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Abstract—Recent advances in deep learning have accelerated
its use in various applications, such as cellular image analysis
and molecular discovery. In molecular discovery, a generative
adversarial network (GAN), which comprises a discriminator
to distinguish generated molecules from existing molecules and
a generator to generate new molecules, is one of the premier
technologies due to its ability to learn from a large molecular data
set efficiently and generate novel molecules that preserve similar
properties. However, different pharmaceutical companies may be
unwilling or unable to share their local data sets due to the geo-
distributed and sensitive nature of molecular data sets, making
it impossible to train GANs in a centralized manner. In this
paper, we propose a Graph convolutional network in Generative
Adversarial Networks via Federated learning (GraphGANFed)
framework, which integrates graph convolutional neural Network
(GCN), GAN, and federated learning (FL) as a whole system
to generate novel molecules without sharing local data sets. In
GraphGANFed, the discriminator is implemented as a GCN to
better capture features from molecules represented as molecular
graphs, and FL is used to train both the discriminator and
generator in a distributive manner to preserve data privacy.
Extensive simulations are conducted based on the three bench-
mark data sets to demonstrate the feasibility and effectiveness
of GraphGANFed. The molecules generated by GraphGANFed
can achieve high novelty (=~ 100) and diversity (> 0.9). The
simulation results also indicate that 1) a lower complexity
discriminator model can better avoid mode collapse for a smaller
data set, 2) there is a tradeoff among different evaluation metrics,
and 3) having the right dropout ratio of the generator and
discriminator can avoid mode collapse.

Index Terms—Generative adversarial networks, Graph convo-
lutional networks, Federated learning, Drug discovery

I. INTRODUCTION

The discovery of new organic and inorganic molecules
remains a challenge in medicine, chemistry, and materials
sciences. Traditional approaches to molecular discovery in-
volve mathematical frameworks derived from related proper-
ties calculated from chemical structures with different physical
or biological reactions [1, 2]. However, these mathemati-
cal frameworks may not fully capture the properties of the
chemical structures, limiting the ability to fully explore novel
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molecules. To address this challenge, computer-aided solutions
have been developed that utilize deep learning methods to
learn highly complex representations of chemical structures,
extract features from existing molecules, and generate new
molecules based on the learned features. These approaches
have shown promise in facilitating molecular generation [3—6]
and de novo drug design [7].

Deep generative models, one of the deep learning models
widely applied in molecular discovery, generate molecules
based on features/patterns learned from the existing molecule
sets with desired chemical properties. There are two com-
mon types of input data for generative models: Simplified
Molecular Input Line Entry System (SMILES) representations
[8] and molecular graphs [9]. SMILES is a string-based
representation, has been applied as the input data type for
Natural Language Processing (NLP) deep learning models
such as Recurrent Neural Networks (RNNs) [10, 11] and Auto-
Encoders [12-17]. Recent works have explored the use of
RNN-based generative models to learn the properties of the
existing molecules represented as SMILES, and then generate
novel molecules with the same properties. Auto-Encoder based
models comprise an encoder and a decoder, where the encoder
encodes the molecules into a latent vector representation and
the decoder transforms the latent vectors back to molecules.
In contrast to SMILES, molecular graphs use edges and nodes
to represent the structures of molecules. Molecular graphs can
represent more detailed structures of molecules than SMILES,
thus attracting much attention [12]. Fig. 1 shows different
molecular representations for generative modeling.

Graph Convolutional Neural Network (GCN) is a typical
deep learning model that can learn molecular graph repre-
sentations and analyze the related properties [18-20]. For
example, [21] applies GCN to estimate a specific metric (e.g.,
novelty, validity, or uniqueness) of a molecule by analyzing
the structure of the molecule represented as a molecular graph.
Generative Adversarial Networks (GANs) have emerged as
another popular approach for molecular discovery [1, 3, 4].
A GAN model consists of a generator and a discriminator
that compete with each other. The generator generates realistic
new samples that preserve the features of the existing samples
to deceive the discriminator, while the discriminator tries to
differentiate between the generated and existing samples. The
generator and discriminator are trained iteratively, and the
generator becomes better at generating realistic samples that
deceive the discriminator over time. GANs have been widely
used in various image generation tasks and have demonstrated
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Fig. 1: Different molecular representations.

outstanding performance [22-24]. The performance of GANs
for molecular generation can be further improved by inte-
grating GCNs since GCNs can learn more detailed properties
of molecules represented as graphs. Hence, the integration of
GCN and GAN in drug discovery is worth investigating.

To derive an accurate deep learning model for generating
new molecules, it is essential to train the model on a large
and diverse data set. However, it is not realistic to obtain
this data set because the sharing of different pharmaceutical
companies’ molecular databases is not always feasible due to
the compound intellectual property and strict data regulation
[25]. One of the existing solutions is that pharmaceutical
companies encrypt their data samples and share the encrypted
data samples with a third party, which trains the model over the
encrypted data samples by using Secure Multiparty Compu-
tation (MPC) [26]. The encryption method, however, cannot
fully ensure data privacy, thus hindering collaborative drug
discovery. Recently, Federated Learning (FL) has emerged
as a promising solution to train deep learning models in
a distributed and privacy-preserving manner [27]. In FL, a
centralized FL server broadcasts a global model to all the
clients in terms of pharmaceutical companies. Each client
trains its received global model over its local data set for
several epochs and then uploads its trained local model to the
FL server. After that, the FL server aggregates the received
local models from the clients to generate a new global model,
and then broadcasts the new global model to the clients to
start the next global round. This process continues until the
global model is converged. The clients only share their local
models and do not share their local data sets, which ensures
data privacy. Hence, FL can enable pharmaceutical companies
to collaborate and train accurate deep learning models on
their collective data while preserving data privacy, which is
important to accelerate the drug discovery process.

In this work, we propose the Graph convolutional network
in Generative Adversarial Networks via Federated learning
(GraphGANFed) framework for molecular discovery, which
leverages FL to train a GAN model that uses GCNs to repre-
sent molecules as graphs. In this framework, the discriminator
is implemented by a GCN that learns the features/properties of
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the existing molecules, while the generator is implemented by
a multilayer perceptron (MLP) or a multilayer neural network
that generates new molecules while preserving the properties
of the existing molecules to deceive the discriminator. The
discriminator and generator are trained based on FL, which
ensures data privacy as each client keeps its data locally.
In GraphGANFed, the discriminator evaluates the molecules
generated by the generator. This evaluation guides the gen-
erator to generate new molecules that preserve features of
existing molecules but have different structures, so that the
generator can deceive the discriminator later on. Hence, it is
critical to design a good discriminator model that can perform
an accurate evaluation to guide the generator in generating
more realistic new molecules. Therefore, we investigate how
different discriminator model structures affect the performance
metrics (e.g., Validity, Novelty, Diversity, etc.) in our frame-
work GraphGANFed. We also analyze how different dropout
ratios affect the evaluation metrics. The main contributions of
our work are summarized as follows.

e We propose a GraphGANFed framework that combines
GCN, GAN, and FL to generate novel and effective
molecules while preserving data privacy.

o We implement GraphGANFed and demonstrate its per-
formance based on three benchmark datasets. The results
indicate that GraphGANFed generates molecules with
high novelty (= 100) and diversity (> 0.9).

o We investigate the impact of various factors on the
performance of GraphGANFed, including the complexity
of the discriminator, number of clients, and dropout ratios
via extensive simulations.

The rest of the paper is organized as follows. Section
IT presents a brief background and related works regarding
molecular discovery, GAN, and GCN. Section III introduces
the GraphGANFed architecture design and the metrics to eval-
uate generated molecules. Section IV discusses the simulation
setups and results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

In this section, we provide a brief overview of GANS, state-
of-the-art generative models for molecular discovery, chal-
lenges and proposed solutions in GANs, and GCN frameworks
for molecular discovery.

A. Basis of GANs

GANSs are generative models that aim to minimize the diver-
gence between the real data distribution Py and the generative
model distribution P,. Given a training data distribution P,
the generator generates samples x from the distribution P,
with the random noise z. The discriminator discriminates
between real samples from P, and generated samples from P,
[28]. The generator aims to minimize the loss log(1 — D(Z)),
where ¥ is the generator’s output when given noise z and
D(Z) is is the discriminator’s estimate of the probability that
a generated sample is an existing sample. On the other hand,
the discriminator tries to maximize the probability of correctly
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labeling both real and generated samples. Overall, GANs can
be viewed as a two-player min-max game:

mein max Eyp,[logDg(x)]+Ez~p, [log(1—Dg(Ge(2))], (1)

where Dgy(-) and Gg(-) are the discriminator and gen-
erator models parameterized by ¢ and 6, respectively.
E,~p,[logDg(z)] is the expected value over all the existing
samples for all the probabilities that the discriminator correctly
classifies the existing samples and Ezp, [log(1 — Dy (Gg(2))]
is the expected value over all the generated samples for all
the probabilities that the discriminator correctly classifies the
generated samples from the generator.

