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LOW-RANK UNIVARIATE SUM OF SQUARES HAS NO SPURIOUS LOCAL MINIMA
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Abstract. We study the problem of decomposing a polynomial p into a sum of r squares by minimizing a quadratically

penalized objective fp(u) = HZ:zl uf 7pH2. This objective is nonconvex and is equivalent to the rank-r Burer—Monteiro
factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate
polynomials p, if r > 2 then fp(u) has no spurious second-order critical points, showing that all local optima are also global
optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, r has to be
roughly the square root of the number of constraints (the degree of p) for there to be no spurious second-order critical points.
Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first-
and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the
circle, the gradient V f;, can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate
that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling
to million-degree polynomials.
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1. Introduction. Burer-Monteiro factorization [9] is a methodology to solve large-scale semidefinite
programs (SDPs) by replacing positive semidefinite (PSD) variables X = 0 with a factorization X = UU .
This automatically enforces the PSD constraint and lets us find low-rank solutions by choosing the rank of
the new variable U. In addition, this factorization results in a nonlinear optimization problem that can be
solved with first-order methods with fast per-iteration times especially when rank(U) is small. However, the
resulting problem is nonconvex so these methods may get stuck in local optima. We show that this will not
happen to the SDP finding the sum of squares decomposition of univariate polynomials; in this setting all
local optima are also global.

In this work we study SDPs arising from sum of squares optimization [32]. The ability to represent the
cone of sum of squares polynomials as a SDP enables many applications in polynomial optimization, control,
and relaxations of combinatorial problems [27, 5]. To determine if a polynomial p(z) € R[z]zq is a sum of
squares, it suffices to find a feasible solution to the following SDP:

p(x) = b(z) " Xb(z)
(1.1) X0
where b(x) is a suitable polynomial basis of R[z]s. The constraint p(x) = b(x) ' Xb(z) defines an affine
subspace of the space of symmetric matrices, which can be expressed by matching the coefficients of p(x)
with the corresponding coefficients of the polynomial b(z) " Xb(z).

Given the factorization X = UU T where 11, ..., 1%, are the column vectors of U, we have the explicit
sum of squares decomposition

(1.2) pla) = 3oy uil@)?,

where u;(z) = b(z) "4;. In other words, (1.2) is a formulation for the Burer-Monteiro factorization of (1.1)
independent of any particular basis. Instead of solving a SDP to find wu;(x), we apply a quadratic penalty
to the equality constraint (1.2) to arrive at the following nonconvex objective:

(13) Fo(w) = |0, wil2)? — p(a)]|°,

where u = [ul e ur] is a vector of r degree-d polynomials and the norm is induced by any inner product
on polynomials of degree-2d. Then a degree-2d polynomial p(z) is a sum of r squares if and only if

min_ f,(u) = 0.
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We say that u is a first-order critical point (FOCP) of f,(u) when Vf,(u) = 0, where the derivatives
are taken with respect to the variables in u. Since for every p we can find spurious FOCPs (for example
taking u = 0), it is essential to consider second-order necessary conditions. If u also satisfies V2 f,(u) = 0,
then it is a second-order critical point (SOCP) of f,(u).

Every local minimum of a function is a SOCP, but the converse is not true when the function is non-
convex'. If u is not a SOCP, then we can produce a descent direction using the gradient or Hessian. This
leads to efficient first-order methods [20, 24] that converge to SOCPs. Thus if we can show that at every
SOCP f,(u) = 0, these algorithms will always converge to a global minimum. A recent line of work [8, 3]
has shown that for general SDPs under smoothed analysis or genericity conditions, when the rank of the
factorization is above the Barvinok—Pataki bound (roughly the square root of the number of constraints),
there are no spurious SOCPs. Moreover, the smoothed analysis or genericity conditions are necessary, as [3]
constructed a SDP where only a full-rank factorization can guarantee no spurious SOCPs.

In this paper we consider the setting of univariate polynomial optimization, which is a class of problems
with applications in signal processing, control [35, 17], and computing equilibria of polynomial games [33].
These optimization problems involving nonnegative univariate polynomials can be transformed (i.e., by a
bisection on the objective value) into feasibility problems for finding the sum of squares decomposition of a
univariate polynomial. The main result of our paper shows that without any additional assumptions, the
rank-2 quadratic-penalized Burer—Monteiro factorization of the SDP describing the sum of squares decom-
position (1.3) of a univariate polynomial has no spurious SOCPs.

THEOREM 1.1. For all nonnegative univariate polynomials p(z) € Rlz|eq and any r > 2, if u € Rz}
satisfies V f,(u) = 0 and V2 f,(u) = 0, then f,(u) = 0.

In particular, the rank bound in our result matches the Pythagoras number for univariate polynomials [12,
Example 2.13]%. In comparison, applying rank bounds for general SDPs to this setting require r > Vd (see
Section 2 for more details).

Theorem 1.1 is proved in Section 4, by deriving a series of increasingly stronger sufficient conditions
((C1), (C2) and (C3)) implying f,(u) = 0 for increasingly larger classes of u = (u1,uz), eventually proving
the result for all u € R[x]?. To illustrate this, we first show that when 7 = 2 and wj,uy are coprime,
V fp(u) = 0 implies that f,(u) = 0 (the precise statement and proof of this case are in Subsection 4.1). Note
that in this simplified setting only the first-order gradient condition is needed. By computing the gradient,
V fp(u) = 0 is equivalent to

Vfp(u)(v) = (uivr + Ugvo, us + U2 —-p)y=0

for all v = (v1,v2) € R[z]?. Since uy,us are coprime, Bézout’s identity (Lemma 3.3) implies that we can
find v/ = (v}, v5) so that

(1.4) v 4 ugvh = u? +ud — p,

thus showing that f,(u) = Hu% +u — pH2 = 0. However, we cannot assume a priori that uy, us are coprime
as we are only given p as the input. The main technical contribution of our proof is how to handle the more
involved case when w1, us share a common factor.

We can also interpret our proof as a certificate. When we choose v’ satisfying (1.4), we obtain the
identity

Vip(a)(v') = fp(u).

This implies that f,(u) =0 when Vf,(u) = 0. In Section 5 we generalize this example to our full proof of
Theorem 1.1, showing for all u and p how to find v/ and @ > 0 satisfying the following identity:

V() () +(Q. V2 f (1)) = —f(w).

