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Abstract

Sex allocation theory predicts that females should bias their offspring sex ratios when the fitness benefits of producing
sons or daughters differ depending on rearing environment. The Trivers-Willard hypothesis proposes that whether females
produce more sons or daughters depends on food availability via both intrinsic maternal condition and differing reproduc-
tive potential (typically from mating system structure) for sons versus daughters. However, tests of its key predictions are
often based on untested, implicit assumptions that are difficult to quantify, especially in migratory animals. In a 5-year
study, we manipulated food availability in low- and high-elevation forest to test the Trivers-Willard hypothesis in the
migratory black-throated blue warbler (Sefophaga caerulescens). We found that the population-wide offspring sex ratio
was significantly male-biased (population mean: 0.58), which was driven by an overproduction of sons in high-elevation
forest (high-quality habitat mean: 0.59). Yet, we found no effect of food availability on offspring sex ratio from either natu-
ral variation or supplemental feeding. Sex-specific developmental costs did not differ for sons and daughters reared under
low and high food availability. These results suggest that female black-throated blue warblers do not manipulate offspring
sex ratios in response to food availability and are not consistent with the predictions of the Trivers-Willard hypothesis.
This study highlights challenges of examining mechanisms driving patterns in offspring sex allocation in migratory species
for which both the costs of rearing and relative fitness benefits of sons and daughters cannot be tracked into adulthood.

Significance

Birds can optimize their fitness return on parental investment by biasing offspring sex ratios. When the costs and ben-
efits of raising sons or daughters differ under low and high food availability, females could produce either more sons or
daughters depending on those conditions. Black-throated blue warbler offspring sex ratios were male biased in high quality
habitat. However, we found no evidence that food-supplemented females or females on territories with higher caterpillar
abundance produced more sons than daughters as predicted by the Trivers-Willard hypothesis. The relative costs of pro-
ducing sons or daughters did not differ under low and high food availability, but we could not directly examine differences
in relative benefits. Findings indicate that this migratory bird does not adjust sex ratios in response to food availability
and highlights the need for evaluating future fitness benefits of sons and daughters in migratory species.
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Introduction

Sex allocation theory predicts that females should bias their
offspring sex ratios to maximize their own fitness when
rearing sons and daughters yields different net fitness ben-
efits (Fisher 1930; Trivers and Willard 1973; Charnov 1982;
Frank 1990). From the female’s perspective, the return
on their reproductive investment for raising sons versus
daughters is expected to differ if sons and daughters (1)
cost different resources (i.e., amount and quality of food)
to successfully rear and (2) provide differential benefits to
the female through both direct and indirect benefits. These
trade-offs of raising sons versus daughters can be driven by
intrinsic (e.g., maternal condition) and extrinsic (e.g., food
availability) factors that influence sex ratio bias through
their effects on parental investment (i.e., foraging success
of female, provisioning effort) and the rearing environ-
ment (i.e., food availability and diet quality) (Frank 1990;
West 2009; Navara 2018). Studies have found support for
the effect of maternal condition and parental provisioning
on offspring sex allocation (Love et al. 2005; Nooker et al.
2005; Baeta et al. 2012; Merkling et al. 2012), often as an
indirect proxy for food availability (Nager et al. 1999; Has-
selquist and Kempenaers 2002). Because maternal condi-
tion and parental provisioning are associated with food
availability and diet quality, whether females are respond-
ing to their own physiological condition or, alternatively, to
the quality of the rearing environment for their offspring is
unclear (Komdeur et al. 1997; Nager et al. 1999; Cockburn
et al. 2002; Ewen et al. 2004; Pryke and Rollins 2012).

The Trivers-Willard hypothesis (Trivers and Willard
1973) has been proposed, and extensively tested, as a frame-
work for how food availability might influence offspring sex
ratio bias in sexually dimorphic species (Table 1). Fisher’s
classic sex allocation work theorized that the evolutionary
stable strategy is to invest equally in the production of sons
and daughters, which would maintain a 1:1 sex ratio if sons
and daughters were equally costly to raise to independence
(Fisher 1930). Thus, Trivers and Willard hypothesized that
females in better condition (e.g., from areas with abundant
food or high-quality diets) should produce more of the
sex that yields the greatest future fitness return from con-
comitant increases in parental investment, which increases
females’ indirect fitness benefits (i.e., more grandoffspring).

However, the Trivers-Willard hypothesis hinges on sev-
eral implicit, often untested, assumptions (Table 1). Briefly,
the assumptions are: (1) high food availability in the envi-
ronment translates to high quality females on those terri-
tories, (2) females in good condition and/or with access to
high food availability increase their parental investment,
(3) increased female parental investment yields offspring
in good condition, (4) an individuals’ condition during

3. Experimental food supplementation
4. Maternal condition (scaled mass

2. Natural variation in food availabil-
index)

Variables Measured (this study)
1. Habitat quality (low- and high-
ity (caterpillar density)

quality habitat at low and high

elevations)

1. Females produce male-
biased sex ratios under abun-

dant resource conditions
2. Females produce female-

biased sex ratios under poor

resource conditions

Predictions

2. Females in good condition and/or with high food availability increase their

parental investment
5. Parental investment affects the future reproductive performance of sons and

3. Increased female parental investment results in offspring in good condition
daughters differently

4. Offspring condition is correlated with later condition as adults

Assumptions

Table 1 An experimental framework for testing the Trivers-Willard hypothesis and associated predictions for this study and similar species

Trivers-Willard Hypothesis: (1973) 1. High food availability is associated with females in good condition

