
1.  Introduction
Progress in computing technology and availability of process-level and watershed data have led to advances in the 
development of process-based models (PBM) (Beven, 1989; Fatichi et al., 2016; Ivanov et al., 2004a; Maxwell 
et al., 2014). PBMs are viewed to be models that can mimic the distribution of different forms of mechanical 
energy that propel the hydrologic and hydraulic dynamics, leading to the conservation of energy, momentum, 
and mass. Thus, such models have the capacity to provide estimates of internal states and fluxes that are measur-
able (Fatichi et al., 2016). With a growing physical representativeness of PBMs, it has been an expectation that 
the prediction error would shrink for well-constrained problems (Figure 1a) (Carpenter & Georgakakos, 2006; 
Fatichi et al., 2016).

Even the most advanced PBM frameworks however have drawbacks. First, they exhibit extreme computational 
burden when using high spatial-temporal resolutions (Fatichi et al., 2016; Smith et al., 2004). This is regarded as 
one of the most formidable challenges to their successful implementation for real-time or uncertainty-informed 
applications (Ivanov et al., 2021). Even if high-performance/parallel computing is possible, there are limitations 
in the computational scalability for complex PBMs that may include free surface flow formulations (Micaletto 
et al., 2022; Vivoni et al., 2011). Second, PBM's predictions often exhibit appreciable differences with respect to 
observations (Camporese et al., 2010; Maxwell et al., 2014; Smith et al., 2012a) due to the parameter assumptions 
(Fatichi et al., 2016), “the curse of dimensionality” (Dwelle et al., 2019), complexities of natural phenomena 
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represented by hysteresis (Fatichi et al., 2015; Ivanov et al., 2010), nonuniqueness (Kim, Dwelle, et al., 2016; 
Kim & Ivanov, 2014), nonlinearity (Kim & Ivanov, 2015) and internal variability (Kim et al., 2016a, 2016b), and 
human activities (Wada et al., 2017). These differences can be attributed to contributions from uncertainties of 
various origins.

Uncertainty can be categorized into two types: epistemic and aleatory (Gong et al., 2013). Epistemic uncertainty 
is associated with model structure, parameters, and input data, while aleatoric uncertainty is related to processes 
randomness that can impact PBM's outputs of interest. Epistemic uncertainties generally arise from a lack of 
knowledge about values that exist and are fixed but poorly known. Aleatory uncertainties are random and theo-
retically irreducible, in so far as our ability to predict future conditions is concerned (e.g., initial conditions in 
flood-forecasting) (Helton et al., 2010). Uncertainty quantification (UQ) remains a conundrum in all PBM stud-
ies. UQ in streamflow prediction has been primarily concerned with epistemic sources (Beven, 2016; Moradkhani 
& Sorooshian, 2008; Vrugt et al., 2003). The same applies to studies with multiple quantities of interest (QoIs) 
(Dwelle et al., 2019). Attempts have been undertaken to assess aleatoric uncertainty (Gong et al., 2013), but they 
remain non-suitable for forecasting purposes. Overall, a general approach evaluating uncertainty contributions is 
warranted to improve the accuracy and interpretation of PBM outputs.

The “Big Data” revolution has enabled the development of sophisticated machine learning (ML) tools that 
can generate accurate QoI simulations based on proxy data (Kratzert et al., 2018; Shen, 2018). However, ML 
models are only data-driven, without any process representation or physical basis (Konapala et al., 2020; Lazer 
et al., 2014; Read et al., 2019). They can produce erroneous and unreliable predictions, particularly when extrap-
olating to regions outside of their training set space, for example, due to the changes in climate conditions, water-
shed land use/cover, topography, and infrastructure (Kim et al., 2016a; Ruhi et al., 2022; Winkler et al., 2021). 
This limitation of ML models does not deny their accuracy under well-defined conditions, however it also empha-
sizes the advantages of PBMs that can seamlessly incorporate such spatiotemporal changes to produce inexact, 
but reasonable predictions (Smith et al., 2004, 2012a, 2012b).