LConsider, for example, f(z) = 23 at = = 0.
2The Pythagoras number for Y[z]2q is the smallest r such that all polynomials in X[z]a4 can be written as a sum of r
squares of polynomials in R[z]g4.



From this identity it is clear that if u is a SOCP, then f,(u) = 0. This compact form of our proof allows us
to easily extend our result to other problems in Section 6.

Since Theorem 1.1 holds for any inner product, we can choose one that enables efficient computation
of Vf,(u). When p is a degree-2d univariate polynomial, an equivalent way of ensuring the constraint
p(z) = b(z) " Xb(z) in (1.1) is to write 2d + 1 constraints p(i;) = b(2;) T Xb(2;), where Zo, . .., 4 are distinct
sample points. This formulation can be cast into the following least-squares objective,

1 2d+1 . 9 2
(15) ettt V) = gy 2 (0780, =)

This is equivalent to choosing an inner product in (1.3) that evaluates the polynomial on 2d+ 1 points. If we
choose 2d + 1 points on the complex unit circle, we can compute Vf,(U) in O(dlogd) time using the Fast
Fourier Transform (FFT). In Section 7, we show that this method exhibits linear convergence experimentally
using unconstrained optimization algorithms such as L-BFGS, and has near-linear scaling to million-degree
polynomials.

1.1. Contributions. In summary, our main contributions in this paper are:

1. Proving that the quadratic penalty form of Burer—Monteiro factorization for univariate polynomial
sum of squares decomposition has no spurious SOCPs (Theorem 1.1). Our result holds where the
rank of the factorization is at least 2, matching the Pythagoras number for univariate polynomials.
This is in contrast to previous work requiring rank r > v/d in addition to genericity conditions or
smoothed analysis for general SDPs, or showing that no spurious local minima exist in statistical
problems.

2. Developing a new framework for proving that there are no spurious SOCPs for a quadratic-penalized
factorized SDP, by constructing a certificate (5.3) using the first- and second-order necessary con-
ditions. This certificate representation helps us extend our results to projection onto the sum of
squares cone (Corollary 6.1), certifying nonnegativity on intervals (Corollary 6.2) and sum of squares
optimization.

3. Showing that by choosing a special norm (based on the evaluation of the polynomial on points on
the unit circle), the full gradient of the objective can be computed in near-linear time using FFTs.
It enables us to efficiently scale first-order methods to instances with millions of variables (Table 1a).
This is possible because our result (1.1) is independent of the penalty function.

2. Background and Related Work. Let S,, be the space of n xn symmetric matrices. Given A; € S,,,
we consider the standard-form semidefinite feasibility problem with variable X € S,;:

(SDP) X =0
Nonconvex formulation. Burer and Monteiro [9] introduced the nonconvex reformulation X = UU T to
enforce the semidefinite constraint, where U € R™*":

(NSDP,) (A;,UUT) =b,.

This motivates the following least-squares formulation:

(SDPLS,) min Y, (4, UUT) = b

UeRnxr
If in addition to the equality constraints in (SDP) one wishes to minimize the objective (C, X), the works
[10, 3, 14] formulate an augmented Lagrangian problem, where the term A <C, UUT> is added to the objective
of (SDPLS;).

General SDP rank bounds. Burer and Monteiro subsequently showed in [10] that when r > n, there are
no spurious SOCPs to (SDPLS,). This result is in fact tight and [3] constructed an explicit instance where
if r =n—1, one can find a SOCP that is not a global minimum. Thus for general SDP feasibility, additional
conditions on the objective or analysis must be imposed. Then the rank bound can be improved to the
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maximum rank of extreme points of the section of the PSD cone with m affine constraints. This maximum
rank is O(y/m), also known as the Barvinok—Pataki bound ([2, 34]). In the same work, Burer and Monteiro
[10] showed that when a linear objective is added to (SDP) and (NSDP,), if r = \/m, any local minimum
of (NSDP,) is also a local minimum of (SDP) with an additional rank-r constraint. Then they showed
that such a local minimum is either an optimal extreme point, or contained within the relative interior of a
face of the feasible set of (SDP) which is constant with respect to the objective function. Subsequent work
[3] then showed that if C' is generic enough, all local minima of (NSDP,) are global minima of (SDP) (see
Cifuentes and Moitra [14] for more references). In summary this line of work requires generic constraints,
and in addition either smoothness of the constraint set ([7, 8]) or smoothed analysis ([3, 14, 13]). In addition,
[40] showed that when r is smaller than /m, SOCPs are not generically optimal.

Structured SDPs. Problems such as matrix completion and matrix sensing can be expressed as instances
of (SDPLS,) There has been a lot of recent interest in studying the global landscape of matrix sensing
problems ([22, 4, 21]). A recent line of work ([21, 22, 1]) shows that for certain statistical problems aiming
to recover a signal in the form of a low-rank matrix corrupted by noise (where the SDP has a rank-1
solution in the noiseless setting), there are no spurious SOCPs when the noise level is low enough. Similar
results [21, 29, 39] can be obtained for matrix sensing, where a low-rank matrix is reconstructed from linear
measurements called sensing operators. See [11] for a survey of these problems. In summary, for a wide
range of statistical problems, local minima are also global minima. These results are either satisfied with
high probability, or require that the sensing operators A; satisfy the Restricted Isometry Property (RIP).

Sampling basis. The sampling or interpolation basis for sum of squares optimization is studied in [30]
and [15]. Informally, they showed that if the sampled points are “generic” enough, the problem expressed
in the sampled basis is equivalent to the original problem. This idea is also used for univariate polynomial
optimization in [31, 26].

Univariate polynomials. Univariate/trigonometric polynomial optimization and their applications are
studied in [41, 35, 17] and the references therein. The decomposition of a nonnegative trigonometric poly-
nomial into a sum of squares is also known as its spectral factorization [17, Theorem 1.1]. Previous methods
for spectral factorization either require finding all n roots of the polynomial, solving linear systems of order
n, or use an approximate O(N log N) FFT-based algorithm by sampling N > n points [41, 17]. Design
problems involving constraints on nonnegative trigonometric polynomials can be formulated as SDPs. Due
to their special structure, [35] used FFTs to speed up per-iteration complexity for interior point methods
solving these SDPs to O(n?). The set of all X satisfying (1.1) is known as the Gram spectrahedron of p(x).
As the bounds developed for general SDPs depend on the rank of extreme points of the Gram spectrahedra,
one may wonder if this quantity can be tightly bounded (i.e., better than the Barvinok—Pataki bound) in the
special case of univariate polynomials. A recent work by Scheiderer [36] showed that this is not possible. If
p(x) is a sufficiently general positive univariate polynomial of degree d, its Gram spectrahedron has extreme
points of all ranks up to O(v/d).