Females in better condition will
the greatest fitness benefit under dif-

produce more of the sex that yields
ferent resource conditions

Hypothesis
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development is correlated with their condition as an adult,
and (5) increased parental investment in offspring differen-
tially impacts the future reproductive benefits for sons versus
daughters in mating systems with sex-specific differences
in reproductive potential (e.g., polygynous systems). These
assumptions broadly translate to the expectation that differ-
ences in offspring condition from increased parental invest-
ment carry-over into adulthood. In socially and genetically
polygynous species, sons in good condition from increased
parental investment are expected to have higher survival
and future reproductive performance as adults compared to
sisters in similar condition (Lindstrom 1999; Shuster and
Wade 2003). For example, adult males in good condition
often acquire more extra-pair fertilizations than males in
poor condition (McElligott et al. 2001; Hill 2002; Holzer
2003; McGraw and Ardia 2003). This condition-dependent
difference can lead to high variance in male reproductive
success, whereas female reproductive success is generally
less variable (Clutton-Brock 1988; Lukas and Clutton-
Brock 2014). Thus, for polygynous systems, increases in
offspring condition from greater parental investment is
expected to disproportionately affect the future reproduc-
tive success of sons relative to daughters under high food
availability. Conversely, because female reproductive suc-
cess is generally less variable than that of males, daughters
are expected to have higher fitness than their brothers when
reared under low food availability. Accordingly, the Trivers-
Willard hypothesis predicts females should produce more
sons under high food availability and more daughters under
low food availability (Trivers and Willard 1973; Cameron
and Linklater 2002). However, few studies exploring the
Trivers-Willard hypothesis as a mechanism driving pat-
terns of sex ratio manipulation have robustly examined
the implicit assumptions of the Trivers-Willard hypothesis
before testing the hypothesis.

In this study, we use a combination of correlational and
experimental approaches to test the key predictions of the
Trivers-Willard hypothesis in a wild population of migra-
tory black-throated blue warblers (Setophaga caerules-
cens). We assessed the effects of food availability, maternal
condition, parental provisioning, and their potential rela-
tionships on offspring sex ratio. Birds are an ideal system
to test the Trivers-Willard hypothesis because females,
the heterogametic sex, could bias sex ratios by controlling
sex chromosomes in the ovum (Pike and Petrie 2003). In
ZW sex-determination systems, such as birds, the ovum,
not the sperm, determines the sex of the offspring. While
a precise mechanism for how females adjust offspring sex
ratios is uncertain (Komdeur and Pen 2002; Pike and Pet-
rie 2003; Cameron 2004; Alonso-Alvarez 2006; Rutkowska
and Badyaev 2008), a few compelling studies have dem-
onstrated adaptive offspring sex ratio adjustment in ZW

systems in response to aspects of the rearing environment
(e.g., snakes: Madsen and Shine 1992, amphibians: Saki-
saka et al. 2000, birds: Heinsohn et al. 1997; Komdeur et al.
1997; Bradbury and Blakey 1998; Hasselquist and Kempen-
aers 2002). Additionally, black-throated blue warbler males
have high reproductive variance from extra-pair mating and
double brooding (Kaiser et al. 2015, 2017; Germain et al.
2021), making them a suitable system to explore the Triv-
ers-Willard hypothesis. Furthermore, our marked breeding
population and robust measures of natural food availability
enable us to experimentally disentangle the effects of food
availability from proxies of food availability (e.g., maternal
condition, parental provisioning) in a wild system.

Testing hypotheses on biased offspring sex ratios has
been challenging because their key predictions are often
based on untested assumptions that are difficult to quantify
(Navara 2018). We first explored as many of the implicit
assumptions of the Trivers-Willard hypothesis as feasible in
our system (assumptions 1-3 described above; Table 1), to
evaluate whether they were met. We previously showed that
food-supplemented females increase their parental invest-
ment (assumption 2 was met; Kaiser et al. 2014). However,
we could not also evaluate whether females in good con-
dition increase their parental investment because females
were not reliably captured at the nest during the nestling
period to measure condition while they provisioned off-
spring. We could not evaluate assumptions 4 and 5 because
black-throated blue warblers are migratory and we are cur-
rently unable to track individuals from chick to adulthood to
assess their change in condition and the effects of parental
investment on reproductive performance because of high
natal dispersal (recapture rate of chicks: <1%), which is a
common limitation in studies of migratory animals.

After testing for the assumptions of the Trivers-Willard
hypothesis, we examined the effects of natural variation in
food availability on offspring sex ratio by estimating food
availability within each territory (caterpillar density), which
increases from low- to high-elevation forest (Rodenhouse et
al. 2003; Cline et al. 2013). We also conducted a food sup-
plementation experiment in low- and high-elevation forest
to isolate the effects of food availability. Our previous work
in this system showed that food-supplemented females
provisioned their offspring more than control females at
food-limited low elevations, indicating that females can
adaptively respond to short-term changes in food resources
that affect offspring rearing conditions (Kaiser et al. 2014).
Moreover, food-supplemented males were in better body
condition and had higher reproductive success (from extra-
pair mating and double brooding) than control males, which
led to greater variance in male reproductive success within
the population (Kaiser et al. 2015, 2017). Sons might benefit
from supplemental feeding if conditions during development
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ultimately influences a male’s ability to obtain a high-quality
territory and to attract social mates and extra-pair mates as
a breeding adult. Thus, females provided supplemental food
are predicted to produce more sons than daughters (support-
ing the Trivers-Willard hypothesis). Lastly, although adult
male and female black-throated blue warblers do not differ
in size (Holmes et al. 2020), we examined differences in the
costs of rearing sons or daughters by comparing pre-fledg-
ing nestling mass among siblings and whether potential sex
differences depended on food availability. If the costs and
benefits of producing sons and daughters do not differ in
this monomorphic species, females are predicted to produce
equal sex ratios (supporting Fisher’s hypothesis). For clar-
ity, we use “females” to refer to adult breeding females and
“daughters” to refer to their female offspring.