In this research, we introduce a novel hybrid framework that integrates the strengths of PBMs and ML models, 
while tackling two major challenges associated with PBMs: computational complexity and multiple uncertain-
ties leading to insufficient predictive accuracy. While few studies have sought to leverage ML in combina-
tion with PBMs to improve the accuracy of hydrologic predictions (Ghaith & Li, 2020; Konapala et al., 2020; 
Kumanlioglu & Fistikoglu, 2019; Roy et al., 2023; Young et al., 2017), previous research has not quantified 
uncertainty of the joint ML-PBM prediction. We demonstrate the skill of such a framework for streamflow 
forecasting and exemplify how the first-principles of flood wave motion can be synergistically combined with 
physics-agnostic models to improve UQ-informed streamflow predictions. The framework is applied to a small 
case-study urbanized watershed in Houston but the machinery can be generalized for other cases with input 
data of comparable quality. Beyond hydrologic applications, other earth-science disciplines aiming to explore 
PBM-ML strengths can benefit from the conceptual integration of various modeling philosophies presented in 
this study.

2.  Methods
2.1.  Conceptualization of Model Error

Simulation of streamflow or, generally, any observable QoI (QoIObs) can be expressed as QoIObs = QoISim + ε, 
where QoISim is simulated by the PBM given its inputs (boundary and initial conditions, and model parameters), 
and ε is the model error that follows some distribution capturing the contributions from both epistemic and 
aleatory uncertainties (Gong et al., 2013; Montanari et al., 2009). For observed events, the error is quantified  as 
ε o = QoIObs − QoISim (Figure 1a). We posit that 𝐴𝐴 𝜺𝜺 = 𝜺̃𝜺 + 𝜺𝜺

′ , where 𝐴𝐴 𝜺̃𝜺 is a distribution of reducible error that can be 
inferred from the interrogation of observational and simulated data, and ε′ is an irreducible error whose distribu-
tion can be quantified (Figures 1b–1d). We assert that both 𝐴𝐴 𝜺̃𝜺 and ε′ can be represented with a ML model when 
given (a) outputs from a suitable PBM that has (b) appropriate model parameters, and (c) forcings/boundary 
conditions. Note that neither the PBM, nor its parameters, or forcings need not be error-/bias-free. The likeliest 
value of 𝐴𝐴 𝜺̃𝜺 can be added to a PBM prediction to reduce its bias, while a distribution for ε′ would provide the range 
for the noise that cannot be represented with a data-driven ML model (i.e., can be viewed as the ML aleatoric 
uncertainty). An a priori expectation is that ML-generated distributions for 𝐴𝐴 𝜺̃𝜺 and ε′ would envelope observations.
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2.2.  Modeling Framework

Figure 1e presents a novel modeling framework for streamflow ensemble prediction with UQ that incorporates 
the strengths of a state-of-the-science PBM, a probabilistic learning model, and modern advances in probabilistic 
ML. We describe three essential stages of the framework development and application.

The first stage is to construct a computationally efficient surrogate model for a PBM focusing on a specific QoI—
in this study, streamflow series (Figure 1e-1). The PBM model is the TIN-Based Real Time Integrated Basin 
Simulator—Overland Flow Model (tRIBS-OFM) (Text S1 in Supporting Information S1) (Ivanov et al., 2004a; 
Kim, Warnock, et al., 2012; Kim et al., 2013) that represents both land-surface hydrology and hydrodynamics 

Figure 1.  (a) An illustration of process-based models (PBM) model prediction, observation, and error ε o series. Subplots (b), (c), and (d) illustrate theoretically 
possible permutations of the ML-model quantified error ε. In (b), the PBM model prediction cannot be improved as the error is entirely irreducible (ε = ε′); a 
confidence interval (green region) is constructed around the prediction time series in (a). In (c), the estimated error is reducible (𝐴𝐴 𝜺𝜺 = 𝜺̃𝜺 ); its addition (blue region) to 
the prediction makes a perfect match with observation in (a). In (d), 𝐴𝐴 𝜺𝜺 = 𝜺̃𝜺 + 𝜺𝜺

′ and therefore, while the prediction can be improved, it is not fully certain and requires 
a confidence interval. The framework for ensemble streamflow prediction with uncertainty quantification is in (e). Box (e-1): the construction of a surrogate of 
PBM for simulating quantities of interest (QoIs). Various inputs are used for the PBM model. PBM forcings and outputs (i.e., QoIs) are used to construct a surrogate 
model(s). Box (e-2): training of a machine learning (ML) model to predict the surrogate model error. The training data are based on past rainfall series and estimates 