B. Generative models for molecular discovery

GANs have emerged as a highly promising approach for
generating novel and diverse molecules, and have become the
most commonly used generative models for state-of-the-art
molecular generations. Several recent studies have demon-
strated the power of GANs in the field. Guimaraes et al.
[4] proposed an objective-reinforced generative adversarial
network (ORGAN) by integrating reinforcement learning (RL)
into the GAN. They used the SeqGAN (sequence based
Generative Adversarial Network) architecture based on RNNs
and GAN, and applied a policy gradient method to learn the
generative network parameters. Putin et al. [15] proposed a
deep neural network Adversarial Threshold Neural Computer
(ATNC) architecture. This architecture is based on GAN and
RL, where the generator is implemented as a Differential
Neural Computer (DNC) with new specific blocks known
as adversarial threshold (AT). Their framework successfully
generated good molecules whilst overcoming the negative
reward problem in ORGANIC.

C. Challenges and solutions in GANs

GANs are widely known for generating expected samples
but they suffer from the mode collapse issue (i.e., generate
limited variety of samples) and may be difficult to train. Hence,
several studies have explored methods to stabilize GAN train-
ing. Arjovsky et al. [29] proposed a Wasserstein distance
W (P,, P;) to measure the distance between the existing data
distribution P, and generated data distribution P,. Under soft
conditions (i.e., generator is locally Lipschitz and continuous
in 0), W(P,,Py) is continuous and differentiable almost
everywhere. By minimizing the Wasserstein distance, a GAN
can generate more realistic samples and better approximate
the existing data distribution.

The min-max game for Wasserstein GAN (WGAN) can be
expressed by the Kantorovich-Rubinstein duality [30], i.e.,

min max Ko p, [Dg ()] — Bz p. [Ds ()], ()

where D is the set of 1-Lipschitz functions, P, is the model
distribution implicitly defined by £ = G(z), and z ~ p, is a
random noise vector generated from a prior distribution p(z).
Hence, for an optimal discriminator (which is also called a
critic since it is not to classify samples, but to evaluate the
Wassertein distance between generated samples and existing
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samples), reducing the value function with respect to the
generator parameters, i.e., from Eq. (2), reduces W (P, P,).
To ensure that the discriminator satisfies the Lipschitz
constraint, they proposed weight clipping of the critic within
a dense space [—c,c|. However, they demonstrated that the
weight clipping approach leads to optimization problems in
[31]. To address the stability, vanishing, and exploding gra-
dient issues, Gulrajani et al. [31] proposed an alternative
approach to enforce the Lipschitz constraint. They introduced a
soft constraint with a penalty on the gradient norm for random
samples £ ~ P;, where P; is the distribution of random
samples from the generated and existing data distributions.
Thus, the new loss function of the discriminator becomes

L = —Eynp,[Dy(x)] + Bz p, [Dg (@) +7Ez~ p, [(IIV2 D(E)]|2 — 1)),

original critic loss gradient penalty

3
where ~ is the gradient penalty coefficient. In our work, we
adopt the loss function in Eq. (3) to stabilize the training
process and mitigate model collapse.

D. Graph Convolutional Networks

GCNs have been applied in various drug discovery appli-
cations such as biological property [32], quantum mechan-
ical property [33], interaction prediction [34, 35], synthesis
prediction [36], and de novo molecular design [12]. In [32],
a graph convolutional framework was proposed to learn the
molecular representations using both node and edge features.
Each layer is comprised of atoms (nodes) in a molecule
and pair-wise representations. The framework uses a Weave
unit to establish relations between different layers through
propagation between atoms to atoms, atoms to pairs, pairs
to atoms, and pairs to pairs. Every layer adopts the weave
unit architecture, except for the last convolution layer where
only the atom representations are utilized for downstream
applications, such as estimating solubility or drug efficacy.
The framework uses neural networks to model the transitions
over the same representations (i.e., atom-atom and pair-pair).
However, for the transitions over different representations
(i.e., atom-pair and pair-atom), an additional order-invariant
aggregation operation is used for the feature transition. The
graph convolutional framework inputs are molecular graphs
containing atoms and bond. The authors evaluated their pro-
posed framework for biological activities on 259 data sets
consisting of PubChem BioAssay (PCBA) [37], the training
set for the Tox21 challenge [38], the enhanced directory of
useful decoys [39], and the “maximum unbiased validation”
datasets built by Rohrer and Baumann [40], in a multi-task
setting where biological activities are predicted. However, the
results show that the proposed framework does not always
outperform the baseline methods that use Morgan fingerprints.

In [12], the authors proposed a framework named Graph-
VAE for molecular generations, which directly generates a
probabilistic fully-connected graph with a predefined maxi-
mum size. GraphVAE is based on the variational autoencoder
method, where the stochastic graph encoder is used to pro-
cess discrete attributed graphs G = (A, E, F'), representing
the adjacency matrix A, edge attribute tensor F, and node
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attribute tensor F' with a predefined number of nodes. The
encoder is implemented by a feed-forward network with edge-
conditioned graph convolutions. The stochastic graph encoder
embeds the graphs into a continuous representation z. The
graph decoder outputs a probabilistic fully-connected graph
on the predefined nodes, where the discrete samples can be
drawn. To ensure that the output graph matches the ground
truth, they used a standard matching algorithm to align the
output graph to the ground truth. GraphVAE was evaluated
based on two molecular data sets, QM9 and ZINC, and the
results demonstrated that it can learn appropriate embedding
properties for small molecules, but it is difficult to capture
complex chemical interactions for larger molecules.

All the above existing works about molecular generation
and drug discovery are performed in a centralized setting
which results in mode collapse and hinders the ability of
the models to generalize on diverse datasets. Our proposed
framework aims to solve this model collapse and diversity
issues in the centralized setting by ensuring that models are
trained in a federated setting without sharing the client dataset
thus preserving data privacy.

III. GRAPH CONVOLUTIONAL NETWORK IN GENERATIVE
ADVERSARIAL NETWORKS VIA FEDERATED LEARNING
(GRAPHGANFED)

In this section, we explain the key concepts in molecular
graphs, provide the detailed design of our proposed Graph-
GANFed architecture, and analyze the metrics to evaluate the
performance of our proposed GraphGANFed architecture.

A. Molecular graphs

In GraphGANFed, every molecule is represented as a non-
directional graph G with a set of nodes )V and a set of edges
£. Each atom in the molecule corresponds to a node in the
graph, and the type of each atom is specified using a node label
matrix V. The matrix V = {v;; |1 <i< N, 1<j < B},
where N is the total number of atoms in a molecule, B is
the number of possible atom types, and v;; implies if atom
1 is the type j (i.e., v;;=1) or not (ie., v;;=0). Here, we
consider generating molecular graphs with the fixed maximum
number of atoms N = 10. Each atom belongs to one of
the 10 possible types (i.e., B = 10): Carbon (C), Nitrogen
(N), Oxygen (O), Fluorine (F), Bromine (Br), Phosphorus (P),
Sulfur (S), Chlorine (Cl), Iodine (I), and one padding symbol
(*). The padding symbol is used to represent an atom other
than the types mentioned above, and it allows for flexibility in
the molecular structure to accommodate the individual design
preferences of different clients.

In GraphGANFed, the bonds between atoms in a molecule
are represented as non-directional edges (i,i’) € &, where
1,4 € V. An adjacency matrix A is used to depict all the
bonds between the atoms in a molecule. The matrix A =
{aik]1 <i,9 < N,1 <k <T}, where T is the number of
bond types, and a;;;; implies if the bond between atoms 3
and 7’ is bond type k (i.e., a;;, = 1) or not (i.e., a;p = 0).
Here, we consider 5 types of bonds (i.e., T' = 5): zero, single,
double, triple, and aromatic bonds.
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Fig. 2: Examples of converting SMILES to molecular graphs.

B. The GraphGANFed framework

In general, GraphGANFed consists of three main parts, i.e.,
the generator, discriminator, and FL system. Fig. 3 shows the
overview of GraphGANFed.

The Generator is implemented using a multi-layer percep-
tron (MLP) neural network. It takes a random noise vector z,
which is sampled from a prior distribution p(z), as an input
and outputs the molecular graph represented by two types
of continuous matrices, i.e., a node label matrix V and an
adjacency matrix A. Each hidden layer in the MLP neural
network applies the tanh activation function. The output of the
final hidden layer of the MLP is linearly projected to match
the dimensions of V' and A, and then normalized using the
softmax function. Fig. 10 shows some molecules generated by
the described MLP neural network. The goal of the generator
is to minimize the following loss function [6]

9" = _log D(V9en, Asem), 4

where V9¢" and A9¢" are the node label and adjacency matri-
ces of a generated molecule, respectively, and D(ffge", Agen)
is the output of the discriminator for the generated molecule.

