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ARTICLE INFO ABSTRACT
Keywords: In this paper, we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape
Local immunodeficiency that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and

Cross-immunoreactivity

allows to explain a number of experimental observations associated with the establishment of chronic infections
Persistent viruses

by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces
intra-host viral variants to specialize for complementary roles and adapt to the host’s immune response as a
quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and
epidemiological events. First, we show that the emergence of a viral variant with altered antigenic features
may result in a rapid re-arrangement of the viral ecosystem and a change in the roles played by existing viral
variants. In particular, it may push the population under immune escape by genomic diversification towards the
stable state of adaptation by antigenic cooperation. Next, we study the effect of a viral transmission between
two chronically infected hosts, which results in the merging of two intra-host viral populations in the state
of stable immune-adapted equilibrium. In this case, we also describe how the newly formed viral population
adapts to the host’s environment by changing the functions of its members. The results are obtained analytically
for minimal cross-immunoreactivity networks and numerically for larger populations.

Altruistic viruses
Hepatitis ¢

1. Introduction

RNA viruses such as HIV, Hepatitis C (HCV), Zika, Influenza A, and SARS-CoV-2 are characterized by extremely high evolutionary rates (Drake
and Holland, 1999). As a result, each infected host or a community of infected individuals carries a heterogeneous population of genetically related
viral variants (Domingo et al., 2012) that exist as an ecosystem, with the dominant selection pressure caused by hosts’ immune systems (Rhee et al.,
2007). Until recently, the predominant model of viral evolution was the immune escape via continuous accumulation of genetic diversity (Nowak
and May, 2000) often described as an “arms race” between virus and hosts. However, several recent experimental discoveries suggest a possibly
more complex picture. These discoveries include broad cross-immunoreactivity and antigenic convergence between intra-host viral variants (Campo
et al., 2012), a consistent increase in negative selection, and a decrease in population heterogeneity over time (Ramachandran et al., 2011; Campo
et al., 2014; Gismondi et al., 2013; Lu et al., 2008; Illingworth et al., 2014), long-term persistence of viral variants (Ramachandran et al., 2011;
Palmer et al., 2012, 2014) and complex fluctuations of frequencies of subpopulations over the course of infection (Ramachandran et al., 2011;
Gismondi et al., 2013; Palmer et al., 2014; Gray et al., 2012; Raghwani et al., 2016). Given these observations, it is unlikely that the entire viral
evolution is driven by a single evolutionary mechanism. It is rather a non-linear process defined by the recurring presentation of a succession of
selection challenges specific to different stages of infection or epidemic spread (Baykal et al., 2021). Each stage involves complex mechanisms that
viruses share with other domains of life (Domingo-Calap et al., 2019; Baykal et al., 2021).

Many previously studied mathematical models of virus-host immune system interactions (Nowak and May, 2000; Wodarz, 2003; Iwasa et al.,
2004) suggest that immune escape is associated with a constant increase in genomic heterogeneity, and does not account for certain experimentally
observed phenomena. One of the most intriguing such phenomena of intra-host viral evolution is the transition between the immune escape under
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positive selection at an early stage of infection and a conditionally stable state under negative selection at the later stage. Several previously
published models link this phenomenon with the effects of cross-immunoreactivity. In particular, the studies (Haraguchi and Sasaki, 1997; Gog
and Grenfell, 2002) provide explanations of prolonged stasis in immune escape and the coexistence of clusters of intra-host variants within a
classical “arms race” paradigm. Other recently published modeling, genomic, and experimental studies suggest that this transition can be caused
by the development of specific cooperative interactions among viral variants (Skums et al., 2015a; Shirogane et al., 2013; Domingo-Calap et al.,
2019; Baykal et al., 2021) that allow viral populations to adapt to their environment as quasi-social systems (Domingo-Calap et al., 2019).

The ODE model describing interactions between viral antigens and host B cells predicting and describing one possible scenario of such
interactions has been proposed and analyzed in our previous studies (Skums et al., 2015a; Bunimovich and Shu, 2019, 2020; Bunimovich et al.,
2019). Cross-immunoreactivity network (CRN) plays a central role there. Although cross-immunoreactivity is essential for neutralization, its role
is more complex and ambiguous. In particular, it does not always act as a factor of pressure on the virus but rather may serve as a factor
facilitating virus survival through the mechanisms of original antigenic sin, heterologous immunity, and antibody-dependent enhancement of
viral infectivity (Francis, 1960; Rehermann and Shin, 2005; Parsons et al., 2013; Meyer et al., 2008). The model assumes the presence of CRN
with complex topology and takes into account a fundamental biochemical difference between antigenicity (capacity to bind antibodies) and
immunogenicity (capacity to elicit antibodies) (Van Regenmortel, 2012; Campo et al., 2012; Freitas et al., 1995; McLean et al., 1997; Tarlinton,
2006; Schwickert et al., 2007; Palmer et al., 2012). As a result, it describes a dynamic fitness landscape where viral variants determine the fitness of
other variants through their interactions in CRN. Antigenic cooperation and specialization of viral variants are naturally implied by the model as a
way of mitigating the immune pressure on certain antigenic variants at the expense of other variants. The state when the immune neutralization of
particular variants is hampered is provisionally called local immunodeficiency (Skums et al., 2015a). The structure of CRN determines specific roles
for each viral variant in host adaptation and local immunodeficiency emergence. Variants of high in-degrees play an altruistic role and improve
the fitness of adjacent variants at their own fitness cost by developing a polyspecific antibody response that interferes with the development of
specific immune responses against other variants immunoreactive with these antibodies. The latter variants are selfish because they gain fitness
at the expense of in-hub variants. Thus, the model describes a cooperation between neighbors in CRN which in some aspects resembles altruism
through kin selection (Hamilton, 1964), with the relatedness by epitope similarity serving in place of the genetic relatedness. This mechanism
allows to explain a number of empirical observations. It is also stable and robust under various realistic conditions (Bunimovich and Shu, 2019).

Notably, the antigenic cooperation model achieves its predictive power by using fewer variables than most of the previously proposed
models (Wodarz, 2003; Nowak et al., 1990, 1991; Nowak and May, 1991). The reasons for that is that are (a) the high non-linearity of the model
that allows to capture non-linear evolutionary effects; (b) the more delicate exploration of the effects of cross-immunoreactivity via the introduction
of CRN with a complex topology as a model parameter, in contrast to mean-field approximation of immune responses utilized by many existing
models.

