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A B S T R A C T

In this paper, we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape
that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and
allows to explain a number of experimental observations associated with the establishment of chronic infections
by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces
intra-host viral variants to specialize for complementary roles and adapt to the host’s immune response as a
quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and
epidemiological events. First, we show that the emergence of a viral variant with altered antigenic features
may result in a rapid re-arrangement of the viral ecosystem and a change in the roles played by existing viral
variants. In particular, it may push the population under immune escape by genomic diversification towards the
stable state of adaptation by antigenic cooperation. Next, we study the effect of a viral transmission between
two chronically infected hosts, which results in the merging of two intra-host viral populations in the state
of stable immune-adapted equilibrium. In this case, we also describe how the newly formed viral population
adapts to the host’s environment by changing the functions of its members. The results are obtained analytically
for minimal cross-immunoreactivity networks and numerically for larger populations.

1. Introduction

RNA viruses such as HIV, Hepatitis C (HCV), Zika, Influenza A, and SARS-CoV-2 are characterized by extremely high evolutionary rates (Drake
and Holland, 1999). As a result, each infected host or a community of infected individuals carries a heterogeneous population of genetically related
viral variants (Domingo et al., 2012) that exist as an ecosystem, with the dominant selection pressure caused by hosts’ immune systems (Rhee et al.,
2007). Until recently, the predominant model of viral evolution was the immune escape via continuous accumulation of genetic diversity (Nowak
and May, 2000) often described as an ‘‘arms race’’ between virus and hosts. However, several recent experimental discoveries suggest a possibly
more complex picture. These discoveries include broad cross-immunoreactivity and antigenic convergence between intra-host viral variants (Campo
et al., 2012), a consistent increase in negative selection, and a decrease in population heterogeneity over time (Ramachandran et al., 2011; Campo
et al., 2014; Gismondi et al., 2013; Lu et al., 2008; Illingworth et al., 2014), long-term persistence of viral variants (Ramachandran et al., 2011;
Palmer et al., 2012, 2014) and complex fluctuations of frequencies of subpopulations over the course of infection (Ramachandran et al., 2011;
Gismondi et al., 2013; Palmer et al., 2014; Gray et al., 2012; Raghwani et al., 2016). Given these observations, it is unlikely that the entire viral
evolution is driven by a single evolutionary mechanism. It is rather a non-linear process defined by the recurring presentation of a succession of
selection challenges specific to different stages of infection or epidemic spread (Baykal et al., 2021). Each stage involves complex mechanisms that
viruses share with other domains of life (Domingo-Calap et al., 2019; Baykal et al., 2021).

Many previously studied mathematical models of virus–host immune system interactions (Nowak and May, 2000; Wodarz, 2003; Iwasa et al.,
2004) suggest that immune escape is associated with a constant increase in genomic heterogeneity, and does not account for certain experimentally
observed phenomena. One of the most intriguing such phenomena of intra-host viral evolution is the transition between the immune escape under
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positive selection at an early stage of infection and a conditionally stable state under negative selection at the later stage. Several previously
published models link this phenomenon with the effects of cross-immunoreactivity. In particular, the studies (Haraguchi and Sasaki, 1997; Gog
and Grenfell, 2002) provide explanations of prolonged stasis in immune escape and the coexistence of clusters of intra-host variants within a
classical ‘‘arms race’’ paradigm. Other recently published modeling, genomic, and experimental studies suggest that this transition can be caused
by the development of specific cooperative interactions among viral variants (Skums et al., 2015a; Shirogane et al., 2013; Domingo-Calap et al.,
019; Baykal et al., 2021) that allow viral populations to adapt to their environment as quasi-social systems (Domingo-Calap et al., 2019).
The ODE model describing interactions between viral antigens and host B cells predicting and describing one possible scenario of such

nteractions has been proposed and analyzed in our previous studies (Skums et al., 2015a; Bunimovich and Shu, 2019, 2020; Bunimovich et al.,
019). Cross-immunoreactivity network (CRN) plays a central role there. Although cross-immunoreactivity is essential for neutralization, its role
s more complex and ambiguous. In particular, it does not always act as a factor of pressure on the virus but rather may serve as a factor
acilitating virus survival through the mechanisms of original antigenic sin, heterologous immunity, and antibody-dependent enhancement of
iral infectivity (Francis, 1960; Rehermann and Shin, 2005; Parsons et al., 2013; Meyer et al., 2008). The model assumes the presence of CRN
ith complex topology and takes into account a fundamental biochemical difference between antigenicity (capacity to bind antibodies) and
mmunogenicity (capacity to elicit antibodies) (Van Regenmortel, 2012; Campo et al., 2012; Freitas et al., 1995; McLean et al., 1997; Tarlinton,
006; Schwickert et al., 2007; Palmer et al., 2012). As a result, it describes a dynamic fitness landscape where viral variants determine the fitness of
ther variants through their interactions in CRN. Antigenic cooperation and specialization of viral variants are naturally implied by the model as a
ay of mitigating the immune pressure on certain antigenic variants at the expense of other variants. The state when the immune neutralization of
articular variants is hampered is provisionally called local immunodeficiency (Skums et al., 2015a). The structure of CRN determines specific roles
or each viral variant in host adaptation and local immunodeficiency emergence. Variants of high in-degrees play an altruistic role and improve
he fitness of adjacent variants at their own fitness cost by developing a polyspecific antibody response that interferes with the development of
pecific immune responses against other variants immunoreactive with these antibodies. The latter variants are selfish because they gain fitness
t the expense of in-hub variants. Thus, the model describes a cooperation between neighbors in CRN which in some aspects resembles altruism
hrough kin selection (Hamilton, 1964), with the relatedness by epitope similarity serving in place of the genetic relatedness. This mechanism
llows to explain a number of empirical observations. It is also stable and robust under various realistic conditions (Bunimovich and Shu, 2019).
Notably, the antigenic cooperation model achieves its predictive power by using fewer variables than most of the previously proposed
odels (Wodarz, 2003; Nowak et al., 1990, 1991; Nowak and May, 1991). The reasons for that is that are (a) the high non-linearity of the model
hat allows to capture non-linear evolutionary effects; (b) the more delicate exploration of the effects of cross-immunoreactivity via the introduction
f CRN with a complex topology as a model parameter, in contrast to mean-field approximation of immune responses utilized by many existing
odels.
Antigenic cooperation model has been rigorously studied in several prior papers. The original paper (Skums et al., 2015a), besides introducing

he model, described the emergence of antigenic cooperation and local immunodeficiency as its inherent properties using both numerical simulations
nd analytical exploration of its equilibrium solutions. The paper (Bunimovich and Shu, 2019) demonstrated that solutions implying local
mmunodeficiency can be stable and robust under various realistic conditions for several specific types of cross-immunoreactivity networks. Another
aper (Bunimovich and Shu, 2020) studied the role of altruistic viral variants in intra-host adaptation. It demonstrated that without altruistic
ariants the viral population could maintain only a marginally stable state of local immunodeficiency and a relatively small size.
However, viral populations and, consequently, cross-immunoreactivity networks are not static and are subject to dynamical changes caused

y the emergence or introduction of viral variants with altered phenotypes. This fact raises a fundamental question: whether or how changes in
RNs lead to evolutionary transitions and, in particular, what are the effects of such changes on the functions of specific viral variants and on the
mmune escape of the entire population?
This question is the focus of the present paper. We study dynamical changes in B cell immune adaptation caused by two types of evolutionary

nd epidemiological events: (a) the emergence of a new viral variant with altered antigenic phenotype and (b) a viral transmission between two
hronically infected hosts, which results in the merging of two intra-host viral populations in the state of stable immune-adapted equilibrium. Both
henomena are typical for evolution of the intra-host viral populations and important for understanding the laws of their evolution.
We analyze these processes statically, assuming that the emergence of new antigenic variants occurs in a given state of a virus–host system,

nd analyzing what will be a new stable state of the system. This new stable state will be (formally) achieved in an infinite time. Then we study
his process of transition from an ‘‘old’’ state to the new one dynamically by following the previous evolution of the initial network and then its
future) dynamics after the emergence of new variants.
It turned out that such events may result in a rapid re-arrangement of the viral ecosystem and a change of the roles played by viral variants.

n addition, it is rigorously demonstrated that emergent antigenic variants may successfully co-exist with present persistent variants and become
ersistent itself while keeping the state of stable local immunodeficiency in the CRN. Another, less expected, and potentially more important
inding, is that the emergence of new variants may push the population under immune escape by genomic diversification towards the stable state
f adaptation by antigenic cooperation. These findings emphasize how phenotypic features of particular viral genomic variants are formed by
oth their antibody and ‘‘quasi-social’’ environments rather than pre-defined by their genomes. They also highlight challenges in effective vaccine
esign by demonstrating how the evolutionary trajectories of intra-host viral populations subjected to the introduction of new antigenic variants
re affected by the state of pre-existing populations.
The paper is organized as follows. In the next section, we present a basic model of intra-host viral evolution in the presence of a complex

ross-immunoreactivity network. Section 3 deals with the transformations that result from the emergence of a new viral variant in the population
nder a stable state of local immunodeficiency (LI). In Section 4 we analyze the process of the union of two CRNs each having a stable state of LI.
ll technical computations are presented in the Appendix.

. Model of evolution of intra-host viral population organized into heterogeneous cross-immunoreactivity network

In this section, we describe the mathematical model of the viral population organized into a heterogeneous cross-immunoreactivity network.
he model was introduced in Skums et al. (2015a) and applied to the Hepatitis C virus, but applies to any highly mutable pathogen with a
road spectrum of cross-immunoreactivity. We consider a population of 𝑛 viral antigenic variants 𝑥𝑖 inducing 𝑛 immune responses 𝑟𝑖 in the form
f antibodies and memory B-cells. We assume that viral variants form a cross-immunoreactivity network. This network can be represented as a
2
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weighted directed graph 𝐺𝐶𝑅𝑁 = (𝑉 ,𝐸), i.e. a graph with a set of vertices 𝑉 and a set of edges 𝐸. Vertices of the graph correspond to viral variants
nd a pair of vertices 𝑢 and 𝑣 are connected by an edge if 𝑣-specific antibodies elicited by 𝑣 as an immunogen interact with an antigen 𝑢 by
inding to the appropriate epitopes with sufficiently high affinity. We incorporate the asymmetry between immune activation and neutralization
nto the model by considering two weight functions for the edges of 𝐺𝐶𝑅𝑁 . These functions are described by immune neutralization and immune
timulation matrices 𝑈 = (𝑢𝑖,𝑗 )𝑛𝑖,𝑗=1 and 𝑉 = (𝑣𝑖,𝑗 )𝑛𝑖,𝑗=1, where: 0 ≤ 𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ≤ 1; 𝑢𝑗,𝑖 is a coefficient representing the binding affinity of antibodies 𝑟𝑗
with 𝑖th variant; and 𝑣𝑖,𝑗 is a coefficient reflecting the strength of stimulation of antibodies to 𝑟𝑗 by 𝑖th variant. The immune response 𝑟𝑖 against
the variant 𝑥𝑖 is neutralizing; i.e., 𝑢𝑖𝑖 = 𝑣𝑖𝑖 = 1.