Methods
Study population

Black-throated blue warblers (Setophaga caerulescens)
breed in mature, northern hardwood forests throughout
eastern North America and migrate to the Greater Antilles
for the non-breeding season (Holmes et al. 2020). We stud-
ied a marked population of black-throated blue warblers at
the 3160 ha Hubbard Brook Experimental Forest in North
Woodstock, New Hampshire, U.S.A. (43°56°N, 71°45°W).
We collected data over five breeding seasons (May—August,
2007, 2009-2012) on three gridded study plots established
at low (250-350 m; 85 ha), mid (450-600 m; 65 ha) and
high (750-850 m; 35 ha) elevation forest (Rodenhouse et
al. 2003). This species is sexually dichromatic but adults
do not vary significantly in body size or mass (Holmes et
al. 2020). Males establish and defend combined breeding
and foraging territories in forested habitat with relatively
dense understory vegetation. Females construct open-cup
nests < 0.5 m high in understory vegetation and lay one egg
per day (mean clutch size =3.6, range =2-5 eggs) (Holmes
et al. 2020). Females incubate clutches without male assis-
tance for approximately 12 days, and both sexes feed nest-
lings for approximately 9 days until fledging (Holmes et al.
2020). At Hubbard Brook, 30% of black-throated blue war-
bler pairs attempt second broods (i.e., double brood) when
food resource conditions are favorable (Nagy and Holmes
2005; Townsend et al. 2013). Pairs are socially monoga-
mous, with a small proportion of bigamous males, but extra-
pair paternity rates are relatively high (56%) and decrease
with food availability as males defending food-abundant
territories invest more effort into mate guarding to maintain
within-pair paternity (often within two broods) over pursu-
ing extra-pair mates (Kaiser et al. 2015, 2017). However,
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the male mating strategy with the highest annual fitness
return in this population includes fledging two broods con-
taining within-pair young as well as siring extra-pair young
(Kaiser et al. 2015). Food availability therefore affects both
female and male fecundity by influencing double brooding
and leads to greater variance in male reproductive success
via within-pair and extra-pair paternity (Nagy and Holmes
2005; Kaiser et al. 2015, 2017; Germain et al. 2021). Addi-
tionally, annual survival probability is higher for males
(0.51) than for females (0.40) (Sillett and Holmes 2002) and
is higher for all adults in years with more abundant food
(Sillett et al. 2000).

In each breeding season, we captured and marked adults
and nestlings, mapped male territories, monitored nest
attempts, and measured nestling provisioning rates. We cap-
tured adults using mist nets and marked individuals with a
unique combination of three colored leg bands and one alu-
minum U.S. Geological Survey leg band. We determined
the relative age of each adult as a yearling (second year, SY)
or older adult (after-second year, ASY) using plumage char-
acteristics (Holmes et al. 2020). We measured the length of
the right tarsus to the nearest 0.01 mm and mass to the near-
est 0.1 g. We mapped male territories relative to each plot’s
50x50 m grid using the locations of singing males and
territorial interactions among nearby conspecifics. Nests
were located by following females carrying nest material
and adults carrying food and searching the vegetation. We
monitored nests every other day throughout all nest stages
with daily checks near predicted hatch and fledge dates. We
banded 6-day-old nestlings, collected approximately 30 pl
of blood from the brachial vein, and measured their right
tarsus and mass (as above). Total handling time was lim-
ited to 10 min. We returned nestlings to their nests imme-
diately after processing. We used body size measurements
to calculate the scaled mass index of females and nestlings
(Peig and Green 2009, 2010) using age-specific means (tar-
sus length [mean + SE]: adult female=18.47 +0.06, n =93,
nestlings =16.46 +0.06, n=259). We stored blood samples
in lysis buffer (White and Densmore III 1992) at 4 °C until
genetic analyses were conducted. From 2009 to 2012, we
measured female and male provisioning rates (visits per
hour per nestling) from 2-hr video recordings of nests col-
lected after dawn on day 7 of the nestling stage following
previously described methods (Kaiser et al. 2014).

Habitat quality and caterpillar density

Habitat quality for black-throated blue warblers at Hubbard
Brook is correlated with the abundance of Lepidoptera lar-
vae, their primary food source, dense understory vegetation,
and elevation (Rodenhouse et al. 2003; Cline et al. 2013;
Kaiser et al. 2015; Holmes et al. 2020). Natural variation in
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food availability and reproductive success at the mid-eleva-
tion plot are, on average, similar to that on the high-eleva-
tion plot, but differ substantially from the low-elevation plot
(Rodenhouse et al. 2003; Cline et al. 2013, p. 201; Kaiser
et al. 2015); this pattern was true for years included in this
study. Therefore, we combined data from mid- and high-
elevation plots (hereafter, high-elevation habitat).

We calculated an index of food availability for each ter-
ritory as a function of estimated caterpillar biomass per
leaf, based on visual caterpillar surveys in the shrub layer
(2007, 2009-2012), and the estimated abundance of under-
story leaves within each territory (Holmes et al. 1979; Sil-
lett et al. 2004). We counted and measured caterpillars on
1000 leaves of striped maple (Acer pensylvanicum) and
1000 leaves of hobblebush (Viburnum lantanoides) (com-
mon foraging substrates for black-throated blue warblers)
along four plot-wide transect surveys per study plot during
four two-week surveys (1 June-31 July). Caterpillar mea-
sures were converted to wet biomass (mg) using length-
mass regressions (Rogers et al. 1977). To determine the
mean caterpillar biomass per leaf of each plant species in
each survey period, we divided the average caterpillar bio-
mass across transects (mg), by 1000 leaves. We estimated
leaf abundances of each plant species on each territory with
the Geospatial Modelling Environment (Beyer 2012) from
interpolated surfaces of leaf density derived from under-
story leaf sampling (0—3 m height) conducted across each
gridded study plot (Sillett et al. 2004) and territory boundar-
ies digitized in ArcGIS 10 (ESRI 2011). We multiplied the
two per-leaf quantities by leaf abundances within territories
and summed each value to obtain an index of food availabil-
ity for each territory. Additional details on the index of food
availability are described in Kaiser et al. (2015). In analyses
examining the effects of caterpillar density on offspring sex
allocation, we used the estimate from the two-week survey
coinciding with the female’s fertile stage (i.e., nest building
through egg laying) for each nest attempt.