Antigenic cooperation model has been rigorously studied in several prior papers. The original paper (Skums et al., 2015a), besides introducing
the model, described the emergence of antigenic cooperation and local immunodeficiency as its inherent properties using both numerical simulations
and analytical exploration of its equilibrium solutions. The paper (Bunimovich and Shu, 2019) demonstrated that solutions implying local
immunodeficiency can be stable and robust under various realistic conditions for several specific types of cross-immunoreactivity networks. Another
paper (Bunimovich and Shu, 2020) studied the role of altruistic viral variants in intra-host adaptation. It demonstrated that without altruistic
variants the viral population could maintain only a marginally stable state of local immunodeficiency and a relatively small size.

However, viral populations and, consequently, cross-immunoreactivity networks are not static and are subject to dynamical changes caused
by the emergence or introduction of viral variants with altered phenotypes. This fact raises a fundamental question: whether or how changes in
CRNs lead to evolutionary transitions and, in particular, what are the effects of such changes on the functions of specific viral variants and on the
immune escape of the entire population?

This question is the focus of the present paper. We study dynamical changes in B cell immune adaptation caused by two types of evolutionary
and epidemiological events: (a) the emergence of a new viral variant with altered antigenic phenotype and (b) a viral transmission between two
chronically infected hosts, which results in the merging of two intra-host viral populations in the state of stable immune-adapted equilibrium. Both
phenomena are typical for evolution of the intra-host viral populations and important for understanding the laws of their evolution.

We analyze these processes statically, assuming that the emergence of new antigenic variants occurs in a given state of a virus-host system,
and analyzing what will be a new stable state of the system. This new stable state will be (formally) achieved in an infinite time. Then we study
this process of transition from an “old” state to the new one dynamically by following the previous evolution of the initial network and then its
(future) dynamics after the emergence of new variants.

It turned out that such events may result in a rapid re-arrangement of the viral ecosystem and a change of the roles played by viral variants.
In addition, it is rigorously demonstrated that emergent antigenic variants may successfully co-exist with present persistent variants and become
persistent itself while keeping the state of stable local immunodeficiency in the CRN. Another, less expected, and potentially more important
finding, is that the emergence of new variants may push the population under immune escape by genomic diversification towards the stable state
of adaptation by antigenic cooperation. These findings emphasize how phenotypic features of particular viral genomic variants are formed by
both their antibody and “quasi-social” environments rather than pre-defined by their genomes. They also highlight challenges in effective vaccine
design by demonstrating how the evolutionary trajectories of intra-host viral populations subjected to the introduction of new antigenic variants
are affected by the state of pre-existing populations.

The paper is organized as follows. In the next section, we present a basic model of intra-host viral evolution in the presence of a complex
cross-immunoreactivity network. Section 3 deals with the transformations that result from the emergence of a new viral variant in the population
under a stable state of local immunodeficiency (LI). In Section 4 we analyze the process of the union of two CRNs each having a stable state of LI.
All technical computations are presented in the Appendix.

2. Model of evolution of intra-host viral population organized into heterogeneous cross-immunoreactivity network

In this section, we describe the mathematical model of the viral population organized into a heterogeneous cross-immunoreactivity network.
The model was introduced in Skums et al. (2015a) and applied to the Hepatitis C virus, but applies to any highly mutable pathogen with a
broad spectrum of cross-immunoreactivity. We consider a population of » viral antigenic variants x; inducing » immune responses r; in the form
of antibodies and memory B-cells. We assume that viral variants form a cross-immunoreactivity network. This network can be represented as a
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weighted directed graph G-y = (V, E), i.e. a graph with a set of vertices V' and a set of edges E. Vertices of the graph correspond to viral variants
and a pair of vertices u and v are connected by an edge if v-specific antibodies elicited by v as an immunogen interact with an antigen u by
binding to the appropriate epitopes with sufficiently high affinity. We incorporate the asymmetry between immune activation and neutralization
into the model by considering two weight functions for the edges of GC rn- These functions are described by immune neutralization and immune

stimulation matrices U = (u; ;)" Lzt and V = (v; j)l > where: 0 <u; ;,v;; < 1; u;; is a coefficient representing the binding affinity of antibodies r;

with ith variant; and v;; is a coefficient reflecting the strength of stlmulatlon of antibodies to r; by ith variant. The immune response r; against
the variant x; is neutralizing; i.e., u; = v;; = 1.
The resulting viral and antibody population dynamics are described by the following system of ordinary differential equations:

%= fi—p z wiry i= 1,
n (€]

CZX —br;,, i=1,...,n

j=1 Zk 1U/krk

In this model, a viral variant x; replicates at the rate f; and is eliminated by the immune responses r; at the rates pu;;r;,where p is a constant. An
immune responses r; proliferate at the rate proportional to the concentrations of variants recognized by it weighted by the corresponding immune
stimulation coefficients, thus describing the clonal selection. In addition, the proliferation rate associated with the stimulation of the response

r; by the j-the antigenic variant is proportional to the non-linear term g; = Z”U/+ representing the probability of stimulation by x; in the
k=1"jk"k

presence of other antigens competing for stimulation by that variant. This model assumption describes another aspect of clonal selection theory
— the immunological memory, whereat x; preferentially stimulates pre-existing immune responses capable of binding to x; with a relatively high
affinity (Nara et al., 2010). Immunological memory provides a rapid secondary immune response to re-infections with the same pathogen, but also
results in the original antigenic sin, repertoire freeze, and heterologous immunity (Francis, 1960; Kim et al., 2009; Midgley et al., 2011; Parsons
et al., 2013; Rehermann and Shin, 2005). Without stimulation, immune responses r; decay at the rate b. It should be noted that for a single viral
variant or in the absence of cross-immunoreactivity (U = V = Id), the model (1) reduces to the linear immune response model of immune-pathogen
interaction that has been considered in prior studies (see Nowak and May (2000)).

Similarly to Skums et al. (2015b), Bunimovich and Shu (2019), here we are mostly interested in the effects of the CRN structure (topology) on
the population dynamics. Thus we consider the situation where the immune stimulation and neutralization coefficients are equal to constants «
and B, respectively. In this case, we have

U=Id+pAT,V =1d + a4,

where A is the adjacency matrix of the graph Gcgy, the n X n matrix where a;; represents the number of edges from variant j to variant i. In
numerical simulations, we assume that 0 < § = a¥, where k is the number of epitopes that should be bound for neutralization.
Note that in the absence of cross-immunoreactivity, the system (1) reduces to the model described in Nowak and May (2000). In that case,
equilibrium sizes of populations of viral variants and immune responses are
o _bfi o S

= alr=i @

One of the most interesting properties of the system (1) is the emergence of the so-called state of local immunodeficiency. It is defined as an
equilibrium solution (x*,r*) such that every viral variant i falls into one of the following 3 categories:

(€8] x?‘ > 0 and rf < rf’ (persistent variants);
(2) x; =0 and r; > 0 (altruistic variants);
3) xl* = r;“ = 0 (transient variants).