The resulting viral and antibody population dynamics are described by the following system of ordinary differential equations:

𝑥̇𝑖 = 𝑓𝑖𝑥𝑖 − 𝑝𝑥𝑖
𝑛
∑

𝑗=1
𝑢𝑗𝑖𝑟𝑗 , 𝑖 = 1,… , 𝑛,

𝑟̇𝑖 = 𝑐
𝑛
∑

𝑗=1
𝑥𝑗

𝑣𝑗𝑖𝑟𝑖
∑𝑛

𝑘=1 𝑣𝑗𝑘𝑟𝑘
− 𝑏𝑟𝑖, 𝑖 = 1,… , 𝑛.

(1)

In this model, a viral variant 𝑥𝑖 replicates at the rate 𝑓𝑖 and is eliminated by the immune responses 𝑟𝑗 at the rates 𝑝𝑢𝑗𝑖𝑟𝑗 ,where 𝑝 is a constant. An
immune responses 𝑟𝑖 proliferate at the rate proportional to the concentrations of variants recognized by it weighted by the corresponding immune
timulation coefficients, thus describing the clonal selection. In addition, the proliferation rate associated with the stimulation of the response
𝑖 by the 𝑗-the antigenic variant is proportional to the non-linear term 𝑔𝑗𝑖 = 𝑣𝑗𝑖𝑟𝑖

∑𝑛
𝑘=1 𝑣𝑗𝑘𝑟𝑘

representing the probability of stimulation by 𝑥𝑗 in the

presence of other antigens competing for stimulation by that variant. This model assumption describes another aspect of clonal selection theory
— the immunological memory, whereat 𝑥𝑗 preferentially stimulates pre-existing immune responses capable of binding to 𝑥𝑗 with a relatively high
ffinity (Nara et al., 2010). Immunological memory provides a rapid secondary immune response to re-infections with the same pathogen, but also
esults in the original antigenic sin, repertoire freeze, and heterologous immunity (Francis, 1960; Kim et al., 2009; Midgley et al., 2011; Parsons
et al., 2013; Rehermann and Shin, 2005). Without stimulation, immune responses 𝑟𝑖 decay at the rate 𝑏. It should be noted that for a single viral
variant or in the absence of cross-immunoreactivity (𝑈 = 𝑉 = Id), the model (1) reduces to the linear immune response model of immune-pathogen
interaction that has been considered in prior studies (see Nowak and May (2000)).

Similarly to Skums et al. (2015b), Bunimovich and Shu (2019), here we are mostly interested in the effects of the CRN structure (topology) on
the population dynamics. Thus we consider the situation where the immune stimulation and neutralization coefficients are equal to constants 𝛼
and 𝛽, respectively. In this case, we have

𝑈 = Id + 𝛽𝐴𝑇 , 𝑉 = Id + 𝛼𝐴,

where 𝐴 is the adjacency matrix of the graph 𝐺𝐶𝑅𝑁 , the 𝑛 × 𝑛 matrix where 𝑎𝑖𝑗 represents the number of edges from variant 𝑗 to variant 𝑖. In
numerical simulations, we assume that 0 < 𝛽 = 𝛼𝑘, where 𝑘 is the number of epitopes that should be bound for neutralization.

Note that in the absence of cross-immunoreactivity, the system (1) reduces to the model described in Nowak and May (2000). In that case,
equilibrium sizes of populations of viral variants and immune responses are

𝑥◦𝑖 =
𝑏𝑓𝑖
𝑐𝑝

, 𝑟◦𝑖 =
𝑓𝑖
𝑝
, (2)

One of the most interesting properties of the system (1) is the emergence of the so-called state of local immunodeficiency. It is defined as an
quilibrium solution (𝐱∗, 𝐫∗) such that every viral variant 𝑖 falls into one of the following 3 categories:

(1) 𝑥∗𝑖 > 0 and 𝑟∗𝑖 ≤ 𝑟◦𝑖 (persistent variants);
(2) 𝑥∗𝑖 = 0 and 𝑟∗𝑖 > 0 (altruistic variants);
(3) 𝑥∗𝑖 = 𝑟∗𝑖 = 0 (transient variants).

Transient variants are being eliminated by the host’s immune system as they emerge, and thus are subject to the standard immune escape by
ontinuous diversification mechanism. The relations between persistent and altruistic variants are more interesting, as they describe a different
echanism of immune escape by antigenic cooperation. Under this mechanism, persistent variants survive without eliciting any specific immune
esponses (the state of ‘‘local immunodeficiency’’ with respect to these variants, where the immune system effectively ‘‘does not see’’ them). This
s achieved via the agency of altruistic variants that do not survive but support the continuous existence of persistent variants. The roles of viral
ariants in this scheme are defined by their position in the CRN, with altruistic variants usually (but not always) being network hubs, and persistent
ariants being adjacent to them. Qualitatively, the mechanism can be described as follows. Under the model (1), if the viral variant 𝑥𝑖 is adjacent
o an altruistic variant 𝑥𝑗 , then the immune response 𝑟𝑖 competes for activation with the immune response 𝑟𝑗 . Since the latter response is broadly
ross-immunoreactive and being stimulated by many variants, even after the elimination of 𝑥𝑖 (𝑥𝑖 = 0), it is preserved and readily outcompetes
he former response, thus preventing it from development (𝑟𝑗 = 0). At the same time, 𝑟𝑗 -antibodies may lack sufficiently high affinity to neutralize
𝑥𝑖, which leads to its persistence (𝑥𝑗 > 0). One can consider these interactions as a form of cooperation between altruistic and persistent variants,
where the former lose their fitness by significantly contributing to the fitness of the latter.

The state of local immunodeficiency, when exists, is usually stable and robust, as was confirmed both analytically and numerically (Skums et al.,
2015a; Bunimovich and Shu, 2019, 2020).

. Emergence of a new viral variant

This section deals with the situation when a new variant is added to a cross-immunoreactivity network. We found that as a result, the roles of
3
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Fig. 1. Stable configuration of the branch-cycle network. Node categories are highlighted in different colors. There are three viral variants in this network. Immune response
against variant 2 is stimulated by both variants 1 and 3. Variant 2 stimulates the immune response against variant 3.

Fig. 2. Stable states where the emerging viral variant 4 becomes persistent in a branch-cycle network. A new variant (4) has been added to the network in Fig. 1. Immune
esponse against variant 2 is stimulated by variants 1, 3, and 4. Variant 2 stimulates the immune response against variant 3.

.1. Adding a new viral variant to a minimal branch-cycle network

A branch-cycle network is one of just the two smallest CR networks (Bunimovich and Shu, 2019, 2020) which can exhibit the property of a
stable and robust local immunodeficiency. The network and the roles of viral variants in the corresponding solution (that is derived and described
in Bunimovich and Shu (2019, 2020)) are depicted in Fig. 1. We analyzed all possible additions of a new node to this network and the resulting
equilibrium solutions.

The most notable finding is the existence of solutions where the introduction of a new node changes the functions of preexisting variants.
All such stable solutions are shown in Fig. 2; in all cases, the change occurs when a new variant (node 4) is linked to the altruistic variant of the
previous configuration. Other cases (where the newly emerged viruses are connected to a pre-existing persistent virus) are detailed in Appendix A.3.

The fixed point shown in Fig. 2(a) corresponds to the following solution:

𝑥∗1 =
𝑏(𝛽𝑓1 + (𝛼 − 𝛽)𝑓4)

𝛽𝑐𝑝
, 𝑥∗2 = 0, 𝑥∗3 = 0, 𝑥∗4 =

𝑏𝑓4(1 − 𝛼)
𝛽𝑐𝑝

𝑟∗1 =
𝑓1 − 𝑓4

𝑝
, 𝑟∗2 =

𝑓4
𝛽𝑝

, 𝑟∗3 = 0, 𝑟∗4 = 0

This fixed point is stable under the conditions 𝛼 > 1
2 , 𝑓1 > 𝑓4, 𝑓4 > 𝑓3, and 𝑓4 > 𝛽𝑓2 (see Appendix A.1)

The second fixed point shown in Fig. 2(b) corresponds to

𝑥1 = 0, 𝑥2 = 0, 𝑥3 =
𝑏(𝛽𝑓3 + (𝛼 − 𝛽)𝑓4)

𝛽𝑐𝑝
, 𝑥4 =

𝑏𝑓4(1 − 𝛼)
𝛽𝑐𝑝

𝑟1 = 0, 𝑟2 =
𝑓4
𝛽𝑝

, 𝑟3 =
𝑓3 − 𝑓4

𝑝
, 𝑟4 = 0

This fixed point is stable if 𝛼 > 1
2 , 𝑓4 > 𝑓1, 𝑓3 > 𝑓4, and 𝑓4 > 𝛽𝑓2 (see Appendix A.1)

Changes described by these two solutions are structurally similar. In both cases newly added variant becomes persistent, while the previously
ersistent variant is eliminated by the immune system and the altruistic variant retains its role. A necessary condition for the stability of such
ualitative changes in viruses functions is that the replication rate of an emergent variant is greater than that of the preexisting persistent variant.
Notably, in both cases, the change occurs in the variant not adjacent to the newly added variant. It demonstrates how network-mediated

nteractions between viral variants propagate along the cross-immunoreactivity networks and thus go beyond direct interactions described in
ection 2. In this particular case, we observe a natural selection acting on potentially persistent variants supported by the same altruistic variant,
ith the variant of the lower fitness being eliminated and replaced by the newly emerged variant.
The fact that the newly emerging variant is cross-immunoreactive as an antigen with the immune response against a pre-existing altruistic

ariant is essential. Indeed, when variant 4 is cross-immunoreactive with variants 1 or 3, then it either becomes transient while the roles of
re-existing variants are unchanged, or the dynamics of the CR network becomes unstable, i.e. it does not have a stable and robust state of local
mmunodeficiency.

.2. Adding a new viral variant to a minimal symmetric network

A symmetric network (Bunimovich and Shu, 2020) is another instance of the two smallest CR networks that can exhibit stable state of local
immunodeficiency (Fig. 3).
4
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Fig. 3. Symmetric minimal network. There are three viral variants in this network. Immune response against variant 2 is stimulated by variants 1 and 3.

