33.6%
rror concerning the cLHS and a 26.7% error concerning the FS. The
catterplots between predicted soil CO2 efflux and Temperature show
elatively similar dispersion compared to the original data (Figure
11). Quantitatively, the spatial predictions from the acLHS method
eproduce better the correlation coefficients (i.e., Pearson, Kendall,
pearman) of the original data than the simulations from cLHS and
S (Table S4). In addition, the points of the cumulative univariate
robability distributions of the simulations from cLHS and acLHS are
omparable to points of the original data. In contrast, the points of
he FS sometimes deviate (Figure S12). In addition, the p-values of
he Kolmogorov–Smirnov test between the original soil CO2 efflux
nd the predictions from the cLHS and acLHS are 0.907 and 0.968,
espectively. In contrast, the 𝑝-value of the FS prediction is 0.002,
emonstrating statistical differences from the original data. Finally, the
imulations derived from the acLHS samples accurately reproduce the
xperimental spatial semivariogram of the original soil CO2 data, while
he simulations from FS and cLHS do not (Fig. 9). Quantitatively, the
emivariogram differences between the original soil CO2 efflux data
nd simulations from FS, cLHS, and acLHS are 131307.4, 271898, and
3345.71, respectively.
Overall, our results show that the acLHS method is also an improved

pproach to obtaining representative spatial samples to reproduce the
nivariate probability distribution functions of the target variables
i.e., spatial variability of soil CO2 efflux and Temperature), the spatial
elationships between them, and the spatial autocorrelation function of
oil CO efflux.
2
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4. Conclusions

Where and when to measure or collect a sample is critical for
environmental research. Biased sampling designs could result in flawed
estimates, conclusions, and predictions, so improvements and optimiza-
tion approaches are needed. Here, we introduce a novel approach to
optimize sample selection that could be applied in time series (1D)
and spatial arrays (2D). We propose the autocorrelated conditioned
Latin hypercube sampling (acLHS) as an approach to consider the uni-
variate probability distribution functions of the variables studied, the
dependency relationships between them, and the temporal or spatial
autocorrelation function of the variable of interest. This data-driven
approach informs the user about how to optimally subsample informa-
tion so that not all the original information is needed to recreate the
statistical properties (i.e., probability distributions) and the temporal
or spatial dependency. Our results show that the acLHS improves
traditional approaches for representing the variable of interest and
prediction estimates. We present two case studies using the information
on soil CO2 efflux, an essential variable for the global carbon budget,
n a time series (1D) and across the conterminous United States (2D) to
emonstrate the applicability and performance of the acLHS method.
ur results show the strengths of the acLHS method and how it can
e applied for sampling variables of interest relevant to environmental
ciences.
In our example, we used full realizations in a time series or in

pace to demonstrate (i.e., proof of concept) how the algorithm works.
he algorithm shows when or where to sample to reduce the number
f measurements needed to represent the statistical properties and
he temporal or spatial dependency of the variable of interest. The
lgorithm’s output can be used to inform a future sampling design
either in space or time) if the statistical properties and temporal
r spatial dependence are preserved. Consequently, future sampling
eeds fewer samples, but these will represent the statistical properties
nd temporal or spatial dependence of a full realization in space or
ime, saving time and resources for the researcher. Another application
s for modeling or simulation approaches, where parameters can be
alculated by using a subsample of the full realizations (in space or
ime) derived from our algorithm so computing costs are reduced.
n signal processing, these approaches belong to the overall domain
f data compression, so less information is needed to preserve the
ull original information. This work extends the cLHS by optimizing
ubsample selection, including information on statistical probabilities
nd temporal or spatial dependencies.
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Name of the code/library: acLHS
Contact: rvargas@udel.edu
Hardware requirements: NA.
Program language: R version 4.2.1
Software required: RStudio 2022.07.1
Program size: 4.1 MB
The source codes are available for downloading at the link: https:
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