Transient variants are being eliminated by the host’s immune system as they emerge, and thus are subject to the standard immune escape by
continuous diversification mechanism. The relations between persistent and altruistic variants are more interesting, as they describe a different
mechanism of immune escape by antigenic cooperation. Under this mechanism, persistent variants survive without eliciting any specific immune
responses (the state of “local immunodeficiency” with respect to these variants, where the immune system effectively “does not see” them). This
is achieved via the agency of altruistic variants that do not survive but support the continuous existence of persistent variants. The roles of viral
variants in this scheme are defined by their position in the CRN, with altruistic variants usually (but not always) being network hubs, and persistent
variants being adjacent to them. Qualitatively, the mechanism can be described as follows. Under the model (1), if the viral variant x; is adjacent
to an altruistic variant x;, then the immune response r; competes for activation with the immune response r;. Since the latter response is broadly
cross-immunoreactive and being stimulated by many variants, even after the elimination of x; (x; = 0), it is preserved and readily outcompetes
the former response, thus preventing it from development (r; = 0). At the same time, r;-antibodies may lack sufficiently high affinity to neutralize
x;, which leads to its persistence (x; > 0). One can consider these interactions as a form of cooperation between altruistic and persistent variants,
where the former lose their fitness by significantly contributing to the fitness of the latter.

The state of local immunodeficiency, when exists, is usually stable and robust, as was confirmed both analytically and numerically (Skums et al.,
2015a; Bunimovich and Shu, 2019, 2020).

3. Emergence of a new viral variant

This section deals with the situation when a new variant is added to a cross-immunoreactivity network. We found that as a result, the roles of
viral variants may change in different ways.
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Fig. 1. Stable configuration of the branch-cycle network. Node categories are highlighted in different colors. There are three viral variants in this network. Immune response
against variant 2 is stimulated by both variants 1 and 3. Variant 2 stimulates the immune response against variant 3.
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Fig. 2. Stable states where the emerging viral variant 4 becomes persistent in a branch-cycle network. A new variant (4) has been added to the network in Fig. 1. Immune
response against variant 2 is stimulated by variants 1, 3, and 4. Variant 2 stimulates the immune response against variant 3.

3.1. Adding a new viral variant to a minimal branch-cycle network

A branch-cycle network is one of just the two smallest CR networks (Bunimovich and Shu, 2019, 2020) which can exhibit the property of a
stable and robust local immunodeficiency. The network and the roles of viral variants in the corresponding solution (that is derived and described
in Bunimovich and Shu (2019, 2020)) are depicted in Fig. 1. We analyzed all possible additions of a new node to this network and the resulting
equilibrium solutions.

The most notable finding is the existence of solutions where the introduction of a new node changes the functions of preexisting variants.
All such stable solutions are shown in Fig. 2; in all cases, the change occurs when a new variant (node 4) is linked to the altruistic variant of the
previous configuration. Other cases (where the newly emerged viruses are connected to a pre-existing persistent virus) are detailed in Appendix A.3.

The fixed point shown in Fig. 2(a) corresponds to the following solution:

= b(Bf + (=P fy) N

bfs(1—a)
=0 =0, P A
1 Bep X =0 X3 X4 Bep
rT:—fl_f4, r;:é, r; =0, r, =0
p Bp
This fixed point is stable under the conditions a > %, f1> fa. fa> f3, and f, > Bf, (see Appendix A.1)
The second fixed point shown in Fig. 2(b) corresponds to
=0 =0 = b(Bf3+ (a—P)fs) _ byl —a)
e 2T } pep ’ N Bep
Ja f3— /4
r =0, ry ==, ry = —/—, ry =0
1 2= 5, 3 » 4

This fixed point is stable if a > %,f4 > f1, f3 > f4, and f, > pf, (see Appendix A.1)

Changes described by these two solutions are structurally similar. In both cases newly added variant becomes persistent, while the previously
persistent variant is eliminated by the immune system and the altruistic variant retains its role. A necessary condition for the stability of such
qualitative changes in viruses functions is that the replication rate of an emergent variant is greater than that of the preexisting persistent variant.

Notably, in both cases, the change occurs in the variant not adjacent to the newly added variant. It demonstrates how network-mediated
interactions between viral variants propagate along the cross-immunoreactivity networks and thus go beyond direct interactions described in
Section 2. In this particular case, we observe a natural selection acting on potentially persistent variants supported by the same altruistic variant,
with the variant of the lower fitness being eliminated and replaced by the newly emerged variant.

The fact that the newly emerging variant is cross-immunoreactive as an antigen with the immune response against a pre-existing altruistic
variant is essential. Indeed, when variant 4 is cross-immunoreactive with variants 1 or 3, then it either becomes transient while the roles of
pre-existing variants are unchanged, or the dynamics of the CR network becomes unstable, i.e. it does not have a stable and robust state of local
immunodeficiency.

3.2. Adding a new viral variant to a minimal symmetric network

A symmetric network (Bunimovich and Shu, 2020) is another instance of the two smallest CR networks that can exhibit stable state of local
immunodeficiency (Fig. 3).
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Fig. 3. Symmetric minimal network. There are three viral variants in this network. Immune response against variant 2 is stimulated by variants 1 and 3.
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Fig. 4. Stable states where the new viral variant connected to the altruistic variant becomes persistent in a symmetric network. A new variant (4) has been added to the network
in Fig. 3. Immune response against variant 2 is stimulated by variants 1, 3, and 4.

It was proven in Bunimovich and Shu (2020) that a stable state of LI exists in this network if f3 > f;, with the fixed point corresponding to

bfy b
0= p-a), x; =0, X3 = 5 @1+ AU =11)
=0 =1 oz h
1 ’ 2 pﬂ’ 3 p

As this network is symmetric, there is a similar fixed point with the switched solutions for variants 1 and 3; that solution is stable under the
condition f| > f3.

When a new viral variant that is cross-immunoreactive with the pre-existing altruistic variant is added to this network, the functions of the
viruses could change in two possible ways. The fixed point shown in Fig. 4(a) is described as follows:

_bpfi+(a=Bfs) =0 . . _bful-w
' Bep ’ v T A7)
r1=—f1;f4, "2=;—;7 r3 =0, ry=0

The stability conditions of this fixed point are a > % f1> fa. fa > f3, and f, > Bf, (see Appendix A.2). Naturally, there exists a symmetric
solution, with the variant 1 rather than variant 3 being transient.

