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Sampling (acLHS). This method combines a conditioned Latin Hypercube (cLHS) to obtain a representative
sample of the joint probability distribution function and an autocorrelation model to reproduce the spatial
or temporal dependency function (i.e., temporal or spatial variability). The acLHS method was tested with
two case studies using data of soil CO, efflux (i.e., the CO, flux from soils to the atmosphere known as
soil respiration) that are useful for carbon cycle science. First, we used data representing a time series (1D
approach), and then spatial data (2D approach) across the conterminous United States (CONUS). Results show
that acLHS was more efficient than other sampling methods (i.e., fixed sampling, cLHS) as it better reproduced
the joint probability distribution and the temporal or spatial variability of the variable of interest. Finally,
we use a Bernstein copula-based stochastic co-simulation method (BCSCS) and demonstrated that the acLHS
reduces modeling prediction errors compared with other methods. The acLHS is a flexible method that can be
applied to any variable of interest as a time series (1D approach) or as a spatial format (2D approach).

1. Introduction et al., 2015; He et al., 2016; Vargas and Le, 2022) among many other

scientific applications.

A fundamental question for any sampling design is identifying
where and when to measure. The aim of data-driven temporal or
spatial (or geostatistical) sampling is to identify temporal locations
in a time series, or spatial positions in an area that contributes to a
representative sample of the geostatistical behaviors of the variables of
interest. This implies that the obtained sample must have comparable
statistical properties and similar spatial or temporal variability as the
original data set or phenomena of interest. Furthermore, representa-
tive samples should also be useful to derive models and predict the
variable of interest across time or space. A known challenge is that
accurate temporal or spatial sampling is limited by several factors,
including conceptual, logistical, technological, and physical constraints,
collectively known as interoperability barriers (Vargas et al., 2017).
Consequently, defining efficient methods for improving sampling de-
signs is a crucial task. Improving sampling designs has many practical
applications in environmental sciences, including modeling the spa-
tial distribution of soil properties (Carter and Gregorich, 2006; Brus
and Heuvelink, 2007; Oliver and Webster, 2015; Molla et al., 2022),
optimization of environmental observatory networks (Villarreal et al.,
2018; Barnett et al., 2019; Villarreal et al., 2019; Xiaojing et al.,
2022), or monitoring greenhouse gas fluxes (Vickers et al., 2009; Barton
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There are two main approaches for improving sampling designs:
probability-based, which follows the probability distribution function,
and configuration-based, following the temporal or spatial patterns.
These approaches have also been referred to as design-based and
model-based, respectively (Brus and De Gruijter, 1997). Probability-
based sampling is essentially based on univariate and multivariate
probability spaces and is focused on maximizing the reproducibility
of the statistical properties (e.g., the mean, median, quantiles) of the
resulting samples (McKay et al., 2000). Arguably, one of the most
popular methods is the conditioned Latin Hypercube Sampling (cLHS),
which presents a stratified random procedure to sample variables of
interest from their multivariate distributions (Minasny and McBrat-
ney, 2006). This method can be modified to add practical constraints
(e.g., travel time, terrain traversal, point clustering; (Roudier et al.,
2012)), sample more at the edge of the distribution (Minasny and
McBratney, 2010), or consider a high density of similar information
in the sampling design (Brungard and Johnanson, 2015). The cLHS
focuses on reproducing the univariate probability distribution functions
and the dependency relationships between the variables from the orig-
inal data to the samples. That said, cLHS is not designed to maximize
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the representation of the temporal or spatial variability of the variable
of interest. This limitation can influence the uncertainty of further
predictions using samples derived from this approach.

Configuration-based sampling is focused on representing temporal
or spatial coverage (De Gruijter et al., 2006; Walvoort et al., 2010),
variability (Bogaert and Russo, 1999; Lark, 2002) and prediction (Zhu
and Stein, 2006; Ma et al., 2020). For logistical reasons and simplicity,
the most common approach is a fixed sampling (FS) or regular (system-
atically aligned) sampling (Pebesma and Bivand, 2005). This approach
can be as simple as systematically aligned samples for the convenience
of the experimenter, or it can be varied to sample points evenly in the
areas of spherical caps using a Fibonacci lattice (Gonzélez, 2010) or
establish even sampling intervals in spatial strata that are constructed
by k-means clustering (Walvoort et al., 2010). Configuration-based
sampling focuses on reproducing the temporal or spatial variability
and distribution, but it has limitations in reproducing the statistical
properties and dependency relationships of the variables of interest.

