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Abstract—In bulk power systems, detecting the sources of
low-frequency oscillations can be challenging. The energy-based
approaches for oscillation source localization are known to have
better accuracy compared to others. The dissipating energy flow
(DEF) method is one such approach with notable success in
localizing real-world oscillation cases. While the mathematical
justifications for the method’s characterization of a device as an
oscillation source (or sink) is well-exposed for synchronous gen-
erators and standalone inverters, no insights have been developed
for power-electronics-interfaced dc transmission systems. To fill
this gap, this paper presents a theoretical analysis of the DEF in a
voltage source converter-based high voltage direct current (VSC-
HVdc) system. Passivity-based analysis is performed to explain
why a VSC-HVdc system, operating at unity power factor, with
the commonly used control strategy involving constant real power
control, dc-link voltage control, and ac voltage–reactive power
droop control is a source of oscillation energy. Supporting case
studies are performed on the IEEE 4-machine and IEEE 16-
machine 68-bus test systems.

Index Terms—Low-frequency oscillations, dissipating energy
flow, oscillation source, passivity, VSC-HVdc.

I. INTRODUCTION

In the monitoring of bulk power systems it is common
to observe low-frequency electromechanical oscillations (typ-
ically, 0.2 − 2 Hz) in the system variables. The oscillatory
behaviour can be attributed to the transient energy associated
with the system’s poorly-damped natural modes and/or the
external perturbations [1], [2]. These oscillations, if sustained,
can impose serious threat to system stability and security
[3]. Once detected, as a first-step in mitigating these, it is
important to localize their sources in the grid [4]. For forced
oscillations (FOs), defining their source is relatively easier. The
component ‘generating’ the oscillation by means of external
perturbations, unambiguously, is the source. However, for
sustained oscillations from poorly-damped natural modes, the
source characterization is more complicated [5]. There could
be more than one element, which depending on their control
designs, may negatively impact the damping of a mode by
shifting its eigenvalue to the right. Such elements with negative
damping contributions could be characterized as sources [4].
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Over the years, several methods for oscillation source lo-
calization have been proposed [6], [7]. These may be broadly
classified into following groups: (a) mode-shape based meth-
ods [8]–[10], (b) damping torque based methods [11], (c)
dissipating energy based methods [4], [12], [13], (d) equivalent
circuit based methods [14], [15], and (e) machine learning
and other data-driven methods [5], [16]. Detailed comparison
of these methods with respect to their their strengths and
limitations can be found in [6], [7].

In this paper, we focus our attention to the dissipating en-
ergy flow (DEF)-method, which has shown promising results
on 1000+ real-world oscillation cases [17]. The method, as
originally proposed in [12], calculates the average transient
energy dissipation (also referred to as, ‘oscillation energy
dissipation’) in a device leveraging the Lyapunov-like energy
functions developed in [18]. In the DEF method, a source is
defined as a system component which aids in sustaining the
oscillation by supplying transient energy, either directly – as
in the case of forced oscillations, or by deteriorating system
damping – as in the case of poorly-damped modes [4]. The
theoretical deductions leading to the method assume a lossless
transmission network and constant power loads [12], [19]. In
[4], [17], [20], [21] the impact of these assumptions on the
accuracy of the method are carefully examined. These studies
concluded that, impacts of line resistances on the DEF patterns
are marginal [4], [17]. The studies further concluded that the
deviation of the load characteristics from constant power to
constant impedance may obfuscate the energy flow patterns
in the network but their impact on the accuracy of the source
localization are less likely to be critical [4], [17]. In [22],
authors identified a few cases where the DEF method might
fail. Notwithstanding these limitations, the success of the
method is widely recognized, as is evident from its successful
adoption in the oscillation management system of ISO-NE
[17]. In the recent years, extensions and improvements on the
existing DEF method have also been studied – notable of these
are [4], [23]–[26].

The theoretical analysis of the DEF-method and its con-
nection to damping torque analysis is well-studied for syn-
chronous generators [19], [27], [28]. However other network
components, especially the power electronics-interfaced active
transmission devices remains largely unexplored in this con-
text. While it is true that, in most cases the oscillation source
is in a generator’s control systems (e.g., exciters, stabilizers,
governors, or turbine-boiler systems) [17], many a time the
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source has also been detected outside the generator in power
electronics-interfaced transmission systems. For example, on
May 23, 2018, sustained 0.4 Hz oscillations were observed
at multiple locations in the Western Electricity Coordinating
Council (WECC) system and the source of these oscillations
was identified in the controls of the Pacific DC Intertie HVdc
system [17]. In [26], a new DEF method is derived for de-
tecting oscillation sources in grid-following inverters. In [21],
authors use the passivity theory to offer an insightful interpre-
tation of the DEF. The analysis is then applied to grid-forming
converters under droop control with a stiff dc source. In [29],
the DEF-based oscillation source/sink behavior of thyristor-
controlled series capacitors (TCSCs) and static synchronous
compensators (STATCOMs) and their controls are studied. No
insights, however, have been developed regarding the DEFs for
HVdc transmission systems. In our understanding, compared
to a single converter system, the analysis of a HVdc system
is more complex due to the coupling between transient energy
functions of the rectifier- and inverter-end converters. The
coupling stems from the dependence of real powers injected by
the two converter terminals due to power balance. In addition,
due to the interconnected nature of an ac system corresponding
reactive power injections can also be dependent if the ac
voltage is controlled at the respective terminals.