Fig. 4. Stable states where the new viral variant connected to the altruistic variant becomes persistent in a symmetric network. A new variant (4) has been added to the network
in Fig. 3. Immune response against variant 2 is stimulated by variants 1, 3, and 4.

It was proven in Bunimovich and Shu (2020) that a stable state of LI exists in this network if 𝑓3 > 𝑓1, with the fixed point corresponding to

𝑥1 =
𝑏𝑓1
𝑐𝑝𝛽

(1 − 𝛼), 𝑥2 = 0, 𝑥3 =
𝑏

𝑐𝑝𝛽
(𝛼𝑓1 + 𝛽(𝑓3 − 𝑓1))

𝑟1 = 0, 𝑟2 =
𝑓1
𝑝𝛽

, 𝑟3 =
𝑓3 − 𝑓1

𝑝

As this network is symmetric, there is a similar fixed point with the switched solutions for variants 1 and 3; that solution is stable under the
condition 𝑓1 > 𝑓3.

When a new viral variant that is cross-immunoreactive with the pre-existing altruistic variant is added to this network, the functions of the
iruses could change in two possible ways. The fixed point shown in Fig. 4(a) is described as follows:

𝑥1 =
𝑏(𝛽𝑓1 + (𝛼 − 𝛽)𝑓4)

𝛽𝑐𝑝
, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 =

𝑏𝑓4(1 − 𝛼)
𝛽𝑐𝑝

𝑟1 =
𝑓1 − 𝑓4

𝑝
, 𝑟2 =

𝑓4
𝛽𝑝

, 𝑟3 = 0, 𝑟4 = 0

The stability conditions of this fixed point are 𝛼 > 1
2 , 𝑓1 > 𝑓4, 𝑓4 > 𝑓3, and 𝑓4 > 𝛽𝑓2 (see Appendix A.2). Naturally, there exists a symmetric

solution, with the variant 1 rather than variant 3 being transient.
Another fixed point (Fig. 4(b)) is given via the following relations

𝑥1 =
𝑏(𝛽𝑓1 + (𝛼 − 𝛽)𝑓4)

𝛽𝑐𝑝
, 𝑥2 = 0, 𝑥3 =

𝑏(𝛽𝑓3 + (𝛼 − 𝛽)𝑓4)
𝛽𝑐𝑝

, 𝑥4 =
𝑏𝑓4(1 − 2𝛼)

𝛽𝑐𝑝

𝑟1 =
𝑓1 − 𝑓4

𝑝
, 𝑟2 =

𝑓4
𝛽𝑝

, 𝑟3 =
𝑓3 − 𝑓4

𝑝
, 𝑟4 = 0

Conditions of stability of this fixed point are 1
3 < 𝛼 < 1

2 , 𝑓1 > 𝑓4, 𝑓3 > 𝑓4, and 𝑓4 > 𝛽𝑓2. (see Appendix A.2)
In both instances, the newly added variant becomes persistent only when it is attached to the altruistic variant. This seems to be a natural

result from the perspective of the local immunodeficiency mechanism (see Section 2). In other aspects, however, the instances describe somewhat
different evolutionary phenomena. In the solution depicted in Fig. 4(a), the newly emerged variant substitutes the previously persistent variant by
virtue of having a higher replication rate, thus providing an example of natural selection action under the local immunodeficiency mechanism. In
contrast, for the solution from Fig. 4(b), the emerging variant has a lower replication rate than the existing persistent variants. Thus, it neither
eliminates these variants nor eliminates itself, but rather co-exists with them. In this environment, previous persistent variants continue to exist in
the same role, although under higher immune pressures and lower population sizes.

Furthermore, the second solution reveals the previously unnoticed phenomenon, where a dynamical change in the topology of the cross-
immunoreactivity network leads to the emergence of a stable LI in the population when it previously did not exist. Indeed, the symmetric minimal
network in Fig. 3 has a stable LI only under the condition 𝛼 > 1

2 . The stable state of LI exhibited by the solution in Fig. 4(b) exists under the
condition 1

3 < 𝛼 < 1
2 , which means that with these values of 𝛼 the initial 3-network did not have a stable LI, but acquired it after the addition of a

new variant to the network.
5
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Fig. 5. Examples of transformation of function after joining minimal networks. There are essentially six viral variants in all these examples. An arrow from variant 𝑖 to variant 𝑗
indicates that variant 𝑖 stimulates the immune response against variant 𝑗.

4. Merging of two cross-immunoreactivity networks

In this section, we describe the changes in the system states caused by a viral transmission between a pair of chronically infected hosts. We
assume that both hosts are infected for a sufficiently long period of time for their intra-host populations to develop a state of stable immune-adapted
equilibrium. Transmissions of HCV are usually associated with a relatively wide bottleneck, with multiple transmission/founder (T/F) variants being
transmitted from the donor to the recipient (Campo et al., 2017). As a result, a subgraph of a CR network of a donor formed by the T/F variants
is merged with the pre-existing CR network of a recipient. In what follows, we present three cases when the merging of two minimal symmetric
CR networks leads to the state of stable local immunodeficiency. All other analyzed cases of network merging destroy the stability of this state.

Fig. 5(a) depicts a solution for a 6-vertex network obtained by joining two symmetric 3-vertex networks induced by vertices 1–3 and 4–6,
respectively. The fixed point corresponding to 5(a) is given by the following relations

𝑥1 = 0, 𝑟1 = 0

𝑥2 = 0, 𝑟2 =
𝑓4
𝛽𝑝

𝑥3 =
𝑏(𝛽𝑓3 + (𝛼 − 𝛽)𝑓4)

𝛽𝑐𝑝
, 𝑟3 =

𝑓3 − 𝑓4
𝑝

𝑥4 =
𝑏𝑓4(1 − 𝛼)

𝛽𝑐𝑝
, 𝑟4 = 0

𝑥5 = 0, 𝑟5 = 0

𝑥6 =
𝑏𝑓6
𝑐𝑝

, 𝑟6 =
𝑓6
𝑝

In this solution, previously altruistic variants 5 and previously persistent variant 1 become transient. Once the transient variants are eliminated
y the immune system, the cross-immunoreactivity network breaks into two subnetworks, one of which (induced by variants 2,3,4) is isomorphic
o a minimal network shown in Fig. 3. The variant 6 is isolated from the remaining variants, effectively evolves in the absence of cross-
immunoreactivity and thus converges to the corresponding stable state. Another possibility leading to the stable state of LI is presented in Fig. 5(b):
here a single variant (variant 1) is eliminated, i.e. changes its role from persistent to transient. The corresponding fixed point of this network
is

𝑥1 = 0, 𝑟1 = 0

𝑥2 = 0, 𝑟2 =
𝑓4 − 𝛽𝑓5

𝛽𝑝

𝑥3 =
𝑏(𝛽𝑓3 + (𝛼 − 𝛽)(𝑓4 − 𝛽𝑓5))

𝛽𝑐𝑝
, 𝑟3 =

𝑓3 − 𝑓4 + 𝛽𝑓5
𝑝

𝑥4 =
𝑏𝑓4(1 − 𝛼)

, 𝑟4 = 0
6
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𝑥5 = 0, 𝑟5 =
𝑓5
𝑝

𝑥6 =
𝑏((𝛼 − 𝛽)𝑓5 + 𝑓6)

𝑐𝑝
, 𝑟6 =

𝑓6 − 𝛽𝑓5
𝑝

Finally, the solution from Fig. 5(c) describes an outcome, when the elimination of 1 and 4 breaks the CR network into two 2-vertex subnetworks
eflecting different degrees of local immunodeficiency; both of these states were described in the original publication (Skums et al., 2015a). The
corresponding fixed point is

𝑥1 = 0, 𝑟1 = 0

𝑥2 =
𝑏𝑓2(1 − 𝛼)

𝑐𝑝
, 𝑟2 =

𝑓2
𝑝

𝑥3 =
𝑏((𝛼 − 𝛽)𝑓2 + 𝑓3)

𝑐𝑝
, 𝑟3 =

𝑓3 − 𝛽𝑓2
𝑝

𝑥4 = 0, 𝑟4 = 0

𝑥5 = 0, 𝑟5 =
𝑓6
𝛽𝑝

𝑥6 =
𝑏𝑓6
𝛽𝑐𝑝

, 𝑟6 = 0

For this solution, the subnetwork induced by vertices 2 and 3 exist in the state, when equilibrium values of 𝑥3 and 𝑟3 depend not only on 𝑓3 but
also on 𝑓2. It means that the variant 3 achieves a higher population size under lower immune pressure (in comparison with the system without CR)
by exploiting the replicative ability the variant 2. The subnetwork formed by variants 5 and 6 expresses a stronger form of the same phenomenon,
where the variant 6 exists without any 5-specific immune pressure (i.e. under the strong state of LI) due to the presence of the 5-specific antibodies,
whose high concentration is supported entirely by the variant 6 (with 𝑟5 depending only on 𝑓6). The interesting property of the latter subnetwork
is that the corresponding subsolution is stable for a positive measure set in the parameter space, when considered within the 6-vertex network; in
contrast, it is stable only for 𝛼 = 1, when considered within the 2-vertex network (Skums et al., 2015a).

5. Transformation of functions in evolving networks

In the previous sections, we analyzed the equilibrium solutions describing the asymptotic properties of the system (2). In this section, we discuss
the entire dynamics of intra-host viral populations before and after new variants are added to the CRN networks. Since the model (2) is a highly
onlinear dynamical system, which gives no hope of obtaining an analytic solution, the analysis in this section is, by necessity, numerical. In the
ontext of this study, particularly interesting is the speed of transition between different states of the system and the change of viral variant roles
n the population’s intra-host adaptation, including the elimination of previously persistent variants due to the network expansion.
The results are presented in Fig. 6. Naturally, the dynamics of transformations of the populations from Figs. 6(a) and 6(b) (Fig. 6(a)) are

ualitatively similar, which is to be expected given the qualitative similarity of their asymptotic solutions (see Section 3.2). In both cases, the
limination of previously persistent variants (variants 3 and 1, respectively) happens quite quickly. The same is true for the immune response
gainst the altruistic variant 2, which is boosted by the emergence of a new immunogen 4, thus allowing to sustain the adaptation of two persistent
ariants (1,4 and 3,4, respectively) under the state of local immunodeficiency.
In contrast, the time evolution of populations shown in Figs. 6(c) and 6(d) essentially differ from each other, with the speed of transition of

he latter population being significantly more rapid. As above, this difference can be explained by the properties of the corresponding asymptotic
olutions. Indeed, the initial state in the first network (Fig. 6(c)) is a stable local immunodeficiency. On the contrary, the initial state in the
etwork in Fig. 6(d) is unstable local immunodeficiency. Therefore it is natural that the transition between stable states goes slower. Furthermore,
he higher concentration of the altruistic variants-specific antibodies achieved for the population 6(d) allows to sustain the adaptation of 3 rather
han 2 persistent variants.