Previous attempts have been made to combine probability-based
with configuration-based approaches. For example, Gao et al. (2016),
Wan et al. (2021) added spatial stratification (i.e., including X and
Y coordinates as covariates) to combine cLHS with spatial coverage.
This approach is an important advancement because the statistical
properties, the dependency relationships between the variables, and
the spatial coverage of the variable of interest are guaranteed. This
approach does not ensure that the spatial dependence function will
be reproduced. This function is essential since, from it, the variable
of interest can be better interpolated and predicted across space. Ac-
cording to Le et al. (2020), a random variable is characterized by its
univariate probability distribution function, the dependence function
with other variables, and the spatial or temporal dependence function.
Once we know these three functions, the variable of interest can be
accurately modeled. Therefore, there is a need to propose a sampling
method to combine probability-based approaches with configuration-
based approaches to reproduce those three functions from the original
data.

In this study, we combine probability-based (design-based) with
configuration-based (model-based) approaches and propose the auto-
correlated conditioned Latin Hypercube Sampling (acLHS) as a new
method. The acLHS incorporates information on the spatial or temporal
autocorrelation function (i.e., semivariogram) as an objective function
in the optimization scheme of the commonly used cLHS method. The
acLHS focus on maximizing the representativeness of variables’ uni-
variate probability distribution functions, the dependency relationships
between them, and the autocorrelation function in time or space of
the variable of interest. Thus, acLHS is a novel and flexible approach
to improving sampling designs for time series or spatial information.
In addition to Pearson’s linear correlation coefficient information, we
include rank correlation coefficients (i.e., Spearman and Kendall) to
provide information on non-linear dependency relationships and in-
terpretability in the resulting optimized samples. We propose that
acLHS is an efficient approach to represent better the temporal or
spatial distributions of the variable of interest and improve prediction
estimates derived from these samples.

The proposed acLHS is applied in two case studies using temporal
and spatial information of soil CO, efflux, which is the efflux of
CO, from soils to the atmosphere (i.e., soil respiration) and is rele-
vant for the global carbon cycle (Vargas et al., 2011; Phillips et al.,
2017). The global soil CO, efflux has been estimated to be around
88 Pg/yr (Warner et al., 2019); therefore, accurate measurements to
represent the temporal variability (Vargas et al.,, 2010) and spatial
representation (Stell et al., 2021) are needed to improve local-to-global
estimates. Temperature has been used as an essential variable to predict
soil CO, efflux (Rayment and Jarvis, 2000; Pumpanen et al., 2003;
Jassal et al., 2004; Curiel Yuste et al., 2010; Capooci and Vargas, 2022)
and here we explore the temporal and spatial relationships between
these two variables using the acLHS. The first case study represents a
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time series of soil CO, efflux and soil temperature (1D approach), and
the second one represents the spatial distribution of soil CO, efflux and
soil temperature across the conterminous United States (CONUS; 2D
approach). We compared the acLHS with a fixed sampling approach
(as a standard and simple configuration-based method) and using a
cLHS approach (as a common probability-based method). Finally, data
simulations are performed using the Bernstein copula-based temporal
or spatial stochastic co-simulation method (Diaz-Viera et al., 2018; Le
et al., 2020; Le, 2021; Le and Vargas, 2021, 2024) from the samples
resulting from each sampling method. Our results show that acLHS is
a flexible method that could be used to improve sampling designs and
subsequent prediction efforts.

2. Methodology

We propose a methodology to optimize a data sampling design us-
ing an autocorrelated conditioned Latin Hypercube Sampling (acLHS).
Here, we present a workflow that consists of four steps: (1) Input data,
(2) Sampling design, (3) Sample-based modeling, and (4) Prediction
(Fig. 1).