It is worth noting that both the generated and existing
molecules will be used to train the discriminator, which will
be explained later on. However, the node label and adjacency
matrices of a generated molecule (i.e., V9¢" and A9°™) are
continuous, while the node label and adjacency matrices of an
existing molecule (denoted as V*% and A°*'") are discrete,
as they are derived based on the definition of molecular graphs
described in Section III-A. To make the types of matrices
consistent (so that they can be fed into the same discriminator
model for training), we discretize V9en and A9en by applying
categorical sampling [41]. Specifically, we obtain the discrete
node label and adjacency matrices of a generated molecule by
applying categorical sampling as follows: V9¢" = cat(f/'gen)
and A9 = cat(fige"), where V9" and A9,

The Discriminator aims to distinguish the molecules gen-
erated by the generator from the those in the existing data set,
and so the loss function of the discriminator is [31]

Edis _ _ IOgD(Vgen, Agen) 4 logD(Vemist, Aexist)
+7([[Vaa o, D(Qa, Qv)|| - 1), (5)
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where V¢%%t and A5 are the node label and adjacency
matrices of a molecule in the existing data set, respectively,
D(Vezist Aezisty g the output of the discriminator for the
existing molecule, and ¥(||Va, ., D(Qa, Qv)|| — 1)?
the gradient penalty term to stabilize the gradients of the
discriminator. Here, + is the gradient penalty coefficient,
QA — EAexist+ (1 _E)Agen’ QV — E‘/eacist + (1 _E>Vgen’
and € € [0, 1] is a predefined hyperparameter. The intuition of
the loss function £%* is to maximize the difference between
the output of an existing molecule and the output of a
generated molecule i.e., D(Ve%ist Aerist)y _ D(Vy9en Agen),
A larger difference implies the two molecules can be easily
discriminated. Note that the two outputs D(Ve®ist Aezist)
and D(V9¢™ A9¢™) are positive scalar values capturing the
features of the molecules.

The discriminator is implemented using a GCN based on
the architecture in [6], which convolves the node label matrix
V using the adjacency matrix A. Here, we use the relational
GCN (R-GCN) encoder, which is a convolutional network that
supports non-directional and multiple-edge graphs as inputs.
Note that the reason why GCN is applied as the architecture
of the discriminator is that GAN has been demonstrated
to effectively capture the representations from the molecu-
lar graphs [6], and other models, such as MLP, may not
effectively evaluate the relationship among atoms and their
connections. For example, the authors in [42] have quantified
the performance of using GCN and MLP for layer feature
propagation on graph-structured data (e.g., citation networks)
for the node classification task. From their results, the MLP
achieved the lowest classification accuracy compared to dif-
ferent variants of GCN propagation models. The discriminator
consists of two convolution layers to extract the atom features,
followed by one layer MLP to compute a one-dimensional
feature representation, which will be parallelly fed into two
pieces of one hidden layer, as illustrated in Fig. 3. Note
that the design of two parallel hidden layers with different
activation functions is followed by the discriminator model in
the MolGAN framework [6]. Other GAN architectures such
as [43, 44] used multiple parallel convolutional layers with
different activation functions to extract different multiscale
features from the input data. Based on our understanding,
using more parallel hidden layers with different activation
functions can improve the performance of the GAN model.
This is because different parallel hidden layers with different
activation functions achieve different nonlinear characteristics,
which enables the discriminator to extract diverse and non-
overlapping features of molecules. For example, one MLP
might focus on identifying positive features that indicate a
molecule’s desirability, while the other might highlight nega-
tive features that indicate undesired properties. This enables a
more accurate evaluation of the input molecules. Having more
MLPs tends to better capture different features of training
molecular graphs but increases the risk of overfitting, i.e.,
the model is over-complicated to memorize the noise in the
training molecule sets instead of the underlying features.
Hence, how to identify the optimal number of parallel hidden
layers is still unclear and will be our future work. The final
output layer is used to aggregate the features from the two
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hidden layers followed by the tanh activation function to
generate a scalar value representing the features of the input
molecule. Specifically, the atom feature representations are
propagated through each of the first two layers based on [3, 6]

hD = pO D ) + ZZ au’k FOBY vy,
i/=1k=1 Nil (©)
h§z+1) tanh(h, (l+1)),
where hz(-l) is the feature of atom i at layer [, v; is the type of

atom 7 (i.e., the i™ row in the node label matrix V'), fs(l) is the
residual or skip connection between layer [ and the next layer
I+1, ft(l) is an edge-type affine function of layer [, V; is the set
of atom i’s neighboring atoms in the molecule', |\;| implies
the number of neighbors for atom i. After propagating the
node feature representations through 2 convolution layers, the
output is converted into a 1-dimensional graph representation,
denoted as hl(»L), which is simultaneously fed into two parallel
hidden layers. Denote U(gl(hEL), v;)) and tcmh(gg(hgm, v;))
as the outputs of the two parallel hidden layers after applying
the sigmoid and tanh activation functions, respectively, where
g1 (hl(»L), v;) and gg(th), v;) are the outputs of the two parallel
hidden layers before their activation functions. The final output
layer will aggregate the results from the two parallel hidden
layers by conducting element-wise multiplication followed by
the tanh activation function, i.e.,

N

hg = o(g1(h{™,v;)) © tanh(ga (b, v,)), -
=1

hg = tanh(hg),

where hg and hg are the results before and after the
tanh activation function, and ® is element-wise multiplica-
tion. Here, h'g is a one-dimensional vector feature repre-
sentation of molecular graph G, and hg € [0,+o0] is a
scalar feature representation. Note that the notations hg and
D(V9en A9en)/D(Vewist Aewist) haye the same physical
meaning, i.e., the output of the discriminator given a molecular
graph G represented by (V9" A9m) or (Vewist Aewist)

The FL system enables distributed training of the generator
and discriminator based on the local datasets in different
clients in terms of pharmaceutical companies, ensuring that
these clients do not need to share their data sets with others
and thus preserving data privacy. Fig. 3 illustrates how the FL
system distributively trains the generator and discriminator. In
general, the system consists of a centralized FL server and a
number of clients. Similar to the traditional FL system, there
are four steps in each global round. Owing to the fact that
there are two models, i.e., a generator and discriminator in
GraphGANFed, the local model calculation step is different
from the traditional FL. Specifically,

1) Global model broadcasting: at the beginning of each
global round, the FL server broadcasts the current global
generator §9°°% and discriminator ¢9'°*%! to the clients.

Here, we define two atoms in a molecule are the neighbors if there is an
edge (i.e., single, double, triple, or aromatic bond) between the two atoms.
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Fig. 3: Overview of the GraphGANFed framework.

2) Local model calculation: upon receiving the global epochs, it uploads 6{°°®! and ¢{°“®! to the FL server.
generator and discriminator, as shown in Fig. 4, each 4) Local model aggregation: once the FL server receives
client i) divides its local dataset of existing molecules giocal and ¢loc?! from all the clients, it performs model
into several batches with the same size, where M is the aggregation based on, for example, FedAvg [45] to
number of batches, and ii) trains the local discriminator derive the new global generator and discriminator, i.e.,
and generator over E epochs. In each epoch, a client gen

. eqlobal Z ‘Sk 70local
a) generates a batch of new molecules based on its k 1Soen Yk > ®)
dis
local generator; gotobal — S |§§ L plocal
. . . . 8 )
b) trains the local discriminator ¢{°°® based on the |
batch of generated molecules and the 1% batch where |S7“"| and ‘S,‘j“] are the numbers of molecules
of the existing molecules in M via batched gra- are used to train local generator and discriminator,
dients decent. Note that the node label/adjacency respectively, for client k, |S9"| = >, |S7“"|, and
matrices of both generated and existing molecules, |S%s| =37, |Si=.

ist ist : .
VIerAI" and V[ AS*E are discrete and  The global round continues until the global generator and
non-differentiable, meaning that back-propagation  gjscriminator converge.

cannot be performed. Hence, we apply a gra-
dient estimator [41], which converts the dis-

crete non-differentiable samples in V9¢/A9¢" and €. Metrics

Vewist] Aeist jnto continuous differentiable sam- We apply the same metrics as the MOSES [46] benchmark
ples based on the Gumbel-Softmax distribution to to evaluate the performance of the molecules generated by
enable back-propagation to be performed; GraphGANFed. These metrics can be used to identify the

c) trains the local generator focal based on the out- performance and some common issues (such as mode collapse
puts of the discriminator with respect to the batch and overfitting) of the generative model in GraphGANFed.

of generated molecules in Step a); Specifically, below are the details of all the metrics used to
d) repeats Steps a)-c) to train the local generator 9};’6‘” evaluate the generated molecules.
and discriminator ¢j?°*! until the last batch of the o Validity refers to the fraction of generated molecules that
existing molecules in M has been used for training; are valid. RDkit’s molecular structure parser [47] is used
3) Local model uploading: once a client trained its local to compute the validity, which measures whether the gen-
generator 6/°°®! and discriminator ¢{°° after E — 1 erated molecules maintain explicit chemical constraints,
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Fig. 4: Procedure of a global round in FL.

such as proper atom valency and bond consistency. The
Validity value is a percentage in the range [0, 100].
Uniqueness refers to the fraction of valid molecules that
are unique. Low uniqueness means repetitive molecular
generation, which may imply mode collapse, i.e., it
produces a limited variety of molecules. The value of
Uniqueness can be a percentage in the range [0, 100].
Novelty refers to the fraction of valid molecules that
are different from the ones in the existing dataset. Low
novelty indicates that the generative model tens to overfit
to the existing data. The value of Novelty can be a
percentage in the range [0, 100].