Food supplementation experiment

Each year, following the establishment of breeding pairs,
we randomly assigned 6-8 territories from each of the three
study plots (low-elevation=1low quality; mid- and high-
elevation =high quality) to the food supplementation treat-
ment. We monitored 15-20 control territories on each plot,
which were separated from food-supplemented territories
by at least one territory. We began supplemental feeding on
first nest attempts 2—-3 days after the onset of incubation and
provided food daily throughout all nest stages: incubation,
hatching, provisioning, post-fledging period of first broods,
and egg laying, incubation, hatching, provisioning, and post-
fledging period of second broods. We established feeding

trays 1 m from nests and initially provided 5 g (37 kJ) of
waxmoth larvae (Lepidoptera: Galleria mellonella). Once
females were observed feeding from the tray, we moved
the tray~5 m from the nest and increased the amount of
food provided to 7 g (52 kJ): 5 g of mealworms (Coleoptera:
Tenebrio monitor) that were gut-loaded with cricket meal
(Zilla Gut Load Cricket & Insect Food) to increase protein
and calcium content, and 2 g of waxmoth larvae. During the
nestling stage, we delivered 14 g (104 kJ) of food (10 g of
mealworms and 4 g of waxmoth larvae) because adults reg-
ularly provisioned larvae to their young (observed on video
recordings of parental provisioning). We conducted daily
observations at the feeding trays to determine whether other
species were taking food from the trays (e.g., small mam-
mals and other songbirds). If other species were detected
feeding from a tray (this occurred rarely), we moved it to a
new location near the nest. If a nest failed, we paused food
delivery until the new nest was found and began feeding
at the new nest once the female began incubating her new
clutch. When a brood fledged, we continued to provide food
at the tray until it was no longer being taken (i.e., fledg-
lings dispersed), or we moved the tray to the new nest if the
female initiated a second clutch. Additional details on the
food supplementation experiment are described in Kaiser et
al. (2014).

In analyses examining the effects of food supplemen-
tation on offspring sex allocation, we only included nests
where females had been provided supplemental food prior
to and throughout their fertile stage to assess the effects of
food on primary sex ratios. Given our experimental design,
wherein supplemental feeding began 2-3 days after the
onset of incubation, these nests were necessarily renesting
attempts and second broods produced later in the season
by pairs provided daily supplemental food at previous nest
attempts and/or first broods. To control for possible off-
spring sex ratio bias due to seasonality, such as variance in
natural food availability (Husby et al. 2006; Graham et al.
2011), we determined the genetic sex of nestlings from con-
trol broods only if their clutch initiation dates fell within the
range of clutch initiation dates of food-supplemented nests
(i.e., standardized clutch initiation dates for control and sup-
plementally-fed nests). We did not determine the genetic sex
of nestlings from broods initiated prior to this time.

Sexing methods

We determined the genetic sex of nestlings from blood
samples obtained a few days prior to their fledging, using
samples from complete broods (i.e., all eggs hatched and
reached the sampling stage). The primary sex ratio of
clutches at egg laying can differ from the secondary sex
ratio of broods after hatching due to embryo mortality
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during incubation or offspring mortality in the nest and dur-
ing the post-fledging period before offspring reach indepen-
dence (Pryke and Rollins 2012). Hatching success was high
(average hatching rate: 89.5%, n=271 control broods 2007,
2009-2012) and nestling mortality was very uncommon,
and we did not monitor mortality during the post-fledging
period. Thus, we would expect little difference between the
primary and secondary sex ratios unless sex-biased mortal-
ity occurs during the post-fledging period. Because we esti-
mate sex ratios of complete broods, we report our estimates
as primary sex ratios.

Molecular sexing was based on constant size differences
between the CHD1/# and CHD1Z introns and the presence of
female-specific fragments (Fridolfsson and Ellegren 1999).
We isolated genomic DNA from red blood cells using Qia-
gen DNeasy blood and tissue extraction kits (Qiagen, Valen-
cia, CA). Offspring sex was determined by amplifying 1 pl
of genomic DNA from each individual using this sex-linked
marker with highly conserved primers, 2550 F and 2718R,
flanking the intron in a 10 pul PCR (Fridolfsson and Ellegren
1999). The PCR consisted of 1 ul of DNA, 0.2 pl of 10 mM
dNTPs, 0.20 pl of 10 uM forward and reverse primers, 1 pl
of 10X PCR buffer (Sigma), 1.2 pl of 25 mM MgCl,, 0.1 pl
of 2.5 U pL~! Taq polymerase (Invitrogen), and ddH,O to
bring the total volume to 10 pl. We ran the PCR under the
following conditions: 3 min denaturation at 94° C, 35 cycles
of 94° C for 30 s, 57° C for 30 s, and 72° C for 40 s. We
visualized PCR products using gel electrophoresis on a 2%
agarose gel stained with ethidium bromide. Both sexes carry
the CHD1Z gene, but only females carry the CHD1# gene.
Therefore, individuals with two bands were female (the
heterogametic sex) and those with one band were male. To
verify the accuracy of our methods, we assayed adult birds
of known sex based on plumage characteristics (n=12) and
ran samples in duplicate.

Statistical analyses
Tests of the assumptions of the Trivers-Willard hypothesis

We first tested whether assumptions 1 and 3 (Table 1) of the
Trivers-Willard hypothesis were met in this system; assump-
tion 2 was met in a previous study (Kaiser et al. 2014). We
examined the associations (control broods only) between
(1) log caterpillar density and female scaled mass [Assump-
tion 1: high food availability is associated with females in
good condition, Table 1; »=>50] and (2) female provisioning
rate and mean mass of nestlings in a brood [Assumption 3:
increased female parental investment results in offspring in
good condition, Table 1; n=42] using linear models (LM).
These data did not include females sampled more than
once within or across years. All statistical analyses were
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conducted in the R statistical environment v.4.2.1 (R Core
Team 2023). To minimize observer bias, blinded methods
were used when all behavioral data were analyzed in asso-
ciation with the food supplementation experiment.