2.1. Input data

The input data represents two case studies: time series of soil
CO, efflux and temperature (1D approach); and spatial information
of soil CO, and temperature across CONUS (2D approach). Let .S =
{(x1,91), (X2, ¥2)s ..., (x,,, ¥,)} be observations of the variables X and
Y either as a time series or in a spatial distribution array, where
X is an independent environmental variable (e.g., temperature), Y is
a dependent variable such as soil CO, efflux (i.e., soil respiration).
Variables X and Y must have the same quantity of data distributed
over the same time frame (e.g., 1D array) or across the same spatial
locations (i.e., 2D array). In this work, we use a 365-day full-year time
series with a fixed 1-day temporal separation and a 903-point spatial
distribution array across the conterminous United States (CONUS) with
an equidistance of 100 km in longitudinal and latitudinal directions. We
clarify that there are no specific requirements for initial observations
to use this algorithm. Initial observations are completely defined by the
user and the algorithm resolves the optimization based on the user’s
selection. This is a data-driven approach, so the initial observations
influence the algorithm’s output as they will influence the statistical
properties and the temporal or spatial dependency that the algorithm
optimizes for. Therefore, the algorithm is flexible to optimize spatial or
temporal sampling, and the user decides which is the input information
to inform this analytical optimization. The next step is to explore and
compute their geostatistical properties, such as the univariate empirical
probability distribution of X and Y; the scatterplot between X and
Y, their correlation coefficients (i.e., Pearson, Spearman, and Kendall);
and the empirical semivariogram of the variable of interest Y.

2.2. Sampling design

The sampling design is performed by applying different methods
(i.e., fixed sampling, cLHS, and acLHS). Note that many previous
studies have shown that the cLHC is more efficient for sampling than a
random sampling approach (McKay et al., 2000; Minasny and McBrat-
ney, 2006; Worsham et al., 2012). Therefore, we have decided not to
include the random sampling method in this work. Validation is then
performed to conclude which sampling method yields a result that best
represents the original data. This validation is performed by comparing
the sampling results with the original data on aspects of geostatis-
tical properties such as univariate probability distribution of X and
Y, dependency relationship coefficients between X and Y (i.e., Pear-
son, Spearman, and Kendall), and the temporal or spatial dependence
function (i.e., semivariogram) of the variable of interest Y. We used
the Kolmogorov-Smirnov test to compare the univariate probability
distribution and the L1 norm (i.e., the sum of absolute difference) for
the correlation coefficients and empirical semivariogram.
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Fig. 1. Workflow of the methodology.

2.2.1. Autocorrelated conditioned Latin Hypercube Sampling method
First, we describe the autocorrelated conditioned Latin Hypercube
Sampling (acLHS). In geostatistical sampling, the objective is to obtain
a sample subset s of size k that is representative of the observations
S; this means that s and S must have the equivalent geostatistical
properties, such as the univariate statistical properties of X and Y,
the dependency relationships between X and Y, and last but not least,
the temporal or spatial autocorrelation of the variable of interest Y.
The acLHS is an extension of the widely used cLHS (McKay et al.,
2000; Minasny and McBratney, 2006), which consists of adding the
rank correlation coefficients (i.e., Kendall and Spearman) and the auto-
correlation function (i.e., semivariogram model) to the cLHS. The cLHS
is a data-driven sampling method, and it focuses on obtaining a sample
subset s that has similar statistical properties and linear dependency
relationship between variables of .S; however, cLHS does not emphasize
nonlinear dependence relationships (i.e., Kendall and Spearman) or the
temporal or spatial autocorrelation function (i.e., semivariogram) of
the variable of interest Y. In contrast, the acLHS is designed to ensure
that all geostatistical properties are reproducible, such as the univariate
probability distribution function of X and Y, the linear and nonlinear
dependency relationships between X and Y (i.e., Pearson, Kendall and
Spearman), and the temporal or spatial autocorrelation function of the
variable of interest Y. Here we describe step by step the acLHS method.