Internal Diversity (IntDiv,) estimates the chemical di-
versity in the generated molecules and is computed as
the (p'") power of the mean of the Tanimoto similarity
(T') between the fingerprints of all the pairs of molecules
(m1, m2) in the generated molecules set (G), i.e.,

. 1
IntDiv,(G) =1 — (/GP ml;ﬁGT(mhmz)p. )

IntDiv,, can be used to identify normal failure cases in the
generative model, such as mode collapse. During mode
collapse, the generative model keeps generating similar
structures or a small variety of molecules, excluding some
parts of the chemical space. A higher IntDiv,, means a
higher diversity in the generated molecule set. The value
of IntDiv,, can be [0,1].

Quantitative Estimation of Drug-likeliness (QED)
refers to how likely a molecule is a viable candidate for
a drug. The value of QED can be [0, 1].

Octanol-water partition coefficient (LogP) refers to a
chemical’s concentration in the octanol phase to its con-
centration in the water phase in a two-phase octanol/water
system. LogP was computed based on RDKit’s Crippen
estimation. The value of LogP can be [0, 1].

Similarity to a nearest neighbor (SNN) measures an
average Tanimoto similarity (mg, mg) between finger-
prints of a molecule m¢ from the generated set G and
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its nearest neighbor molecule mpg in the real dataset R.
It is computed by [46]:

1

|G|

Here, we use the Morgan (extended connectivity) finger-
prints estimation via the RDKit library. First, we compute
the Morgan fingerprints of the generated molecule and
randomly sample a number of molecules from the exist-
ing dataset. Then, we compare the similarities between
the fingerprints of the generated molecule and each of
the fingerprints of the existing molecules, and compute
the average similarity scores. The similarity value can
be represented as a measure of precision, and if the
generated molecules are distinct from the manifold of
the existing dataset, the similarity to the nearest neighbor
will be very low. The range of Similarity is [0, 1].

SNN(G,R) max T'(ma, mg)
mGERmRER

(10)

Note that all metrics, except for the Validity, are computed
on only the valid molecules from the generated molecule set.

IV. SIMULATION SETUPS AND RESULTS

In this section, we conduct extensive simulations by using
benchmark datasets to evaluate GraphGANFed.

A. Benchmark datasets

We use three data sets from MoleculeNet. [48]: ESOL,
QMS, and QM9. These datasets have different properties in
terms of physical chemistry and quantum mechanics. Table I
presents the details of these datasets.

o ESOL [49] is a small dataset comprising water solubility

data for 1,128 compounds. It has been used to train
models which directly predict solubility from chemical
structures that are encoded in SMILES string.

QM8 [50] originated from a recent survey on represent-
ing quantum mechanical calculations of electronic fields
and excited state energy of small molecules. There are
22,000 molecules, each of which comprises up to eight
heavy atoms, that are collected using techniques, such
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TABLE I: Benchmark datasets.

Category Dataset[#Compds. | Avg. #Atoms|Avg. #Bonds
Physical Chem. | ESOL 1,128 13.29 40.65
QM8 21,786 7.77 23.95
Quantum Mech.| QM9 133,885 8.80 27.60

as second-order approximate coupled-cluster (CC2) and
time-dependent density functional theories (TDDFT).
o QMO [51] is an extensive dataset that provides geometric,
electronic, energetic, and thermodynamic properties for
a section of the GDB-17 database. It contains 134,000
stable organic molecules with up to 9 heavy atoms. The
molecules in the dataset are reproduced using density
functional theory (B3LYP/6-31G (2df,p) based DFT).
We randomly split each dataset into training, validation,
and testing sets based on a ratio of 80:10:10. The training
set is used to train the models via FL settings, and the
validation and test sets are used for hyperparameter tuning
and model evaluation, respectively. We distribute the samples
in the training dataset to the clients based on the independent
and identical distribution (IID) and non-IID, and analyze the
performance of GraphGANFed under these two scenarios.
Specifically, each sample in terms of a molecule is labeled by
its molecular formula (e.g., CHs, CHy, NH3), and molecules
with the same label are in the same class. For IID, molecules
in each class are divided into K groups of equal size. Each
group is assigned to a client and K is the total number of
clients in FL. For non-1ID, which basically comprises two
aspects, i.e., 1) the numbers of data samples from different
classes are unbalanced among clients, and 2) the total number
of data samples among the clients is different. To implement
non-IID, we pick a random number of molecules in each class
and allocate them to each client.

B. Hardware and hyperparameter configurations

In all simulations, we use a fixed 16-dimensional random
noise vector z sampled after every 1,000 local epochs for
ESOL and QMS, and 100 local epochs for QM9. The batch
size is 16 and the number of local epochs is £ = 1,000 for
each participated client. The gradient penalty coefficient is v =
10 to calculate the loss function of the discriminator in Eq. (5).
Also, both the generator and discriminator models are trained
by using the Adam optimizer with the exponential decay rates
B1 = 0.5 and B2 = 0.999, and the learning rate (LR) equals
0.0001. Here, the LR for both generator and discriminator
are decayed by a value of 100 after each 1,000 epochs. All
the simulations are conducted on a computer with 2 NVIDIA
Tesla K40m GPUs and 12 GB memory. The source code of
GraphGANFed and simulation results are available at https:
//github.com/danielmanu93/GraphGANFed.

C. Simulation results

1) Model convergence analysis: Assume that the structures
of the discriminator and generator are ([64,128],64,[128, 1])
and ([32, 64, 128]) respectively, where each value indicates the
number of neurons/channels in a layer for the GCN model de-
scribed in Fig. 3. For example, ([64, 128], 64, [128, 1]) implies
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Fig. 5: Learning curves for the global generator and discrim-
inator in IID (top) and non-IID (bottom).

that, in the discriminator, there are 64 and 128 channels in
the first two convolution layers for atom feature extraction, 64
neurons in the hidden layer for feature dimension reduction,
and 128 and 1 neurons in the last two layers for feature
aggregation. There are K = 4 clients to train the discriminator
and generator based on FL, and Fig. 5 shows the loss function
curves of the discriminator and generator over different global
rounds for the IID and non-IID settings. We can observe that
both the generator and discriminator models converged after
60 global iterations and 150 global iterations in IID and non-
IID settings, respectively, which demonstrates the feasibility of
our proposed GraphGANFed framework. Also, it is common
to have a slower convergence rate in the non-IID setting as
compared to IID because of the high data distribution bias
among the clients caused by non-IID.

2) Effect of different generator architectures on the met-
rics: The generator, which is one critical component in
GraphGANFed, is responsible for generating novel and ef-
fective molecules. Hence, we will analyze the performance
of GraphGANFed by varying the complexity of the generator
(i.e., the hidden dimensions and number of hidden layers).
Tables II and IIT show the results of applying different hidden
dimensions and layers in terms of the complexities of the
generator for the IID and non-IID settings, respectively, where
the second column in each table indicates different hidden
dimensions and layers of the generator. The 5th-11th columns
imply the values of seven metrics mentioned in Section III.C
to evaluate the performance of the molecules generated by
GraphGANFed. For ESOL, which is a small dataset consisting
of only 1,128 compounds, we observe the results for the IID
setting in Table II and find that as the generator complexity
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increases, the values of QED, Uniqueness, and LogP decrease,
ie. (0.52,0.34,0.34), (98.8,0.9,0.9) and (0.68,0.26,0.26),
respectively, but the values of Validity and Similarity in-
crease, i.e., (73.2,100.0,100.0) and (0.0001,0.0001, 0.0003),
respectively. Similar results are observed in the non-IID
setting, as shown in Table III. The reason why increasing
the generator complexity increases Validity is that a high-
complexity generator can capture complex patterns in the
data and represent hierarchical features (from bonds to atoms
to functional groups) effectively. However, as the generator
complexity becomes higher than the dataset, overfitting occurs
and leads to mode collapse. Hence, we can observe that as
the complexity increases, the values of QED, Uniqueness,
and LogP reduce. Thus, there is a tradeoff between Valid-
ity/Similarity and QED/Uniqueness/LogP, and the tradeoff can
be adjusted by modifying the generator complexity. Moreover,
a low generator complexity, i.e., [32, 64] is recommended for
a small dataset like ESOL to generate molecules that have
good values for most of the metrics whilst eliminating mode
collapse. Note that Validity and Uniqueness have negative
dependence, i.e., as Validity increases, Uniqueness decreases,
and vice versa. This is because generating valid molecules
often requires the model to follow well-established chemical
rules, which limits the diversity and uniqueness of the gen-
erated molecular structures since the valid molecules tend to
share common chemical motifs and features with molecules in
the existing dataset. Hence, it is impossible to simultaneously
maximize both Validity and Uniqueness. In our simulation,
without further specification, we consider Validity as the most
critical metric. That is, one model structure is better than
the other iff its Validity value is higher than the other. The
reason for Validity being the most critical metric is that other
metrics are calculated based on Validity, and Validity shows
positive dependence on most of the other metrics, except for
Uniqueness.