2.1. Notation. Let R[z]q be the space of univariate polynomials of degree at most d. Let u(x) € Rz]}
be a vector of r polynomials where each w;(z) is a polynomial in R[z]q. Let o : R[z]; — Rlz]2q be the
quadratic map defined by v(z) — Y7, v;(z)?, and [z]aq := cone(o(R[z]})) C R[x]24 be the cone of sum of
squares univariate polynomials of degree-2d. A binary form is a homogeneous polynomial in two variables.
Let R[z]q be the space of binary forms of degree-d and X[z]2q C Rz]24 be the space of sum of squares
binary forms of degree-2d. R[z]q and X[z]2q are isomorphic to R[z]q and X[z]eq respectively.

2.2. Univariate Polynomials. Any monic univariate polynomial p € R[z]4 can be uniquely factored
as p(x) = Hle(x — ), where «; € C are the roots of p. Given univariate polynomials p, g and ¢, we define
an equivalence relation p = ¢ (mod g) if there exists w € R[z] such that p = ¢ + wg. We say that g is a
divisor of p if p=0 (mod g). In addition, if ¢ is also a divisor of ¢, then we say that g is a common divisor
of p and ¢. Let ged(p, ¢) be the greatest common divisor of p and ¢, which is the common divisor with the
highest degree. By the unique factorization of p and ¢, ged(p, q) is unique up to multiplication by a scalar.
We say that p and ¢ are coprime if ged(p, q) = 1.

Any binary form p € R[x]q can be factored as p(x1,z2) = Hle(aixl — Biwa), where (o, 3;) € C2. This
factorization is unique up to multiplication of (ay, ;) by a scalar. The equivalence relation p = ¢ (mod g)
and gcd on binary forms are defined analogously to those on univariate polynomials.
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3. Preliminary Results. Since the polynomials we are optimizing over have fixed degrees, to better
keep track of this degree we will work with homogeneous polynomials (forms). In Subsection 3.1 we derive
expressions for the first- and second-order necessary conditions ((3.3) and (3.4)). Next in Sections 3.2 and
3.3 we review some results on binary forms and prove our main Lemma 3.7. Particularly important is our
decomposition of u in Proposition 3.4.

3.1. First and Second Order Necessary Conditions. First we derive expressions for the gradient
and Hessian of fp(u). In addition to the binary forms we consider in this paper, the derivations in this
section also hold for general multivariate forms. For any inner product on forms (-, ) : R[z]2qg X R[z]2a — R
and its associated norm ||-|| : R[z]2qa — R, the objective function is written as

fo(u(z)) = Hzgzl u;(z)? fp(x)HQ .

To find the gradient and Hessian of the objective, we compute the first- and second-order terms of f,(u(z)+
ev(x)) to obtain:

(3.1) V(@) (v(@) = (S ) (e), Ty () — p())
(32 V@)@, v@) = (S w0 S w)? - @) +2 | Siyw@ @)

Given a vector of polynomials u(z) € Rz]y , we define the linear map Ay, : Rlz]y, — Rlz]a, +d, as

Au@) 1 v(z) = Zuz(x)vz(x)
i=1

For example, we can write o(u) = Au(u). When n = 2, A, is up to a constant the map induced by the
Sylvester matrix [38]. If d; = da, the determinant of A4, is up to a constant the resultant of uy and wug; it
vanishes if and only if u; and us share a common divisor. Next we concisely define SOCPs using this new
notation.

DEFINITION 3.1. We say that u € Rz} is a second-order critical point (SOCP) of f,(u) if its gradient
is zero and its Hessian is positive semidefinite. In other words, for all v € R[z]],

(33) TVulp@)v) = (Au(v),0(0) —p) =0,
(3.4) LA @v) = o(v),0(w) ~ p) + 2| Au(v)]* > 0.

REMARK 3.2. The first-order condition (3.3) alone is insufficient to guarantee global optimality, even
when p is generic. For example, u = 0 is always a FOCP, but is spurious if p # 0. Since we can always
construct spurious FOCPs, even when p is generic, we need to consider the second-order conditions.

3.2. Pairs of Binary Forms. In this section we present some results on pairs of binary forms that will
be helpful for characterizing the sets® Im(A,) and cone (o (ker(A,))) and proving Theorem 1.1 in Section 4.
From now on we assume that r = 2 and u = (ug, uz).

The following lemma is a restatement of Bézout’s lemma for univariate polynomials using our notation.
It states that any form in R[z]2q is in the image of the map Ay, as long as u; and ug are coprime. We
provide a proof below for completeness.

LEMMA 3.3. Given u = (u1,up) € R[z]3, and dy > dy — 1, consider the map Ay : R[z]3, — Rlz]a, ta,-
Then uy and ug are coprime if and only if Im(Ay,) = R[x]d, +d, -

3For the more algebrically inclined reader, the sets Im(Ay) and ker(Ay) are the graded parts of the ideal [16, Definition 1.4.1]
and syzygy module [16, Definition 10.4.3] of u respectively.



Proof. For the “if” direction, when u; and us are not coprime, then they share a common factor w with
degree at least 1, and so does every form in Im(A,). Thus Im(.A,,) is not equal to R[z]d, +d,-
Next we prove the “only if” direction. Since Ay, (V) = viu; + vaus, for every v € ker(Ay) we have

(35) U1V1 = —U20V2.