1. Divide the quantile distribution of X and Y into k strata, each
stratum i with the same probability of i and its boundary
[0} ,Q;']];[Qi ,Q;“l], for i = {l,...,k}. For each stratum or
interval [O' Q"; 1], a sample of Y must be taken. Through this
stratification strategy, an initial representative subset of the
univariate probability distribution of the variable Y will be
obtained. Note that this initial representative subset has its
corresponding temporal or spatial coordinates. Our next step is
to perturb to obtain an optimal sample from each stratum that
minimizes the following functions.

2. To ensure that the univariate probability distribution of the
variable X of the sample subset s and of the observations .S are
statistically equivalent, we must insert the objective function 1:

k
OF, = 2 |count(Q~g( <x; < Q;’l) -1

i=1

(€Y

To ensure a good spatial or temporal distribution of the sam-
ple points, the spatial or temporal coordinates can be entered
together with the variable X.

3. An objective function 2 is added to guarantee that the depen-
dency relationships between the variables X and Y of the sample
subset s and of the observations S are similar:

s s s
OF; =Iryy = ryyl + 0%y = oxy | + 173y = Txy| @

S s s S S S e 13

where Fys Py Txys Ty Pyys Tyy are Pearson’s linear correla-
tion coefficient, and Spearman’s and Kendall’s rank correlation
coefficient between X and Y of s and of .S, respectively.

4. Objective function 3 is to aim that the spatial or temporal

autocorrelation of Y, the sample subset s, and the observations

S are equal:
mAu

OFy = Y Irs(h) =y ()| ®3)
h=Au

where m > 1 and ry (), y;f (h) are empirical semivariograms of s
and of S, respectively. These are calculated as follows:

N(du)

O Yy + 4wy = Y ()PP @
i=1

h=Au) =
=40 =SS
where N (4u) is the number of pairs Y (u; + Au) and Y (u;) that are
separated by a time or distance lag Au.
5. The sum value of the three objective functions is defined as:

OF = w|OF| + w,OF, + w;0F; 5)

where w; are weights of each objective function. The weight of
the objective functions can vary depending on the case study.
We explored the sensitivity of the weights of each function to
optimize the algorithm while minimizing the error. The selected
weights for Case Study 1 were: w;= 0.3, w,= 100, w;= 1.0.
The selected weights for Case Study 2 were: w,= 10, w,= 1000,
w3= 0.001. There are multiple methods for global optimiza-
tion processes including, but not limited to, ant colony opti-
mization (Aragén-Royon et al., 2020), swarm-based optimiza-
tion (Ciupke, 2016), simulated annealing (Xiang et al., 2013),
and differential evolution (Storn and Price, 1997), among oth-
ers. In this study, we chose differential evolution optimization
because of several advantages such as simplicity, efficiency, and
ease to use (Rout et al.,, 2013; Storn and Price, 1997). We
clarify that this algorithm can be applied using other global
optimization methods.

6. Iteration of steps 2—6.

Repeat steps 2 through 6 until the sum value of the objective func-
tions (OF) reaches the error tolerance or until a maximum specified
number of iterations (e.g., 1000 iterations) have been completed. We
clarify that the algorithm either stops when it reaches a declared error
or a maximum specified number of iterations, whatever is reached
first. In this study, we declare an error tolerance of 10~® and 10,000
iterations for Case Study 1 and an error tolerance of 10~® and 20,000
iterations for Case Study 2. In both case studies, the optimization
process does not reach error tolerance, and only reaches the maximum
number of iterations. Note that this global optimization process, like
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all optimization methods, always has costs and benefits (Qin et al.,
2009). The cost here is the high computational time and the benefit
is obtaining the representative optimized samples. Furthermore, this
method is considered a data-driven sampling because the optimized
samples are based on information from target and independent vari-
ables (i.e., univariate and multivariate distributions, and temporal or
spatial correlation function).

At the end of this workflow, the acLHS will represent the probability
space with the univariate distributions, the dependency relationships
maintained, and the temporal or spatial autocorrelation of the variable
of interest Y will be reproducible. This algorithm is implemented using
the RGEOSTAD tools (Diaz-Viera et al.,, 2021) and is coded using
the R software (R Core Team, 2022). Note that the proposed method
“acLHS” is an extension of cLHS to obtain representative samples in the
following aspects: univariate and multivariate statistics; and temporal
or spatial dependence. Based on those representative samples, we can
build a model to generate additional samples, as described by Iman
and Conover (1980). Furthermore, in the next sections, we will also
adopt Latin Hypercube sampling to generate representative realizations
or simulations (conditional) from a non-Gaussian random field model
using the BCSCS method, as described in Pebesma and Heuvelink
(1999) and Kyriakidis and Gaganis (2013).

