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ABSTRACT

Terrain parameters such as slope, aspect, and hillshading are es-
sential in various applications, including agriculture, forestry, and
hydrology. However, generating high-resolution terrain parame-
ters is computationally intensive, making it challenging to provide
these value-added products to communities in need. We present a
scalable workflow called GEOtiled that leverages data partitioning
to accelerate the computation of terrain parameters from digital ele-
vation models, while preserving accuracy. We assess our workflow
in terms of its accuracy and wall time by comparing it to SAGA,
which is highly accurate but slow to generate results, and to GDAL,
which supports memory optimizations but not data parallelism. We
obtain a coefficient of determination (R?) between GEOtiled and
SAGA of 0.794, ensuring accuracy in our terrain parameters. We
achieve an X6 speedup compared to GDAL when generating the
terrain parameters at a high-resolution (10 m) for the Contiguous
United States (CONUS).
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1 INTRODUCTION

Terrain parameters such as slope, aspect, and hillshading can be de-
rived from a Digital Elevation Model (DEM) [1]. These parameters
can be generated at different spatial resolutions and are funda-
mental in applications such as forestry and agriculture, hydrology,
landscape ecology, land-atmosphere interactions, and soil moisture
prediction [2, 3]. However, generating high-resolution terrain pa-
rameters from DEMs is computationally expensive, hindering their
accessibility for multiple applications.

Two of the most commonly used Geographic Information Sys-
tems (GIS) to generate terrain parameters from DEMs are SAGA
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GIS [4] and GDAL [5]. Both are Free Open Source Software (FOSS).
SAGA is widely used in the scientific community because it focuses
on accuracy. However, it uses computational resources inefficiently
since it loads all elevation data onto RAM memory to compute the
terrain parameters. Given the potential high resolution of DEMs
(e.g., 30m, 10m, 3m), the computation becomes infeasible, consid-
ering that the size of the elevation model can surpass memory
capacity for large geographical regions. On the other hand, GDAL
is memory efficient because it loads the elevation data onto RAM
memory in chunks while running the computation. However, gen-
erating terrain parameters from DEMs can be further optimized for
high throughput computing (HTC) systems such as the cloud.

To address these challenges, we propose GEOtiled. This scalable
workflow leverages data partitioning to distribute the computation
of terrain parameters at a high resolution across the nodes of HTC
systems while preserving accuracy and efficient memory usage.
To this end, we partition the elevation data into tiles with neigh-
borhood buffers that can be distributed into independent virtual
machines (VM) instances of an HTC system. Each instance com-
putes the terrain parameters for the assigned tile, and our workflow
recomposes the tile patches into a spatial continuous. We assess
the effectiveness of our workflow, GEOtiled, in terms of perfor-
mance and accuracy by comparing the metrics with derived terrain
parameters from SAGA and GDAL.

The contributions of this work are as follows: (a) We design
a workflow that performs elevation data partitioning to exploit
data parallelism in generating large datasets of high-resolution (i.e.,
10 m) terrain parameters from a DEM. (b) We validate our workflow
in terms of accuracy by comparing the parameters generated by our
workflow to those generated by SAGA for the Contiguous United
States (CONUS) region at 1 km resolution. (c) We demonstrate our
workflow’s effectiveness in terms of scalability by generating three
critical terrain parameters (i.e., slope, aspect, hillshading) at 1 km
and 10 m resolution for CONUS and comparing the performance
of our method with SAGA and GDAL.

2 WORKFLOW COMPOSITION

GEOtiled comprises three stages: (i) the partition of the DEM of
the region of interest (i.e., CONUS) into tiles, each with a buffer
region; (ii) the computation of the terrain parameters for each tile;
and finally, (iii) the generation of a mosaic for each parameter from
the tiles by averaging the values of the pixels that overlap between
the tiles (i.e., pixels within the buffer regions).

We use a DEM from the USGS 3D Elevation Program [1] as the
input to our workflow. We pre-process the elevation data by re-
projecting it to a coordinate system in metric units because it is
required for SAGA and GDAL to compute terrain parameters. We
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crop the DEM into a number of tiles that fit the number of processes
and whose size fits the memory available. We add a buffer region to
each to prevent boundary artifacts. The boundary artifacts happen
because computation at a single pixel uses values from adjacent
pixels; therefore, when there are no buffers, the accuracy of the
computation process is impacted. We use GDAL to compute the
terrain parameters on each independent tile. Last, we clean the
repetitive information from the buffer regions by building a mosaic
with the average values of the overlapping regions within the tiles.
Our workflow is composable: it deploys existing tools such as
GDAL for the computation. At the same time, it orchestrates the
three stages and optimizes the computation process by introduc-
ing tiles to perform parallel computation in an environment with
multiple VMs or threads. In this way, we decrease the computation
time and reduce the memory usage per VM by exploiting data-level
parallelism while preventing the formation of boundary artifacts.

3 ACCURACY AND SCALABILITY STUDIES

To demonstrate the effectiveness of our workflow, we present an
accuracy and performance scalability study for CONUS at different
spatial resolutions.

Accuracy Study. We compare terrain parameters SAGA (refer-
ence) generated versus GEOtiled for CONUS at 1 km. We observe a
coefficient of determination (R?) of 0.794, and the distribution of
values generated by GEOtiled follows SAGA’s as shown in Figure 1,
validating the accuracy of our workflow.
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Figure 1: Distribution of slope values generated by SAGA and
GEOtiled for CONUS at 1 km resolution.

Scalability Study. We compare the wall time it takes SAGA,
GDAL, and our GEOtiled workflow to generate the three terrain
parameters for two data scenarios in Table 1. For this study, we
partition both input datasets into 400 tiles when we increase the
resolution from 1 km to 10 m, the input and output data scale from
hundreds of MB to TB. We test our workflow with 10 VMs on
Jetstream 2, each with 8 CPU cores, 30GB RAM, and 60 GB disk.

. Number | Points Input Output
Resolution . R . .

of tiles | pertile | datasize | data size

1 km 400 37.9k 30.9 MB 69.7 MB

10 m 400 437M | 341.1GB | 911.1GB

Table 1: Data scenarios for CONUS at two resolutions.

Figure 2 shows the wall time for the slope computation; the
most compute- and memory-demanding of the three parameters.
We observe that the SAGA wall time is several orders larger than
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Figure 2: Wall time for SAGA, GDAL, and GEOtiled for calcu-
lating the slope for CONUS at 1 km resolution.

for GDAL and GEOtiled. Figure 3 compares the wall time for the
slope computation using GEOtiled and GDAL. We do not consider
SAGA because the required resources (RAM memory and time) are
unfeasible. For 400 tiles, we achieve a speedup of nearly x6 with

GEOtiled.
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Figure 3: Wall time for GDAL and GEOtiled for the computa-
tion of slope for CONUS at 10 m resolution.

4 CONCLUSION

We present GEOtiled, a scalable workflow that generates large
datasets of high-resolution terrain parameters. We demonstrate
the effectiveness of our workflow by studying its accuracy and
scalability performance compared to other GIS tools. We provide a
Jupyter Notebook with our workflow, GEOtiled.ipynb, in
https://github.com/TauferLab/SOMOSPIE.
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