Population-wide offspring sex ratio bias

To investigate the possibility of offspring sex ratio bias at
the population level, and considering separately both low-
and high-quality habitats, we used the Neuhduser test to
compare the deviation of offspring sex ratio from expected
1:1 based on the within-brood differences between the
proportions of sons and daughters (Neuhduser 2004). The
Neuhduser test accounts for lack of independence among
nestlings in a brood when testing for differences in sex
ratios and is more robust (i.e., protects against type I error
inflation) than alternatives (e.g., binomial test, Wilcoxon
signed rank test) for quantifying bias in primary sex ratios
when brood sizes vary (Neuhduser 2004). We restricted our
analyses to include only complete broods (n="79).

Effects of food availability and parental provisioning on
offspring sex ratio

We examined factors predicted to influence offspring sex
allocation by constructing general linear models (GLM)
with a binomial error distribution and logit link function
using /me4 (Bates et al. 2015). In each model, the response
variable was a vector of the male and female offspring in
each brood, which accounts for variation in brood size. In
the model examining the association between per-territory
food availability and offspring sex ratio (control broods
only; n=64), we included log caterpillar density, plot
elevation (low elevation, high elevation), and female age
class (yearling, older female). We tested for an interaction
between log caterpillar density and plot elevation to exam-
ine whether the effect of food availability differed between
low- and high-elevation habitat. Log caterpillar density was
standardized (n =0, SD=1) to improve model convergence.
We examined whether provisioning rates by females and
their social mate differed based on the proportion of sons
in the brood using linear mixed models (LMMSs) for each
parental sex separately and included parental identity as a
random effect because both females and males were repre-
sented more than once in the dataset (females: n =42, males:
n=43).

In the model testing the effects of food supplementa-
tion on offspring sex ratio, we included treatment (food-
supplemented, control) as the primary factor of interest
and accounted for potential effects of plot elevation, female
age class, and female scaled mass (n=79). We tested for
an interaction between female scaled mass and treatment to
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examine whether maternal condition differed between treat-
ments. We calculated the 95% confidence intervals for each
fixed effect in GLMs as a measure of effect size. For an effect
that is not significant (p value above 0.05 and 95% confi-
dence interval spans zero), the breadth of the confidence
interval indicates the likelihood of the effect size being
very small (Colegrave 2003). Brood size did not differ sig-
nificantly between treatments (Welch’s f-test [mean + SE]:
t = -0.14, df=25.52, P=0.89; control=3.6 +0.1 [n=64],
fed=3.6+0.1 [n=15]), plot elevation (Welch’s t-test:
t=0.13, df=20.21, P=0.90; low elevation=3.6+0.2
[n=16], high elevation=3.6+0.1 [#=63], or female age
classes (Welch’s ¢-test: t = -0.71, df=56.22, P=0.48; year-
ling=3.6+0.1 [n=50]), older female=3.5+0.1 [n=29]).
Therefore, brood size should not bias results examining the
influence of these fixed effects on offspring sex ratio.

Effect of food availability on pre-fledging nestling mass of
sons and daughters

Lastly, we investigated whether daughters are costlier to
rear than sons and whether potential differences depended
on food availability. We used LMMs to examine whether
scaled mass of 6-day-old nestlings (pre-fledging nestling
mass) differed by nestling sex and food availability with nest
identity included as a random effect. In the model exam-
ining the effect of per-territory food availability on scaled
pre-fledging nestling mass (n=176), we included as fixed
effects: log caterpillar density, nestling sex, and plot eleva-
tion. We tested for interactions between (1) nestling sex and
log caterpillar density to examine whether the effects of food
availability differed between male and female nestlings,
(2) nestling sex and plot elevation to examine whether the
scaled pre-fledging mass of male and female nestlings dif-
fered between low- and high-elevation habitat, and (3) log

Table 2 Fixed effects from GLM examining the effect of natural
variation in food availability on offspring sex ratio (control broods)
in black-throated blue warblers at the Hubbard Brook Experimental
Forest, NH. Significant P-values are given in bold

Model term ? B+ SE z P 95% CI
[Males: Brood size] n =64 broods
Intercept 0.06+0.23 0.25 0.80 -0.39,
0.51
Log Caterpillar 0.11+0.17 0.63 0.53 -0.23,
density ® 0.45
Plot elevation -0.98+0.44 -2.24 0.02 -1.88,
(low) -0.14
Female age class  0.58+0.31 1.91 0.056 -0.01,
(yearling) 1.19
Log Caterpil- -0.56 +0.45 -1.26  0.21 -1.48,
lar density : Plot 0.29
elevation

? Log Caterpillar density was standardized to have sample mean=0
and sample variance =1

caterpillar density and plot elevation. Log caterpillar density
was standardized (u=0, SD=1). In the model examining
the effect of food supplementation on scaled pre-fledging
nestling mass (n=224), we included as fixed effects: nest-
ling sex, treatment, and plot elevation. We tested for inter-
actions between (1) nestling sex and treatment to examine
whether the effect of treatment differed between male and
female nestlings, (2) nestling sex and plot elevation, and
(3) treatment and plot elevation. P-values for LMMs were
estimated using /merTest (Kuznetsova et al. 2017). We com-
pared the ratio of variances in the scaled pre-fledging mass
of male and female nestlings using an F test (male: n=168,
female: n=124).

Results

Tests of the assumptions of the Trivers-Willard
hypothesis

Several of our assumptions of the Trivers-Willard hypoth-
esis were not supported in analyses of control broods
(Table 1). Based on a limited sample size, we detected no
significant relationship between log caterpillar density and
female scaled mass (LM: B = -0.32 £ 0.18, F, 44 = 3.13,
P=0.08, n=50). We detected no significant association
between female provisioning rate and mean brood mass
(B=0.05 £ 0.09, F| 40 = 0.28, P=0.60, n=42).