2.3. Sample-based modeling

Sample-based modeling is then performed using Bernstein copula-
based stochastic co-simulation method (BCSCS) (Diaz-Viera et al., 2018;
Le et al.,, 2020; Le, 2021; Vazquez-Ramirez et al., 2023) from the
sample resulting from different methods mentioned above. We used
the BCSCS method because of its capability to simulate the geosta-
tistical properties of the target variables (Le et al., 2020). Therefore,
we build a geostatistical model based on the samples obtained using
the aforementioned sampling methods. This modeling aims to obtain
a representative geostatistical model of the natural phenomenon we
are investigating (e.g., soil respiration). Then, using this model, the
variable of interest Y can be simulated or predicted using the variable
X as an auxiliary variable. For this, the BCSCS method is applied
from the samples obtained to construct the characteristic functions such
as the univariate probability distribution functions of X and Y, the
dependency relationships between X and Y, and the temporal or spatial
dependence of the variable of interest Y. The univariate probability
distribution functions of X and Y are modeled using the Bernstein
polynomial approximation. The dependency relationship between X
and Y is modeled using the Bernstein copula, and the temporal or
spatial autocorrelation function of Y is modeled by a semivariogram
function (more detail can be seen in Le et al. (2020), Le (2021)).

2.4. Prediction

Finally, we predict the temporal or spatial distribution of the target
variable (i.e., CO, efflux) conditioned by temperature, as an essential
environmental control, using inferred models based on samples from a
time series (1D approach) or spatial distribution (2D approach) from
the previous step. The representative geostatistical models obtained
from the samples from the different sampling methods are used to
predict the variable of interest Y conditioned by all the information
of the variable X as an auxiliary variable. These predictions can be
considered as the simulations of the variable Y, aiming to represent
the geostatistical properties of the samples obtained from the different
sampling methods. Finally, the prediction results of varying sampling
methods are compared with the original data on their temporal or
spatial distribution and the geostatistical properties. We propose that if
the samples are better representative of the original population or data,
their predictions should be close to the original data. We highlight that
this framework is flexible and can be applied to any target variable of
interest.
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3. Application
3.1. Case study 1: Temporal sampling

The input data are time series of CO, efflux [pmol m=2 s~1; de-
pendent variable] and Temperature [°C; independent variable] from
a temperate forest described in the previous studies (Petrakis et al.,
2018; Barba et al., 2021). We used daily resolution of these variables
taken during one year of measurements. The target sampling was 48
days out of 365 possible data points, equivalent to about one sample
per week during a year (i.e., about 4 times per month and 12 months
times 4 is 48 samples). We applied three sampling methods: (1) Fixed
sampling (FS), is a sampling method with a fixed equidistant in time or
x, y coordinates. In this case, data points are selected approximately
every 8 days within the 365 data points. This method represents a
traditional configuration-based approach. It is common practice that re-
searchers visit a study site once a week to simplify logistical challenges
(e.g., transportation, limited human resources), and aims to represent
the general temporal variability within a year. (2) Traditional cLHS
using the clhs package in R (Roudier, 2011) with two variables: CO,
efflux and Temperature. This method represents a common probability-
based approach focused on representing the statistical properties of
CO, efflux and Temperature. (3) The proposed acLHS, described in the
previous section, where X is Temperature and Y is CO, efflux. The
acLHS is a method to combine probability-based and configuration-
based approaches. For this case study, 10000 iterations were chosen
to find an optimal sample with a computational time of about 8 min
using a PC with an Intel® Core™ i7-6700HQ CPU @ 2.60 GHz x 8
processors and 16 GB of RAM. Figure S1 illustrates the optimization
process of the objective function for acLHS, where the value of the
objective function decreases as the number of iterations applied by the
differential evolution method increases. Note that the first sampling
method only takes into account the temporal configuration (i.e., time),
while the last two sampling methods use the information of the target
variable (i.e., soil CO, efflux) and the covariate (i.e., temperature).