If dy = dy — 1, since u; and ug are coprime, by evaluating (3.5) on the roots of u; and uy we can conclude
that v;1 = vo = 0 and dim(ker(Ay)) = 0. Otherwise if do > dy, this implies that u; is a divisor of vq
and usg is a divisor of v1. So there exists wy,ws € Rlx]a,—d, such that v; = wyuz,v2 = wauy. Then (3.5)
becomes (wy + we)ujuz = 0, implying that wy = —w;. Thus ker(Ay) = {(wug, —wu1) | w € R[z]dy—d, }
and dim(ker(Ay)) = dim(R[z]dy—d, ). In summary, da > di — 1 implies that dim(ker(Ay)) = d2 + 1 — d;.
Therefore by the rank-nullity theorem,

dim(Im(A,)) = 2dim(R[z]q,) — dim(ker(Ay)) = dim(R[z]q, +d,)-

Since Im(Ay) C R[x]d, +d, and these two sets have the same dimensions, they must be equal. d

In particular, Lemma 3.3 motivates the decomposition u; = u}§ and us = u)bg, where v} and u), are
coprime and § = ged(uq,uz). Indeed when § = 1 we can apply the sufficient condition (C1) in Subsection 4.1
to show that u is not a SOCP. When ged(§,o(u’)) = 1 we can apply (C2) in Subsection 4.2. Otherwise
we need to partition the roots of § = gh by whether each root is also a root of o(u’), then apply (C3) in
Subsection 4.3.

PROPOSITION 3.4. Given u = (u1,uz) € R[z|3, we can always find g € R[x]m, h € R[z]x and u’ =
(uh,ub) € Rlz)3_ .y so that

(u1,uz) = (ujgh, usgh),
ged(ug, ug) = gh,
5) =1,

ged(u),u

2 2
ged(o(u’),g) = ged(uy” +uy™, 9) = 1,

r is a (possibly complex) root of h = 1 is a root of o(u’).

Moreover, this decomposition is unique up to multiplication by constants.

Proof. Let § = ged(ug,ug) so that w) = uy/§ and vy = ug/§. By partitioning the roots of § we can
decompose § = gh, where g has no common roots with o(u’) and every root of h is also a root of o(u’). The
uniqueness of this decomposition follows from the unique factorization theorem for binary forms. 0

We demonstrate this decomposition with an example.

EXAMPLE 3.5. Let ui(z1,72) = (23 +23)2(223 + 23)2? and uz(z1, x2) = (23 +23)%(223 + 23)x122. Then
the decomposition in Proposition 3.4 gives u}y = x1, uh = x9, g = x1(22% + 23) and h = (22 + x3)2.

The following observation about the roots of o(u’) and h is useful in our proofs.

PROPOSITION 3.6. In the decomposition of Proposition 3.4, both o(u’) and h have no real roots and
deg(h) is even.

Proof. If o(u’) has a real root 2, then u}(£)% + u5(#)? = 0. Thus £ is a root of u} and u}, contradicting
the fact that ged(uf, ub) = 1. Thus every root of h is complex, and h must have even degree. O

3.3. Main Lemma. In our proof of Theorem 1.1 we will use following main result, which may be of
independent interest.

LEMMA 3.7. Given binary forms g € R[x]m, ¢ € X[z]2d—2m and p € X[z]a2qa, if g and q are coprime then
there exists a sum of squares binary form s € X[x]am such that

p=sq (mod g).
6



The main ingredient of the proof of Lemma 3.7 is a result stating that any univariate polynomial a(x) strictly
positive on the real zeros of g(x) can be written as a single square* modulo g(z).

PROPOSITION 3.8. Let g(x) and a(x) be coprime univariate polynomials where deg(g) = m. If a(z) > 0
for all {x € R| g(x) = 0} then there exists a polynomial t € Rlx],, such that

a=t* (mod g).

This result is related to Schmiidgen’s certificate [37], which states that if a polynomial is strictly positive on
a compact semialgebraic set, then it has a Positivstellensatz certificate in terms of the equations describing
the set. We prove Proposition 3.8 using Hermite interpolation on the series expansion of y/a(x) around the
roots of g.

Proof of Proposition 3.8. Let r; be the roots (possibly complex) of g(x), each with multiplicity n;, so
that ). n; = m. Consider the Taylor series expansion of f(z) = y/a(x) centered at ;. Since a and g do not
share any common roots as they are coprime, this Taylor series is well defined around any root of g. Let the
polynomials 7;(z) be the first n; terms of the Taylor expansion of f(z) centered at r;. The polynomials ~;
have real coefficients if r; is real, and if r; and 7; are a pair of conjugate roots, v; = 7;. We can then use the
Chinese Remainder Theorem [18, Section 7.6] to construct the unique polynomial ¢(z) with real coefficients
and deg(t) < m such that

Vi, t(x) =~vi(z) (mod (x —r;)™).
By construction, for all roots r; of g and any k£ =0,...,n; — 1, we have

d* d* d*
%f(ﬁ') = @%(H) = Wt(ri)-

For each root r;, we have

va(ri) = f(ri) = vi(r:) = t(r:).

and
d d d d
—a(r;) = 2f (ri) = f(r:) = 2t(r)) —t(r;) = —t(r;)>.
Lol = 27 (r) () = 20(r) - t(r) = “1(ry)
By induction we get d‘i,—kka(m) = Ugg—kkt(ri)z for k = 0,...,n; — 1. This is a generalization of Hermite inter-

polation for a variable number of consecutive derivatives at each point [23, section 17.6]°. Since a(x) and
t(x)? match at all the roots of g (including derivatives up to the multiplicity of the root), we have shown
that a = t? (mod g). 0

Then we prove the affine version of Lemma 3.7.

LEMMA 3.9. Let g,p and q be univariate polynomials where deg(g) = m, deg(p) = 2d and deg(q) =
2d — 2m, p and q are sum of squares, and g and q are coprime. Then there exists a sum of squares
polynomial s € ¥[x]ay, such that

p=sq (mod g).

Proof. Since ¢ is coprime with g, Lemma 3.3 (after reducing ¢ modulo g) guarantees that there exists a
polynomial a € R[z],, such that

(3.6) ag=1 (mod g).

4The number of squares is not important in our proof of Lemma 3.7, we only need the property that a(x) can be written
as a sum of squares modulo g(z).

5This is referred to as Birkhoff interpolation in [23], and the existence of a unique interpolating polynomial crucially depends
on the use of consecutive derivatives.



We have g(x) > 0 for all real roots x of g, since ¢ is nonnegative and coprime with g. Thus a(z) > 0 for
all real roots x of g, by evaluation of (3.6) at these roots. Since a(x)q(x) = 1 for all roots z of g, a is also
coprime with g. Then we can apply Proposition 3.8 to find ¢ € R[z],, so that a =t (mod g). Multiplying
both sides of (3.6) by p, we get

p=t2pgq (mod g).