𝐴𝐴 𝜺𝜺
𝒐𝒐
= 𝑄𝑄Obs −𝑄𝑄

Surrogate

Sim
 . Box (e-3) describes the use of the surrogate model and probabilistic ML error model to make ensemble predictions for real events. Ensemble 

errors derived from the ML model supplement a deterministic prediction from a surrogate model to construct ensemble predictions.
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of unsteady surface flow. The surrogate model is constructed using Polynomial Chaos Expansions (PCE) (Text 
S3 in Supporting Information S1) (Ghanem & Spanos, 1991; Wiener, 1938) based on rainfall and streamflow 
(targeted QoI) data sets. Widely acknowledged as a powerful approach, PCE technique boasts a number of benefits 
and polynomial form also significantly reduces computational effort (Razavi et al., 2012; Sargsyan et al., 2014; 
Sudret, 2008).

A surrogate model was designed to simulate a variety of potential streamflow events (Tran et al., 2020; Tran & 
Kim, 2021). To accomplish this, we developed a synthetic data set containing rainfall and streamflow to be used 
as surrogate model training set (see also Section 2.4). Specifically, an ensemble of synthetic rainfall series was 
generated as sets of random, uncorrelated pulses. Synthetic streamflow series were then generated by tRIBS-
OFM forced with the synthetic rainfall ensemble. A PCE-based surrogate model was then designed (i.e., its poly-
nomial order is chosen) and trained using this synthetic rainfall-streamflow data set (Figure 1e-1). The inputs of 
the surrogate model are rainfall at the present time step and streamflow at the prior time. The simulated watershed 
outlet streamflow at the current time represented the QoI.

The second stage assumes the development of a probabilistic ML model to quantify 𝐴𝐴 𝜺̃𝜺 and ε′ (Figure 1e-2). 
Specifically, the constructed surrogate model is run with real-world rainfall series to simulate streamflow. The 
errors are estimated as discrepancies with respect to observations (𝐴𝐴 𝜺𝜺

𝒐𝒐
= 𝑄𝑄Obs −𝑄𝑄

Surrogate

Sim
 ). These error estimates 

and the corresponding rainfall data are then used to train the probabilistic error model using a long short-term 
memory network (LSTM) (Hochreiter & Schmidhuber, 1997) with an attention mechanism (Vaswani et al., 2017) 
coupled with heteroscedastic regression (HR) (Kendall & Gal, 2017) and Monte Carlo Dropout (MCD) (Gal & 
Ghahramani, 2016). LSTM is viewed to be one of the most powerful MLs in hydrological applications (Alizadeh 
et al., 2021; Ding et al., 2020; Konapala et al., 2020; Kratzert et al., 2019). The HR serves as a supportive tool 
for the LSTM model to generate predictions for two distinct output variables: 𝐴𝐴 𝜺̃𝜺 and ε′. Ensembles of 𝐴𝐴 𝜺̃𝜺 and ε′ are 
derived by aggregating the predictions from a set of LSTM models with varying architectures generated by MCD 
with multiple Monte Carlo draws of the dropout mask. The LSTM methodology and the framework for error 
ensembles are in Texts S4 and S5 in Supporting Information S1.

The process of ML training is conducted using most popular supportive techniques. Rainfall is the input variable 
and its look-back window size is chosen utilizing Mutual Information (Vergara & Estévez, 2014) and Hampel 
Test (May et al., 2008). To tackle non-stationarity of data, the discrete wavelet transform (Mallat, 1999) is imple-
mented. Hyper-parameters are optimized through Bayesian optimization using the Gaussian process (Snoek 
et al., 2012) and the k-fold cross-validation with an early stopping technique (Yao et al., 2007). The loss function 
of the mean square error and the ADAM algorithm (Kingma & Ba, 2014) are adopted to optimize ML learnable 
parameters.

In the final stage (Figure 1e-3), the streamflow predicted by the surrogate model and the estimated ensemble 
errors (𝐴𝐴 𝜺̃𝜺 and 𝐴𝐴 𝜺𝜺

′ ) diagnosed by ML are combined to provide improved streamflow estimation with UQ.