Population-wide offspring sex ratio bias

We sexed 283 offspring from 79 complete broods; 162 off-
spring were male. The population-wide offspring sex ratio
was significantly male-biased (Neuhéuser test: mean + SE:
0.575 +£0.001,2z=2.23, P=0.026, n =79 broods). Offspring
sex ratios were significantly male-biased in high-elevation
forest (0.591 + 0.001, z=2.39, P=0.017, n=63), but did
not differ from parity in low-elevation forest (0.509 + 0.004,
z=0.13, P=0.90, n=16).

Effects of food availability and parental
provisioning on offspring sex ratio

Food availability (i.e., log caterpillar density) was not signif-
icantly associated with offspring sex ratio (Table 2; Fig. 1a).
Offspring sex ratios were more male biased in the broods
of older (after-second year) females and in high-elevation
forest relative to broods of yearling (second year females)
and in low-elevation forest (control broods only). However,
we found no significant difference in offspring sex ratios
between food-supplemented broods and control broods in
either low- or high-elevation forest (Table 3; Fig. 1b). All
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Fig. 1 Offspring sex ratio estimates according to (a) per-territory food
availability (P=0.53, n=64 broods) and (b) food supplementation
(proportion of sons, P=0.39, n=79 broods) in black-throated blue

terms had effect sizes near zero and Cls overlapping zero
(Fig. 2a).

Given that we did not detect an effect of food supplemen-
tation on offspring sex ratio, we assessed post hoc whether
our experiment had the statistical power to detect a biologi-
cally relevant weak effect using pwr (Champely 2020). We
compared our effect sizes (beta coefficients) and degrees of
freedom (Table 3) to published effect sizes from studies of
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1
food supplemented (n = 15)

Treatment

warblers at the Hubbard Brook Experimental Forest, NH. Points in (b)
represent the proportion of sons in each brood and lines represent the
50th quartiles

birds examining the effect of several different social and
environmental factors on offspring sex ratio bias (West and
Sheldon 2002). Only 3-18% of the variance in offspring
sex ratios were explained by ecological conditions in these
published studies and the effect sizes were extremely small
(West and Sheldon 2002). Thus, type II error rates might
be high in many published experimental studies examining
the effect of ecological conditions on offspring sex ratios.



Behavioral Ecology and Sociobiology (2023) 77:124

Page9of 15 124

Table 3 Fixed effects from GLM examining the effects of food supple-

mentation on offspring sex ratio in black-throated blue warblers at the

Hubbard Brook Experimental Forest, NH

Model term ? B+ SE z P 95%
CI

[Males: Brood size] n=79 broods

Intercept 042+025 1.66 0.09 -0.07,
0.92

Treatment -0.27+0.32 -0.85 0.39 -0.90,
(food-supplemented) 0.36

Plot elevation (low) -043+0.33 -1.32 0.19 -1.08,
0.21

Female scaled mass ° 025+0.15 164 0.10 -0.05,
0.55

Female age class (yearling) 0.16+£0.29 0.57 0.57 -0.40,
0.73

Female scaled mass : -0.17+0.33 -0.51 0.61 -0.82,

Treatment 0.49

? Female scaled mass was standardized to have sample mean=0 and
sample variance =1

However, with our sample size of 79 broods, our experiment
had a 95% power to detect a weak effect size. We therefore
would have had the statistical power to detect comparatively
small effects of food availability on offspring sex ratio bias
with our experiment.

We did not detect sex-differential investment in offspring
by females or their social mate. We found no statistical differ-
ence in parental provisioning rates based on the proportion
of sons in a brood (LMM; females: 0.44 + 0.74, df=39.97,
t=0.59, P=0.56; males: -0.62 + 0.45, df=15.84, t = -1.40,
P=0.18).

Effects of food availability on pre-fledging nestling
mass

We did not detect sex-specific costs for sons and daugh-
ters reared under either low or high food availability. In the
model examining the effect of per-territory food availabil-
ity on scaled pre-fledging nestling mass, male and female
siblings did not differ (LMM: -0.02 + 0.09, df=151.11,
t = -0.18, P=0.86) and variation in scaled pre-fledging
mass was not associated with log caterpillar density (0.11
+ 0.11, df=283.99, t=1.04, P=0.30), plot elevation (0.27
+ 0.28, df=70.57, t=0.98, P=0.33), or the interactions
between nestling sex and log caterpillar density (-0.02
+ 0.10, df=138.24, t = -0.26, P=0.80), nestling sex and
plot elevation (0.04 + 0.27, df=140.89, t=0.14, P=0.89),
or log caterpillar density and plot elevation (0.16 + 0.16,
df=44.77, t=1.02, P=0.31). In the model examining the
effect of food supplementation on scaled pre-fledging mass,
male and female siblings did not differ (LMM: 0.003 +
0.09, df=193.31, t=0.04, P=0.97) and variation in scaled
pre-fledging mass was not associated with treatment (0.12
+0.19, df=105.70, t=0.65, P=0.52), plot elevation (-0.03

+ 0.21, df=110.74, t = -0.15, P=0.88), or the interac-
tions between nestling sex and treatment (-0.15 + 0.19,
df=182.65,t=-0.81, P=0.42), nestling sex and plot eleva-
tion (0.09 + 0.21, df=185.29, t=0.44, P=0.66), or treat-
ment and plot elevation (-0.47 + 0.53, df=65.44, t = -0.89,
P=0.38). All terms had effect sizes near zero and Cls over-
lapping zero (Fig. 2b). Moreover, the variance in scaled pre-
fledging mass was similar for male and female siblings (<
test: 7123 = 1.17, P=0.36).

Discussion

The key prediction of the Trivers-Willard hypothesis — that
females with access to high food availability should over-
produce sons — was not supported in this study of black-
throated blue warblers. The population-wide offspring sex
ratio was significantly male biased, likely driven by a bias
in producing sons at higher elevation (i.e., higher quality
habitat). However, we found no detectable effect of food
availability (from natural variation or supplemental feed-
ing) on offspring sex ratios. We also found that the relative
costs of producing sons or daughters does not appear to dif-
fer based on differences in food availability in the rearing
environment. Biologically relevant effect sizes associating
ecological conditions and offspring sex ratio bias reported in
the avian literature are extremely small (West and Sheldon
2002; McNew et al. 2020). However, our sample size would
have been sufficient to detect these weak effects. Thus, our
findings indicate that black-throated blue warblers do not
manipulate offspring sex ratios in response to variation in
food availability.