Another fixed point (Fig. 4(b)) is given via the following relations

_ bBfi+(a=P)Sy) _ B+ (a=P)fs) _ bfy(1-2a)
| =, =— Xy = —

=0,
Pep 2 3 Bep ¢ Pep
rlzfl_f4, rzzﬁ, r3:f3—f4’ ry=0
p Bp p

Conditions of stability of this fixed point are % <a< % f1> fa. f3> fa, and fy > Bf,. (see Appendix A.2)

In both instances, the newly added variant becomes persistent only when it is attached to the altruistic variant. This seems to be a natural
result from the perspective of the local immunodeficiency mechanism (see Section 2). In other aspects, however, the instances describe somewhat
different evolutionary phenomena. In the solution depicted in Fig. 4(a), the newly emerged variant substitutes the previously persistent variant by
virtue of having a higher replication rate, thus providing an example of natural selection action under the local immunodeficiency mechanism. In
contrast, for the solution from Fig. 4(b), the emerging variant has a lower replication rate than the existing persistent variants. Thus, it neither
eliminates these variants nor eliminates itself, but rather co-exists with them. In this environment, previous persistent variants continue to exist in
the same role, although under higher immune pressures and lower population sizes.

Furthermore, the second solution reveals the previously unnoticed phenomenon, where a dynamical change in the topology of the cross-
immunoreactivity network leads to the emergence of a stable LI in the population when it previously did not exist. Indeed, the symmetric minimal
network in Fig. 3 has a stable LI only under the condition a > % The stable state of LI exhibited by the solution in Fig. 4(b) exists under the
condition % <a< %, which means that with these values of a the initial 3-network did not have a stable LI, but acquired it after the addition of a
new variant to the network.
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Fig. 5. Examples of transformation of function after joining minimal networks. There are essentially six viral variants in all these examples. An arrow from variant i to variant j
indicates that variant i stimulates the immune response against variant ;.

4. Merging of two cross-immunoreactivity networks

In this section, we describe the changes in the system states caused by a viral transmission between a pair of chronically infected hosts. We
assume that both hosts are infected for a sufficiently long period of time for their intra-host populations to develop a state of stable immune-adapted
equilibrium. Transmissions of HCV are usually associated with a relatively wide bottleneck, with multiple transmission/founder (T/F) variants being
transmitted from the donor to the recipient (Campo et al., 2017). As a result, a subgraph of a CR network of a donor formed by the T/F variants
is merged with the pre-existing CR network of a recipient. In what follows, we present three cases when the merging of two minimal symmetric
CR networks leads to the state of stable local immunodeficiency. All other analyzed cases of network merging destroy the stability of this state.

Fig. 5(a) depicts a solution for a 6-vertex network obtained by joining two symmetric 3-vertex networks induced by vertices 1-3 and 4-6,
respectively. The fixed point corresponding to 5(a) is given by the following relations

X1 =0, ry =0
x, =0, r2=%
b(Bf3+ (a—PB)f4) f3—fa
X3 =", ry = ———
Pep p
X4 = —bf4(] —9 ry=0
¢ pep ¢
x5 =0, rs =0
bfe fs
6= thir

In this solution, previously altruistic variants 5 and previously persistent variant 1 become transient. Once the transient variants are eliminated
by the immune system, the cross-immunoreactivity network breaks into two subnetworks, one of which (induced by variants 2,3,4) is isomorphic
to a minimal network shown in Fig. 3. The variant 6 is isolated from the remaining variants, effectively evolves in the absence of cross-
immunoreactivity and thus converges to the corresponding stable state. Another possibility leading to the stable state of LI is presented in Fig. 5(b):
here a single variant (variant 1) is eliminated, i.e. changes its role from persistent to transient. The corresponding fixed point of this network
is

x; =0, r =0
fa—BS
x; =0, "2=%
_ bBfs+ (@ = Hfs = S5) P f3=Ja+BSs
’ Pep ’ ’ p
Xy = - ry =0
YT ep T
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Finally, the solution from Fig. 5(c) describes an outcome, when the elimination of 1 and 4 breaks the CR network into two 2-vertex subnetworks
reflecting different degrees of local immunodeficiency; both of these states were described in the original publication (Skums et al., 2015a). The
corresponding fixed point is

x1=0, 7'1=O
bfy(1 —a) 2
2= > ry ==
cp p
= b((a =p)f2+ 1f3) _S3-bh
3 —cp , 3 —p
x4 =0, ry=0
x5 =0, 75:%
bfe
X6=M, r6=0

For this solution, the subnetwork induced by vertices 2 and 3 exist in the state, when equilibrium values of x; and r; depend not only on f; but
also on f,. It means that the variant 3 achieves a higher population size under lower immune pressure (in comparison with the system without CR)
by exploiting the replicative ability the variant 2. The subnetwork formed by variants 5 and 6 expresses a stronger form of the same phenomenon,
where the variant 6 exists without any 5-specific immune pressure (i.e. under the strong state of LI) due to the presence of the 5-specific antibodies,
whose high concentration is supported entirely by the variant 6 (with r5 depending only on f¢). The interesting property of the latter subnetwork
is that the corresponding subsolution is stable for a positive measure set in the parameter space, when considered within the 6-vertex network; in
contrast, it is stable only for « = 1, when considered within the 2-vertex network (Skums et al., 2015a).

5. Transformation of functions in evolving networks

In the previous sections, we analyzed the equilibrium solutions describing the asymptotic properties of the system (2). In this section, we discuss
the entire dynamics of intra-host viral populations before and after new variants are added to the CRN networks. Since the model (2) is a highly
nonlinear dynamical system, which gives no hope of obtaining an analytic solution, the analysis in this section is, by necessity, numerical. In the
context of this study, particularly interesting is the speed of transition between different states of the system and the change of viral variant roles
in the population’s intra-host adaptation, including the elimination of previously persistent variants due to the network expansion.

The results are presented in Fig. 6. Naturally, the dynamics of transformations of the populations from Figs. 6(a) and 6(b) (Fig. 6(a)) are
qualitatively similar, which is to be expected given the qualitative similarity of their asymptotic solutions (see Section 3.2). In both cases, the
elimination of previously persistent variants (variants 3 and 1, respectively) happens quite quickly. The same is true for the immune response
against the altruistic variant 2, which is boosted by the emergence of a new immunogen 4, thus allowing to sustain the adaptation of two persistent
variants (1,4 and 3,4, respectively) under the state of local immunodeficiency.