For QMS8, which is a medium dataset that has more
compounds than ESOL but less than QM9, we observe the
results for the IID setting in Table II and find that as the
generator complexity increase, the values for QED, Validity,
and LogP increase, i.e., (0.33,0.46,0.48), (0.1,61.1,91.6) and
(0.30,0.72,0.74), respectively, but the values for Diversity,
Uniqueness, and Similarity decrease, i.e., (1.00,0.99,0.99),
(100.0,24.1,9.4) and (0.0141,0.0078,0.0059), respectively.
The tradeoff changes from “between Validity/Similarity
and QED/Uniqueness/LogP” for ESOL to “between
QED/Validity/LogP and Diversity/Uniqueness/Similarity”
for QMS8. Also, the results for non-IID in Table III show
similar results. Also, we can observe that the low complexity
generator, i.e., [64, 128] results in mode collapse in terms
of Validity close to O for both the IID and non-IID settings.
A slightly higher complexity generator, i.e., [128,256] or
[256,512], can generate molecules with good values for all
the metrics whilst eliminating mode collapse.

For QM9, which is a large dataset, we can observe for
the IID setting in Table II that as we increase the generator
complexity, the values of QED, Validity and LogP increase,
i.e., (0.46,0.46,0.50), (1.4,28.5,72.2) and (0.60,0.72,0.69),
respectively, but the values of Uniqueness and Similarity
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decreases, i.e., (96.3,34.3,10.9) and (0.0378,0.0007,0.0297),
respectively. In the non-IID setting, we observe the same
results. Hence, if Validity is considered the most critical
metric, then a high-complexity generator is recommended to
apply for a large training dataset, such as QM9.

3) Effect of different discriminator architectures on the
metrics: The discriminator is the key component to determine
the performance of GraphGANFed, and so we will analyze
the performance in terms of the values of the metrics (that we
mentioned in Section III.C) by varying the complexity of the
discriminator. Tables IV and V show the results of applying
different dimensions in terms of complexities of the discrim-
inator for the IID and non-IID settings, respectively, where
the third column in each table indicates different dimensions
of the discriminator. For ESOL, we observe the results for
the IID setting in Table IV and find that as the discriminator
complexity increases, the values of QED, Uniqueness, LogP,
and Similarity decrease, i.e., (0.54,0.34,0.34), (100,0.9,0.9),
(0.73,0.26,0.26), and (0.0146,0.0004,0.0004), respectively,
but the value of Validity increases, i.e., (70.5,100,100). The
same results are observed in the non-IID setting, as shown
in Table V. The reason for having the increasing Validity as
the discriminator complexity increases is that training a higher
complexity model over a small dataset, such as ESOL, leads to
discriminator overfitting. This overfitting pushes the generator
to generate molecules with the same or very similar structure
as the molecules in the dataset, resulting in higher Validity.
On the other hand, training a higher complexity model over a
small dataset may lead to mode collapse, which reduces the
values of QED, Uniqueness, and LogP. Thus, there is a tradeoff
among Validity and QED/Uniqueness/LogP/Similarity, and
the tradeoff can be adjusted by changing the discriminator
complexity. In addition, for a small dataset like ESOL, a low
discriminator complexity, i.e., [32, 64], 32, [64,1], is preferred
to generate molecules that have considerable metric values.

For QMS, we observe the results for the IID setting in Table
IV and find that as the discriminator complexity increases,
the values of QED, Diversity, and Validity decrease, i.e.,
(0.49,0.46,0.45), (1.00,0.99,0.99), and (78.4,26.9,13.7),
respectively, but the values of Uniqueness, LogP, and simi-
larity increases, i.e., (18.1,51.4,67.9), (0.54,0.59,0.62), and
(0.0067,0.0261,0.0336), respectively. The tradeoff changes
from “between Validity and QED/Uniqueness/LogP” for
ESOL into “between QED/Diversity/Validity and Unique-
ness/LogP/Similarity” for QMS. Also, if we observe the results
for non-IID in Table V, we can find that as the discrimina-
tor complexity increases, only Uniqueness decreases, while
QED, Validity, LogP, and Similarity increase. Hence, we
conclude that the tradeoff among different evaluation metrics
may change based on the size of the dataset and the data
sample distribution among clients. In addition, for a medium
dataset like QMS8, a medium discriminator dimension, such
as [64,128],64,[128,1] or slightly smaller, is preferred to
generate the molecules that have considerable metric values.

For QMY9, we can observe from the results that as we
increase the discriminator complexity, QED, Validity, and
Similarity increase, but Uniqueness reduces in the IID setting
as shown in Table IV. In the non-IID setting, as shown in Table
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TABLE II: Performance of GraphGANFed with different generators and the same discriminator in IID.
Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED | Diversity | Validity | Uniqueness | Novelty | LogP | Similarity
[32,64] 0.52 1.00 73.2 98.8 100.0 | 0.68 | 0.0001
ESOL [32,128] [32,64],32,[64,1] 3 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0001
[16,32,64] 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0003
[64,128] 0.33 1.00 0.1 100.0 100.0 | 0.30 | 0.0141
QM8 [128,256] [64,128],64,[128,1] 3 0.46 0.99 61.1 24.1 100.0 | 0.72 | 0.0078
[64,128,256] 0.48 0.99 91.6 94 100.0 | 0.74 | 0.0059
[64,128] 0.46 0.99 1.4 96.3 100.0 | 0.60 | 0.0378
QM9 [32,64,128] [256,512],256,[512,1] 3 0.46 0.99 28.5 34.3 100.0 | 0.72 | 0.0007
[64,128,256] 0.50 0.99 72.2 10.9 100.0 | 0.69 | 0.0297
TABLE III: Performance of GraphGANFed with different generators and the same discriminator in non-IID.
Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED | Diversity | Validity | Uniqueness | Novelty | LogP | Similarity
[32,64] 0.50 1.00 9.8 100.0 100.0 | 0.84 | 0.0014
ESOL [32,128] [32,64],32,[64,1] 3 0.45 1.00 554 91.9 100.0 | 0.48 | 0.0015
[16,32,64] 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0000
[64,128] 0.43 0.99 0.5 100.0 100.0 | 0.50 | 0.0428
QM8 [128,256] [256,512],256,[512,1] 3 0.47 0.99 56.7 31.7 100.0 | 0.60 | 0.0008
[64,128,256] 0.49 0.99 88.9 10.4 100.0 | 0.62 | 0.0378
[64,128] 0.44 0.99 0.8 99.0 100.0 | 0.62 | 0.0484
QM9 [32,64,128] [256,512],256,[512,1] 3 0.45 0.99 22.9 36.4 100.0 | 0.74 | 0.0008
[64,128,256] 0.50 0.99 73.5 10.8 100.0 | 0.67 | 0.0078
TABLE IV: Performance of GraphGANFed with different discriminators and the same generator in IID.
Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED | Diversity | Validity | Uniqueness | Novelty | LogP | Similarity
[32,64],32,[64,1] 0.54 1.00 70.5 100.0 100.0 | 0.73 | 0.0146
ESOL [32,128] [32,128],32,[128,1] 4 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0004
[32,256],32,[256,1] 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0004
[64,128],64,[128,1] 0.49 1.00 78.4 18.1 100.0 | 0.54 | 0.0067
QM8 [32,64,128] [128,256],128,[256,1] 4 0.46 0.99 26.9 51.4 100.0 | 0.59 | 0.0261
[256,512],256,[512,1] 0.45 0.99 13.7 67.9 100.0 | 0.62 | 0.0336
[64,128],64,[128,1] 0.45 0.99 17.5 47.5 100.0 | 0.72 | 0.0004
QM9 [64,128,256] [128,256],128,[256,1] 4 0.46 0.99 322 22.1 100.0 | 0.73 | 0.0004
[256,512],256,[512,1] 0.50 0.99 72.9 12.6 100.0 | 0.72 | 0.0056
TABLE V: Performance of GraphGANFed with different discriminators and the same generator in non-IID.
Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED |Diversity | Validity | Uniqueness | Novelty | LogP | Similarity
[32,64]1,32,[64,1] 0.45 1.00 55.4 91.9 100.0 | 0.48 | 0.0015
ESOL [32,128] [32,128],32,[128,1] 3 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0004
[32,256],32,[256,1] 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0004
[64,128],64,[128,1] 0.46 0.99 28.2 54.7 100.0 | 0.43 | 0.0013
QM8 [32,64,128] [128,256],128,[256,1] 3 0.49 0.99 66.3 24.6 100.0 | 0.56 | 0.0053
[256,512],256,[512,1] 0.49 0.99 88.9 10.4 100.0 | 0.62 | 0.0378
[64,128],64,[128,1] 0.49 0.99 10.3 75.0 100.0 | 0.46 | 0.0070
QM9 [64,128,256] [128,256],128,[256,1] 3 0.50 0.99 56.2 18.3 100.0 | 0.54 | 0.0073
[256,512],256,[512,1] 0.50 0.99 73.5 10.8 100.0 | 0.67 | 0.0078
V, only Uniqueness decreases, but QED, Validity, LogP, and and (0.0007,0.0202,0.0453), respectively, for the IID set-
Similarity increase as we increase the discriminator dimension. ting. For non-IID, we observe that as we increase the