All three sampling methods (FS, cLHS, and acLHS) selected 48
samples distributed across the year (Fig. 2). The FS method purposely
targets this temporal coverage across a year (i.e., fixed systematic
sampling). The other methods (i.e., cLHS, acLHS) did not predispose
this temporal coverage. Still, the natural variability (i.e., univariate
probability distribution functions, the dependency relationship, the
temporal dependency function) of CO, efflux and Temperature resulted
in samples distributed across the year. The scatterplots between the
CO, efflux and Temperature derived from all three sampling methods
show a apparently similar dispersion when compared to the original
data (Figure S2). Still, the methods have substantial differences, as
described here.

First, the samples from the acLHS method reproduce better the cor-
relation coefficients (i.e., Pearson, Kendall, Spearman) of the original
data than the samples from other sampling methods (Table S1). Second,
the points of the cumulative univariate probability distributions of the
samples from cLHS and acLHS are comparable to the original data. In
contrast, samples from the FS sometimes deviate (Figure S3 and Figure
S4). The Kolmogorov-Smirnov test shows p-values equal to 1 between
the original data and samples from cLHS and acLHS, while samples
from FS have p-values < 1. These results show that the cumulative
probability distributions of the samples derived using cLHS or acLHS
are closer to the original data distribution than those derived from FS.
Third, the samples from acLHS reproduce the experimental temporal
semivariogram of the original CO, efflux data, while the samples from
cLHS do not (Fig. 3). We highlight that the experimental temporal
semivariogram of the samples from FS cannot be calculated for lags < 8
days because the fixed sample resolution is 8 days. Therefore, samples
from FS cannot reproduce the temporal dependency of the original
data.
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Fig. 2. Temporal distribution of: (a) CO, efflux data in black circles, and sampling days resulted from three sampling methods: (b) FS in green squares, (c) cLHS in red triangles,

and (d) acLHS in blue diamonds.
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Fig. 3. The experimental temporal semivariogram for the CO, efflux data in black
circles, and for samples resulted from three sampling methods: FS in green squares,
cLHS in red triangles and acLHS in blue diamonds, and the fitted semivariogram model.

We used BCSCS for predictions of CO, efflux using data selected by
each of the three sampling methods. Predictions of CO, efflux were con-
ditioned with information from Temperature (independent variable)
for calculations on 365 days (Fig. 4). We argue that a geostatistical
simulation from the samples is preferred to generating realizations with
similar or equivalent univariate probability distribution functions and
dependency relationships and the temporal or spatial autocorrelation
function of those samples (Le et al., 2020; Le, 2021).

The sum of the absolute differences between the CO, efflux original
data and the simulations from FS, cLHS, and acLHS are 521.654,
572.232, 405.600 [pmol m~2 s~!], respectively. This indicates that
the prediction derived from the acLHS has a 29% and 22% less error
than the predictions from cLHS and FS, respectively. The scatterplots
between predicted CO, efflux and Temperature show relatively similar
dispersion compared to the original data (Figure S5). Quantitatively,
the predictions from the acLHS method reproduce better the correlation
coefficients (i.e., Pearson, Kendall, Spearman) of the data than the
simulations from the samples of cLHS and FS (Table S2). In addition,
the points of the cumulative univariate probability distributions of

the predictions from cLHS and acLHS are comparable to the original
data points. In contrast, the predictions from the FS sometimes deviate
(Figure S6). In addition, the p-values of the Kolmogorov-Smirnov test
between the original CO, efflux data and predictions from cLHS and
acLHS are equal to 0.975, 0.951 respectively, while the FS is 0.644.
Finally, the predictions derived from acLHS reproduce the experimental
temporal semivariogram of the original CO, efflux data, while the
predictions from cLHS and FS do not (Fig. 5). Quantitatively, the sum of
the semivariogram absolute differences between the original CO, efflux
data and predictions from FS, cLHS, and acLHS methods are 14.653,
17.690, and 0.847, respectively.