Since t?p is a sum of squares, we can reduce each squared polynomial modulo g to get s € X[z]om. 0

Finally we prove Lemma 3.7, which is the projective version of Lemma 3.9.

Proof of Lemma 3.7. We first apply a linear change of coordinates so that (0, 1) is not a root of g, p, or gq.
Then let ¢’ (z) = g(x,1), p’(x) = p(x,1) and ¢’'(z) = g(x,1). Since this dehomogenization procedure preserves
the degree of g, p, and ¢q °, we can apply Lemma 3.9 to find polynomials s’ € X[x]2,, and t' € R[z]ag_., S0
that

pl — S/q/ +t/g/~

We can then homogenize by letting s(x1, x2) = 2378 (21 /22) and t(21, 20) = 2

a sum of squares and

=M/ (/). Thus s is also

p = sq+tg. 0

4. Main Theorem and Proof. In this section we prove Theorem 1.1, which states that for univariate
polynomials, a rank-2 decomposition has no spurious second-order critical points. Using the decomposition
in Proposition 3.4, we first prove simplified versions of Theorem 1.1 in Sections 4.1 and 4.2, before proving
the full version in Subsection 4.3.

4.1. Coprime Case: g = 1, h = 1. This is the case explained in the introduction. In the decomposition
of Proposition 3.4, g = h = 1 implies that u; and us are coprime. This happens generically and implies that
for a fixed p, the gradient condition (3.3) is sufficient for almost all u.

PROPOSITION 4.1. Suppose u € R[z|% and p € X[x]2a satisfies V f,(u) = 0. If
(C1) p € Im(Ay),

then we have f,(u) = 0.

Proof. Since p € Im(A,), we can find v € R[z]4 so that Au(v) = o(u) — p. Evaluating the gradient
condition (3.3) at v, we conclude that f,(u) = ||o(u) — o> =o0. ad
Since Lemma 3.3 implies that Im(Ay) = R[z]24 if and only if u; and ug are coprime, we have shown that
when g = h = 1, we always have p € Im(A,) and there are no spurious FOCPs and SOCPs.

4.2. Special Case: h =1. When u; and us are not coprime, o(u) — p might not be in Im(A,) and we
cannot use the argument in Proposition 4.1. Thus we need to use make use of the Hessian condition (3.4).

PROPOSITION 4.2. Suppose u € R[z|4 and p € X[x]2q satisfies V f,(u) =0 and V2 f,(u) = 0. If
(C2) p € Im(Ay) + cone (o (ker(Ay))),

then we have f,(u) = 0.

This means that if for all u we can decompose p = g + r where ¢ € Im(A,) and r € cone (o (ker(Ay))),
then f,(u) has no spurious SOCPs. In particular, similar to how Im(A,,) is related to the gradient condition
(3.3) in Proposition 4.1, cone (o (ker(Ay))) is related to the Hessian condition (3.4). The following result
states that (C2) is satisfied if h = 1.

SIf the degree of g is not preserved after dehomogenization, the degree of ¢ after applying Lemma 3.9 could be larger than
2d — m. For example, if d = m =2, g = z122, p = (2:(3% + x%)x% and q¢ = 1, we get that s’ = (22 + 1) and ' = —z3 after
dehomogenizing and applying Lemma 3.9. This issue will not occur if the dehomogenization is degree-preserving.
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LEMMA 4.3. Given u € R[z]3, if in the decomposition of Proposition 3.4 we have h = 1 then for every
p € X[z]24q,

p € Im(A,,) + cone (o (ker(Ay))) -

Proof. We want to show that any p(x) € X[z]2q can be written as the sum of polynomials in Im(Ay,)
and o(ker(Ay)). Therefore it is useful to have a characterization of these sets. Lemma 3.3 tells us that

Im(Ay) = {Aw(v)g | v € Rlz]a}
={wg | w € R[z]2d—m} -
Since for all ¢ € R[z]m, we have (—tuj, tu]) € ker(Ay),
{tPc(u’) | t € R[2]m} C o(ker(Ay))
(4.1) {so(u’) | s € B[x]am} C cone(o(ker(Ay))).

Since o(u’) is coprime with g by assuming h = 1, we can apply Lemma 3.7 to show that there exists
w € R[z]2d—m and s € X[x]2m such that p = so(u’) + wg. 0

Finally we prove Proposition 4.2.

Proof of Proposition 4.2. The condition (C2) implies that there exist v € R[z]3, w® € ker(A,) such
that

p=Auv)+ 3o (wl).

Since V f,(u) =0, (3.3) implies that
(4.2) (Au(v),o(u) —p) =
Since V2 f,(u) = 0 and w € ker(Ay), (3.4) implies that

(4.3) <o—(w<i>), o(u) — p> > 0.
Combining (4.2) and (4.3) gives
(4.4) (p,o(u) —p) > 0.

Since V fp(u) = 0 implies that
{(Au(u),o(u) = p) = (o(u),o(u) —p) =0,

we have

fp(w) = [lo(u) = pl* = (o(u) = p,0(u) = p) = = (p,o(u) - p).
This together with (4.4) implies that f,(u) < 0. However f,(u) is always nonnegative, thus it must be 0. O

4.3. General Case. Lemma 4.3 alone is insufficient to prove Theorem 1.1. It is possible for g =
ged(uy, ug) to share complex roots with o(u’) (recall from Proposition 3.6 that all roots of o(u’) are complex),
as seen in Example 3.5. Hence the argument in the proof of Lemma 4.3 fails as § is not coprime with o(u’).
To get around this issue, we will derive the sufficient condition (C3) in Proposition 4.4, a stronger version
of (C2), by carefully examining the Hessian condition (3.4). Roughly speaking, Proposition 4.4 shows that
we can replace every root of h (which must be complex) with any real root”. Since o(u’) has no real roots,
Gz%/h is now coprime with o(u’), and we can then complete the proof by following the argument in the
previous section.

"Without loss of generality we choose this real root to be z1.
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PROPOSITION 4.4. Suppose u € R[z]% and p € X[z]2q satisfies Vf,(u) =0 and V2f,(u) = 0, with the
decomposition in Proposition 3.4 where k = deg(h) and uz¥/h = (u)gz¥, ubgz?). If

(C3) p € Im (Amlf/h) + cone (X (ker(Ay))),

then fy(u) = 0.
Proof. We first prove that if r € R[x], is a common divisor of o(u’) and § = ged(ug, uz), then

(4.5) (Au(b)zi/r,0(u) — p) =0, for all b = (by,bs) € R[z]3.