In contrast, the time evolution of populations shown in Figs. 6(c) and 6(d) essentially differ from each other, with the speed of transition of
the latter population being significantly more rapid. As above, this difference can be explained by the properties of the corresponding asymptotic
solutions. Indeed, the initial state in the first network (Fig. 6(c)) is a stable local immunodeficiency. On the contrary, the initial state in the
network in Fig. 6(d) is unstable local immunodeficiency. Therefore it is natural that the transition between stable states goes slower. Furthermore,
the higher concentration of the altruistic variants-specific antibodies achieved for the population 6(d) allows to sustain the adaptation of 3 rather
than 2 persistent variants.

6. Discussion

In this paper, we study the dynamic and equilibrium properties of a model (Skums et al., 2015a; Bunimovich and Shu, 2019, 2020; Bunimovich
et al., 2019) describing the behavior of an intra-host viral population that is organized into cross-immunoreactivity (CR) networks and is under
pressure by the host’s adaptive immune system in the form of variant-specific B-cells. One of the prominent features of this model is the emergence
of the so-called state of local immunodeficiency, i.e. the equilibrium state where the immune neutralization of certain variants is suppressed due
to the interactions between pre-existing antigens and antibodies mediated by the CR network. We concentrate on the transitions between the
population states caused by dynamic changes in the CR network topology. Specifically, we investigate two events — the introduction of a new
antigenic variant to the CR network, and the merging of two CR networks in the state of stable immune-adapted equilibrium, which may occur,
for example, from a viral transmission between two chronically infected hosts.

It was shown that with the emergence of a new antigenic variant, there can be a rapid rearrangement in the roles played by the variants. A
newly emerged variant can become persistent under the following two conditions: (1) the new antigenic variant is cross-immunoreactive with the
antibodies specific to the existing altruistic variant and (2) the newly emerged variant has a higher replication rate than a previously persistent
variant. This type of rearrangement is expected when the initial system had stable local immunodeficiency before the emergence of a new variant.

Furthermore, we have shown that the appearance of a novel antigenic variant results in the establishment of a stable local immunodeficiency
within a viral population that initially did not exhibit such a condition. This finding diverges from the outcomes of earlier studies, which primarily
concentrated on identifying fixed CR networks with a stable local immunodeficiency state. This discovery paves the way for further exploration of
CR network dynamics leading to the development of stable LI states.
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Fig. 6. Dynamics of minimal networks before and after the introduction of a new variant. Left figures depict the dynamics of variant population sizes, and right figures — of the
variant-specific immune responses. Dotted lines represent moments of time when the new variants are added to CR networks.

Similar transitions have been observed for the merging of CR networks. It was shown in several examples how the roles of antigenic variants in
the CR networks are rearranged, how certain variants are eliminated, and how the CR networks can break down into subnetworks with different
phenotypes.

In addition to the analytical results of equilibrium states, we also analyze numerically the time-evolution of the dynamics of CR networks before
and after the emergence of a new viral variant. We find that the transition between two different stable LI states is slower compared to the transition
that creates a stable state of LI.

This study underscores the non-linear nature of intra-host viral evolution, which exhibits extended periods of stability, interrupted by rapid shifts
due to the emergence of viral variants with altered antigenic phenotypes. This process can be likened to the concept of punctuated equilibrium in
macroevolution. Similar patterns have been noted in other studies (Haraguchi and Sasaki, 1997; Gog and Grenfell, 2002); in the model examined,
these patterns result from CRN-mediated interactions. From an epidemiological standpoint, the research highlights the important role of outbreaks
and subepidemics in high-risk settings, where transmissions occur frequently between chronically infected or previously exposed hosts. Such
environments may promote frequent disturbances in equilibrium, thus increasing the effective rate of viral evolution and increasing the likelihood
of emergence of phenotypically altered variants. This underscores the urgent need for targeted community-based public health interventions that
focus on testing, containment, and eradication of viral pathogens for such high-risk host subpopulations (Nagot et al., 2023; Organization et al.,
2016). Finally, the highlighted equilibrium disruption mechanism provides potential insights for vaccine development. This can be achieved through
immunization with carefully chosen or engineered neutralizing epitopes that can thwart the viral population’s adaptation to host immunity.

The study certainly has a number of limitations. The analyzed model, though relatively rich, is not comprehensive, and does not account for
several immunological phenomena, including T cell immunity and antibody competition for neutralization (in contrast to the competition for
activation, as considered by the model (1)). Furthermore, analytical solutions have been studied only for certain small networks, that by no means
represent the whole spectrum of possible CRN topologies. Development of more comprehensive models and analytical study of more complex
populations are challenging and hopefully will constitute subjects of future studies.
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Appendix

Computations corresponding to the minimal networks can be found in Bunimovich and Shu (2019) (branch-cycle network, Fig. 1), and Buni-
movich and Shu (2020) (symmetric network, Fig. 3).

A.1. Computations for the branch-cycle network with a newly added variant connected to the pre-existing altruistic variant

Fig. 2 depicts two configurations of the branch-cycle network with stable state of local immunodeficiency, where the variant 4 is newly added.
The dynamics (1) of this population is described by the following equations

Xy = f1x) = pxi(ry + Bra),
Xy = foX2 = pxo(ry + fr3),
X3 = f3x3 — px3(r3 + fry),
X4 = faxy4 — pxy4(ry + pry),

xyr
7 :c(—1 ! ) —bry,

r+ar, A1
PR axry + Xpry + axsry . axyry br
2= —bry,
ry+ar, ry+ars r3 +ar, ry+ary
PO i R i B
3 rytarys  rytar, >
X4r
Py =c( 474 ) — bry.
ry +ar,

The Jacobian of the system of (A.1) at the fixed point shown in Fig. 2(a) is:

0 0 0 0 _b(‘lfzt‘*?cf]—ﬂfzx) _b(af4+ﬁtf1—ﬂf4) 0 0
0 = % 0 0 0 0 0 0
0 0 f3-f1 O 0 0 0 0
0 0 0 0 0 b fy (a=1) o lfae-n
c fc
Be(f1—fa bp(f1—fa abp(f1—fa
af4+(ﬂf1—ﬂ)f4 0 0 0 _th4+(ﬂf1—ﬁ)f4 _”f4+l§f1—ﬁ;4 0 0
acfy c c e ___abn _bfatbfiobfazaBlitabfy) bla=1)
afs+B 1B 14 afs+f 1B 14 afs+f 1B 14 «
0 0 0 0 0 0 —b 0
0 0 0 0 0 0 0 -—4Ca=h

a
We will verify the stability of this fixed point by analyzing the eigenvalues of this system. Recall at first the conditions of stability of the fixed
point, which were mentioned earlier in Section 3.1 : % <a<l,f;> fafa> fz,and f4 > Bfy.