2.3.  Data

In this study, we use White Oak Bayou—a highly urbanized watershed with an area of 46.9 km 2 in Harris County, 
TX (Figure 2a), as the case study domain. Predicting floods in this densely populated watershed is a difficult task 
due to the considerable impact of urbanization. A 3-m resolution Digital Elevation Model (Figure 2b) was used 
to develop a triangulated mesh network to capture terrain, channel, and urban features with a total of 136,423 
mesh nodes and 271,215 triangular cells. The land use data from the National Land Cover Database 2016 shows 
predominantly developed areas: open space (13%), low intensity development (32%), medium intensity (35%), 
and high intensity (21%). Approximately 20,000 buildings were included in the mesh (∼30% of the area). The 
processing of building footprints and other relevant pre-processing details are in Ivanov et al. (2021). Watershed 
outlet streamflow data were obtained for the USGS station 08074540. Precipitation data were obtained from 
Automated Surface Observing Systems (ASOS) at two stations (Houston Dunn and Houston Intercontinental).

2.4.  Experimental Design

For this highly urbanized watershed, we assume the entire area is impervious. Infiltration losses are thus set to 
zero and all rainfall becomes surface runoff. Although tRIBS-OFM can simulate the runoff storage and flows 
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within stormwater infrastructure and soils, we chose to ignore these processes due to the lack of knowledge of 
soil water content before each simulated event and the lack of reliable data sets on stormwater infrastructure. We 
acknowledge that these assumptions can have a considerable impact on the simulated streamflow. Nevertheless, 
they also present an opportunity to ascertain whether the proposed framework can effectively capture relevant 
errors in 𝐴𝐴 𝜺̃𝜺 and ε′ given these obvious inaccuracies in the description of watershed hydrology.

The Manning's roughness coefficient is the most influential parameter for overland flow (Ozdemir et al., 2013). 
We assume a spatially uniform value 0.015, which is the middle of the interval for concrete surfaces (0.012–0.018) 
(Arcement & Schneider, 1989).

This study considers rainfall as the only weather input. Other variables, such as temperature and humidity, are 
disregarded due to their minimal impacts on runoff generation during an event-scale period. For surrogate model 
training (Figure 1e-1), we use 1100 18-hr rainfall events, each of which is a series of spatially uniform pulses 

Figure 2.  (a) The White Oak Bayou watershed in Harris County, Houston, TX, with a USGS stream gauge (ID = 08074540) marked by a white star. Subplots (b) 
shows the Digital Elevation Model. (c) 1100 realizations of 18-hourly rainfall series of uncorrelated pulses (top subplot) and the TIN-Based Real Time Integrated 
Basin Simulator—Overland Flow Model (tRIBS-OFM) simulated streamflows (bottom subplot) corresponding to these series. (d) The observed 24-hourly rainfall and 
streamflow for 138 events between 15 October 2007 and 28 November 2020. The probability density distributions of rainfall and streamflow rates for both synthetic 
(shaded in blue) and historic (shaded in gray) data sets are shown in subplot (e). (f) Surrogate model validation relative to tRIBS-OFM simulations for 100 synthetic 
events. (g) A comparison between the observed and surrogate-simulated streamflows for 138 24-hr rainfall events. (h) The peak difference (𝐴𝐴 ∆𝑃𝑃 = 𝑄𝑄

Peak

Sim
−𝑄𝑄

Peak

Obs
 ), and 

time-to-peak (𝐴𝐴 ∆𝑇𝑇𝑃𝑃 = 𝑡𝑡
peak

Sim
− 𝑡𝑡

peak

Obs
 ) errors. Each circle denotes a combination of ∆P and ∆TP for a specific event.
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randomly generated from the Uniform distribution between 0 and 50 (mm/hr). This data set was designed to 
include extreme rates, while lacking any temporal “structure.” tRIBS-OFM was thus run 1100 times to simulate 
streamflow series at the outlet (Figure 2c). Results of 1000 runs were deemed to be sufficient to train a surrogate 
model (Dwelle et al., 2019; Ivanov et al., 2021; Tran et al., 2020; Tran & Kim, 2022). The remaining 100 events 
were used for surrogate validation.