Thus motivated, in this paper we present the analysis of DEF
in VSC-HVdc systems for low-frequency electromechanical
oscillations. The operating conditions and controls leading
to the source characterization of the device are highlighted.
Drawing insights from the notions of passivity and positive
realness, the paper presents analytical derivations explaining
why a VSC-HVdc system with the conventional control strat-
egy (see for example, [30]) involving real power control,
reactive power-ac voltage droop, and dc voltage control is a
source of oscillation energy flow.

The paper is organized as follows. In Section II, the VSC-
HVdc system with the rectifier- and inverter-end controls is de-
scribed. In Section III, the preliminaries on DEF, passivity, and
the connections between them are introduced. Thereafter, in
Section IV, main result of the paper explaining the oscillation-
source behaviour of the system in Section II is presented. The
case studies on the IEEE test systems are discussed in Section
V followed by conclusions in Section VI.

II. SYSTEM DESCRIPTION

Consider a point-to-point HVdc system connecting two ends
of a synchronous ac system, as shown in Fig. 1. In addition
to the HVdc link, the rectifier and the inverter bus are also
connected via the ac network. The HVdc link, in study, is

detailed in Fig. 2 with all symbols having their usual meanings,
as described below.

AC

DC

DC

AC

Vr

Vi

Synchronous

AC System

HVdc Line

Pr,Qr

Pi, Qi

Rectifier

Inverter

1

Fig. 1: Schematic of an HVdc system routing power between two points of
a synchronous ac system.

Notations: Vr, Ir, Pr, Qr, and Vi, Ii, Pi, Qi are respectively,
the ac-side voltage, current, and the real and reactive powers
flowing into the device at the rectifier-end, and flowing out
of the device at the inverter-end. Cr, Ci, Vdcr , and Vdci are
respectively, the rectifier- and inverter-end dc-capacitances and
dc-bus voltages, idc is the dc-link current, and R is the dc-
link resistance. The steady-state quantities are denoted by
superscript 0 and the perturbations from the steady-state by
prefix ∆, i.e., any variable x = x0 +∆x.

The following phasor representations are considered in the
rectifier’s and inverter’s d − q reference frames determined
respectively by their phase-locked-loops (PLLs),

�Vr = Vdr + jVqr ,
�Ir = Idr + jIqr ,

�Vi = Vdi
+ jVqi , and �Ii = Idi

+ jIqi .
(1)

PLLs ensure that in steady state, the d-axes align with respec-
tive bus voltage phasors. Typically, this is achieved by driving
the q-component of voltage vector to zero using a closed-loop
tracking control. Hence, V 0

r = V 0
dr

and V 0
qr = 0. Following

which, the linearization of V 2
r = V 2

dr
+V 2

qr around the steady-
state, yields

2V 0
r ∆Vr = 2V 0

dr
∆Vdr

+ 2V 0
qr∆Vqr =⇒ ∆Vr = ∆Vdr

. (2)

Similarly, for the inverter-end we have ∆Vi = ∆Vdi
.

Please note that, in the interest of simplifying the mathemat-
ical analysis, the dynamics the PLL is not explicitly modeled
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Fig. 2: Schematic of the VSC-HVdc system under study.
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Fig. 3: Inner current loops (only shown for the inverter-end) and their simplification.

in the DEF equations1. The PLL’s effect however, is modeled
by considering nonzero ∆Vqi and ∆Vdi during transients. Also
note, such a simplified representation of PLL is only limited to
the analytical deductions and the proofs of the theorems. The
numerical verification (see, the case studies in Section (V)) of
the theorems consider a detailed model of PLL as shown in
Fig. 4.
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Fig. 4: The model of the PLL used in the case studies in Section V.

The real and reactive powers at the rectifier-end are ex-
pressed as, Pr = Vdr

Idr
+ VqrIqr and Qr = VqrIdr

− Vdr
Iqr

[31]. Similarly, Pi = Vdi
Idi

+VqiIqi and Qi = VqiIdi
−Vdi

Iqi
[31]. In steady state, both rectifier and inverter operates at unity
power factor, implying, Q0

r = Q0
i = 0. Operation under unity

power factor leads to minimum ac current flowing through the
HVdc terminals, thereby minimizing losses. Another practi-
cal reason behind unity power factor operation is to ensure
dynamic reactive power reserve for voltage support under
contingencies akin to a static var compensator, as mentioned
in [32, pp. 44]. The real power deviations, obtained from
linearization2, can be expressed as,

∆Pr = V 0
dr
∆Idr + I0dr

∆Vdr = V 0
r ∆Idr + I0dr

∆Vdr , (3)

and ∆Pi = V 0
di
∆Idi

+I0di
∆Vdi

= V 0
i ∆Idi

+I0di
∆Vdi

. (4)

The inner current control loops reject the measurable dis-
turbances by using feedforward control signals Idi

, Iqi , Vdi
,

Vqi , and Vdci

2 as shown in Fig 3. Moreover, the controller

1 PLL dynamics is much faster compared to the electromechanical transients
analysed in this paper. Therefore, it is reasonable to assume PLLs synchro-
nized while modeling the low-frequency oscillations in the DEF equations.

2 Recall, V 0
dr

= V 0
r and V 0

qr = 0, therefore, Q0
r = V 0

qr I
0
dr

− V 0
dr

I0qr =

0 =⇒ I0qr = 0. Similarly, I0qi = 0.