Hence, we can derive the same conclusion that the tradeoff
among different metrics may change based on the size of the
data set and the data sample distribution among clients. In
addition, for a large dataset like QM9, a large discriminator
complexity is preferred to generate the molecules that have
considerable metric values.

4) Effect of different client settings on the metrics: In
this section, we evaluate how different numbers of clients
affect the performance of GraphGANFed. Tables VI and VII
show the metrics of GraphGANFed under different num-
bers of clients in IID and non-IID settings, respectively.
For ESOL, we observed that as we increase the number of
clients, QED, and Validity decrease, i.e. (0.46,0.43,0.15)
and (91.9,4.5,1.8), respectively, but Uniqueness, LogP,
and Similarity increase, i.e. (80.6,100,100), (0.95,0.88,1),
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number of clients, Validity, QED, Uniqueness, LogP, and
Similarity decrease, i.e. (69.6,55.4,100), (0.41,0.45,0.34),
(74.4,91.9,0.9), (1,0.48,0.26) and (0.0047,0.0015,0.0011),
respectively. Specifically, Validity decreases as the number of
clients k increases from 1 to 3 (where k£ = 1 is equivalent
to centralized training). The reason for Validity decreasing as
k increases from 1 to 3 is that ESOL is a small dataset and
as k increases to 3, the number of molecules allocated to the
clients reduces as compared to the scenario when £ = 1. Thus,
the local models in each client will be trained based on fewer
training samples, which leads to low model generalization and
causes the generator to produce molecules with low Validity.
Note that when k = 7, Validity increases to 100, which does
not seem to follow the trend that Validity decreases as k
increases. This is because when k£ = 7, the number of samples
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TABLE VI: Performance of GraphGANFed with different numbers of clients in IID.

Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED | Diversity | Validity | Uniqueness | Novelty | LogP | Similarity

1 0.46 1.00 91.9 80.6 100.0 | 0.95 | 0.0007
ESOL [32,128] [32,64],32,[64,1] 5 0.43 1.00 45 100.0 100.0 | 0.88 | 0.0202
10 0.15 1.00 1.8 100.0 100.0 | 1.00 | 0.0453
1 0.45 0.99 21.9 59.9 100.0 | 0.64 | 0.0202
QM8 [32,64,128] [64,128],64,[128,1] 5 0.44 | 0.99 4.6 84.0 100.0 | 0.64 | 0.0281
10 0.44 | 0.99 4.6 99.1 100.0 | 0.56 | 0.0108
1 0.51 1.00 90.2 39 100.0 | 0.71 | 0.0071
QM9 [128,256,512] [128,128],256,128,1 5 0.45 1.00 87.9 11.9 100.0 | 0.34 | 0.0068
10 0.41 1.00 75.4 13.9 100.0 | 0.24 | 0.0064

TABLE VII: Performance of GraphGANFed with different numbers of clients in non-IID.

Datasets | Generator Dimension | Discriminator Dimension | Number of Clients | QED | Diversity | Validity | Uniqueness | Novelty | LogP | Similarity

1 0.41 1.00 69.6 74.4 100.0 | 1.00 | 0.0047
ESOL [32,128] [32,64],32,[64,1] 3 0.45 1.00 55.4 91.9 100.0 | 0.48 | 0.0015
7 0.34 1.00 100.0 0.9 100.0 | 0.26 | 0.0011
1 046 | 0.99 48.9 379 100.0 | 0.68 | 0.0103
QM8 [32,64,128] [64,128],64,[128,1] 3 0.46 | 0.99 35.6 47.5 100.0 | 0.66 | 0.0108
7 0.44 | 0.99 20.9 59.3 100.0 | 0.65 | 0.0309
1 0.44 1.00 92.3 1.3 100.0 | 0.90 | 0.0253
QM9 [128,256,512] [128,128],256,[128,1] 3 0.50 | 0.99 85.6 4.8 100.0 | 0.48 | 0.0078
7 0.50 | 0.99 71.3 7.1 100.0 | 0.42 | 0.0039

allocated to each client further reduces and results in model
collapse, where the generator produces molecules with limited
variety in terms of low Uniqueness. In fact, the generator
only produces the molecules that contain repetitive padding
symbols (*). By comparing the results between IID and non-
IID, we can observe that the tradeoff changes from “between
QED/Validity and Uniqueness/LogP/Similarity” in IID to “be-
tween QED/Uniqueness/LogP/Similarity and Validity” in non-
IID as the clients are increased for ESOL.

For QMS8, we observed that as the number of clients
increases, QED, Validity, and LogP decrease, but Uniqueness
increases in both IID and non-IID settings. However, the
Similarity decrease for IID, i.e. (0.0202,0.0281,0.0108) and
increase for non-1ID, i.e. (0.0103, 0.0108, 0.0309), as the num-
ber of clients increases. Hence, we can derive that the trade-
off changes from “between QED/Validity/LogP/Similarity and
Uniqueness” in IID to “between QED/Validity/LogP and
Uniqueness/Similarity” in non-IID as the number of clients
increases for QM8. Moreover, we are aware that the Validity
values for QM8 are low (i.e., < 50) in both IID and non-
IID cases. This is because we use the small discriminator
architecture, which cannot effectively learn and evaluate the
features of the molecules in QMS8, a medium dataset. Ap-
plying a higher complexity discriminator can significantly
increase Validity, which has been demonstrated in Table V,
where Validity increases from 28.2 to 88.9 when the dis-
criminator structure increases from [64,128],64,[128,1] to
[256, 512], 256, [512, 1].

In the IID setting for QM9, we observed that as the
number of clients increases, QED, Validity, LogP, and
Similarity decrease, i.e. (0.51,0.45,0.41), (90.2,87.9,75.4),
(0.71,0.34,0.24), and (0.0071,0.0068,0.0064), respectively,
and Uniqueness increases, i.e., (3.9,11.9,13.9). However,
in the non-IID setting, QED and Uniqueness increase,
ie. (0.44,0.50,0.50) and (1.3,4.8,7.1), respectively, and
Diversity, Validity, LogP, and Similarity decrease, i.e.
(1.00,0.99,0.99), (93.1,85.6,77.3), (0.90,0.48,0.42), and
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Fig. 6: Performance of GraphGANFed by varying the
dropout ratios for ESOL.

[ ] [ ]

Fig. 7: Performance of GraphGANFed by varying the
dropout ratios for QMS.

(0.0253,0.0078,0.0039), respectively. Hence, the tradeoff
changes from “between QED/Validity/LogP/Similarity and
Uniqueness® in IID to “between QED/Uniqueness and Di-
versity/Validity/LogP/Similarity” in non-IID as the number of
clients increases. Therefore, we can derive that the tradeoff
among different evaluation metrics may change by varying
the number of clients in the system and the distributions of
data samples among the clients.
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Fig. 8: Performance of GraphGANFed by varying the
dropout ratios for QM9.

5) Effect of different dropout ratios on generation metrics:
Applying dropout layers can reduce the model complexity
without significantly affecting the model performance. We
then analyze the performance of GraphGANFed if dropout
layers are applied to both the generator and discriminator. For
the generator, we apply dropout after the last layer. For the
discriminator, we apply dropout after the first two convolu-
tion layers and the last two parallel hidden layers. Assume
that the structure of the generator is [32,128] for ESOL,
[32,64,128] for QMS, and [64,128,256] for QM9, and the
structure of the discriminator is [32, 64], 32, [64, 1] for ESOL,
[64,128], 64,128, 1] for QMS, and [256, 512], 256, [512, 1] for
QMO. The results are shown in Figs. 6-8.