. Discussion

In this paper, we study the dynamic and equilibrium properties of a model (Skums et al., 2015a; Bunimovich and Shu, 2019, 2020; Bunimovich
t al., 2019) describing the behavior of an intra-host viral population that is organized into cross-immunoreactivity (CR) networks and is under
ressure by the host’s adaptive immune system in the form of variant-specific B-cells. One of the prominent features of this model is the emergence
f the so-called state of local immunodeficiency, i.e. the equilibrium state where the immune neutralization of certain variants is suppressed due
o the interactions between pre-existing antigens and antibodies mediated by the CR network. We concentrate on the transitions between the
opulation states caused by dynamic changes in the CR network topology. Specifically, we investigate two events — the introduction of a new
ntigenic variant to the CR network, and the merging of two CR networks in the state of stable immune-adapted equilibrium, which may occur,
or example, from a viral transmission between two chronically infected hosts.
It was shown that with the emergence of a new antigenic variant, there can be a rapid rearrangement in the roles played by the variants. A

ewly emerged variant can become persistent under the following two conditions: (1) the new antigenic variant is cross-immunoreactive with the
ntibodies specific to the existing altruistic variant and (2) the newly emerged variant has a higher replication rate than a previously persistent
ariant. This type of rearrangement is expected when the initial system had stable local immunodeficiency before the emergence of a new variant.
Furthermore, we have shown that the appearance of a novel antigenic variant results in the establishment of a stable local immunodeficiency

ithin a viral population that initially did not exhibit such a condition. This finding diverges from the outcomes of earlier studies, which primarily
oncentrated on identifying fixed CR networks with a stable local immunodeficiency state. This discovery paves the way for further exploration of
R network dynamics leading to the development of stable LI states.
7
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Fig. 6. Dynamics of minimal networks before and after the introduction of a new variant. Left figures depict the dynamics of variant population sizes, and right figures — of the
variant-specific immune responses. Dotted lines represent moments of time when the new variants are added to CR networks.

Similar transitions have been observed for the merging of CR networks. It was shown in several examples how the roles of antigenic variants in
the CR networks are rearranged, how certain variants are eliminated, and how the CR networks can break down into subnetworks with different
phenotypes.

In addition to the analytical results of equilibrium states, we also analyze numerically the time-evolution of the dynamics of CR networks before
and after the emergence of a new viral variant. We find that the transition between two different stable LI states is slower compared to the transition
that creates a stable state of LI.

This study underscores the non-linear nature of intra-host viral evolution, which exhibits extended periods of stability, interrupted by rapid shifts
due to the emergence of viral variants with altered antigenic phenotypes. This process can be likened to the concept of punctuated equilibrium in
macroevolution. Similar patterns have been noted in other studies (Haraguchi and Sasaki, 1997; Gog and Grenfell, 2002); in the model examined,
these patterns result from CRN-mediated interactions. From an epidemiological standpoint, the research highlights the important role of outbreaks
and subepidemics in high-risk settings, where transmissions occur frequently between chronically infected or previously exposed hosts. Such
environments may promote frequent disturbances in equilibrium, thus increasing the effective rate of viral evolution and increasing the likelihood
of emergence of phenotypically altered variants. This underscores the urgent need for targeted community-based public health interventions that
focus on testing, containment, and eradication of viral pathogens for such high-risk host subpopulations (Nagot et al., 2023; Organization et al.,
2016). Finally, the highlighted equilibrium disruption mechanism provides potential insights for vaccine development. This can be achieved through
immunization with carefully chosen or engineered neutralizing epitopes that can thwart the viral population’s adaptation to host immunity.

The study certainly has a number of limitations. The analyzed model, though relatively rich, is not comprehensive, and does not account for
several immunological phenomena, including T cell immunity and antibody competition for neutralization (in contrast to the competition for
activation, as considered by the model (1)). Furthermore, analytical solutions have been studied only for certain small networks, that by no means
represent the whole spectrum of possible CRN topologies. Development of more comprehensive models and analytical study of more complex
populations are challenging and hopefully will constitute subjects of future studies.
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Computations corresponding to the minimal networks can be found in Bunimovich and Shu (2019) (branch-cycle network, Fig. 1), and Buni-
ovich and Shu (2020) (symmetric network, Fig. 3).

.1. Computations for the branch-cycle network with a newly added variant connected to the pre-existing altruistic variant

Fig. 2 depicts two configurations of the branch-cycle network with stable state of local immunodeficiency, where the variant 4 is newly added.
The dynamics (1) of this population is described by the following equations

𝑥̇1 = 𝑓1𝑥1 − 𝑝𝑥1(𝑟1 + 𝛽𝑟2),

𝑥̇2 = 𝑓2𝑥2 − 𝑝𝑥2(𝑟2 + 𝛽𝑟3),

𝑥̇3 = 𝑓3𝑥3 − 𝑝𝑥3(𝑟3 + 𝛽𝑟2),

𝑥̇4 = 𝑓4𝑥4 − 𝑝𝑥4(𝑟4 + 𝛽𝑟2),

𝑟̇1 = 𝑐(
𝑥1𝑟1

𝑟1 + 𝛼𝑟2
) − 𝑏𝑟1,

𝑟̇2 = 𝑐(
𝛼𝑥1𝑟2
𝑟1 + 𝛼𝑟2

+
𝑥2𝑟2

𝑟2 + 𝛼𝑟3
+

𝛼𝑥3𝑟2
𝑟3 + 𝛼𝑟2

+
𝛼𝑥4𝑟2
𝑟4 + 𝛼𝑟2

) − 𝑏𝑟2,

𝑟̇3 = 𝑐(
𝛼𝑥2𝑟3
𝑟2 + 𝛼𝑟3

+
𝑥3𝑟3

𝑟3 + 𝛼𝑟2
) − 𝑏𝑟3,

𝑟̇4 = 𝑐(
𝑥4𝑟4

𝑟4 + 𝛼𝑟2
) − 𝑏𝑟4.

(A.1)

The Jacobian of the system of (A.1) at the fixed point shown in Fig. 2(a) is:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 − 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)
𝛽 𝑐 − 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)

𝑐 0 0

0 𝑓2 −
𝑓4
𝛽 0 0 0 0 0 0

0 0 𝑓3 − 𝑓4 0 0 0 0 0

0 0 0 0 0 𝑏 𝑓4 (𝛼−1)
𝑐 0 𝑏 𝑓4 (𝛼−1)

𝛽 𝑐
𝛽 𝑐 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
0 0 0 − 𝑏 𝛽 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
− 𝛼 𝑏 𝛽 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
0 0

𝛼 𝑐 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

𝑐 𝑐 𝑐 − 𝛼 𝑏 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

− 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4−𝛼 𝛽 𝑓1+𝛼 𝛽 𝑓4)
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

0 𝑏 (𝛼−1)
𝛼

0 0 0 0 0 0 −𝑏 0
0 0 0 0 0 0 0 − 𝑏 (2 𝛼−1)

𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. Recall at first the conditions of stability of the fixed
oint, which were mentioned earlier in Section 3.1 : 1

2 < 𝛼 < 1, 𝑓1 > 𝑓4, 𝑓4 > 𝑓3, and 𝑓4 > 𝛽𝑓2.
With the parameters 𝑓1 = 2, 𝑓2 = 1, 𝑓3 = 1.5, 𝑓4 = 1.7, 𝑐 = 1, 𝑝 = 1, 𝛼 = 2∕3, 𝛽 = 4∕9, 𝑏 = 1 that satisfy these conditions, the eigenvalues of the

system at this fixed point are:

𝜆1 = −2.8250 𝜆2 = −1.0000

𝜆3 = −0.5000 𝜆4 = −0.2000

𝜆5 = −0.4990 + 1.2884𝑖 𝜆6 = −0.4990 − 1.2884𝑖

𝜆7 = −0.0185 + 0.2978𝑖 𝜆8 = −0.0185 − 0.2978𝑖

Hence we can generate a system with the CRN in Fig. 2(a) which has a stable and robust steady state of LI. Thus we present an exact example
with the stable state of local immunodeficiency.

The Jacobian of the differential Eqs. (A.1) at the fixed point shown in Fig. 2(b) is:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1 − 𝑓4 0 0 0 0 0 0 0
0 − 𝑓4−𝛽 𝑓2+𝛽2 𝑓3−𝛽2 𝑓4

𝛽 0 0 0 0 0 0

0 0 0 0 0 − 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)
𝑐 − 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)

𝛽 𝑐 0

0 0 0 0 0 𝑏 𝑓4 (𝛼−1)
𝑐 0 𝑏 𝑓4 (𝛼−1)

𝛽 𝑐
0 0 0 0 −𝑏 0 0 0
𝑐 𝑐 𝑓4

𝑓4+𝛼 𝛽 𝑓3−𝛼 𝛽 𝑓4
𝛼 𝑐 𝑓4

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
𝑐 0 − 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4−𝛼 𝛽 𝑓3+𝛼 𝛽 𝑓4)

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
− 𝛼 𝑏 𝑓4

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
𝑏 (𝛼−1)

𝛼

0 𝛼 𝛽 𝑐 (𝑓3−𝑓4)
𝑓4+𝛼 𝛽 𝑓3−𝛼 𝛽 𝑓4

𝛽 𝑐 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0 0 − 𝛼 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

− 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0

0 0 0 0 0 0 0 − 𝑏 (2 𝛼−1)
𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. Recall at first the conditions of stability of the fixed
point, which were mentioned earlier in Section 3.1 : 1 < 𝛼 < 1, 𝑓 > 𝑓 , 𝑓 > 𝑓 , and 𝑓 > 𝛽𝑓 .
9

2 4 1 3 4 4 2



Journal of Theoretical Biology 580 (2024) 111719L. Bunimovich et al.

s

A

𝑐

With the parameters 𝑓1 = 2, 𝑓2 = 1, 𝑓3 = 1.5, 𝑓4 = 1.7, 𝑐 = 1, 𝑝 = 1, 𝛼 = 2∕3, 𝛽 = 4∕9, 𝑏 = 1 that satisfy these conditions, the eigenvalues of the
ystem at this fixed point are:

𝜆1 = −2.9583 𝜆2 = −1.0000

𝜆3 = −0.5000 𝜆4 = −0.2000

𝜆5 = −0.4990 + 1.2884𝑖 𝜆6 = −0.4990 − 1.2884𝑖

𝜆7 = −0.0185 + 0.2978𝑖 𝜆8 = −0.0185 − 0.2978𝑖

Hence we can generate a system with the CRN in Fig. 2(b) which has a stable and robust steady state of LI.