Kc(s) is designed to be equal to Li

τc
, where τc is the desired

time-constant of the closed-loop step response [31]. Upon
simplification we can write,

Idr

I ref
dr

=
Iqr
I ref
qr

=
Idi

I ref
di

=
Iqi
I ref
qi

=
1

1 + sτc
. (5)

In the control of real and reactive powers, following strategies
are considered:

1) Rectifier-end real power control (see, Fig. 5):

I ref
dr

= Kr(s)(P
ref
r − Pr)

=⇒ Idr =
Kr(s)

1 + sτc
(P ref

r − Pr)
(6)

where P ref
r = P 0

r ,

Kqi Iref
qi

−Vdi

Vi

V ref
i Qref

i
Vqi I

ref
di

÷
− +

+
−

++ ∆Qref
i∆Vi

Kr(s)Pr
−

P ref
r

+
Iref
dr

−∆Pr

2

Fig. 5: Rectifier-end real power control in the VSC-HVdc system.

2) Rectifier-end ac voltage–reactive power droop control
(see, Fig. 6):

I ref
qr =

VqrI
ref
dr

−Qref
r

Vdr

=⇒ Iqr =
VqrIdr

Vdr

− 1

1 + sτc

Qref
r

Vdr

(7)

where Qref
r = Q0

r +∆Qref
r and ∆Qref

r =Kqr∆Vr=Kqr∆Vdr
,

Kqr Iref
qr

−Vdr

Vr

V ref
r Qr0 Vqr I

ref
dr

÷
− +

+
−

++ ∆Qref
r Qref

r∆Vr

5

Fig. 6: Rectifier-end ac voltage–reactive power droop control in the VSC-
HVdc system.
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3) Inverter-end dc-bus voltage control (see, Fig. 7):

I ref
di

=
Kv(s)

Vdi

(
V 2
dci − (V ref

dci)
2
)

=⇒ Idi
=

1

1 + sτc

Kv(s)

Vdi

(
V 2
dci − (V ref

dci)
2
)
,

(8)

Kv(s)(Vdci)
2

(V ref
dci

)2

+

−
÷

Vdi

Iref
di

3

Fig. 7: Inverter-end dc-bus voltage control in the VSC-HVdc system.

4) Inverter-end ac voltage–reactive power droop control
(see, Fig. 9):

I ref
qi =

VqiI
ref
di

−Qref
i

Vdi

=⇒ Iqi =
VqiIdi

Vdi

− 1

1 + sτc

Qref
i

Vdi

(9)

where, Qref
i = Q0

i +∆Qref
i and ∆Qref

i =Kqi∆Vi=Kqi∆Vdi
.

WD
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∫
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Fig. 8: Inverter-end ac voltage–reactive power droop control in the VSC-HVdc
system.

Additionally, the sensor delays in the feedback loops and the
resistances in the filter inductors are neglected.

III. PRELIMINARIES ON DEF AND PASSIVITY

Definition 1. [12] The DEF into an element E connected to
the power network at bus k, denoted by WD

E , is expressed as

WD
E =

∫
ℑ{∆I⃗∗inj d∆V⃗k}

where ∆V⃗k and ∆I⃗inj are respectively, the small-signal pha-
sors of the perturbations in the voltage at bus k and the
current injected into E from the network, and ℑ(·) denotes
the imaginary part of a complex number .

Building on this, for the VSC-HVdc system described in
Section II, total DEF flowing in (adding the rectifier and
inverter contributions), denoted by WD

HVdc, is expressed as

WD
HVdc =

∫
ℑ{∆I⃗r

∗
d∆V⃗r} −

∫
ℑ{∆I⃗i

∗
d∆V⃗i}

=

∫
(∆Idrd∆Vqr −∆Iqrd∆Vdr

−∆Idi
d∆Vqi +∆Iqid∆Vdi

).

(10)

We define

yT :=
[
∆Idr

∆Iqr ∆Idi
∆Iqi

]
, (11)

and

uT :=
[
∆V̇qr −∆V̇dr

−∆V̇qi ∆V̇di

]
. (12)

Following which, we may write

WD
HVdc(t1) =

∫ t1

0

uT y dt. (13)

Definition 2. [12] Element E is called a sink (source) of
oscillation energy if and only if the average slope of the DEF
into E over a cycle T , is positive (negative).

In other words, the VSC-HVdc system is a sink of oscilla-
tion energy if

ẆD
HVdc =

1

T

∫ T

0

uT y dt > 0 (14)

and a source if ẆD
HVdc < 0.

Next, consider the linearized representation of the system
in Section II, denoted by Ω (see, (15)), with u and v as the
input and output, respectively.

Ω : ẋ = Ax+Bu; y = Cx+Du (15)

From [33, Def. 6.3], Ω is said to be passive with respect to
the supply rate uT y if there exists a continuously differentiable
positive semidefinite storage function S(x) such that uT y ⩾
Ṡ(x). Passivity of Ω implies, between any two instants, the
energy flowing in is greater than the change in system’s energy
storage (see, (16)). Therefore,

WD
HVdc(T ) =

∫ T

0

uT y dt ⩾ S(x(T )) − S(x(0)). (16)

Since S(x(0)) = 0 and S(x(T )) ⩾ 0, we may write (16) as,

WD
HVdc(T ) =

∫ T

0

uT y dt ⩾ 0. (17)

Therefore, passivity of Ω with respect to the supply rate uT y
implies,

∫
uT y dt ⩾ 0. Further, from [34, Lemma 10] we

know that the system is passive if and only if the correspond-
ing transfer function matrix G(s), between the input-output
pair u and y, is positive real. Following which, from Def. 2,
it may be said that the positive realness of G(s) implies the
underlying system is a sink3 and its negation indicates the
system is a source of oscillation energy. A summary of this is
presented in Fig. 9.

Positive Real

G(s)

Passivity of Ω∫ T
0 uTy dt > 0

VSC-HVDC is an

Oscillation-Sink
3

(with respect to DEF)

⇐⇒⇐⇒

1

Fig. 9: Equivalence of positive realness, passivity, and the oscillation-sink
behavior with respect to DEF.