Once surrogate models for the QoI have been constructed and validated, they can then be applied as substitutes 
for tRIBS-OFM in order to simulate QoIs for any rainfall event (Figure 1e-2). In total, 138 24-hr historic rain-
fall events were chosen from 15 October 2007 to 28 November 2020 (Figure 2d). The maximum hourly rainfall 
depths range from 3.6 to 77.2 mm, and the corresponding peak streamflows range from 14.46 to 272.4 m 3/s. From 
Figure 2e, it is evident that the real rainfall and streamflow are mostly enclosed within the range of the training 
synthetic data. The surrogate model error ε o for each of the 138 events was estimated. These error estimates and 
the rainfall forcing were then input to an ML model. Specifically, the first 100 events were used to train and vali-
date the ML model (i.e., the training set), and the remaining 38 events were used to test the model (i.e., the testing 
set). In the testing phase, error ensemble was estimated for 38 events using the trained ML model coupled with 
HR and MCD. An ensemble size of 1000 was selected as a reasonable set to reflect the distribution of the errors. 
The distributions of 𝐴𝐴 𝜺̃𝜺 and ε′ for each hour were obtained, as discussed in Text S5 in Supporting Information S1.

Metrics evaluating the model performance include the Mean Absolute Error (MAE), Nash-Sutcliffe model effi-
ciency coefficient (NSE) (Nash & Sutcliffe, 1970), Kling-Gupta efficiency (KGE) (Gupta et al., 2009), peak 
difference (∆P), and Time-to-Peak error (∆TP), which were calculated for each event. In addition, a leave-one-out 
error (LOO) is used in the process of constructing surrogate models and evaluating the similarity between outputs 
from the surrogate and original models (Blatman & Sudret, 2011).

3.  Results
The 100 validation synthetic events displayed in Figure 2f exhibit excellent performance of the surrogate model in 
generating streamflows compared to those from tRIBS-OFM, with LOO of 0.03, MAE of 4.983 m 3/s (an error of 
∼2% as compared to the average streamflow in the validation data set of 241.3 m 3/s), and NSE and KGE achieve 
the near-perfect scores of 0.99. This result is consistent with prior studies demonstrating that PCE-based surro-
gates can mimic complex models with high accuracy (Dwelle et al., 2019; Ricciuto et al., 2018), even when they 
are trained with noisy inputs, instead of real-world rainfall (Ivanov et al., 2021; Tran & Kim, 2022). Surrogates 
also demonstrate their computational superiority, as they can simulate 100 events within a second. This is in 
stark contrast to tRIBS-OFM simulations that require ∼5200 hr for the same event set (using a single processor).

The surrogate model shows a satisfactory performance in simulating streamflows for 138 actual events with the 
average NSE of 0.826 (Figures 2g and 2h), reflecting the skill of the high-fidelity model tRIBS-OFM. It is possi-
ble that such a high skill of the uncalibrated model might be due to the dominance of overland flow process that 
is well described by the full form of the Saint-Venant equation, given reasonable parameter values. However, the 
error is still quite considerable: MAE is 5.596 m 3/s, which is an error of 33.55% relative to the average flow of 
16.67 m 3/s (across all 138 events). The KGE value is only 0.315, indicating that the model performs only moder-
ately well. Figure 2h assesses the surrogate model performance in simulating peak flows and their timing. As 
seen, the surrogate model estimates higher peaks (∆P) and delayed peak times (∆TP), as compared to the obser-
vations. The lack of stormwater sewer network representation in the model might be a contributing factor to the 
estimation of the delayed peak flows. A considerable amount of rainwater remains motionless inundating topo-
graphic lows and also, sheet overland flow may take more time to reach the watershed outlet than concen trated 
flows in a sewer network (Zhang et al., 2023). One my note that the surrogate model can capture these character-
istics of tRIBS-OFM simulation. Hence, the surrogate model predicts higher and delayed peaks as compared to 
observations. A priori, the predictive accuracy can be improved through calibration of suitable parameters of  the 
model, that is, signifying the effort of reducing their epistemic uncertainty. However, tuning parameters (e.g., 
the Manning's coefficient) with the aim to compensate for the impact of absent information (i.e., the knowledge 
of sewer system details) can be theoretically problematic: PBM's simulation content can become less physically 
meaningful. For example, tuning may provide unrealistic estimation for other possible variables of interest (e.g., 
water velocity or inundation depth) (Grayson et al., 1992; Guinot & Gourbesville, 2003).