Given any by, by € R[z]g and 1 € R, let v; = na{us/r + by and vy = —nziuy /v — b;. We have
(4.6) Au(v) = ug (nztug /1 + by) — ug(nafuy /r + b)) = uibs — ugby

(4.7) a(v) = n*ai’ (uf + u3) /r? + 29y (brur + baus) /1 + (B + b3).

Since 7 is a divisor of both o(u’) and §, 2% (u? + u2)/r? = 22‘c(u’)§?/r? is a multiple of §. Thus z%(u? +
u3)/r? € Im(Ay) and we have

Pz (uf +u3)/r?,o(u) — p) = 0.
Therefore, the Hessian condition (3.4) implies that for all n € R,
(4.8) 2n <(b1u1 + szg).’E{/T,O’(u) —p> + <b% + b3, 0(u) — p> + 2 Jurby — U2b1||2 > 0.

This implies the identity (4.5); otherwise there exists 1 such that (4.8) is negative.

Since o(u’) and h have no real roots (Proposition 3.6), we can write h = HZ 173, where each r; € R[z]z is
a quadratic form corresponding to the product of a pair of complex roots. We first apply the same argument
from above to show that

(4.9) (Au(b)zi/r1,0(u) — p) =0, for all b € R[z]3.
Next we show that (4.9) implies that
(4.10) (Au(b)zt/(r17m2),0(u) — p) = 0, for all b € R[z]3.

Similar to before, let r = rir2 so we have the identities (4.6) and (4.7) as before. Since r is a divisor of
both o(u’) and §/r1, 28c(w’)§2/(rire)? = 282 99 i o multiple of §/r1. Thus z8o(u’)§2/(rir2)? €

T2 T1T2 T1
Im (Auz2/r1) and we then use (4.9) to show (4.10).
1

Thus by iteratively applying the previous arguments ®, we show that for every 1 < k' < k/2 and
b € R[z]3,

<-Au(b)$%k// Hil ri,o(u) — p> =0.

This is because each r; is a divisor of o(u’) and Hf;l r; divides §. From here we can finish our proof by
following the same steps as in the proof of Proposition 4.2. 0

With Proposition 4.4 we can prove Theorem 1.1, by showing that every p € X[z]2q has the required
decomposition.

Proof of Theorem 1.1. Since (Aw (b)gzf,o(u) —p) = 0 for all b € R[z]3 and uj,u} are coprime,
Lemma 3.3 implies that (wgah,o(u) — p) = 0 for allw € R[z]. Since ¢(u’) has no real roots (Proposition 3.6),
it is coprime with x¥. As o(u’) is coprime with g, it is also coprime with gz¥. Thus Lemma 3.7 tells us that
there exists a sum of squares polynomial s such that p = so(u’) (mod gz%). Since so(u’) € cone(o(ker(Ay)))
by (4.1), we are done. ad

8The argument here is subtle because although every root of h is a root of o(u’), a root may have higher multiplicity in h

than in o(u’). For example, it is possible that h = (z? + 22)2 but o(u’) = x? + 3. In this case, to obtain (4.5) we need to

iteratively “peel off” the factors r1 = 7o = 22 + 23, by first proving (4.9) and then proving (4.10).
10



5. Geometric Interpretation and Certificates. In this section, we provide a geometric interpreta-
tion of our proof of Theorem 1.1, which allows us to turn the proof into a certificate. In order to prove that
there is no spurious second-order critical points when minimizing f,(u) = ||jo(u) — p|?, we have to show that
for all u € R[z]" and for all p € X[z], Vf,(u) = 0 and V?f,(u) > 0 implies that f,(u) =0 and p = o(u).
One way to tackle this problem is to fix p then characterize the set of u satisfying the second-order critical
point conditions. This is the approach taken by [3] and related works, where they used an argument based
on the dimension of the subspace generated by the constraints of the SDP. However the SOCP conditions
are nonconvex in u. In order to do better than a dimension-counting argument, our proof takes a different
approach. If we fix u, the set of all p satisfying the gradient condition (3.3) is an affine subspace, whereas
the set of all p € X[x] satisfying the Hessian condition (3.4) is a convex semidefinite-representable set. We
need to show that these two sets intersect at only one point, p = o(u) (see Figure 1).

{p € Zla] | V2fy(u) = 0}

{p eR[z] | Vfp(u) =0}
Fig. 1: The geometric interpretation

Our proof can be interpreted as constructing a certificate to show that these two sets only intersect at
one point. This is true if and only if the following optimization problem has a zero optimal objective value:

. 2
o1 B o i 100 =PI 4 V) +(Q. T2, (w).

Expanding the gradient and Hessian, we get
Vp)(A) = (Au(A), o(u) = p)
. 2
(@ V2h(w) =3 (ov®),ou) = p) + 2 [ A v |

where Q = >, v@Ov® T If for every p € X[z] we can find XA and Q such that

(5-2) Vi) +(Q. V2 f,(w) = = [lo(u) - p|*,

then the objective of (5.1) is at most 0 and cannot be positive, showing that p = o(u) is the only point
satisfying the gradient and Hessian conditions. Since A,(u) = o(u), this is equivalent to finding A and Q
such that Vf,(u)(X) + (Q,V2f,(u)) = (p,o(u) — p).

5.1. Warmup. As a warmup, we construct such a certificate if A = 1 in the decomposition of u in
Proposition 3.4. Recall that in this case g = ged(u1,us2), u1 = guj,us = gu) and o(u’) is coprime with
g € R[z]m. Therefore, by Lemma 3.7, there exists s € X[x]a2m such that p = so(u’) (mod g). Let

2
up” Uy
Q =3 1ol 12 .
—U Uy Uy
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As both o(u) and p — so(u’) are divisible by g, Lemma 3.3 implies that there exists A such that:
Au(A) = —o(u) + p — so(v).

These values of XA and @ give

Vip()(A) = = [lo(u) - p|* -

(so(u’),o(u) —p)

(Q,V2fp(w)) = (so(u'),0(u) —p),

hence taking the sum we have the identity (5.2).