To that end, in this paper, we derive the expression of G(s)
for the VSC-HVdc system described in Section II. Thereafter,
we check if G(s) satisfies the conditions for positive realness,
as defined in [33, Def. 6.4]. This is presented in Section IV
next.

3 or neither a sink nor a source, i.e., lossless, for the
∫
uT y dt = 0 case
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At this point it is worth highlighting that, although the
analysis in this paper focuses on the linearized small-signal
representation of the HVdc system, the concepts of passivity
and positive realness are stronger and can be applied to the
analysis of the nonlinear system. The linearized representation,
without much loss of accuracy, adequately captures the ambi-
ent dynamics of the system and is reasonable to understand the
source/sink behavior in this context. Furthermore, this renders
the analysis tractable.

IV. PASSIVITY-BASED ANALYSIS OF DEF

A. Deriving the Transfer Function Matrix

Consider the VSC-HVdc system desribed in Section II.
Linearizing (5), and thereafter, substituting (3) we obtain(

V 0
r +

1 + sτc
Kr(s)

)
∆Idr

= −I0dr
∆Vdr

. (18)

Defining α2(s) := V 0
r + (1 + sτc)/Kr(s), (18) may be re-

written as
α2(s) ∆Idr

= −I0dr
∆Vdr

. (19)

Similarly, linearizing1 (6) , we obtain

V 0
r ∆Iqr = − Kqr

1 + sτc
∆Vdr

+ I0dr
∆Vqr . (20)

Next, for the dc-side, the following power balance equations
can be written at the rectifier- and inverter-end dc-buses,

Pr =
1

2
Cr

dV 2
dcr

dt
+ i2dcR +

1

2
Ci

dV 2
dci

dt
+ Pi, (21)

idc = Ci
dVdci

dt
+

Pi

Vdci

, (22)

Pr

Vdcr

= Cr
dVdcr

dt
+ idc. (23)

Linearizing4 (21) − (23) and taking Laplace transform, we
obtain5

∆Pr = sCrV
0
dcr∆Vdcr + 2i0dc∆idcR + sCiV

0
dci∆Vdci +∆Pi,

(24)

∆idc =
1

V 0
dci

(
sCiV

0
dci∆Vdci + ∆Pi − i0dc∆Vdci

)
, (25)

∆Pr = sCrV
0
dcr∆Vdcr + i0dc∆Vdcr + V 0

dcr∆idc. (26)

Further, substituting (25) in (26), we arrive at ∆Vdcr =

=
1

sCrV 0
dcr

+ i0dc

(
∆Pr −

V 0
dcr

V 0
dci

(sCiV
0
dci − i0dc)∆Vdci −

V 0
dcr

V 0
dci

∆Pi

)
.

(27)
Next, we linearize the control law in (8) to obtain

∆Vdci =
1 + sτc

2 V 0
dci

Kv(s)
(V 0

di
∆Idi

+ I0di
∆Vdi

). (28)

4 Linearization of x = 1
2
C d

dt
V 2 =⇒ ∆x = C(V 0 + ∆V )∆V̇ . For

small perturbations, approximated as, ∆x = CV 0∆V̇ .
5 For notational simplicity, the time-domain variables in (21) − (23) and

their corresponding s-domain mappings in (24) − (26) and everywhere else
in the paper are denoted by same symbols.

Substituting these expressions of ∆Vdcr , ∆Vdci , and ∆idc into
(24), we get

f1(s)∆Pr = f2(s)∆Pi + f3(s)(V
0
di
∆Idi

+ I0di
∆Vdi

). (29)

For the detailed expressions of f1(s), f2(s), and f3(s), see
Appendix A. The expression in (29) can be simplified by
substituting the linearized expressions of ∆Pr and ∆Pi (from
(3) and (4)) into it. Doing so, we get

V 0
r ∆Idr

− α1(s)V
0
i ∆Idi

= −I0dr
∆Vdr

+ α1(s)I
0
di
∆Vdi

(30)
where, α1(s) := (f2(s) + f3(s))/f1(s).

Finally, linearizing (9), we have

V 0
i ∆Iqi = − Kqi

1 + sτc
∆Vdi + I0di

∆Vqi . (31)

Equations (19), (20), (30), and (31) along with the definitions
(11) and (12) can be combined in a matrix representation as
shown in (32) below

M(s) y = N (s) v (32)

where,

M(s) =


α2(s) 0 0 0

0 V 0
r 0 0

V 0
r 0 −α1(s)V

0
i 0

0 0 0 V 0
i

 , (33)

N (s) =



−I0dr
0 0 0

− Kqr

1+sτc
I0dr

0 0

−I0dr
0 α1(s)I

0
di

0

0 0 − Kqi

1+sτc
I0di


, (34)

and

v =

[
∆Vdr ∆Vqr ∆Vdi ∆Vqi

]
. (35)

Also, note that

v =


0 − 1

s 0 0

1
s 0 0 0

0 0 0 1
s

0 0 − 1
s 0

u := P(s) u. (36)

Substituting this, (32) can be written as

y = G(s) u (37)
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where,

G(s) = {M(s)}−1N (s) P(s)

=



0
I0
dr

s α2(s)
0 0

I0
dr

s V 0
r

Kqr

s (1+sτc) V 0
r

0 0

0
−I0

dr

s α1(s)V 0
i

(
1− V 0

r

α2(s)

)
0

−I0
di

s V 0
i

0 0
−I0

di

s V 0
i

−Kqi

s (1+sτc) V 0
i


.