With the parameters f; =2,f, = 1,3 =15,f;, =17,c=1,p=1,a =2/3,f = 4/9,b = 1 that satisfy these conditions, the eigenvalues of the
system at this fixed point are:

Ay = —2.8250 2y = —1.0000
J3 = —0.5000 A, = —0.2000
s = —0.4990 + 1.2884i Jg = —0.4990 — 1.2884i
7 = —0.0185 + 0.2978i Jg = —0.0185 — 0.2978i

Hence we can generate a system with the CRN in Fig. 2(a) which has a stable and robust steady state of LI. Thus we present an exact example
with the stable state of local immunodeficiency.

The Jacobian of the differential Egs. (A.1) at the fixed point shown in Fig. 2(b) is:

f1= 14 0 0 0 0 0 0 0
_ 2 g2
0 _Ja ﬁfz‘*’ﬁﬂ S3=P" fa 0 0 0 0 0 0
0 0 0 0 0 _b(afs+Bf3-Bf4) _b(afstBf3-Bf4) 0
p
0 0 0 0o 0 by (a1 0 bfy (=)
c Pc
0 0 0 0 -b 0 0 0
c cfy acfy c 0 _”((lf4+ﬁf3—/ff4—aﬁf3+(l/?f4) _ abfy b(a—1)
Sata B f3—apfy a f4+P f3-PB 1y a fa+P f3-PB 1y a f4+P f3-B /s a
0 afe(f3—f4) Be(f3—1a) 0 0o _abp(f3—f1) _bB(f3=1a) 0
Satap f3—affy a fa+P f3-PJ4 afa+P f3-PJ4 a fa+P f3-PJ4
0 0 0 0 0 0 —b@ah

o

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. Recall at first the conditions of stability of the fixed
point, which were mentioned earlier in Section 3.1 : % <a<l,fy>f1,f3> fs,and fu > pfs.
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With the parameters f; = 2,f, =1, f3 = 1.5, f;, = 1.7,c = 1l,p=1,a = 2/3,p = 4/9,b = 1 that satisfy these conditions, the eigenvalues of the
system at this fixed point are:

Ay =—2.9583 Ay = —1.0000
J3 = —0.5000 A4 = —0.2000

s = —0.4990 + 1.2884i Jg = —0.4990 — 1.2884i
4y = —0.0185 + 0.2978i Jg = —0.0185 — 0.2978i

Hence we can generate a system with the CRN in Fig. 2(b) which has a stable and robust steady state of LI.

A.2. Computations for the symmetric network with a newly added variant connected to the pre-existing altruistic variant

Fig. 4 depicts two stable configurations of the branch-cycle network where the variant 4 is newly added.
The dynamics (1) of this population is described by the following equations

Xy = fix) = pxi(ry + Bry),
Xy = foX2 — pxyry,
%3 = f3x3 = px3(r3 + fra),

Xy = faxq4 — px4(ry + pry),

. 1"

7 = c(————) — bry,

! (rl + arz) ! (A.2)
axyr axyr axyr

iy =c( 2 6+ 324 42)—br2,

ry+ar, 2 ryt+ary rqgtar,
. X373
Py = c(————) — brs,
ry3+ar,
X4ly
ry +ary

g = c( ) = bry.

At the fixed point shown in Fig. 4(a), the Jacobian of the system (A.2) equals

0 0 0 0 _b(af4+z:1—ﬂf4) _b(‘lf4+ﬁcf1—ﬂf4) 0 0
0 = % 0 0 0 0 0 0
0 0 fi—fa O 0 0 0 0
0 0 0 0 0 bf4(a=l) 0 b f4(a=1)
c P
Be(fi=14) __bB(fi=14) _abB(fi=f4)
o fa+B f1=B Sy 0 0 0 a f4+B f1—PB /s a f4+B f1—PB /s 0 0
acfy c c c _ abfy _b(afatBfi-BLa—apfitap fs) 0 b(a—1)
a fa+Ppf1=P f4 afa+P[1—P T4 a fq+P[1—P T4 a
0 0 0 0 0 0 —b 0
0 0 0 0 0 0 0o —i@2e=b

a

The conditions of stability of the fixed point are (see the Section 3.1) a > L f1> fas fa> f3,and fu > Bf.
We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters f; =2, f, =1, f3 = 1.5, f, = 1.7,
c=1,p=1,a=2/3, p=4/9, b =1 that satisfy these conditions, the eigenvalues of the system at this fixed point are:

4y = —2.8250 Ay = —=1.0000
J3 = —0.5000 A4 = —0.2000

s = —0.4990 + 1.2884i Jg = —0.4990 — 1.2884i
g = —0.0185 + 0.2978i Jg = —0.0185 — 0.2978i

Hence we can generate a system with the CRN in Fig. 4(a) which has a stable and robust steady state of LI.
At the fixed point of the network in Fig. 4(b), the Jacobian of the system of Egs. (A.2) is J = (XY Z) where

_b(afatBfi-p 1fs)

0 0 0 0
ixg
0 fo- % 0 0 0
0 0 0 0 0
0 0 0 0 0
X = Be(fi—f1) 0 0 0 _ bp(f1—f1)
a f4+P f1—B Sy a fa+P f1=B fs
acfy ¢ acfy c _ abfy
a f4+P f1—B Sy a f4+B f3-P f4 a fa+B f1—P f4
Be(fs=f4)
0 0 a fa+P 3P f4 0
0 0 0 0 0

10
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_b(af4+ﬁf1—ﬂf4)
c

0
ICTRY TN
by Qa-1)
c
abf(f1=14)
a fa4+PB f1=P fa

1
Y = B 2B 2 —2a P 42028 2
<<m}+m—ﬂvmwh+wa—MAf(“/4+ﬁ/* Pl h

=2apfPH PSS = B S fa = B a2 B S fi+

Zaﬂ2f1f4—azﬁflf4+2aﬁ2f3f4—azﬂf3f4+aﬁf1f4+aﬂf3f4))>

_ abp(f3—f1)
o f4+B f3-P 14
0
and
0 0
0 0
_h((lf4+ﬁf3—/if4) 0
pe bfs@a=1)
0 4=
pe
Z= 0 0
_ abfy b(2a—1)
a fy+p [3-P fa a
__bB(fs—fa) 0
a f4+B f3-P /4
0 _bBa-1)

a
As mentioned above, this is a rather unique fixed point. It takes also lengthier computations to prove its stability. Recall the conditions for
stability of this system, i.e. % <a< %,fl > fa, f3> f4, and fy4 > Bfy.
We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters f, = 1.7, f, =1, f3 =2, f, = 1.5,
c=1,p=1,a=2/5 p=4/25 b=1 that satisfy these conditions, the eigenvalues of the system at this fixed point are:

4y = —8.3750 2y = =0.5000

J3 = —0.0080 — 0.2187i A4 = —0.0080 + 0.2187i
s = —0.0469 — 0.5887i Jg = —0.0469 + 0.5887i
g = —0.4956 — 1.2448i Jg = —0.4956 + 1.2448i

Hence we can generate a system with the CRN in Fig. 4(b) which has a stable and robust steady state of LI.
A.3. Computations for minimal networks with a newly added viral variant connected to pre-existing persistent variants

In Section 3.1, we noted that the newly emerging variant has to elicit immune response against the pre-existing altruistic variant to maintain

stable LI. Here we show the results of computations for cases when the newly emerged variant is connected to either of the two other persistent
variants.

When the newly emerged variant is connected to the variant 1, the dynamics (1) of this CRN is described by the following equations
Xy = fixg = pxi(ry + Pry),
Xy = foX2 = pxy(ry + fr3),
X3 = f3x3 — px3(r3 + pry),

Xy = fqxq4 — px4(ry + pry),
xir axyr

Fl=c(——+ ) —bry,
! rptary arp+ry ! (A.3)
axr Xy axsr
Py = 12 22, 32)—br2,
rp+ary ry+ary ryt+ar,
. axpr3 X3r3
Py =c(——— + ) = brs,

ry+ars ry +ar,

Xyt
g = c( ke ) —bry.
ry +ary

In the fixed point shown in Fig. A.7, the newly emergent variant becomes transient, and the resulting network is functionally the same as the
branch-cycle network (Fig. 1). There is no transformation of functions in this case.
Fig. A.8 shows the fixed point

_bfi(l-a) ~ BB+ @ = P)f) _ bfy
Sl e % =0 SR M

~ A S 1 s
=0 i S S

11
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Fig. A.7. A fixed point when the newly emerging variant is connected to the variant 1 and becomes transient.
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Fig. A.8. A fixed point when the newly emerging variant is connected to the variant 1 and becomes persistent.
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Fig. A.9. A fixed point when the newly emerging variant is connected to the variant 1 and becomes persistent, making the variant 3 transient.

The Jacobian at this fixed point is

0 0 0 0 bfll(;z_l) bfl(:l_l) 0 0
1
0 —E(f1—ﬁf2—ﬂ2f1+ﬂ2f3) 0 0 0 0 0 0
b b((a—, +,
0 0 0 o 0 ~Yafi = pfi+pry)  -HERLER
0 0 0 0o ¥4 0 0 e
0 0 0 0 20-a? 0 0 0
c cfy acfy 0 (1 — l) —b((a=p)f1+Bf3+aB(f1—13)) _ abfy 0
Si1—apfi+aff3 (=P f1+8/3 a (a=P) f1+8/3 (a=P)f1+Pf3
0 afe(f3-f1) Be(f3-11) 0 0 apb(f1—f3) bB(f1—S3) 0
Si—aBfi+aBfs (a=p)f1+Bf3 (a=p)f1+Bf3 (@=p)f1+8f3
0 0 c —ab 0 0 —b
This fixed point can exist under the conditions a < 1, f| < %, and f3 > f).

Analyzing the eigenvalues of the system at this point, we get A; = b(a + é —2) > 0. As at least one of the eigenvalues are positive, the fixed
point is unstable. Other fixed points where virus 4 becomes persistent can be similarly proven to have unstable LI.

12
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Fig. A.10. A fixed point when the newly emerging variant is connected to the variant 3 and becomes inactive.

The fixed points resulting in the network in Fig. A.9 are

b b
xlzﬂTf;’, x, =0, x3 =0, x4zcip4
r =0, r2=%, ry =0, r4=%

The Jacobian at this fixed point is

_bn _bh

0 0 0 0 0 0
Pe c
0 f- % 0 0 0 0 0 0
0 0 fi-f1 0 0 0 0 0
0 0 0 0 s 0o o -
c c
0 0 0 0 ba+i-1 0 0 0
¢ ¢ ¢ 0 —g b 0 0
0 0 0 0 0 -b 0
0 0 0 ¢ —ab 0 0 —b

Analyzing the eigenvalues of the system at this point, we get A5 = b(x + é — 1) > 0. As at least one of the eigenvalues are positive, the fixed point
is unstable. Other fixed points where virus 4 becomes persistent can be similarly proven to have unstable LI.
Similarly, all networks where virus 4 is connected to virus 1 in the branch-cycle network can be shown to have either no LI or no stable LI.
Now we look at cases where the newly emerged variant is connected to the variant 3. The dynamics (1) of this population is described by the

following equations
Xy = fix; — pxy(ry + Bry),
Xy = foX2 = pxy(ry + fr3),
X3 = f3x3 = px3(r3 + fra),

X4 = faxy4 — pxy4(ry + pr3),
X1

F =c(————) —br
! r+ar, v (A4
. axqry XoFy axsry
Py = c( + + ) —bry,
ry+ary, ry,+tary rytar,
. axyry X33 axyrs
F=c + ++ ) = brs,
N ry+ars ry+ar, ry+ars
Xyt
i'4=c—44 ) —bry.
ry+ary

The stable network obtained from this network is shown in Fig. A.10.
The fixed points resulting in the network in Fig. A.10 are

o= =0 xy = (@ P)fy +Bfy) x, =0
"R T 2= 37 Bep et !
pp ’ p

This network A.10 has the newly emerged variant being transient, and the resulting network is the same as the initial branch-cycle network.