5.2. Certificate. Now we can present the proof of Theorem 1.1 in the form of a certificate. First we
decompose u € R[x]% as in Proposition 3.4. Since g is coprime with o(u’) and o(u’) has no real roots, gz¥ is
also coprime with o(u’). Then by Lemma 3.7, there exists s € X[2]2(m-+k) such that p = so(u’) (mod gzf).

Next we apply Lemma 3.3 to find b® € R[z]% so that:

fU'f 0 k
2FAu(b ) = 2gx7{ Aw (b

As in the proof of Proposition 4.4, we write h = Hf/? ri.

Lemma 3.3 there exists b’ € R[x]3 so that

0 =p—so(u).

For every 1 < j < k/2, since r; divides o(u’), by

k—274 i 1 2k—4(5—1 1
292 A (b)) [T, ri = —g%22* 0 Do) [TZ) 2.

Given any a = (a1,az) € Rlz]3, we define a := (ag, —a1).
let n; = n® " and

3/2  k—25—y7T1J

v = n;Tgry a Zln—knj

Then define

Given a parameter n € R, for every 0 < j < k/2

1/2b]

L

Q=s ”T+ Zv]vj

A=—(1+n" 77k/2+1)u'

Since Ay (@) = 0, o(®) = o(0’), o(b’) = o(b’), Ay (b”)

= Aw(b’) and n;41 = n?, we have

>oov) =3 (g o) Ty 72 + 2090}~ Aw (0) TL i+ 0y o (b))

k/2

=p—so(u)+n " opio(a) 07" Z nj_la b’

Au(v?) = P AL,
k/2

(Q, V2 fp(u)) = <p 0 jaiao (@) + 7Y e (b)), o
=0

VIipA) = =1+ 97 yj241) (o(u),o(u) — p).

So we have proven the identity

k/2

(5:3) VLA +(Q Vp(w) =~ [lo(w) - plf* +Zm ( M), o(w) = p) +2 | Au(B)
=0
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This implies that for every n > 0 and every u that satisfies Vf,(u) = 0 and V2f,(u) = 0,

k/2

o) = pf* < 3y @ D (<a<bj>,a<u> —p)+2 HAJB")H? -
§j=0

Since b? does not depend on 7, we can make the right hand side arbitrarily small by taking the limit 7 — co.
Thus we can conclude that ||o(u) — p|| = 0.

6. Extensions and Generalizations. The certificate interpretation discussed in the previous section
allows us to generalize Theorem 1.1 to other settings, such as projecting onto the sum of squares cone,
certifying nonnegativity on intervals and imposing linear constraints on coefficients of univariate sum of
squares polynomials.

6.1. Projection Onto the Sum of Squares Cone. A natural question to consider is what happens
to the optimization landscape of f,(u) when p cannot be expressed as a sum of squares. In this case the
objective f,(u) can never be zero, but we show that all SOCPs have the same objective value, which is the
projection of p to the sum of squares cone.

COROLLARY 6.1. For all u € R[z]3 where Vf,(u) = 0 and V2f,(u) = 0, o(u) is the projection of p
to the sum of squares cone with respect to the inner product used to define f,. In other words, f,(u) =

2 2
[o(u) = plI” < llg = pl” for all q € E[z]2q.
Proof. Corollary 6.1 can be proved by a simple modification of the certificate (5.3). Although p is no
longer a sum of squares, we can use (5.3) to show that for all g € X[z]aq,

(o(u) —q,0(u) —p) <0.
This is exactly the variational characterization of projection onto the convex cone X[x]2q. 0

6.2. Certifying Nonnegativity on Intervals. Suppose we wish to certify that a univariate polyno-
mial p(z) is nonnegative in a union of intervals I = |J!", I; where I, = {x € R | a; <2 < f3;}. This can be
accomplished by finding a decomposition

p(x) = Zai(fﬂ)qz‘(ﬂcL

where a;(x) are fixed polynomials depending on the intervals I; and g;(x) are sum of squares polynomials
(see, e.g., [5, Theorem 3.72]). This objective can also be written as a nonconvex optimization problem by

the decomposition g;(x) = >_7_; uy; ()% = o(w;). If we let

s(u)(z) =) ai(@)o(w),
i=1

then the objective f!(u) and its gradient and Hessian can be written as

2

folu) = = [ls(u) = plI*,

m
Z a;o(u;) —p
i=1

Vi) (v) = <Z ai Ay, (vi), s(u) — p> ,
i=1

2

V2f5(u)(v,v) = <Z a;o(v;),s(u) — p> +2 ZaiAui (vi)
i=1 i

13



COROLLARY 6.2. Suppose r > 2 and we are given p = Y ., a;q; € R[z]2atk where a; € Rlz]k, ¢; €
S[#]2q. For all u € R[z]7™" such that Vf](u) =0 and VfL(a) =0, fl(a) = 0.

Proof. We can prove this by constructing a certificate of the form (5.3). For each ¢ we can choose v; =0
for all j # i, then follow the reasoning in Subsection 5.2 to find A; and @; such that for all n; > 0,

(6.1) VI )(A) +(Qs, V2 fE(w)) = (aiqi, s(u) — p) + C,

where C; is a value that can be made arbitrarily small by taking a limit. We then sum (6.1) for all i,
along with the equality VI (u)(—u) = —(s(u),s(u) —p) to get ||s(u) —p|? < >, Ci, which implies that

fa(w) = [ls(w) —p|* = 0. U

6.3. Sum of Squares Optimization. More generally, we can consider the problem of finding a feasible
point in the intersection of the cone X[z]oy with any affine subspace. This allows us to solve sum of squares
optimization problems involving univariate polynomials. Let B : Rlz]ag — R™ be a linear map. Given
b € R™, we want to find p € X[x]aq so that B(p) = b. This is equivalent to minimizing the quadratic-
penalized problem

(6.2) f5(u) = ||1B(o(w)) - bl|*.

COROLLARY 6.3. Suppose there exists p € X[x]2a such that B(p) = b. Then V fg(u) = 0 and V? fg(u) =
0 implies that fz(u) = 0.