(38)
The detailed derivation of G(s) is presented in Appendix B.

B. Positive Realness of the Transfer Function Matrix

Lemma 1. G(s) is not positive real.
Proof. We prove this by contradiction. First, assume G(s)

derived in (38) is positive real. Next, define L(jω) := G(jω)+
GT (−jω), where superscript T denotes the transpose operator.
Since G(s) is assumed positive real, from the definition [33,
Def. 6.4], this implies ∀ ω ̸= 0, L(jω) is positive semidefinite.

Observe that from the expression of G(s), the structure of
L(jω) can be inferred as

L(jω)
∆
=


0 ℓ12 0 0
ℓ∗12 ℓ22 ℓ23 0
0 ℓ∗23 0 0
0 0 0 ℓ44

 . (39)

The characteristic equation of L(jω) is

λ
{
λ3 − λ2(ℓ22 + ℓ44) + λ(ℓ22ℓ44 −|ℓ12|2 −|ℓ23|2)

+ ℓ44|ℓ23|2 + ℓ44|ℓ12|2
}
= 0.

(40)

Since, in accordance with our assumption, L(jω) is positive
semidefinite, all four eigenvalues (λi, for i = 1, . . . 4) of
L(jω) should be non-negative. As seen from (40), one of the
eigenvalues (say, λ1) of L(jω) is zero. For the three other
eigenvalues, the following ((i)− (iii)) should hold true:
(i) Their product should be non-negative. Observe from

(40), λ2λ3λ4 = −ℓ44|ℓ23|2 − ℓ44|ℓ12|2. Therefore, this
imposes the necessary condition that ℓ44 ⩽ 0.

(ii) Also, the sum of the products of λi taken two at a
time should be non-negative. From (40), λ2λ3+λ3λ4+
λ2λ4 = ℓ22ℓ44 −|ℓ12|2 −|ℓ23|2. Observe that, for a non-
zero real power transfer through the HVdc-link in the
steady-state, I0dr

̸= 0. Therefore, from proposition 1
(see, Appendix C), |ℓ23|2 > 0. Further, from (i) we
have ℓ44 ⩽ 0. These together6, imposes the necessary
condition that, ℓ22 < 0 and ℓ44 < 0.

(iii) Finally, their sum should also be non-negative. From
(40), this imposes the necessary condition that λ2+λ3+
λ4 = ℓ22 + ℓ44 ⩾ 0.

Clearly, the necessary conditions from (i) and (ii) contradict
that in (iii). Therefore, L(jω) is not positive semidefinite, and

6 For ℓ44 < 0 and |ℓ23|2 > 0, (ii) =⇒ ℓ22 < 0. For ℓ44 = 0 and
|ℓ23|2 > 0, (ii) will clearly not hold true.

as a consequence, G(s) is not positive real. This concludes the
proof.

Theorem 1. (Main Result) A VSC-HVdc system operating
at unity power factor in steady state, with constant real power
control, constant dc-link voltage control, and ac voltage–
reactive power droop control is a source of oscillation energy.

Proof. Observe from Lemma 1, the transfer function matrix
G(s) between the input-output pair u and y is not positive
real. Following which, from [34, Lemma 10], it can be said
that the system Ω (linearized representation of the VSC-HVdc
system with these controls) is not passive with respect to the
supply rate uT y. This implies, the integral

∫ T
0

uT y dt < 0.
And therefore, the system is a source of oscillation energy.
This concludes the proof.

Remark 1: Constant reactive power control at the rectifier
and the inverter (i.e., ∆Qref

r = ∆Qref
i = 0 or in other words,

Kqr = Kqi = 0) is a special case of the system description in
Section II and Theorem 6.1. Therefore, a VSC-HVdc system
operating at unity power factor in steady state, with constant
real and reactive power control and constant dc-link voltage
control is also a source of oscillation energy.

Remark 2: Please note that in this paper the oscillation
source behavior of VSC-HVdc is studied only for low-
frequency electromechanical oscillations (0.2 − 2 Hz). The
averaged model discussed in deriving the mathematical results
and the simplifications made may not hold true for analyzing
oscillations outside this range. Therefore, it should be high-
lighted that the applicability of the Theorem 1 is restricted
to electromechanical oscillations and should not be extended
to subsynchronous oscillations (SSOs). The analysis of DEF
for higher frequency oscillations (e.g. SSOs) requires detailed
electromagnetic transients (EMT) modeling of the system.
EMT modeling is outside the scope of this paper. Interested
readers may take a look at the following research papers [26],
[35], [36] and [37].

Remark 3: Inclusion of an additional modulating control on
real power set point P ref

r , for example – a feedback control
for power oscillation damping, may transform the VSC-HVdc
from a source to a sink of oscillation energy. In that case, with
a suitable choice of feedback control parameters, G(s) can be
made positive real. Although intuitive, a detailed analytical
proof may be necessary to strengthen the claim. This may be
a potential topic for future research.

V. CASE STUDIES

In this section, in support of the claims made in Theorem
1, we present case studies from the IEEE 2−area 4−machine
and 16−machine 68−bus test systems. The positive-sequence
fundamental-frequency phasor models of the test systems are
considered for transient stability simulation. The differential-
algebraic equations describing the system are coded in MAT-
LAB and numerical simulation is performed using off-the-self
solvers.

A. IEEE 2−area 4−machine Test System

The IEEE 2−area 4−machine test system from [1] is
modified to include a VSC-HVdc link connecting buses 7 and
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Fig. 10: Single-line diagram of the modified 2−area 4−machine system with
a VSC-HVdc line between buses 7 and 9.