Overall, our results show that the acLHS method is an improved
approach to obtaining representative samples to better reproduces the
univariate probability distribution functions of Temperature and CO,
efflux, the dependency relationships between them, and the temporal
autocorrelation function of CO, efflux. Consequently, predictions of
CO, efflux conditioned by Temperature are improved when using
samples derived from the acLHS method.

3.2. Case study 2: Spatial sampling

The input data are the spatial distribution of soil CO, efflux [g C
m~2 year~!; dependent variable] and Temperature [°C; independent
variable] across CONUS. These data points were extracted from spatial
explicit information of global soil respiration (Stell et al., 2021). We
up-scaled the native resolution of the spatial information from 1 km
to 100 km to obtain a dataset with 903 data points. This was done
to simplify the case study as a proof-of-concept and facilitate BCSCS
simulations. From 903 data points across CONUS, we tested the three
methods mentioned above (i.e., FS, cLHS, acLHS) to extract 50 rep-
resentative data points. We chose 50 samples because 50 samples are
comparable with our selection of 48 samples for the 1D approach.
This was an arbitrary number that represented a distance of about
450 km among sampling points. The data points using the FS method
were selected by systematically aligned sampling (Pebesma and Bivand,
2005). Then, 50 data points across CONUS were selected using cLHS
as a probability-based approach, and another 50 data points using
acLHS to combine probability-based and configuration-based methods.
We performed 20000 iterations to find an optimal sample with a
computational time of about 18 min using a PC with an Intel® Core™
i7-8700 CPU @ 3.20 GHz x 12 processors and 32 GB of RAM. Figure S7
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Fig. 4. Temporal distribution of: (a) CO, efflux data in black circles, and simulations resulted from three sampling methods: (b) FS in green squares, (c) cLHS in red triangles,

and (d) acLHS in blue diamonds.
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Fig. 5. The experimental temporal semivariogram (black circles) and the fitted model
(black line) of the CO, efflux data; and the experimental temporal semivariogram of
the simulations from samples the 3 sampling methods: FS in green squares, cLHS in
red triangles and acLHS in blue diamonds.
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(black line) of the soil CO, efflux data; and the experimental spatial semivariogram of
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illustrates the optimization process of the objective function for acLHS,
where the value of the objective function decreases as the number
of iterations applied by the differential evolution method increases.
Note that the first sampling method only takes into account the spatial
configuration (i.e., x and y coordinates), while the last two sampling
methods use the information of the target variable (i.e. soil CO, efflux)
and the covariate (i.e., temperature).

The spatial distribution of the samples across CONUS reflects the
predisposed conditions of each of the three methods (i.e., FS, cLHS,
and acLHS; Fig. 6). The scatterplots between soil CO, efflux and
Temperature from all three sampling methods show an apparent similar
dispersion compared to the original data (Figure S8). Still, important
differences are similar to those described in the first case study. First,
the samples of the acLHS method reproduce better the correlation
coefficients (i.e., Pearson, Kendall, Spearman) of the data than the
samples from other sampling methods (Table S3). Second, the points
of the cumulative univariate probability distributions of the samples
from cLHS and acLHS are comparable to the original data. In contrast,
samples from the FS sometimes deviate (Figure S9 and Figure S10). In
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efflux data; and the experimental spatial semivariogram of the simulations from samples
the 3 sampling methods: FS in green, cLHS in red, and acLHS in blue.

addition, the Kolmogorov-Smirnov test also shows p-values equal to 1
between the original data and samples from cLHS and acLHS, while
samples from FS have p-values < 1. These results also show that the
cumulative probability distributions of the samples derived using cLHS
and acLHS are closer to the original data distribution than those derived
from FS. Third, the cLHS samples do not reproduce the experimental
spatial semivariogram of the original data, and neither can the FS
samples since the sampling distance is fixed at 400 km (Fig. 7). In
contrast, the acLHS sample accurately reproduces the original data’s
experimental spatial semivariogram (Fig. 7).