.2. Computations for the symmetric network with a newly added variant connected to the pre-existing altruistic variant

Fig. 4 depicts two stable configurations of the branch-cycle network where the variant 4 is newly added.
The dynamics (1) of this population is described by the following equations

𝑥̇1 = 𝑓1𝑥1 − 𝑝𝑥1(𝑟1 + 𝛽𝑟2),

𝑥̇2 = 𝑓2𝑥2 − 𝑝𝑥2𝑟2,

𝑥̇3 = 𝑓3𝑥3 − 𝑝𝑥3(𝑟3 + 𝛽𝑟2),

𝑥̇4 = 𝑓4𝑥4 − 𝑝𝑥4(𝑟4 + 𝛽𝑟2),

𝑟̇1 = 𝑐(
𝑥1𝑟1

𝑟1 + 𝛼𝑟2
) − 𝑏𝑟1,

𝑟̇2 = 𝑐(
𝛼𝑥1𝑟2
𝑟1 + 𝛼𝑟2

+ 𝑥2 +
𝛼𝑥3𝑟2
𝑟3 + 𝛼𝑟2

+
𝛼𝑥4𝑟2
𝑟4 + 𝛼𝑟2

) − 𝑏𝑟2,

𝑟̇3 = 𝑐(
𝑥3𝑟3

𝑟3 + 𝛼𝑟2
) − 𝑏𝑟3,

𝑟̇4 = 𝑐(
𝑥4𝑟4

𝑟4 + 𝛼𝑟2
) − 𝑏𝑟4.

(A.2)

At the fixed point shown in Fig. 4(a), the Jacobian of the system (A.2) equals

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 − 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)
𝛽 𝑐 − 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)

𝑐 0 0

0 𝑓2 −
𝑓4
𝛽 0 0 0 0 0 0

0 0 𝑓3 − 𝑓4 0 0 0 0 0

0 0 0 0 0 𝑏 𝑓4 (𝛼−1)
𝑐 0 𝑏 𝑓4 (𝛼−1)

𝛽 𝑐
𝛽 𝑐 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
0 0 0 − 𝑏 𝛽 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
− 𝛼 𝑏 𝛽 (𝑓1−𝑓4)

𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4
0 0

𝛼 𝑐 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

𝑐 𝑐 𝑐 − 𝛼 𝑏 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

− 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4−𝛼 𝛽 𝑓1+𝛼 𝛽 𝑓4)
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

0 𝑏 (𝛼−1)
𝛼

0 0 0 0 0 0 −𝑏 0
0 0 0 0 0 0 0 − 𝑏 (2 𝛼−1)

𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The conditions of stability of the fixed point are (see the Section 3.1) 𝛼 > 1
2 , 𝑓1 > 𝑓4, 𝑓4 > 𝑓3, and 𝑓4 > 𝛽𝑓2.

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters 𝑓1 = 2, 𝑓2 = 1, 𝑓3 = 1.5, 𝑓4 = 1.7,
= 1, 𝑝 = 1, 𝛼 = 2∕3, 𝛽 = 4∕9, 𝑏 = 1 that satisfy these conditions, the eigenvalues of the system at this fixed point are:

𝜆1 = −2.8250 𝜆2 = −1.0000

𝜆3 = −0.5000 𝜆4 = −0.2000

𝜆5 = −0.4990 + 1.2884𝑖 𝜆6 = −0.4990 − 1.2884𝑖

𝜆7 = −0.0185 + 0.2978𝑖 𝜆8 = −0.0185 − 0.2978𝑖

Hence we can generate a system with the CRN in Fig. 4(a) which has a stable and robust steady state of LI.
At the fixed point of the network in Fig. 4(b), the Jacobian of the system of Eqs. (A.2) is 𝐽 = (𝑋𝑌𝑍) where

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

0 0 0 0 − 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)
𝛽 𝑐

0 𝑓2 −
𝑓4
𝛽 0 0 0

0 0 0 0 0
0 0 0 0 0

𝛽 𝑐 (𝑓1−𝑓4)
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

0 0 0 − 𝑏 𝛽 (𝑓1−𝑓4)
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

𝛼 𝑐 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

𝑐 𝛼 𝑐 𝑓4
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

𝑐 − 𝛼 𝑏 𝑓4
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4

0 0 𝛽 𝑐 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

,

10

⎝
0 0 0 0 0

⎠
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s

𝑐

A

s
v

b

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑏 (𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4)
𝑐
0

− 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)
𝑐

𝑏 𝑓4 (2 𝛼−1)
𝑐

− 𝛼 𝑏 𝛽 (𝑓1−𝑓4)
𝛼 𝑓4+𝛽 𝑓1−𝛽 𝑓4(

1
(𝛽𝑓1 + (𝛼 − 𝛽)𝑓4) (𝛽𝑓3 + (𝛼 − 𝛽)𝑓4)

(𝑏 (𝛼2 𝑓42 + 𝛽2 𝑓4
2 − 2 𝛼 𝛽2 𝑓42 + 2 𝛼2 𝛽 𝑓42

−2 𝛼 𝛽 𝑓42 + 𝛽2 𝑓1 𝑓3 − 𝛽2 𝑓1 𝑓4 − 𝛽2 𝑓3 𝑓4 − 2 𝛼 𝛽2 𝑓1 𝑓3+

2 𝛼 𝛽2 𝑓1 𝑓4 − 𝛼2 𝛽 𝑓1 𝑓4 + 2 𝛼 𝛽2 𝑓3 𝑓4 − 𝛼2 𝛽 𝑓3 𝑓4 + 𝛼 𝛽 𝑓1 𝑓4 + 𝛼 𝛽 𝑓3 𝑓4))

)

− 𝛼 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝑍 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0

− 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)
𝛽 𝑐 0

0 𝑏 𝑓4 (2 𝛼−1)
𝛽 𝑐

0 0
− 𝛼 𝑏 𝑓4

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
𝑏 (2 𝛼−1)

𝛼

− 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0

0 − 𝑏 (3 𝛼−1)
𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

As mentioned above, this is a rather unique fixed point. It takes also lengthier computations to prove its stability. Recall the conditions for
tability of this system, i.e. 1

3 < 𝛼 < 1
2 , 𝑓1 > 𝑓4, 𝑓3 > 𝑓4, and 𝑓4 > 𝛽𝑓2.

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters 𝑓1 = 1.7, 𝑓2 = 1, 𝑓3 = 2, 𝑓4 = 1.5,
= 1, 𝑝 = 1, 𝛼 = 2∕5, 𝛽 = 4∕25, 𝑏 = 1 that satisfy these conditions, the eigenvalues of the system at this fixed point are:

𝜆1 = −8.3750 𝜆2 = −0.5000

𝜆3 = −0.0080 − 0.2187𝑖 𝜆4 = −0.0080 + 0.2187𝑖

𝜆5 = −0.0469 − 0.5887𝑖 𝜆6 = −0.0469 + 0.5887𝑖

𝜆7 = −0.4956 − 1.2448𝑖 𝜆8 = −0.4956 + 1.2448𝑖

Hence we can generate a system with the CRN in Fig. 4(b) which has a stable and robust steady state of LI.

.3. Computations for minimal networks with a newly added viral variant connected to pre-existing persistent variants

In Section 3.1, we noted that the newly emerging variant has to elicit immune response against the pre-existing altruistic variant to maintain
table LI. Here we show the results of computations for cases when the newly emerged variant is connected to either of the two other persistent
ariants.
When the newly emerged variant is connected to the variant 1, the dynamics (1) of this CRN is described by the following equations

𝑥̇1 = 𝑓1𝑥1 − 𝑝𝑥1(𝑟1 + 𝛽𝑟2),

𝑥̇2 = 𝑓2𝑥2 − 𝑝𝑥2(𝑟2 + 𝛽𝑟3),

𝑥̇3 = 𝑓3𝑥3 − 𝑝𝑥3(𝑟3 + 𝛽𝑟2),

𝑥̇4 = 𝑓4𝑥4 − 𝑝𝑥4(𝑟4 + 𝛽𝑟1),

𝑟̇1 = 𝑐(
𝑥1𝑟1

𝑟1 + 𝛼𝑟2
+

𝛼𝑥4𝑟1
𝛼𝑟1 + 𝑟4

) − 𝑏𝑟1,

𝑟̇2 = 𝑐(
𝛼𝑥1𝑟2
𝑟1 + 𝛼𝑟2

+
𝑥2𝑟2

𝑟2 + 𝛼𝑟3
+

𝛼𝑥3𝑟2
𝑟3 + 𝛼𝑟2

) − 𝑏𝑟2,

𝑟̇3 = 𝑐(
𝛼𝑥2𝑟3
𝑟2 + 𝛼𝑟3

+
𝑥3𝑟3

𝑟3 + 𝛼𝑟2
) − 𝑏𝑟3,

𝑟̇4 = 𝑐(
𝑥4𝑟4

𝑟4 + 𝛼𝑟1
) − 𝑏𝑟4.

(A.3)

In the fixed point shown in Fig. A.7, the newly emergent variant becomes transient, and the resulting network is functionally the same as the
ranch-cycle network (Fig. 1). There is no transformation of functions in this case.
Fig. A.8 shows the fixed point

𝑥1 =
𝑏𝑓1(1 − 𝛼)

𝛽𝑐𝑝
, 𝑥2 = 0, 𝑥3 =

𝑏(𝛽𝑓3 + (𝛼 − 𝛽)𝑓1)
𝛽𝑐𝑝

, 𝑥4 =
𝑏𝑓4
𝑐𝑝

𝑟1 = 0, 𝑟2 =
𝑓1 , 𝑟3 =

𝑓3 − 𝑓1 , 𝑟4 =
𝑓4
11
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p

Fig. A.7. A fixed point when the newly emerging variant is connected to the variant 1 and becomes transient.

Fig. A.8. A fixed point when the newly emerging variant is connected to the variant 1 and becomes persistent.

Fig. A.9. A fixed point when the newly emerging variant is connected to the variant 1 and becomes persistent, making the variant 3 transient.