Fig. 11: Total DEF into the VSC-HVdc system for pulse disturbance in the
4−machine system with (a) constant Qref and (b) ac voltage−reactive power
droop, and different P ref and unity power factor in steady-state.

9 (see, Fig 10) with the controls described in Section II. The
transfer functions of the proportional intergal (PI) controllers
are as follows: Kr(s) = Kv(s) = 1 + 10/s. The detailed
model of the PLL in Fig. 4 is used in the simulation with
KpPLL = 20 and KiPLL = 200. For synchronuous generators,
their sixth-order subtransient models are considered along with
DC1A exciters and automatic voltage regulators (AVRs).

In this study, we consider two operating cases: (i) when
P ref
r = 200 MW, and (ii) when P ref

r = 400 MW. For each
of these two cases, we consider two subcases: (a) constant
reactive power control at both ends7 i.e., Kqr = Kqi = 0, and
(b) ac voltage-reactive power droop control8 with Kqr = 2.5
and Kqi = −2.5. Note that, in (b), the signs of the droop
coefficients are opposite because in the system description
(see, Section II) the directions of Qr and Qi are taken opposite
− inward in the rectifier and outward in the inverter.

1) Verification Under Small Disturbance: A 0.1 s du-
ration pulse disturbance is applied to the mechanical
power input (Pm) of generators. The measurement signals

7 with unity power factor in steady-state, i.e., Qref
r = Q0

r = 0 and Qref
i =

Q0
i = 0.
8 again, unity power factor in steady-state, i.e., Qref

r = 0 + ∆Qref
r =

Kqr∆Vdr and Qref
i = 0 +∆Qref

i = Kqi∆Vdi .

Fig. 12: Eigenvalues of L(jω) = G(jω)+GT (−jω) in the electromechan-
ical oscillation range for the 4−machine system with P ref

r = 200 MW,
Kqr = 2.5, Kqi = −2.5.

Pr, Pi, Qr, Qi, Vr, Vi, θr, and θi thus obtained, are detrended
and filtered for the 0.65 Hz inter-area mode. Thereafter, WD

HVdc
– the total DEF into the HVdc system adding both the
rectifier and inverter injections, is calculated (see, (49) and
Fig. 20). For details on how WD

HVdc is computed from these
terminal measurements, please refer to Appendix D. The time
domain plots of WD

HVdc for different values of P ref
r and droop

coefficients Kqr and Kqi are shown in Figs 11 (a) and (b).
Observe, in each case, the average slope of WD

HVdc is negative,
implying that the HVdc system with these controls is injecting
oscillation energy into the ac network. This supports our claim
in Theorem 1.

The eigenvalues of L(jω) = G(jω)+GT (−jω) for the case
P ref
r = 200 MW, Q0

r = 0, and Kqr = 2.5 and Kqi = −2.5, in
the electromechanical oscillation range 0.2 − 2 Hz, is shown
in Fig. 12. Clearly, one eigenvalue is always negative. This
confirms that L(jω) is not positive semi-definite and G(jω)
is not positive real, as claimed in Lemma 1.

2) Verification Under Large Disturbance: Next, we verify
the claim in Theorem 1 for large disturbances. To that end,
a three-phase self-clearing fault is simulated near bus 8. The
time-domain plots of the measurement signals from the recti-
fier and inverter terminals are shown in Fig. 21 of Appendix
D. These signals are detrended and filtered for the inter-area
mode and thereafter, the DEF is computed (see, Fig. 20). The
DEF plots for two different droop settings are presented in
Figs. 13 (a) and (b). Observe that the average slope of WD

HVdc
is negative supporting the claim that the VSC-HVdc is a source
of oscillation energy. The DEF into the generators G1 – G4
for the case (b) are also shown in Fig. 14 for comparison.
The average slopes of WD

Gen for all 4 generators are positive
indicating that the generators, in this case, are acting as sinks
to absorb the transient oscillation energy emanating from the
VSC-HVdc source.

3) Consistency with Eigenvalue Analysis: To support the
conclusions of DEF-based source characterization, the follow-
ing approach using eigenvalue analysis is adopted. First, we
consider the base case – i.e., the IEEE 4-machine system
without the HVdc. The eigenvalues and the damping ratio
for the inter-area mode are calculated. Next, keeping the total
system load and the set points of the generators same as
before, the VSC-HVdc is introduced (as shown in Fig. 10)
with the controls described in Section II. The eigenvalues for
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Fig. 13: Total DEF into the VSC-HVdc system following a three-phase fault
in the 4−machine system with (a) constant Qref and (b) ac voltage−reactive
power droop, and unity power factor in steady-state.

Fig. 14: DEF into the generators G1 – G4 following the three-phase fault in
the 4−machine system with VSC-HVdc settings P ref

r = 200 MW, Q0
r = 0,

Q0
i = 0, and droops Kqr = 5 and Kqi = −5 (same as in Fig. 13(b)).

the modified system are recalculated. We know, if the VSC-
HVdc is an oscillation source then the addition of it into the
system should have a negative contribution to the damping,
i.e., the eigenvalues for inter-area mode after inclusion of the
HVdc, as compared to the base case, should shift to the right
reducing the overall margin of stability. The eigenvalues in
Table I supports the claim that the inclusion of the VSC-HVdc
deteriorates modal damping, thereby indicating that the added
device is a source of transient energy aiding in sustaining the
oscillation.

Kr(s)P ref
r

Pr

+

−
Iref
dr

−∆Pr

KPSS
1 + sTd1
1 + sTd2

sTw
1 + sTw

∆( 6 Vr − 6 Vi)

Damping Controller

1

Fig. 15: Rectifier-end real power control with a supplementary damping
controller modulating the power reference.