Trivers and Willard (1973) reasoned that a female in
good condition should produce higher quality offspring rel-
ative to a female in poor condition. Underlying this line of
logic are five implicit assumptions (Table 1). Should these
assumptions be met, females are predicted to produce more
of the sex that receives the greatest increase in reproduc-
tive potential from increased parental investment afforded
by high food availability and/or good maternal condition
(Cockburn et al. 2002). In this study, most assumptions of
the Trivers-Willard model were not met or, because black-
throated blue warblers are migratory, could not be tested.
We did not find an association between food availabil-
ity and maternal condition (no support for assumption 1),
although this was based on a limited sample size. As our
index of maternal condition, we chose scaled mass, which
has been shown to perform as the best predictor of variation
in energy reserves (Peig and Green 2010). Scaled mass is
often applied in bird studies to measure body condition, but
it might measure only one aspect of overall body condition
(Labocha and Hayes 2012; Wilder et al. 2016). Ultimately,
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Fig. 2 Effect size plots from models examining the effects of food
supplementation on (a) offspring sex ratio (GLM, n=69 broods) and
(b) scaled pre-fledging nestling mass (LMM, n =224 nestlings from 65
broods) in black-throated blue warblers at the Hubbard Brook Experi-

this measure of female condition should be highly vari-
able and translate into the ability to respond adaptively to
environmental conditions (Navara 2018). We previously
showed that females increase their provisioning rates (e.g.,
parental investment) when provided supplemental food
(Kaiser et al. 2014) (supporting assumption 2). Females
might act as a flexible mediator between the environment

@ Springer

0
Beta (95% Cl)

mental Forest, NH. Points represent variable estimates and whiskers
depict 95% Cls. Dotted line represents 0, and variables are considered
significant if CIs do not overlap zero

and offspring condition. However, we found no relationship
between female provisioning rate and the condition of off-
spring (scaled pre-fledging mass) (no support for assump-
tion 3). This was not surprising given that our previous
work showed that higher male provisioning rate, rather than
adjustments in female provisioning rate, were correlated
with heavier broods (Kaiser 2013). Although males deliver
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prey less frequently, they compensate by bringing in larger
prey loads, which has a greater relative effect on brood mass
than female provisioning. Lastly, the inherent limitations
of studying a migratory animal with high natal dispersal
(Holmes et al. 2020) prevented us from associating different
levels of parental investment with how the condition of sons
and daughters translates to condition as adults (assumption
4), or the respective reproductive performance of sons and
daughters (assumption 5).

The relationship between offspring rearing condition,
such as food availability, and their reproductive perfor-
mance as adults is poorly understood. Although direct tests
of assumption 5 is not possible in most migratory species, we
know that food availability is a strong driver of variance in
reproductive performance for both sexes in our population.
Variance in reproductive success is assumed to be greater
for males than for females in polygynous mating systems
and socially monogamous mating systems with high rates
of extra-pair paternity (Clutton-Brock 1988; Lukas and
Clutton-Brock 2014). In our population, polygyny occurs at
low levels (0—15%; (Holmes et al. 2020), but > 50% of the
males gain extra-pair paternity (Kaiser et al. 2015). Extra-
pair paternity can increase the variance in male reproduc-
tive success, and male black-throated blue warblers that
gain extra-pair paternity are also less likely to be cuckolded
(Webster et al. 2001), further increasing the variance in male
reproductive success (Moller and Birkhead 1994; Webster
et al. 1995; Moller and Ninni 1998; Reid et al. 2014). Most
variance in male reproductive success is generated by differ-
ences in within-pair paternity from double brooding (Kaiser
et al. 2015, 2017). Black-throated blue warblers can raise
two broods in a season, but only one-third of the popula-
tion is successful at double brooding when food resources
are sufficient later in the breeding season on high quality
territories (Webster et al. 2001; Nagy and Holmes 2005;
Townsend et al. 2013; Kaiser et al. 2015, 2017). The num-
ber of broods produced by a male’s social mate accounts for
more total variance in male reproductive success than the
number of extra-pair mates that a male acquires (Germain
et al. 2021). Thus, food availability affects variance in both
male and female reproductive success by affecting whether
or not pairs double brood (Townsend et al. 2013; Germain
et al. 2021). This suggests that the sex-specific variance in
reproductive performance might not differ enough in this
population to drive biases in offspring sex ratios.

We also found no evidence that one sex is more sus-
ceptible to low food availability and therefore costlier
to produce and raise, at least through the nestling stage.
Provisioning rates did not differ based on the proportion
of sons in the brood nor did sons and daughters differ in
scaled pre-fledging mass or variance in scaled pre-fledging
mass. However, we did not directly measure developmental

costs or mortality of offspring. Previous studies have mea-
sured growth rates to quantify differential costs during early
development (Spelt and Pichegru 2017; Khwaja et al. 2018)
and used embryo and nestling mortality as indicators of dif-
ferences in developmental costs between sons and daugh-
ters (Kato et al. 2017; Alonso et al. 2018). We also have
not measured post-fledgling survival in this species, which
can differ among males and females in monomorphic spe-
cies (Green and Cockburn 2001; Dittmar et al. 2016). In
this study, we chose not to measure growth rate because of
the risk of nest abandonment by females and we did not
determine the sex of unhatched eggs or nestlings that died
to directly quantify sex-specific mortality. Generally, the
larger sex is predicted to be the costlier sex to rear (Merk-
ling et al. 2015; Santoro et al. 2015), but no strong pattern
has emerged for species lacking sexual size-dimorphism
(Bradbury and Blakey 1998; Magrath et al. 2002). Studies
that directly examine developmental costs in species with
negligible size differences between the sexes will be impor-
tant to better justify predictions of offspring sex ratio bias
under low food availability.