The Jacobian at this fixed point is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝑏𝑓1(𝛼−1)
𝛽𝑐

𝑏𝑓1(𝛼−1)
𝑐 0 0

0 − 1
𝛽 (𝑓1 − 𝛽𝑓2 − 𝛽2𝑓1 + 𝛽2𝑓3) 0 0 0 0 0 0

0 0 0 0 0 − 𝑏
𝑐 (𝛼𝑓1 − 𝛽𝑓1 + 𝛽𝑓3) − 𝑏((𝛼−𝛽)𝑓1+𝛽𝑓3)

𝛽𝑐 0

0 0 0 0 − 𝑏𝛽𝑓4
𝑐 0 0 − 𝑏𝑓4

𝑐
0 0 0 0 𝑏

𝛼 (1 − 𝛼)2 0 0 0

𝑐 𝑐𝑓1
𝑓1−𝛼𝛽𝑓1+𝛼𝛽𝑓3

𝛼𝑐𝑓1
(𝛼−𝛽)𝑓1+𝛽𝑓3

0 𝑏(1 − 1
𝛼 )

−𝑏((𝛼−𝛽)𝑓1+𝛽𝑓3+𝛼𝛽(𝑓1−𝑓3))
(𝛼−𝛽)𝑓1+𝛽𝑓3

− 𝛼𝑏𝑓1
(𝛼−𝛽)𝑓1+𝛽𝑓3

0

0 𝛼𝛽𝑐(𝑓3−𝑓1)
𝑓1−𝛼𝛽𝑓1+𝛼𝛽𝑓3

𝛽𝑐(𝑓3−𝑓1)
(𝛼−𝛽)𝑓1+𝛽𝑓3

0 0 𝛼𝛽𝑏(𝑓1−𝑓3)
(𝛼−𝛽)𝑓1+𝛽𝑓3

𝑏𝛽(𝑓1−𝑓3)
(𝛼−𝛽)𝑓1+𝛽𝑓3

0
0 0 0 𝑐 −𝛼𝑏 0 0 −𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

This fixed point can exist under the conditions 𝛼 < 1, 𝑓1 <
𝛽𝑓3
𝛽−𝛼 , and 𝑓3 > 𝑓1.

Analyzing the eigenvalues of the system at this point, we get 𝜆3 = 𝑏(𝛼 + 1
𝛼 − 2) > 0. As at least one of the eigenvalues are positive, the fixed

oint is unstable. Other fixed points where virus 4 becomes persistent can be similarly proven to have unstable LI.
12
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Fig. A.10. A fixed point when the newly emerging variant is connected to the variant 3 and becomes inactive.

The fixed points resulting in the network in Fig. A.9 are

𝑥1 =
𝑏𝑓1
𝛽𝑐𝑝

, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 =
𝑏𝑓4
𝑐𝑝

𝑟1 = 0, 𝑟2 =
𝑓1
𝛽𝑝

, 𝑟3 = 0, 𝑟4 =
𝑓4
𝑝

The Jacobian at this fixed point is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 − 𝑏𝑓1
𝛽𝑐 − 𝑏𝑓1

𝑐 0 0

0 𝑓2 −
𝑓1
𝛽 0 0 0 0 0 0

0 0 𝑓3 − 𝑓1 0 0 0 0 0
0 0 0 0 − 𝑏𝛽𝑓4

𝑐 0 0 − 𝑏𝑓4
𝑐

0 0 0 0 𝑏(𝛼 + 1
𝛼 − 1) 0 0 0

𝑐 𝑐 𝑐 0 − 𝑏
𝛼 −𝑏 0 0

0 0 0 0 0 0 −𝑏 0
0 0 0 𝑐 −𝛼𝑏 0 0 −𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Analyzing the eigenvalues of the system at this point, we get 𝜆5 = 𝑏(𝛼 + 1
𝛼 − 1) > 0. As at least one of the eigenvalues are positive, the fixed point

is unstable. Other fixed points where virus 4 becomes persistent can be similarly proven to have unstable LI.
Similarly, all networks where virus 4 is connected to virus 1 in the branch-cycle network can be shown to have either no LI or no stable LI.
Now we look at cases where the newly emerged variant is connected to the variant 3. The dynamics (1) of this population is described by the

following equations

𝑥̇1 = 𝑓1𝑥1 − 𝑝𝑥1(𝑟1 + 𝛽𝑟2),

𝑥̇2 = 𝑓2𝑥2 − 𝑝𝑥2(𝑟2 + 𝛽𝑟3),

𝑥̇3 = 𝑓3𝑥3 − 𝑝𝑥3(𝑟3 + 𝛽𝑟2),

𝑥̇4 = 𝑓4𝑥4 − 𝑝𝑥4(𝑟4 + 𝛽𝑟3),

𝑟̇1 = 𝑐(
𝑥1𝑟1

𝑟1 + 𝛼𝑟2
) − 𝑏𝑟1,

𝑟̇2 = 𝑐(
𝛼𝑥1𝑟2
𝑟1 + 𝛼𝑟2

+
𝑥2𝑟2

𝑟2 + 𝛼𝑟3
+

𝛼𝑥3𝑟2
𝑟3 + 𝛼𝑟2

) − 𝑏𝑟2,

𝑟̇3 = 𝑐(
𝛼𝑥2𝑟3
𝑟2 + 𝛼𝑟3

+
𝑥3𝑟3

𝑟3 + 𝛼𝑟2
+ +

𝛼𝑥4𝑟3
𝑟4 + 𝛼𝑟3

) − 𝑏𝑟3,

𝑟̇4 = 𝑐(
𝑥4𝑟4

𝑟4 + 𝛼𝑟3
) − 𝑏𝑟4.

(A.4)

The stable network obtained from this network is shown in Fig. A.10.
The fixed points resulting in the network in Fig. A.10 are

𝑥1 =
𝑏𝑓1
𝛽𝑐𝑝

(1 − 𝛼), 𝑥2 = 0, 𝑥3 =
𝑏

𝛽𝑐𝑝
((𝛼 − 𝛽)𝑓1 + 𝛽𝑓3), 𝑥4 = 0

𝑟1 = 0, 𝑟2 =
𝑓1
𝛽𝑝

, 𝑟3 =
𝑓3 − 𝑓1

𝑝
, 𝑟4 = 0

This network A.10 has the newly emerged variant being transient, and the resulting network is the same as the initial branch-cycle network.

A.4. Computations for merging of two minimal networks

Fig. 5 depicts three instances where two symmetric minimal networks are connected to each other to form three different types of networks.
13

The dynamics (1) of this configuration is as follows:
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w

a

𝑥̇1 = 𝑓1𝑥1 − 𝑝𝑥1(𝑟1 + 𝛽𝑟2 + 𝛽𝑟5),

𝑥̇2 = 𝑓2𝑥2 − 𝑝𝑥2𝑟2,

𝑥̇3 = 𝑓3𝑥3 − 𝑝𝑥3(𝑟3 + 𝛽𝑟2),

𝑥̇4 = 𝑓4𝑥4 − 𝑝𝑥4(𝑟4 + 𝛽𝑟2 + 𝛽𝑟5),

𝑥̇5 = 𝑓5𝑥5 − 𝑝𝑥5𝑟5,

𝑥̇6 = 𝑓6𝑥6 − 𝑝𝑥6(𝑟6 + 𝛽𝑟5),

𝑟̇1 = 𝑐(
𝑥1𝑟1

𝑟1 + 𝛼𝑟2 + 𝛼𝑟5
) − 𝑏𝑟1,

𝑟̇2 = 𝑐(
𝛼𝑥1𝑟2

𝑟1 + 𝛼𝑟2 + 𝛼𝑟5
+ 𝑥2 +

𝛼𝑥3𝑟2
𝑟3 + 𝛼𝑟2

+
𝛼𝑥4𝑟2

𝑟4 + 𝛼𝑟2 + 𝛼𝑟5
) − 𝑏𝑟2,

𝑟̇3 = 𝑐(
𝑥3𝑟3

𝑟3 + 𝛼𝑟2
) − 𝑏𝑟3,

𝑟̇4 = 𝑐(
𝑥4𝑟4

𝑟4 + 𝛼𝑟2 + 𝛼𝑟5
) − 𝑏𝑟4,

𝑟̇5 = 𝑐(
𝛼𝑥1𝑟5

𝑟1 + 𝛼𝑟2 + 𝛼𝑟5
+

𝛼𝑥4𝑟5
𝑟4 + 𝛼𝑟2 + 𝛼𝑟5

+ 𝑥5 +
𝛼𝑥6𝑟5
𝑟6 + 𝛼𝑟5

) − 𝑏𝑟5,

𝑟̇6 = 𝑐(
𝑥6𝑟6

𝑟6 + 𝛼𝑟5
) − 𝑏𝑟6.

(A.5)

The Jacobian of the system of Eqs. (A.5) at the fixed point shown in Fig. 5(a) equals:

𝐽 =
(

𝑋 𝑌
)

here

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1 − 𝑓4 0 0 0 0 0 0
0 𝑓2 −

𝑓4
𝛽 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 𝑓5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑏
𝑐 𝑐 𝛼 𝑐 𝑓4

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
𝑐 0 0 0

0 0 𝛽 𝑐 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 𝑐 0 0
0 0 0 0 0 𝑐 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

nd

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0

− 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)
𝑐 − 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4)

𝛽 𝑐 0 0 0
𝑏 𝑓4 (𝛼−1)

𝑐 0 𝑏 𝑓4 (𝛼−1)
𝛽 𝑐

𝑏 𝑓4 (𝛼−1)
𝑐 0

0 0 0 0 0
0 0 0 − 𝑏 𝛽 𝑓6

𝑐 − 𝑏 𝑓6
𝑐

0 0 0 0 0
− 𝑏 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4−𝛼 𝛽 𝑓3+𝛼 𝛽 𝑓4)

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
− 𝛼 𝑏 𝑓4

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4
𝑏 (𝛼−1)

𝛼 𝑏 (𝛼 − 1) 0

− 𝛼 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

− 𝑏 𝛽 (𝑓3−𝑓4)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4

0 0 0

0 0 − 𝑏 (2 𝛼−1)
𝛼 0 0

0 0 0 0 0
0 0 0 −𝛼 𝑏 −𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We will verify the stability of this fixed point by analyzing the eigenvalues of this system. With the parameters 𝑓1 = 0.25, 𝑓2 = 0.3, 𝑓3 = 0.35,
𝑓4 = 0.3, 𝑓5 = 0.35, 𝑓6 = 0.4, 𝑐 = 1, 𝑝 = 2, 𝛼 = 1∕3, 𝛽 = 1∕9, 𝑏 = 3 that satisfy the conditions for our fixed point, the eigenvalues of the system at
this fixed point are:

𝜆1 = −0.0500 𝜆2 = 0.0000

𝜆3 = 0.0000 𝜆4 = 0.0000

𝜆5 = 0.0000 𝜆6 = 0.0000

𝜆7 = −2.5247 𝜆8 = −0.4753

𝜆9 = −2.6396 𝜆10 = −0.3525

𝜆11 = −0.0566 − 0.3058𝑖 𝜆12 = −0.0566 + 0.3058𝑖
14
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a

The Jacobian of the fixed point in Fig. 5(b) is 𝐽 = (𝑊𝑋𝑌𝑍) where

𝑊 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1 − 𝑓4 0 0 0 0
0 𝑓2 −

𝑓4−𝛽 𝑓5
𝛽 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

𝑐 (𝑓4−𝛽 𝑓5)
𝑓4

𝑐 𝛼 𝑐 (𝑓4−𝛽 𝑓5)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5

𝑐 (𝑓4−𝛽 𝑓5)
𝑓4

0

0 0 𝛽 𝑐 (𝑓3−𝑓4+𝛽 𝑓5)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5

0 0
0 0 0 0 0

𝛽 𝑐 𝑓5
𝑓4

0 0 𝛽 𝑐 𝑓5
𝑓4

𝑐
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
0 0 0

0 0 − 𝑏
(

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5
)

𝑐
0 0 𝑏 𝑓4 (𝛼−1)

𝑐
0 0 0
0 0 0
0 −𝑏 0

0 0 − 𝑏 (𝑓4−𝛽 𝑓5)
(

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓3+𝛼 𝛽 𝑓4−𝛼 𝛽 𝑓5−𝛼 𝛽2 𝑓5+𝛼2 𝛽 𝑓5
)

𝑓4 (𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5)

0 0 − 𝛼 𝑏 𝛽 (𝑓3−𝑓4+𝛽 𝑓5)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5

0 0 0
𝛼 𝑐 𝑓5

𝑓6+𝛼 𝑓5−𝛽 𝑓5
0 𝑏 𝛽 𝑓5 (𝛼−1)

𝑓4
𝑐 (𝑓6−𝛽 𝑓5)
𝑓6+𝛼 𝑓5−𝛽 𝑓5

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0

− 𝑏
(

𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5
)

𝛽 𝑐 0

0 𝑏 𝑓4 (𝛼−1)
𝛽 𝑐

0 0
0 0
0 0

− 𝛼 𝑏 (𝑓4−𝛽 𝑓5)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5

𝑏 (𝛼−1) (𝑓4−𝛽 𝑓5)
𝛼 𝑓4

− 𝑏 𝛽 (𝑓3−𝑓4+𝛽 𝑓5)
𝛼 𝑓4+𝛽 𝑓3−𝛽 𝑓4+𝛽2 𝑓5−𝛼 𝛽 𝑓5

0

0 − 𝑏 (2 𝛼−1)
𝛼

0 𝑏 𝛽 𝑓5 (𝛼−1)
𝛼 𝑓4

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

nd

𝑍 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0
0 0

𝑏 𝑓4 (𝛼−1)
𝑐 0
0 0

− 𝑏 𝛽 (𝑓6+𝛼 𝑓5−𝛽 𝑓5)
𝑐 − 𝑏 (𝑓6+𝛼 𝑓5−𝛽 𝑓5)

𝑐
0 0

𝑏 (𝛼−1) (𝑓4−𝛽 𝑓5)
𝑓4

0
0 0
0 0

− 𝑏 𝑓5
(

𝛽 𝑓6+𝛼2 𝑓4−𝛽2 𝑓5+𝛼 𝛽 𝑓5−𝛼 𝛽 𝑓6+𝛼 𝛽2 𝑓5−𝛼2 𝛽 𝑓5
)

𝑓4 (𝑓6+𝛼 𝑓5−𝛽 𝑓5)
− 𝛼 𝑏 𝑓5

𝑓6+𝛼 𝑓5−𝛽 𝑓5

− 𝛼 𝑏 (𝑓6−𝛽 𝑓5)
𝑓6+𝛼 𝑓5−𝛽 𝑓5

− 𝑏 (𝑓6−𝛽 𝑓5)
𝑓6+𝛼 𝑓5−𝛽 𝑓5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We will present an exact example with the stable state of local immunodeficiency. Let the system’s parameters have the following values
𝑓1 = 0.25, 𝑓2 = 0.3, 𝑓3 = 0.35, 𝑓4 = 0.3, 𝑓5 = 0.35, 𝑓6 = 0.4, 𝑐 = 1, 𝑝 = 2, 𝛼 = 1∕3, 𝛽 = 1∕9, 𝑏 = 3. One can compute the corresponding Jacobian
numerically and confirm that all the eigenvalues are either real negative or complex with negative real parts. It follows by continuity that there
exists a positive measure set in the parameter space such that for any point (a set of parameters) the corresponding state of local immunodeficiency
is stable.
15
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Finally, the Jacobian computed at the fixed point shown in Fig. 5(c) is 𝐽 = 𝑋𝑌 where

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1 − 𝑓6 − 𝛽 𝑓2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑓4 − 𝑓6 − 𝛽 𝑓2 0 0
0 0 0 0 𝑓5 −

𝑓6
𝛽 0

0 0 0 0 0 0
0 0 0 0 0 0

𝛽 𝑐 𝑓2
𝑓6+𝛽 𝑓2

𝑐 𝛼 𝑐 𝑓2
𝑓3+𝛼 𝑓2−𝛽 𝑓2

𝛽 𝑐 𝑓2
𝑓6+𝛽 𝑓2

0 0

0 0 𝑐 (𝑓3−𝛽 𝑓2)
𝑓3+𝛼 𝑓2−𝛽 𝑓2

0 0 0
0 0 0 0 0 0

𝑐 𝑓6
𝑓6+𝛽 𝑓2

0 0 𝑐 𝑓6
𝑓6+𝛽 𝑓2

𝑐 𝑐
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 𝑏 𝑓2 (𝛼−1)

𝑐 0 0 0 0

0 − 𝑏 𝛽 (𝑓3+𝛼 𝑓2−𝛽 𝑓2)
𝑐 − 𝑏 (𝑓3+𝛼 𝑓2−𝛽 𝑓2)

𝑐 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − 𝑏 𝑓6

𝑐 − 𝑏 𝑓6
𝛽 𝑐

−𝑏 0 0 0 0 0
0 − 𝑏 (𝑓3+𝛼 𝑓2−𝛼 𝑓3−𝛽 𝑓2+𝛼 𝛽 𝑓2)

𝑓3+𝛼 𝑓2−𝛽 𝑓2
− 𝛼 𝑏 𝑓2

𝑓3+𝛼 𝑓2−𝛽 𝑓2
0 0 0

0 − 𝛼 𝑏 (𝑓3−𝛽 𝑓2)
𝑓3+𝛼 𝑓2−𝛽 𝑓2

− 𝑏 (𝑓3−𝛽 𝑓2)
𝑓3+𝛼 𝑓2−𝛽 𝑓2

0 0 0
0 0 0 −𝑏 0 0
0 0 0 0 −𝑏 − 𝑏

𝛼
0 0 0 0 0 − 𝑏 (𝛼−1)

𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

In this case also, we present an exact numerical example with a stable state of local immunodeficiency. Let the system’s parameters assume the
following values 𝑓1 = 0.25, 𝑓2 = 0.3, 𝑓3 = 0.35, 𝑓4 = 0.3, 𝑓5 = 0.35, 𝑓6 = 0.4, 𝑐 = 1, 𝑝 = 2, 𝛼 = 1∕3, 𝛽 = 1∕9, 𝑏 = 3. One can compute the corresponding
Jacobian numerically and confirm that all the eigenvalues are either real negative or complex with negative real parts. Once again, it follows by
continuity that there exists a positive measure set in the parameter space where the state of a local immunodeficiency is stable.

References

Baykal, P.B.I., Lara, J., Khudyakov, Y., Zelikovsky, A., Skums, P., 2021. Quantitative differences between intra-host HCV populations from persons with recently established and
persistent infections. Virus Evol. 6 (2), veaa103.

Bunimovich, L., Shu, L., 2019. Local immunodeficiency: Minimal networks and stability. Math. Biosci. 310, 31–49. http://dx.doi.org/10.1016/j.mbs.2019.02.002, URL https:
//www.sciencedirect.com/science/article/pii/S002555641830498X.

Bunimovich, L., Shu, L., 2020. Local immunodeficiency: Role of neutral viruses. Bull. Math. Biol. 82, http://dx.doi.org/10.1007/s11538-020-00813-z, URL https://link.springer.
com/article/10.1007/s11538-020-00813-z.

Bunimovich, L., Smith, D., Webb, B.Z., 2019. Specialization models of network growth. J. Complex Netw. 7 (3), 375–392.
Campo, D.S., Dimitrova, Z., Yamasaki, L., Skums, P., Lau, D., Vaughan, G., Forbi, J., Teo, C.-G., Khudyakov, Y., 2014. Next-generation sequencing reveals large connected networks

of intra-host HCV variants. BMC Genomics 15 (Suppl 5), S4. http://dx.doi.org/10.1186/1471-2164-15-S5-S4, URL http://www.biomedcentral.com/1471-2164/15/S5/S4.
Campo, D.S., Dimitrova, Z., Yokosawa, J., Hoang, D., Perez, N.O., Ramachandran, S., Khudyakov, Y., 2012. Hepatitis C virus antigenic convergence. Sci. Rep. 2, 267.
Campo, D.S., Zhang, J., Ramachandran, S., Khudyakov, Y., 2017. Transmissibility of intra-host hepatitis C virus variants. BMC Genomics 18 (10), 11–19.
Domingo, E., Sheldon, J., Perales, C., 2012. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76 (2), 159–216.
Domingo-Calap, P., Segredo-Otero, E., Durán-Moreno, M., Sanjuán, R., 2019. Social evolution of innate immunity evasion in a virus. Nat. Microbiol. 1.
Drake, J.W., Holland, J.J., 1999. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. 96 (24), 13910–13913.
Francis, T., 1960. On the doctrine of original antigenic sin. Proc. Am. Phil. Soc. 104 (6), 572–578.
Freitas, A.A., Rosado, M.M., Viale, A.-C., Grandien, A., 1995. The role of cellular competition in B cell survival and selection of B cell repertoires. Euro. J. Immunol. 25 (6),

1729–1738.
Gismondi, M.I., Carrasco, J.M.D., Valva, P., Becker, P.D., Guzmán, C.A., Campos, R.H., Preciado, M.V., 2013. Dynamic changes in viral population structure and compartmentalization

during chronic hepatitis C virus infection in children. Virology 447 (1), 187–196.
Gog, J.R., Grenfell, B.T., 2002. Dynamics and selection of many-strain pathogens. Proc. Natl. Acad. Sci. 99 (26), 17209–17214.
Gray, R.R., Salemi, M., Klenerman, P., Pybus, O.G., 2012. A new evolutionary model for hepatitis C virus chronic infection. PLoS Pathog. 8 (5), e1002656.
Hamilton, W.D., 1964. The genetical evolution of social behaviour. II. J. Theoret. Biol. 7 (1), 17–52.
Haraguchi, Y., Sasaki, A., 1997. Evolutionary pattern of intra–host pathogen antigenic drift: effect of cross–reactivity in immune response. Philos. Trans. R. Soc. London Ser. B:

Biol. Sci. 352 (1349), 11–20.
Illingworth, C.J., Fischer, A., Mustonen, V., 2014. Identifying selection in the within-host evolution of influenza using viral sequence data. PLoS Comput. Biol. 10 (7), e1003755.
Iwasa, Y., Michor, F., Nowak, M., 2004. Some basic properties of immune selection. J. Theoret. Biol. 229 (2), 179–188.
Kim, J.H., Skountzou, I., Compans, R., Jacob, J., 2009. Original antigenic sin responses to influenza viruses. J. Immunol. 183 (5), 3294–3301.
Lu, L., Tatsunori, N., Li, C., Waheed, S., Gao, F., Robertson, B.H., 2008. HCV selection and HVR1 evolution in a chimpanzee chronically infected with HCV-1 over 12 years.