TABLE I: EIGEN-ANALYSIS OF THE IEEE 4−MACHINE SYSTEM

Case Eigenvalues
(inter-area mode)

Modal
Frequency Damping

Base Case
without VSC-HVdc −0.21± j3.92 0.624 Hz 5.4%

Modified System
with VSC-HVdc

(P ref
r = 200 MW,

Kqr = 5, Kqi = −5)

−0.06± j3.97 0.633 Hz 1.7%

TABLE II: EIGEN-ANALYSIS OF THE IEEE 4−MACHINE SYSTEM

Case Eigenvalues
(inter-area mode)

Modal
Frequency Damping

Modified System
with VSC-HVdc and
Damping Controller
(P ref

r = 200 MW,
Kqr = 5, Kqi = −5,

KPSS = 13043,
Td1 = 0.0133 s,
Td2 = 4.479 s)

−0.46± j4.07 0.648 Hz 11.2%

Fig. 16: Total DEF into the VSC-HVdc system following a three-phase fault
in the 4−machine system in presence of a damping controller modulating the
reference to the real power control.

4) Addition of a Damping Controller in the Rectifier-end
Real Power Control: In Remark 3, it was hypothesized that the
inclusion of a power oscillation damping control modulating
the real power reference could transform the behavior of the
VSC-HVdc from source to sink of oscillation energy. To
confirm this, the following study is performed. The real power
control in Fig. 5 is modified to include a damping controller
as shown in Fig. 15. The phase angle difference between
the rectifier and inverter buses is the input to the controller.
In this study, the VSC-HVdc is operating with P ref

r = 200
MW, Q0

r = Q0
i = 0, and droop coefficients Kqr = 5 and

Kqi = −5. The output of the damping controller can be
seen as a modulation of the real power setpoint over over its
steady-state value P ref

r . The damping controller parameters: the
gain KPSS = 13043, the lead-lag compensator time-constants
Td1

= 0.0133 s and Td2
= 4.479 s, and the washout filter time-

constant Tw = 10 s, are designed [1] to achieve the desired
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Fig. 17: Single-line diagram of the modified IEEE 16−machine 68−bus test system with a VSC-HVdc line between buses 60 and 61.

pole-placement for enhancing the damping of the inter-area
mode. The eigenvalues of the system before and after addition
of the damping controller are shown in the Tables I and II
respectively.

To study the DEF of the modified system, a three-phase
self-clearing fault is simulated near bus 8, as before. The
measurement signals obtained from the rectifier and inverter-
end buses are detrended and filtered. The total DEF flow into
the VSC-HVdc computed from these measurements is shown
in the Fig. 16. The positive slope of the WHVdc confirms that
the HVdc with the added damping control is acting a sink of
oscillation energy. This characterization is also consistent with
improvement in the damping ratio obtained from eigenvalue
analysis (see, Tables I and II).

B. IEEE 16−machine 68−bus NY-NE Test System

Next, for confirming our claims, the IEEE 16-machine 68-
bus NY-NE Test System [38], as shown in Fig. 17, is studied.
The fundamental-frequency phasor model of the system with
subtransient synchronous generator models, exciters (DC1A
at G1–G8; ST1A at G9; manual excitation at G10–G16),
automatic voltage regulators, and a power system stabilizer
(at G9) is considered. The test system is modified to include a
VSC-HVdc link connecting buses 60 and 61, with the controls
described in Section II (see, Fig. 17). The PLL as shown in
Fig. 4 is included. Bus 61 is operating as the inverter-station
and bus 60 as the rectifier-station with P ref

r = P 0
r = 200 MW,

Qref
r = Q0

r = 0, Qref
i = Q0

i = 0, and droop coefficients−
in case (a): Kqr = Kqi = 0 and case (b): Kqr = 5 and
Kqi = −5.

Fig. 18: Total DEF into the VSC-HVdc system for a pulse disturbance in
the 16−machine system with (a) constant Qref and (b) ac voltage−reactive
power droop, and unity power factor in steady-state.

A 0.2 s pulse disturbance is applied to the P ref
r . The output

variables are filtered for the 0.54 Hz inter-area mode. The total
DEF into the HVdc system for a system mode computed for
both cases (a) and (b) are shown in Figs 18 (a) and (b).
Observe, for both cases (a) and (b), the average slope of
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WD
HVdc is negative, confirming our claim in Theorem 1 that

the system can be source of oscillation energy. The DEFs
into the generators for the case (b) are shown in Fig. 19 for
comparison. In this case, G14, G15, and G16 are the sinks for
the oscillation energy produced by the VSC-HVdc and other
generators. Further observe, the negative slope of WD

HVdc in
Fig 18 (b) is greater than any of the generators G1 – G13.

Fig. 19: DEF into the generators G1 – G16 for a pulse disturbance in the
16−machine system, with VSC-HVdc settings P ref

r = 200 MW, Q0
r = 0,

and droops Kqr = 5 and Kqi = −5 (same as in Fig. 18(b)).

VI. CONCLUSIONS

In this paper, analytical insights were developed into the
dissipating energy based source characterization of a VSC-
HVdc system for low-frequency electromechanical oscilla-
tions. The results from passivity and positive realness were
used to mathematically explain why a VSC-HVdc system
operating at unity power factor with constant real power
control, constant dc-link voltage control, and ac voltage–
reactive power droop control is a source of oscillation energy.
Through this rigorous mathematical justification, the paper
strengthens the understanding of oscillation energy flow in
converter-interfaced transmission systems.