Proof. The gradient and Hessian of the objective (6.2) can be written as

1V s()(v) = (B(AL), Blo(w) — p)
1V Fs()(v,v) = (B(o(v)), Blo(w) ~ p)) + 2| B

Thus by the linearity of B we can use the same construction as in the certificate (5.3) to show that fz(u) = 0.0

7. Implementation and Experiments. In this section we describe an efficient implementation of
finding a sum of squares decomposition of trigonometric polynomials. A trigonometric polynomial of degree-
d is defined by 2d 4 1 coefficients and has the form

d
= Z ay cos(kt) + a_g sin(kt)).

By the substitution cos(t) = };—i; and sin(t) = %7 p(z) becomes a rational function with the denominator
a power of 1 + 22 and the numerator a degree-2d polynomial in x. Thus certifying the nonnegativity of
the numerator is equivalent to certifying the nonnegativity of p(t). By this correspondence the result of
Theorem 1.1 also applies to trigonometric polynomials.

Since the proof of Theorem 1.1 does not depend on the norm used for f,(u) = ||p iusz, we can
choose one most suitable for the gradient computation. For the rest of this sectlon we assume that d is even
for simplicity of notation; a similar decomposition exists for odd d by choosing “half-angles” (see [30] for
more details). We then choose the inner product defined by evaluation at 2d + 1 points on the circle,

2d+1

S plenalen), wn =

k=1

b
2d + 1

2km
2d+1°

(p,q) =

Since a trigonometric polynomial of degree-d is uniquely defined by evaluation on 2d + 1 unique points,
[lp()]|* = 0 if and only if p is identically zero.

14



Let U € R(@+1DXT be a matrix with column U; representing the coefficients of u;(z), and B € R(4+1)x(2d+1)

be the evaluation map on 2d + 1 points with columns
_ d
By =[1 cos(zp) --- cos(Z

)

xg) sin(zg) .- sin(%ock)]—r

so that B, U; = u;(z1). Let p be the vector of coefficients of p(z), so that B, p = p(z)). Then we can write

2d+1

(107 Ball* = ptaw)

H(U) = 2d1+1

4
V/o(U) = 55U BDiag <||UTBk||2 —p(xk)> BT,

where Diag (HUTBICH2 —p(xk)> is a diagonal matrix with HUTBkH2 — p(zk) as the k-th diagonal entry.
Since matrix-vector multiplication by B is a equivalent to a discrete Fourier transform, Vf,(U) can be
computed in O(rdlogd) time using the FFT. Theorem 1.1 shows that spurious local minima do not exist
when r > 2, so we can pick 7 to be a constant and obtain a near-linear iteration complexity. This is in
contrast to other SDP-based algorithms and custom interior point methods for solving this problem, which
run into computational difficulties even when 2d = 10,000.

Degree Time (s) Iterations r  Time Iters FFT Calls
2,000 2(1-2) 340 (306 — 384) 2 50 4124 20618
10,000 6(5-06) 530 (497 — 592) 3 9 896 6272
20,000 9(8 - 10) 632 (587 — 695) 4 6 530 4774
100,000 53 (46 — 59) 1126 (980 — 1248) 5 ) 446 4900
200,000 160 (139 — 174) 1375 (1212 — 1532) 6 5 396 5142
1,000,000 1461 (1212 — 1532) 2303 (1934 — 2437) 7 5 374 5618

(a) Varying degree, r = 4 (b) Varying r, degree 2d = 10,000

Table 1: Time and iterations to convergence for sum of squares decomposition of random nonnegative
trigonometric polynomials. All values are median of 50 runs (with range based on 25th and 75th percentile).
Table 1a fixes the rank r and and varies the polynomial degree, whereas Table 1b fixes the polynomial degree
and varies the rank r.

We implemented our algorithm for finding the sum of squares decomposition of trigonometric polynomials
in Julia ?; using the FFTW. j1 [19] package for FFTs to compute V f,(U) and the NLopt. j1 [25] package to
minimize f,(U) using a first-order algorithm (L-BFGS). We performed the timing experiments on Intel Xeon
Platinum 8260 processors, allocating at least r + 1 cores to each run, using polynomials of degree-2d ranging
from 2,000 to 1,000,000. The test polynomials are generated with coefficients drawn from a standard normal
distribution, with a constant coefficient added so that they all have a small positive minimum value. U is
initialized with a small random value; its magnitude depends on the size of the problem. The algorithm
is terminated when the relative error for each entry of U is on the order of 10~7. Although r = 2 is
sufficient, the results in Table 1b shows that r = 4 minimizes the total computational cost, as measured by
the total number of FFT calls (by far the most expensive operation) needed for convergence. In addition,
since the matrix-vector products can be easily parallelized across multiple threads, increasing r does not
incur a significant per-iteration cost if sufficient threads are used. Thus we choose r = 4 for our large-scale
experiments in Table la. Figure 2 plots the convergence rate of 20 instances, and we can see that they
achieve a linear convergence rate. This is in contrast to grid-based methods [41, 17] which scales sublinearly
in accuracy.

9The code and data required to reproduce the results in this section can be found in [28].
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Fig. 2: Value of f,(u) against iterations of L-BFGS for computing the sum of squares decomposition of 20
random nonnegative trigonometric polynomials (2d = 100, 000), showing a linear convergence rate.

8. Conclusion. When does it make sense to solve nonconvex formulations of convex problems? In
this paper we addressed this question for sum of squares decomposition and optimization of univariate
polynomials, showing that solving the nonconvex formulation can provide a large computational speedup
while still maintaining provable guarantees on the convergence to the global optima. Key to our approach is
retaining polynomial structure in the nonconvex formulation. This enables us to use algebraic methods to
construct a certificate showing that all SOCPs are global minima.

Our approach for finding sum of squares decompositions generalizes to multivariate polynomials, al-
though we do not have guarantees for the rank needed to exclude spurious second-order critical points. On
the other hand, results for low-rank matrix factorization tell us that this rank is equal to the Pythagoras
number for quadratic forms. Thus we conjecture that a version of Theorem 1.1 is true for ternary quartics
and matrix polynomials, cases where nonnegativity is equivalent to the existence of a sum of squares de-
composition. Some similarities between our conditions and a new characterization of theses cases in terms
of varieties of minimal degree [6] also suggest that Theorem 1.1 could be generalized to these cases. In
particular, the case where the syzygy module only contains the Koszul syzygies [16, p. 581] could generalize
the coprime case studied in Subsection 4.1.

Another direction for future work is to apply our methods to other structured semidefinite programs or
polynomial-valued objectives such as symmetric tensor decomposition.
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