Hepatol. Res. 38 (7), 704–716.
McLean, A., Rosado, M., Agenes, F., Vasconcellos, R., Freitas, A.A., 1997. Resource competition as a mechanism for B cell homeostasis. Proc. Natl. Acad. Sci. 94 (11), 5792–5797.
Meyer, K., Ait-Goughoulte, M., Keck, Z.-Y., Foung, S., Ray, R., 2008. Antibody-dependent enhancement of hepatitis C virus infection. J. Virol. 82 (5), 2140–2149.
Midgley, C.M., Bajwa-Joseph, M., Vasanawathana, S., Limpitikul, W., Wills, B., Flanagan, A., Waiyaiya, E., Tran, H.B., Cowper, A.E., Chotiyarnwon, P., et al., 2011. An in-depth

analysis of original antigenic sin in dengue virus infection. J. Virol. 85 (1), 410–421.
Nagot, N., Binh, N.T., Hong, T.T., Vinh, V.H., Quillet, C., Vallo, R., Huong, D.T., Oanh, K.T.H., Thanh, N.T.T., Rapoud, D., et al., 2023. A community-based strategy to eliminate
16

hepatitis C among people who inject drugs in Vietnam. Lancet Reg. Health–West. Pac..

http://refhub.elsevier.com/S0022-5193(23)00316-8/sb1
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb1
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb1
http://dx.doi.org/10.1016/j.mbs.2019.02.002
https://www.sciencedirect.com/science/article/pii/S002555641830498X
https://www.sciencedirect.com/science/article/pii/S002555641830498X
https://www.sciencedirect.com/science/article/pii/S002555641830498X
http://dx.doi.org/10.1007/s11538-020-00813-z
https://link.springer.com/article/10.1007/s11538-020-00813-z
https://link.springer.com/article/10.1007/s11538-020-00813-z
https://link.springer.com/article/10.1007/s11538-020-00813-z
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb4
http://dx.doi.org/10.1186/1471-2164-15-S5-S4
http://www.biomedcentral.com/1471-2164/15/S5/S4
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb6
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb7
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb8
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb9
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb10
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb11
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb12
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb12
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb12
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb13
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb13
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb13
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb14
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb15
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb16
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb17
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb17
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb17
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb18
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb19
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb20
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb21
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb21
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb21
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb22
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb23
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb24
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb24
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb24
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb25
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb25
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb25


Journal of Theoretical Biology 580 (2024) 111719L. Bunimovich et al.

N
N

Nara, P.L., Tobin, G.J., Chaudhuri, A.R., Trujillo, J.D., Lin, G., Cho, M.W., Levin, S.A., Ndifon, W., Wingreen, N.S., 2010. How can vaccines against influenza and other viral
diseases be made more effective? PLoS Biol. 8 (12), e1000571.

Nowak, M.A., Anderson, R.M., McLean, A.R., Wolfs, T.F., Goudsmit, J., May, R.M., 1991. Antigenic diversity thresholds and the development of AIDS. Science 254 (5034), 963–969.
http://dx.doi.org/10.1126/science.1683006, URL https://www.ncbi.nlm.nih.gov/pubmed/1683006.

Nowak, M.A., May, R.M., 1991. Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci. 106 (1), 1–21. http://dx.doi.org/10.1016/0025-
5564(91)90037-j, URL https://www.ncbi.nlm.nih.gov/pubmed/1802171.

owak, M.A., May, R.M., 2000. Virus Dynamics. Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford.
owak, M.A., May, R.M., Anderson, R.M., 1990. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 4 (11), 1095–1103.
http://dx.doi.org/10.1097/00002030-199011000-00007, URL https://www.ncbi.nlm.nih.gov/pubmed/2282182.

Organization, W.H., et al., 2016. Combating Hepatitis B and C to Reach Elimination by 2030: Advocacy Brief. Tech. rep., World Health Organization.
Palmer, B.A., Dimitrova, Z., Skums, P., Crosbie, O., Kenny-Walsh, E., Fanning, L.J., 2014. Analysis of the evolution and structure of a complex intrahost viral population in chronic

hepatitis C virus mapped by ultradeep pyrosequencing. J. Virol. 88 (23), 13709–13721.
Palmer, B.A., Moreau, I., Levis, J., Harty, C., Crosbie, O., Kenny-Walsh, E., Fanning, L.J., 2012. Insertion and recombination events at hypervariable region 1 over 9.6 years of

hepatitis C virus chronic infection. J. Gen. Virol. 93 (12), 2614–2624.
Parsons, M.S., Muller, S., Kohler, H., Grant, M.D., Bernard, N.F., 2013. On the benefits of sin: can greater understanding of the 1f7-idiotypic repertoire freeze enhance HIV vaccine

development? Hum. Vaccines Immunother. 9 (7), 1532–1538.
Raghwani, J., Rose, R., Sheridan, I., Lemey, P., Suchard, M.A., Santantonio, T., Farci, P., Klenerman, P., Pybus, O.G., 2016. Exceptional heterogeneity in viral evolutionary dynamics

characterises chronic hepatitis C virus infection. PLoS Pathog. 12 (9), e1005894.
Ramachandran, S., Campo, D.S., Dimitrova, Z.E., Xia, G.-l., Purdy, M.A., Khudyakov, Y.E., 2011. Temporal variations in the hepatitis C virus intrahost population during chronic

infection. J. Virol. 85 (13), 6369–6380.
Rehermann, B., Shin, E.-C., 2005. Private aspects of heterologous immunity. J. Exp. Med. 201 (5), 667–670.
Rhee, S.-Y., Liu, T., Holmes, S., Shafer, R., 2007. HIV-1 subtype B protease and reverse transcriptase amino acid covariation. PLoS Comput. Biol. 3, e87.
Schwickert, T.A., Lindquist, R.L., Shakhar, G., Livshits, G., Skokos, D., Kosco-Vilbois, M.H., Dustin, M.L., Nussenzweig, M.C., 2007. In vivo imaging of germinal centres reveals a

dynamic open structure. Nature 446 (7131), 83–87.
Shirogane, Y., Watanabe, S., Yanagi, Y., 2013. Cooperation: another mechanism of viral evolution. Trends Microbiol. 21 (7), 320–324.
Skums, P., Bunimovich, L., Khudyakov, Y., 2015a. Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc. Natl.

Acad. Sci. 112 (21), 6653–6658.
Skums, P., Glebova, O., Campo, D.S., Li, N., Dimitrova, Z., Sims, S., Bunimovich, L., Zelikovsky, A., Khudyakov, Y., 2015b. Algorithms for prediction of viral transmission using

analysis of intra-host viral populations. In: Computational Advances in Bio and Medical Sciences (ICCABS), 2015 IEEE 5th International Conference on. IEEE, p. 1.
Tarlinton, D., 2006. B-cell memory: are subsets necessary? Nat. Rev. Immunol. 6 (10), 785–790.
Van Regenmortel, M.H., 2012. Basic research in HIV vaccinology is hampered by reductionist thinking. Front. Immunol. 3.
Wodarz, D., 2003. Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. Gen. Virol. 84 (Pt 7), 1743–1750. http://dx.doi.org/10.1099/vir.0.19118-0,

URL https://www.ncbi.nlm.nih.gov/pubmed/12810868.
17

http://refhub.elsevier.com/S0022-5193(23)00316-8/sb26
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb26
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb26
http://dx.doi.org/10.1126/science.1683006
https://www.ncbi.nlm.nih.gov/pubmed/1683006
http://dx.doi.org/10.1016/0025-5564(91)90037-j
http://dx.doi.org/10.1016/0025-5564(91)90037-j
http://dx.doi.org/10.1016/0025-5564(91)90037-j
https://www.ncbi.nlm.nih.gov/pubmed/1802171
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb29
http://dx.doi.org/10.1097/00002030-199011000-00007
https://www.ncbi.nlm.nih.gov/pubmed/2282182
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb31
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb32
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb32
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb32
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb33
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb33
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb33
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb34
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb34
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb34
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb35
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb35
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb35
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb36
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb36
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb36
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb37
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb38
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb39
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb39
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb39
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb40
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb41
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb41
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb41
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb42
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb42
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb42
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb43
http://refhub.elsevier.com/S0022-5193(23)00316-8/sb44
http://dx.doi.org/10.1099/vir.0.19118-0
https://www.ncbi.nlm.nih.gov/pubmed/12810868

	Antigenic cooperation in viral populations: Transformation of functions of intra-host viral variants
	Introduction
	Model of evolution of intra-host viral population organized into heterogeneous cross-immunoreactivity network
	Emergence of a new viral variant
	Adding a new viral variant to a minimal branch-cycle network
	Adding a new viral variant to a minimal symmetric network

	Merging of two cross-immunoreactivity networks
	Transformation of functions in evolving networks
	Discussion 
	Declaration of competing interest
	Appendix
	Computations for the branch-cycle network with a newly added variant connected to the pre-existing altruistic variant
	Computations for the symmetric network with a newly added variant connected to the pre-existing altruistic variant
	Computations for minimal networks with a newly added viral variant connected to pre-existing persistent variants
	Computations for merging of two minimal networks

	References