APPENDIX A
EXPRESSIONS OF FUNCTIONS f1(s), f2(s), AND f3(s)

f1(s) = (sCrV
0
dcr + i0dc)

−1
i0dc

(41)

f2(s) = (V 0
dci)

−1(sCrV
0
dcr + i0dc)

−1 ·{
sCrV

0
dcr (V

0
dci + 2 i0dcR− V 0

dcr ) + (V 0
dci + 2 i0dcR)i0dc

}
(42)

f3(s) =
1 + sτc

2V 0
dci

Kv(s)

{
sCi(V

0
dci + 2i0dcR)− 2(i0dc)

2R(V 0
dci)

−1

− sCr(V
0
dcr )

2(V 0
dci)

−1(sCiV
0
dci − i0dc)(sCrV

0
dcr + i0dc)

−1
}

(43)

APPENDIX B
DERIVATION OF TRANSFER FUNCTION G(s)

Following (33) and (34),

{M(s)}−1 =



1
α2(s)

0 0 0

0 1
V 0
r

0 0

V 0
r

V 0
i α1(s) α2(s)

0 −1
V 0
i α1(s)

0

0 0 0 1
V 0
i


(44)

{M(s)}−1 N (s) =

=


− I0

dr

α2(s)
0 0 0

− Kqr

(1+sτc) V 0
r

I0
dr

V 0
r

0 0
I0
dr

α1(s)V 0
i

(
1− V 0

r

α2(s)

)
0 − I0

di

V 0
i

0

0 0 − Kqi

(1+sτc) V 0
i

I0
di

V 0
i


(45)

G(s) = {M(s)}−1 N (s) ·


0 − 1

s 0 0
1
s 0 0 0
0 0 0 1

s
0 0 − 1

s 0



=



0
I0
dr

s α2(s)
0 0

I0
dr

s V 0
r

Kqr

s (1+sτc) V 0
r

0 0

0
−I0

dr

s α1(s)V 0
i

(
1− V 0

r

α2(s)

)
0

−I0
di

s V 0
i

0 0
−I0

di

s V 0
i

−Kqi

s (1+sτc) V 0
i


.

APPENDIX C
PROOF OF PROPOSITION I

Proposition 1. For I0dr
̸= 0, |ℓ23|2 > 0.

Proof. |ℓ23|2 =
(I0

dr
)2

ω2 (V 0
i )2 |α1(jω)|2

∣∣∣1− V 0
r

α2(jω)

∣∣∣2. Also,

1− V 0
r

α2(jω) =
1+jωτc

V 0
r Kr(jω)+jωτc+1 , where Kr(s) = KrP + KrI

s .

Therefore,
∣∣∣1− V 0

r

α2(jω)

∣∣∣2 =
ω2(1+ω2τ2

c )
ω2(V 0

r KrP+1)2 + (V 0
r KrI−ω2τc)2

.

Hence, ∀ ω ̸= 0,
∣∣∣1− V 0

r

α2(jω)

∣∣∣2 > 0 =⇒ for Idr
̸= 0,

|ℓ23|2 > 0.

APPENDIX D

A. Calculation of DEF from Terminal Measurements

In the simulations of Section V, DEF flowing into the VSC-
HVdc is calculated using the terminal measurements from its
rectifier- and inverter-end buses.

Please refer to [12, Eqn. (16)] where it is shown that the
transient energy flowing into a device E connected to the
power network at bus ℓ can be expressed as,

WE =

∫
ℑ{I⃗∗inj dV⃗ℓ} =

∫
Pinj dθℓ +

∫
Qinj

dVℓ

Vℓ
. (46)

Pinj and Qinj are respectively the real and reactive power
injected into the device, and θℓ is the bus voltage angle at
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Fig. 20: Calculation of DEF from terminal measurements

Fig. 21: Measurement signals (a) bus voltage magnitude, (b) relative bus
voltage angle, (c) real, and (d) reactive powers at rectifier- and inverter-end
buses (7 and 9 respectively) for a large disturbance (three-phase self-clearing
fault near bus 8) in the IEEE 4-machine system. Detrended signals are shown
in inset.

node ℓ. Following which, the dissipative part WD
E , can be

expressed as [12, Eqn. (17)].

WD
E =

∫
∆Pinj d∆θℓ +

∫
∆Qinj

d∆Vℓ

Vℓ
. (47)

For details on the derivation, please refer to [29, Eqns.
(1)−(4)].

Extending this to the VSC-HVdc system in Section II, we
can write

WD
HVdc = WD

into rectifier +WD
into inverter

=

∫
∆Pr d∆θr +

∫
∆Qr

d∆Vr

Vr

−
∫

∆Pi d∆θi −
∫

∆Qi
d∆Vi

Vi
.

(48)

Discretizing (48) we obtain,

WD
HVdc[k] = WD

HVdc[k − 1] + ∆Pr[k]
(
∆θr[k]−∆θr[k − 1]

)
+ ∆Qr[k]

∆Vr[k]−∆Vr[k − 1]

Vr[k]

− ∆Pi[k]
(
∆θi[k]−∆θi[k − 1]

)
− ∆Qi[k]

∆Vi[k]−∆Vi[k − 1]

Vi[k]
(49)

where k is the sample number. The time-domain plots of
the DEFs in Section V are obtained following the process
described in the schematic of Fig. 20. Equation (49) is
used for the DEF calculation. For initialization, we choose
WD

HVdc[1] = 0. The ∆ variables in (49) are the detrended
measurements bandpass-filtered for the modal frequency of
interest.

B. Simulation Results for Three-phase Fault in Section V

Time-domain plots of the measurement signals for the large-
disturbance case in Section V-A are shown in Fig. 21.
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