We also used BCSCS to predict spatial variability of soil CO, efflux
conditioned with information on Temperature across CONUS using
samples derived from each tested method. Our results show that the

spatial patterns of soil CO, efflux predictions derived using the acLHS
method were more similar to the original data than the predictions
from FS and cLHS (Fig. 8). We calculated the sum of the soil CO,
efflux across CONUS and found that the original data estimates a total
of 6.91 [PgC year~!]. Our results show that the FS method estimates
with an absolute difference from the original data 2.33 [PgC year~!],
the cLHS 2.56 [PgC year~'], and the acLHS 1.71 [PgC year~']. This
indicates that the prediction derived using the acLHS reduces a 33.6%
error concerning the cLHS and a 26.7% error concerning the FS. The
scatterplots between predicted soil CO, efflux and Temperature show
relatively similar dispersion compared to the original data (Figure
S11). Quantitatively, the spatial predictions from the acLHS method
reproduce better the correlation coefficients (i.e., Pearson, Kendall,
Spearman) of the original data than the simulations from cLHS and
FS (Table S4). In addition, the points of the cumulative univariate
probability distributions of the simulations from cLHS and acLHS are
comparable to points of the original data. In contrast, the points of
the FS sometimes deviate (Figure S12). In addition, the p-values of
the Kolmogorov-Smirnov test between the original soil CO, efflux
and the predictions from the cLHS and acLHS are 0.907 and 0.968,
respectively. In contrast, the p-value of the FS prediction is 0.002,
demonstrating statistical differences from the original data. Finally, the
simulations derived from the acLHS samples accurately reproduce the
experimental spatial semivariogram of the original soil CO, data, while
the simulations from FS and cLHS do not (Fig. 9). Quantitatively, the
semivariogram differences between the original soil CO, efflux data
and simulations from FS, cLHS, and acLHS are 131307.4, 271898, and
13345.71, respectively.

Overall, our results show that the acLHS method is also an improved
approach to obtaining representative spatial samples to reproduce the
univariate probability distribution functions of the target variables
(i.e., spatial variability of soil CO, efflux and Temperature), the spatial
relationships between them, and the spatial autocorrelation function of
soil CO4 efflux.
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4. Conclusions

Where and when to measure or collect a sample is critical for
environmental research. Biased sampling designs could result in flawed
estimates, conclusions, and predictions, so improvements and optimiza-
tion approaches are needed. Here, we introduce a novel approach to
optimize sample selection that could be applied in time series (1D)
and spatial arrays (2D). We propose the autocorrelated conditioned
Latin hypercube sampling (acLHS) as an approach to consider the uni-
variate probability distribution functions of the variables studied, the
dependency relationships between them, and the temporal or spatial
autocorrelation function of the variable of interest. This data-driven
approach informs the user about how to optimally subsample informa-
tion so that not all the original information is needed to recreate the
statistical properties (i.e., probability distributions) and the temporal
or spatial dependency. Our results show that the acLHS improves
traditional approaches for representing the variable of interest and
prediction estimates. We present two case studies using the information
on soil CO, efflux, an essential variable for the global carbon budget,
in a time series (1D) and across the conterminous United States (2D) to
demonstrate the applicability and performance of the acLHS method.
Our results show the strengths of the acLHS method and how it can
be applied for sampling variables of interest relevant to environmental
sciences.

In our example, we used full realizations in a time series or in
space to demonstrate (i.e., proof of concept) how the algorithm works.
The algorithm shows when or where to sample to reduce the number
of measurements needed to represent the statistical properties and
the temporal or spatial dependency of the variable of interest. The
algorithm’s output can be used to inform a future sampling design
(either in space or time) if the statistical properties and temporal
or spatial dependence are preserved. Consequently, future sampling
needs fewer samples, but these will represent the statistical properties
and temporal or spatial dependence of a full realization in space or
time, saving time and resources for the researcher. Another application
is for modeling or simulation approaches, where parameters can be
calculated by using a subsample of the full realizations (in space or
time) derived from our algorithm so computing costs are reduced.
In signal processing, these approaches belong to the overall domain
of data compression, so less information is needed to preserve the
full original information. This work extends the cLHS by optimizing
subsample selection, including information on statistical probabilities
and temporal or spatial dependencies.
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