Fig. 6 illustrates how different metrics change when the
dropout ratio varies for ESOL. We can observe that as the
dropout ratio increases from 0.25 to 0.6 in IID, Validity
decreases from 84.8 to 16.9, and QED, Uniqueness, and LogP
increase from 0.34 to 0.35, from 16.8 to 100, and from 0.26
to 0.27, respectively. For IID, the data distributions for the
clients are the same. As the dropout ratio increases, more
neurons are dropped in the generator and discriminator to
reduce model complexity, but the models may not be able to
learn some molecular representations in the dataset to generate
valid samples, thus leading to a decrease in Validity. For non-
IID, we observe that, as the dropout ratio increases from 0.25
to 0.6, the values of QED, Diversity, Validity, Uniqueness,
Novelty, and LogP do not change. However, mode collapse
happens on Uniqueness. Since it has been demonstrated that
the high complexity of the discriminator lead to mode collapse
on Uniqueness for ESOL in Table IV, we can speculate that
the complexity of the discriminator is still too high even if the
dropout ratio is 0.6, thus leading to mode collapse. We also
observe that even though the validity is 100%, the generator
could only generate padding symbols ().

Fig. 7 shows how different metrics change when the dropout
ratio varies for QMS8. We observe that increasing the dropout
ratios does not affect the metrics for both IID and non-IID.
In addition, we also observe mode collapse on Uniqueness,
which may be caused by the high model complexity even if
the dropout ratio is 0.75. Similar to the non-IID setting for
ESOL, even though the Validity is 100%, the generator could
only generate padding symbols ().

Fig. 8 shows how different metrics change when the
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Molecules QED Diversity | Validity| Uniqueness| Novelty | LogP | Similarity
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CH,
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Fig. 9: Molecule samples and their metric results.

dropout ratio varies for QM9. For IID, we can observe
that as the dropout ratio increases from 0.25 to 0.5 to
0.75, QED and Uniqueness increase, i.e. (0.34,0.34,0.36)
and (0.1, 3.5,97.6), respectively. Yet, Validity decreases, i.e.
(99.4,79.4,18.4). Similar results are observed in the non-
IID setting that, as the dropout ratio increases, QED and
Uniqueness increase, but Validity decreases. Diversity and
Novelty remain the same for all the dropout ratios in both
IID and non-IID settings. Based on the observations in Figs.
6, 7 and 8, we can conclude that the model complexity can be
adjusted by varying the dropout ratio. Also, having the right
dropout ratio can avoid mode collapse. In addition, from all
the experimental results presented above, we can observe that
GraphGANFed can generate molecules to ensure high novelty
(=~ 100) and diversity (> 0.9).

D. Case study

In this section, we present a case study to demonstrate
the real-world practicality of GraphGANFed by analyzing
some representative molecules generated by the model, and
discuss their potential applications in drug discovery. The
molecules are randomly selected among the set of molecules
that are produced by the well-trained generator. The selected
molecules are evaluated by using the mentioned seven metrics.
As shown in Fig. 9, the results demonstrate that all the selected
molecules have high QED and Diversity but low Similarity,
which indicates that these molecules are different from the
existing molecules in the data set and have a high probability
of being developed into effective drugs or becoming novel and
effective compounds to construct effective drugs. Moreover,
the 1st, 2nd, and 4th molecules have high Validity and LogP
scores, which indicate promising pharmacokinetic properties
and good membrane permeability. These metric results can
help pharmaceutical scientists select the best candidate(s) dur-
ing the virtual screening process to accelerate drug discovery
and reduce the overall cost. For instance, if only one molecule
can be selected to conduct further laboratory and clinic testing,
then, based on the results in Fig. 9, the 4th sample molecule
seems to be the best candidate since it achieves high QED,
LogP, and Validity scores.
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Fig. 10: Examples of molecules generated by GraphGANFed.

V. CONCLUSION

In this paper, we have proposed the GraphGANFed frame-
work, which integrates GCN, GAN, and FL to generate novel
and effective molecules for drug discovery, while preserving
privacy. In GraphGANFed, an FL server aims to train the
global generator and discriminator in a distributed manner,
where the global generator generates new molecules that can
preserve the properties of the existing molecules to deceive the
global discriminator and the global discriminator distinguishes
generated molecules from the existing molecules. In each
global iteration, the FL server enables all the clients to train
their local generators and discriminators over local datasets.
The local generators and discriminators are uploaded and
aggregated to derive a new global generator and global dis-
criminator for the next global iteration. Extensive simulations
have been made to prove the feasibility and effectiveness of
GraphGANFed. The molecules generated by GraphGANFed
can ensure high novelty (a 100) and diversity (> 0.9). Also,
the simulation results suggest that 1) a lower complexity
discriminator model can better avoid mode collapse for a
smaller dataset in IID and non-IID, 2) there is a tradeoff among
different metric values and the tradeoff may change based on
the size of the dataset and the data sample distribution, 3)
model complexity of the generator and discriminator can be
adjusted by varying the dropout ratio, and having the right
dropout ratio can avoid mode collapse.
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Our future work has two major directions. First, the gen-

erator in GraphGANFed applies MLP as the model architec-
ture, which may not be the optimal option as compared to
other sophisticated model architectures, such as Variational
Autoencoder and graph neural networks. We will evaluate
the performance of GraphGANFed by applying different so-
phisticated model architectures. Second, as we mentioned
before, Validity and Uniqueness have negative dependence,
and so it is impossible to maximize both metrics. The current
GraphGANFed architecture is unable to adjust the balance or
tradeoff between Validity and Uniqueness. In our future work,
we will modify the GraphGANFed architecture to enable
the system to adjust the balance among different metrics. A
possible solution is to modify the loss function of the generator
to integrate the corresponding metric values, e.g., £9°"
— A1 xlog D(Vge”, Age”) — Ao x Validity— A3 x Uniqueness,
where Aj, Ao, and A3 are the weights associated with the
performance of generator, Validity, and Uniqueness. If the
generator aims to minimize the loss value £9¢", then it has
to generate the molecules with high Validity and Uniqueness,
and adjusting the balance between Validity and Uniqueness
can be achieved by calibrating the values of Ay and As.

REFERENCES

[1] A. Nouira, J. Crivello, and N. Sokolovska, “Crystalgan: Learning to dis-
cover crystallographic structures with generative adversarial networks,”
CoRR, vol. abs/1810.11203, 2018.

[2] W. Walters and R. Barzilay, “Applications of deep learning in molecule
generation and molecular property prediction,” Accounts of Chemical
Research, vol. 54, 12 2020.

[3] D.Manu, Y. Sheng, J. Yang, J. Deng, T. Geng, A. Li, C. Ding, W. Jiang,
and L. Yang, “Fl-disco: Federated generative adversarial network for
graph-based molecule drug discovery: Special session paper,” in 2021
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), 2021, pp. 1-7.

[4] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias,
and A. Aspuru-Guzik, “Objective-reinforced generative adversarial
networks (organ) for sequence generation models,” 2017. [Online].
Available: https://arxiv.org/abs/1705.10843

[5] V. Bagal, R. Aggarwal, P. K. Vinod, and U. Priyakumar, “Molgpt:
Molecular generation using a transformer-decoder model,” J. Chem. Inf.
Model., vol. 62, 10 2021.

[6] N. De Cao and T. Kipf, “Molgan: An implicit generative model
for small molecular graphs,” 2018. [Online]. Available: https:
/farxiv.org/abs/1805.11973

[71 V. Mouchlis, A. Afantitis, A. Serra, M. Fratello, A. Papadiamantis,
V. Aidinis, I. Lynch, D. Greco, and G. Melagraki, “Advances in de
novo drug design: From conventional to machine learning methods,”
International Journal of Molecular Sciences, p. 1676, 02 2021.

[8] D. Weininger, “Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules,” J. Chem. Inf. Comput.
Sci., vol. 28, pp. 31-36, 1988.

[9] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu,

J. B. R. Hayter, R. Vickers, C. Roberts, J. Tang, D. Roblin, T. L.

Blundell, M. M. Bronstein, and J. P. Taylor-King, “Utilising graph

machine learning within drug discovery and development,” 2020.

[Online]. Available: https://arxiv.org/abs/2012.05716

E. J. Bjerrum and R. Threlfall, “Molecular generation with recurrent

neural networks (rnns),” CoRR, vol. abs/1705.04612, 2017. [Online].