The above dilemma can be addressed with the proposed probabilistic ML error model (Sections 2.1–2.2). Its 
trained version (using the error ε o estimates from 100 events, Figure S1 in Supporting Information S1) is used to 
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make 1000 error ensemble predictions for 38 testing events. Results depicted in Figure 3a are found to be fairly 
accurate, with an average MAE of 3.158 m 3/s for 1000 ensembles, and average NSE and KGE values of 0.659 
and 0.754, respectively. The 1000-member ensemble generated with the ML model produces a 95% confidence 
interval (CI) for the reducible error 𝐴𝐴 𝜺̃𝜺 for each hour of simulation (the area shaded in blue, see insets in Figure 3b, 
Figures S2 and S3 in Supporting Information S1). It is relatively narrow and largely encompasses the surrogate 
error ε o. The greatest uncertainty is typically observed during peak flow events, when model error is high. The 
skill exhibiting such a high accuracy is noteworthy, particularly given the fact that the variability of ε o can be 
quite significant and the correlation between ε o and rainfall is quite weak, with an R 2 of ∼0.018. Nonetheless, 
the  irreducible uncertainty of ε′ (the area shaded in green, Figure 3b), can be quite large and larger than the 
uncertainty of 𝐴𝐴 𝜺̃𝜺 over 38 events (Figure S5 in Supporting Information S1).

The results of the ensemble streamflows combining surrogate prediction and errors quantified with ML (termed 
“surrogate + ML” prediction hereafter) are in Figures 3c–3f (and in Figures S2 and S3 in Supporting Informa-
tion S1). Overall, the results demonstrate that the accuracy of “surrogate + ML” prediction is significantly better 
than that of the surrogate model alone. Inspection of Figure 3b demonstrates that the predictions become more 
consistent with the observed streamflow. The 95% CI encloses the observed series, albeit with higher uncertain-
ties at the peak flows. The assessment with MAE, NSE, and KGE metrics shows that they all agree, with the 
average over 1000 ensemble members for 38 events approaching their theoretically ideal values (i.e., 0.0, 1.0, 
and 1.0, respectively) (Figures 3c–3e). Specifically, the “surrogate + ML” prediction yields an average MAE of 
4.53 m 3/s, NSE of 0.85, and KGE of 0.77, which are better than the corresponding values of 6.08 m 3/s, 0.83, 
and 0.40, respectively, obtained from the surrogate model results alone. The ∆P and ∆TP analysis and estimation 

Figure 3.  (a) A comparison between the surrogate errors (ε o) and the means of 1000 ensemble errors 𝐴𝐴 𝜺̃𝜺 predicted by machine 
learning (ML) model for 38 rainfall events in the testing set. Results for each of 24 hr in each event are shown. Subplot (b) 
shows hydrographs of the 38 events. Observed streamflow (black line) is compared with the surrogate model simulation (red 
line), and that augmented with the mean of 𝐴𝐴 𝜺̃𝜺 (blue dashed line—“surrogate + 𝐴𝐴 𝜺̃𝜺 ”). The green region is the 95% distribution 
range for ε′ obtained from 1000 ML ensemble predictions. The region is plotted by adding the hourly 2.5% and 97.5 
percentiles of ε′ to the hourly “surrogate + 𝐴𝐴 𝜺̃𝜺 ” hydrograph. The insets correspond to exemplary events on 17 April 2016; 
17 January 2017; and 19 September 2019 (a full set is in Figures S2 and S3 in Supporting Information S1). The three upper 
subplots illustrate the same information as in the primary subplot (b), while the three lower subplots display the predicted 
errors: 95% confidence intervals (CI) for 𝐴𝐴 𝜺̃𝜺 (region in blue) and ε′ (green) from 1000-member ML ensemble. Subplots 
(c), (d), and (e) compare the performance of the surrogate and combined “surrogate + ML” (blue dots with whiskers: 
dot = surrogate prediction + the mean of 𝐴𝐴 𝜺̃𝜺 ; whiskers = the 2.5% and 97.5% percentiles obtained from 1000 values of the 
“surrogate + ML” ensemble) based on mean absolute error (MAE), Nash-Sutcliffe model efficiency (NSE), and Kling-Gupta 
efficiency (KGE) over 38 events. Subplot (f) reproduces Figure 2i (red dots for 38 testing events) and results obtained with 
“surrogate + ML” (blue dots with whiskers) quantifying the errors of peak flow (∆P) and time to peak (∆TP) predictions.
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shown in Figure 3f further demonstrate an improvement. For instance, the results in Figure 3b demonstrate how 
these flood peak characteristics in the “surrogate  +  ML” prediction become closer to the observations. The 
computational efficiency of the integrated PCE + ML models is high yielding 1000 ensemble results in just over 
10 s. This is undeniably superior to the standard UQ approach that would adopt traditional Monte Carlo simula-
tions with tRIBS-OFM, necessitating 52,000 hr for the same number of simulations.