Although we did not find a direct link between food avail-
ability and offspring sex ratio, we did find that offspring sex
ratio was significantly male biased in high quality habitat at
higher elevations. One possibility for this male bias is the
variation in nutrient content across elevations. At Hubbard
Brook, foliar and caterpillar nitrogen content increase with
elevation (Erelli et al. 1998). Birds breeding at high eleva-
tions had access to more abundant, high nutrient food. Sev-
eral studies have provided evidence that females adjust sex
ratios in response to the nutritional content of food, rather
than access to food (Navara 2018). Females may bias off-
spring sex ratios based on pre-laying nutrient availability
if nutrient deficiencies early in life increase sex-specific
developmental costs and mortality. For example, in captive
zebra finches (Taeniopygia guttata) females fed diets high
in nutrient quality produced more sons (the larger sex) than
females fed low-nutrient diets (Bradbury and Blakey 1998;
McGraw et al. 2005). Furthermore, daughters had higher
mortality rates (51.5%) when reared on nutrient-restrictive
diets relative to sons (7.3%) (Kilner 1998; Pryke and Rol-
lins 2012). These studies suggest that the nutrient content
of the female’s pre-laying diet rather than food availability
per se may influence offspring sex allocation, potentially
to reduce the risk of nestling mortality (i.e., cost of rearing
environment) (Kilner 1998; Pryke and Rollins 2012). In our
study, although food-supplemented females had a predict-
able source of food during egg laying, mealworms and wax-
worms could have provided lower nutritional content than
caterpillars, their primary food source.

An alternative explanation for our finding male-biased
offspring sex ratios in high-quality habitat is competition

@ Springer



124 Page 12 of 15

Behavioral Ecology and Sociobiology (2023) 77:124

over limited resources (Clark 1978). According to the Local
Resources Competition (LRC) Hypothesis, when resource
competition is low (i.e., high-quality habitat), females
should produce offspring of the less-dispersing sex, by
favoring males (in birds). In contrast, when resource compe-
tition is high (i.e., low-quality habitat), females should pro-
duce offspring of the more-dispersing sex to reduce resource
competition. High natal dispersal precludes our ability to
determine which sex disperses more in black-throated
blue warblers to test the LRC hypothesis. However, if we
assume males are less dispersive as in most other passer-
ines, consistent with the LRC prediction females produced a
male-biased sex ratio in high-elevation forest (high-quality
habitat). Empirical support for resource competition influ-
encing offspring sex ratio has been found in great tits (Parus
major) competing for nest sites (Song et al. 2016), but few
studies have tested the LRC hypothesis in birds.

Several studies in birds have attempted to test hypothe-
ses linking food availability and/or maternal condition with
offspring sex ratio with inconsistent results. For example, 4
of 23 (17%) bird studies that examined offspring sex ratios
in relation to some measure of food availability found no
significant effect, and 6 of 19 (32%) studies that examined
offspring sex ratios in relation to maternal condition found
no significant effect (reviewed in Navara 2018). The num-
ber of studies that reported male-biased broods when food
was limited was nearly equal to the number of studies that
showed female-biased broods under the same conditions.
Likewise, the direction of the significant effects of maternal
condition on offspring sex ratio varied. This makes it diffi-
cult to predict the direction of offspring sex ratio bias under
different breeding conditions and to determine whether
reported patterns are examples of facultative sex manipula-
tion and adaptive. Moreover, publication bias towards sig-
nificant results may lead to an overestimation of the strength
of the links between breeding conditions and offspring sex
ratio (Palmer 2000; West and Sheldon 2002). Nevertheless,
the number of studies showing a significant effect suggests
that it is important to consider the effects of environmental
variables on offspring sex ratio patterns.

Clearly, multiple environmental and social factors have
the potential to drive sex allocation and it is unlikely that
any single factor will explain species-level patterns. These
factors are often correlated (e.g., maternal condition can be
associated with nutrient and food availability), which could
obscure patterns. In addition to the hypothesis we tested,
several other hypotheses have been proposed that predict
biased offspring sex ratios based on some aspect of the
breeding environment: mate quality (Griffith et al. 2003),
territory quality (Dubois et al. 2006), tidal flooding (Benve-
nuti et al. 2018), rainfall (McNew et al. 2020), cost of repro-
duction (Lindén and Mpgller 1989), laying order (Dijkstra
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et al. 1990), seasonality (Daan et al. 1996), male condition
(Booksmythe et al. 2017), male provisioning (Rathburn
and Montgomerie 2003), and differential mortality (Slags-
vold et al. 1986). Although not all these factors have strong
empirical support, experimental studies that are designed to
distinguish among the key predictions of a combination of
adaptive hypotheses will be critical for understanding how
and if females manipulate offspring sex ratios in response
to interacting factors and selective pressures. Future studies
should explicitly investigate the assumptions of competing
hypotheses to better inform the associated predictions.

Conclusions

By experimentally manipulating food availability in low-
and high-elevation forest, we were able to assess whether
female black-throated blue warblers adjust offspring sex
allocation based on food availability in the rearing envi-
ronment. Although biased offspring sex ratios have been
associated with aspects of environmental quality, we found
that female black-throated blue warblers do not appear to
be under selection to adjust offspring sex ratios in response
to food availability when the rearing environment does not
differentially affect the relative costs of producing sons and
daughters. Our results did not support the Trivers-Willard
hypotheses, but several assumptions of this hypothesis were
not met. Hypotheses on offspring sex ratio bias have many
underlying assumptions that are rarely tested, or cannot
feasibly be tested, which makes generating predictions and
synthesizing empirical evidence difficult. Future studies are
needed that evaluate assumptions on the relative develop-
mental costs and future reproductive benefits of producing
sons and daughters under different resource conditions in
animals that migrate, lack sexual size-dimorphism, and pur-
sue extra-pair mating.
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