Available: http://arxiv.org/abs/1705.04612

S. Huang, S. Chen, H. Peng, D. Manu, Z. Kong, G. Yuan,

L. Yang, S. Wang, H. Liu, and C. Ding, “Hmc-tran: A tensor-core

inspired hierarchical model compression for transformer-based dnns

on gpu,” ser. GLSVLSI ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 169-174. [Online]. Available:
https://doi.org/10.1145/3453688.3461740

[12] M. Simonovsky and N. Komodakis,

generation of small graphs using variational

(10]

(11]

“Graphvae:  Towards
autoencoders,”



[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2024.3349990

CoRR, vol. abs/1802.03480,
/larxiv.org/abs/1802.03480

W. Jin, R. Barzilay, and T. S. Jaakkola, “Junction tree variational au-
toencoder for molecular graph generation,” CoRR, vol. abs/1802.04364,
2018. [Online]. Available: http://arxiv.org/abs/1802.04364

J. Lim, S. Ryu, J. W. Kim, and W. Y. Kim, “Molecular generative model
based on conditional variational autoencoder for de novo molecular
design,” CoRR, vol. abs/1806.05805, 2018. [Online]. Available:
http://arxiv.org/abs/1806.05805

E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. Aladinskaia,
A. Aliper, and A. Zhavoronkov, “Adversarial threshold neural computer
for molecular de novo design,” Molecular Pharmaceutics, vol. 15, 03
2018.

D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Aladinskiy,
M. Bozdaganyan, P. Mamoshina, A. Aliper, A. Zhavoronkov, and
A. Kadurin, “Entangled conditional adversarial autoencoder for de novo
drug discovery,” Molecular Pharmaceutics, vol. 15, 09 2018.

D. Manu, P. M. Tshakwanda, Y. Lin, W. Jiang, and L. Yang,
“Seismic waveform inversion capability on resource-constrained edge
devices,” Journal of Imaging, vol. 8, no. 12, 2022. [Online]. Available:
https://www.mdpi.com/2313-433X/8/12/312

X. Bresson and T. Laurent, “A two-step graph convolutional decoder
for molecule generation,” CoRR, vol. abs/1906.03412, 2019. [Online].
Available: http://arxiv.org/abs/1906.03412

J. You, B. Liu, R. Ying, V. S. Pande, and J. Leskovec, “Graph
convolutional policy network for goal-directed molecular graph
generation,” CoRR, vol. abs/1806.02473, 2018. [Online]. Available:
http://arxiv.org/abs/1806.02473

D. Manu, S. Huang, C. Ding, and L. Yang, “Co-exploration of
graph neural network and network-on-chip design using automl,”
in Proceedings of the 2021 on Great Lakes Symposium on
VLSI, ser. GLSVLSI ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 175-180. [Online]. Available:
https://doi.org/10.1145/3453688.3461741

X. Bresson and T. Laurent, “A two-step graph convolutional decoder
for molecule generation,” CoRR, vol. abs/1906.03412, 2019. [Online].
Available: http://arxiv.org/abs/1906.03412

J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “CVAE-GAN:
fine-grained image generation through asymmetric training,” CoRR,
vol. abs/1703.10155, 2017. [Online]. Available: http://arxiv.org/abs/
1703.10155

C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu,
Y. Furukawa, G. Mauri, and H. Nakayama, “Gan-based synthetic brain
mr image generation,” in 20/8 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), 2018, pp. 734-738.

P. Andreini, S. Bonechi, M. Bianchini, A. Mecocci, and F. Scarselli,
“Image generation by gan and style transfer for agar plate image
segmentation,” Computer Methods and Programs in Biomedicine, vol.
184, p. 105268, 12 2019.

S. Chen, D. Xue, G. Chuai, Q. Yang, and Q. Liu, “FL-QSAR:
a federated learning-based QSAR prototype for collaborative drug
discovery,” Bioinformatics, vol. 36, no. 22-23, pp. 5492-5498, 12 2020.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btaal 006

D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to
secure multi-party computation,” pp. 70-246, 01 2018.

J. Yao and N. Ansari, “Secure federated learning by power control for
internet of drones,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 4, pp. 1021-1031, 2021.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
[Online]. Available: https://arxiv.org/abs/1701.07875

C. Villani et al., Optimal transport: old and new. Springer, 2009, vol.
338.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” CoRR, vol. abs/1704.00028,
2017. [Online]. Available: http://arxiv.org/abs/1704.00028

2018. [Online]. Available: http:

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and
P. Riley, “Molecular graph convolutions: moving beyond
fingerprints,”  Journal of Computer-Aided Molecular  Design,
vol. 30, no. 8, pp. 595-608, aug 2016. [Online]. Available:

https://doi.org/10.1007\ %2Fs10822-016-9938-8

K. T. Schiitt, F. Arbabzadah, S. Chmiela, K. R. Miiller, and
A. Tkatchenko, “Quantum-chemical insights from deep tensor neural
networks,” Nature Communications, vol. 8, no. 1, jan 2017. [Online].
Available: https://doi.org/10.1038\ %2Fncomms13890

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

(471

(48]

[49]

[50]

[51]

Q. Feng, E. V. Dueva, A. Cherkasov, and M. Ester, “PADME: A
deep learning-based framework for drug-target interaction prediction,”
CoRR, vol. abs/1807.09741, 2018. [Online]. Available: http://arxiv.org/
abs/1807.09741

T. Ma, C. Xiao, J. Zhou, and F. Wang, “Drug similarity integration
through attentive multi-view graph auto-encoders,” CoRR, vol.
abs/1804.10850, 2018. [Online]. Available: http:/arxiv.org/abs/1804.
10850

W. Jin, C. W. Coley, R. Barzilay, and T. S. Jaakkola, “Predicting
organic reaction outcomes with weisfeiler-lehman network,” CoRR, vol.
abs/1709.04555, 2017. [Online]. Available: http://arxiv.org/abs/1709.
04555

Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han,
K. Karapetyan, S. Dracheva, B. A. Shoemaker et al., “Pubchem’s
bioassay database,” Nucleic acids research, vol. 40, no. D1, pp. D400—
D412, 2012.

T. Unterthiner, A. Mayr, G. Klambauer, and S. Hochreiter, “Toxicity
prediction using deep learning,” 2015. [Online]. Available: https:
/farxiv.org/abs/1503.01445

M. Mysinger, M. Carchia, J. Irwin, and B. Shoichet, “Directory of
useful decoys, enhanced (dud-e): Better ligands and decoys for better
benchmarking,” Journal of medicinal chemistry, vol. 55, pp. 6582-94,
06 2012.

S. Rohrer and K. Baumann, “Maximum unbiased validation (MUV) data
sets for virtual screening based on pubchem bioactivity data,” J. Chem.
Inf. Model., vol. 49, pp. 169-84, 03 2009.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” 2016. [Online]. Available: https://arxiv.org/abs/1611.
01144

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

H. Aetesam and S. K. Maji, “Perceptually-motivated adversarial training
for deep ensemble denoising of hyperspectral images,” Remote Sensing
Letters, vol. 13, no. 8, pp. 767-777, 2022.

D. Mu, H. Li, H. Liu, L. Dong, and G. Zhang, “Underwater image
enhancement using a mixed generative adversarial network,” IET Image
Processing, vol. 17, no. 4, pp. 1149-1160, 2023.

H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Federated learning of deep networks using model averaging,” CoRR,
vol. abs/1602.05629, 2016. [Online]. Available: http://arxiv.org/abs/
1602.05629

D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov,
O. Tatanov, S. Belyaev, R. Kurbanov, A. Artamonov, V. Aladinskiy,
M. Veselov, A. Kadurin, S. I. Nikolenko, A. Aspuru-Guzik, and
A. Zhavoronkov, “Molecular sets (MOSES): A benchmarking platform
for molecular generation models,” CoRR, vol. abs/1811.12823, 2018.
[Online]. Available: http://arxiv.org/abs/1811.12823

G. Landrum, “Rdkit documentation,” Release, vol. 1, no. 1-79, p. 4,
2013.

Z. Wu, B. Ramsundar, E. Feinberg, J. Gomes, C. Geniesse, A. Pappu,
K. Leswing, and V. Pande, “Moleculenet: A benchmark for molecular
machine learning,” Chemical Science, vol. 9, 03 2017.

J. Delaney, “Esol: Estimating aqueous solubility directly from molecular
structure,” Journal of chemical information and computer sciences,
vol. 44, pp. 1000-5, 05 2004.

R. Ramakrishnan, M. Hartmann, E. Tapavicza, and O. A. von Lilienfeld,
“Electronic spectra from TDDFT and machine learning in chemical
space,” The Journal of Chemical Physics, vol. 143, no. 8, p. 084111,
aug 2015. [Online]. Available: https://doi.org/10.1063\ %2F1.4928757
L. Ruddigkeit, R. Deursen, L. Blum, and J.-L. Reymond, “Enumeration
of 166 billion organic small molecules in the chemical universe database
gdb-17," J. Chem. Inf. Model., vol. 52, 10 2012.