A.4. Computations for merging of two minimal networks

Fig. 5 depicts three instances where two symmetric minimal networks are connected to each other to form three different types of networks.
The dynamics (1) of this configuration is as follows:
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Xy = fix; = px((r; + Pro + frs),
Xy = f2X2 — pxyry,
X3 = f3x3 — px3(r3 + fry),
X4 = faxq — px4(ry + Pro + frs),
X5 = fsX5 — pxsrs,
X = feX¢ — Pxg(rg + frs),
. X1
= c(———) = brq,
ry+ary+ars
o axqry axsry axyry
Fy = Xy +
ry+ar, +ars rytar, rytar, +ars
X3
F3=c 33 ) — brs,
- r3+ar,
. X4y
Py = c(———) — bry,
ry+ary+arg
o axrs axyrs Xe¢l's
F5 = c( X5+
rtary+ars  ry+ary+ars re +ars
. X6!'6
Fg=c ) — brg.
+ ar
e 5

) = bry,

The Jacobian of the system of Egs. (A.5) at the fixed point shown in Fig. 5(a) equals:

where

and

J=(X Y)
fi—Ja 0 0 0O 0 0 O
0 £ % 0 0 0 0 0
0 0 0 0O 0 0 O
0 0 0 0O 0 0 O
0 0 0 0 fs 0 0
0 0 0 0O 0 0 O
X = 0 0 0 0O 0 0 -bi
acfy
¢ ¢ awongn ¢ 0 00
Be(f3=14)
0 0 a fa+P f3-B fa o0 00
0 0 0 0O 0 0 O
0 0 0 0 ¢ 0 O
0 0 0 0 0 ¢ O
0 0 0
0 0 0
_b(afa+Pf3-B 1) _b(afa+Pf3-B 1) 0
B
bf4(:—1) Oc bfy(a=1)
c pec
0 0 0
0 0 0
Y= 0 0 0
_b(af4+ﬂf3—ﬂf4—“ﬂf3+aﬁf4) _ abfy b(a—1)
a S4B 3P Js a fa+P [3-P f4 a
_ abf(f3-11) __bB(f3-f4) 0
a fa+P f3-P f4 a fa+P f3-P fa
0 0 _bQa-1
a
0 0 0
0 0 0

0 0

0 0

0 0
bfy(a=1) 0

c

0 0
_bpss _bfe
c c

0 0

b(a—1) 0

0

0

0 0
—ab —b
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(A.5)

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters f; = 0.25, f, = 0.3, f3 = 0.35,
f2=03, f5=035, f¢=04,c=1,p=2, a =1/3, p =1/9, b =3 that satisfy the conditions for our fixed point, the eigenvalues of the system at
this fixed point are:

4y = —0.0500
J3 = 0.0000

s = 0.0000

Jy = —2.5247

Jo = —2.6396

A1y = —0.0566 — 0.3058i

A = 0.0000
J4 = 0.0000
Jg = 0.0000
Ay = —0.4753
Ao = —0.3525

Aps = —0.0566 + 0.3058i
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The Jacobian of the fixed point in Fig. 5(b) is J = (W XY Z) where

fi—/J4 0 0 0 0
0 fo- % 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
W = 0 0 0 0 01,
c(f4=P f5) ¢ ac(fs—P fs) c(fa=Pfs) 0
fa @ f4+B [3=P f4+P fs—a B [s fa
Be(f3—fa+B fs)
0 0 @ f4+B f3=P f4+B? fs—a B fs 0 0
0 0 0 0 0
Befs Befs
Ja 0 0 Ja ¢
0 0 0 0 0
0 0 0
0 0 0
0 0 _blafatbfs-p fc4+ﬁ2 fs=apfs)
0 0 bf4(ca—1)
0 0 0
0 0 0
X = 0 —b 0
0 0 _bUszhSs) (afatB s=Pfs4b? fs=ab fstap fy—ap fs=al? [s+a’ B fs)
fa (@ fa+B f3=B f4+B* fs—a B f5)
0 0 __ abf(f3—fatBSs5)
a f4+B f3=P f4+B fs—a B fs
0 0 0
acfs 0 bp fs(a=1)
feta fs—P f5 n
c(J6=Bf5) 0 0
feta fs=P fs
0 0
0 0
_ b(afatBf3—B futh? fs—a B fs) 0
o by @@=1)
Bec
0 0
0 0
Y = 0 0
_ ab(fs=pfs) b(a=1)(f4=P f5)
a f4+B f3—B fa+B? fs—a B fs afy
_ bB(f3—f4+B f5) 0
@ f4+B f3=B f4+P? fs—a B fs
0 _bQa-1)
a
bpfs(a-1)
0 afy
0 0
and
0 0
0 0
0 0
b fy(a=1) 0
c
0 0
_ bB(ferafs—Bf5) _b(ferafs=Bf5)
c c
Z = 0 0
ba=1)(fa=P f5) 0
n
0 0
0 0
_ bS5 (BSsta fa=P? fstaBfs—apfeta i fs—aBfs) abfs
fa(feta fs=B fs) feta fs—P f5
_ab(fe=BJs) _ b(fs=b5)
feta fs—P fs Seta fs—B fs

We will present an exact example with the stable state of local immunodeficiency. Let the system’s parameters have the following values
f1 =025 f, =03, f3 =035, f, =03, f5 =035, f¢ = 04,¢c = 1,p =2,a = 1/3, = 1/9,b = 3. One can compute the corresponding Jacobian
numerically and confirm that all the eigenvalues are either real negative or complex with negative real parts. It follows by continuity that there
exists a positive measure set in the parameter space such that for any point (a set of parameters) the corresponding state of local immunodeficiency
is stable.
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Finally, the Jacobian computed at the fixed point shown in Fig. 5(c) is J = XY where

fi-fe=Bf O 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 fa—fs=B 1 0 0
0 0 0 0 fs— % 0
0 0 0 0 0 0
X = 0 0 0 0 0 ol,
Befr c acfr Befr 0 0
fetB f2 f3ta fr=B fr feth f2
(f3=hrr)
0 0 f3ta fr=P fr 0 0 0
0 0 0 0 0 0
cfe cfe
fetb 12 0 0 feth f2 ¢ ¢
0 0 0 0 0 0
0 0 0 0 0 0
0 2D 0 0 0 0
0 _bﬂ(f3+acf2—ﬂf2) _b(f3+acfz—ﬂf2) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0o - _bs
c Pc
Y=|_p 0 0 0 0 0o |
_b(f3+ﬂf2—llf3—/7f2+llﬂf2) _ abfy
0 f3ta fr,—B fr f3ta fr—B f2 0 0 0
_ab(f3-Pfr) _ b(f3-8f)
0 fata fr=B fr fata fr=B fr 0 0 0
0 0 0 -b 0 0
0 0 0 0 -b —g
0 0 0 0 0o  —be=b
o

In this case also, we present an exact numerical example with a stable state of local immunodeficiency. Let the system’s parameters assume the
following values f; = 0.25, f, = 0.3, f3 = 0.35, f, = 0.3, f5 = 0.35, fs = 04,c = 1,p=2,a = 1/3, = 1/9,b = 3. One can compute the corresponding
Jacobian numerically and confirm that all the eigenvalues are either real negative or complex with negative real parts. Once again, it follows by
continuity that there exists a positive measure set in the parameter space where the state of a local immunodeficiency is stable.
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