4.  Discussion
The results of this research serve to validate the efficacy of a novel modeling framework in Figure  1e that 
combines the strengths of PBM, surrogate, and ML models. A PBM offers a sound, first-principles representation 
of the hydrological system, a surrogate model acts as a bridge to achieve that with computational efficiency, while 
ML adds accuracy by providing insights into reducible and irreducible sources of prediction errors. As demon-
strated, the framework is successful and the results have several major implications.

First, a state-of-the-science high-fidelity flood model that relies on uncalibrated lookup-table parameters can 
provide relatively accurate streamflow predictions when overland flow dominates the modeled response. This 
result emphasizes PBM's efficacy to produce not exact but skillful predictions in urban environments. Though 
perhaps logical, to the author's knowledge, this has not been demonstrated explicitly in prior research. As humans 
fractionate landscapes and change their drainage graphs (Ott & Uhlenbrook, 2004; Rogger et  al.,  2017), this 
utility of PBMs (or PBM-to-surrogate models) to flexibly incorporate the changing urbanscape characteristics 
will continue to be warranted, even if PBM structural alterations (and the corresponding surrogate re-training) 
are necessitated. In contrast, models driven exclusively by data (such as pure ML models) are handicapped 
in human-impacted watersheds where hydrology becomes non-stationary and past observations are rendered 
obsolete.

Second, previous studies have already demonstrated the power and efficiency of surrogate models (Ivanov 
et al., 2021; Tran et al., 2020) in their capability to capture the PBM behavior with a low level of added uncer-
tainties. This framework posits them as an essential machinery in the forecaster's toolkit, even though surrogates 
require a large initial computational overhead for their training. Trained with samples supervised by PBM's 
high-fidelity solutions, surrogate models can mirror outcomes of a broad spectrum of physical relations. This 
contrasts recently novel applications of an approach of physics-informed ML (Bhasme et  al.,  2022; Frame 
et al., 2021; Lu et al., 2021; Zhong et al., 2023), in which simple constraints to a physics-ignorant solution to 
maintain plausible ranges for modeled variables cannot attain the same level of prediction comprehensiveness as 
offered by the PBM-to-surrogate modeled dynamics. Under certain conditions however surrogate model perfor-
mance can become inferior. One apparent concern is the case of high dimensionality of uncertain variables such 
as in the spatial variability of forcings (e.g., rainfall) or antecedent conditions. In these instances, surrogate 
models face the challenge known as the “curse of dimensionality” (Sargsyan et  al.,  2014; Sudret,  2007). An 
analysis of QoI sensitivity to uncertain inputs (Dwelle et al., 2019) with a subsequent reduction of their set that 
can reduce the training overhead is one plausible direction to address this challenge. However, this topic remains 
an active research area.

Third, the demonstrated capacity of an ML model that can learn PBM (or its surrogate) error structure and 
reduce biases is a leap forward in improving predictive accuracy. Earlier intercomparison projects largely 
concluded that lumped/conceptual models remain superior to PBMs in terms of streamflow prediction (Smith 
et al., 2004, 2012a). This study shows that it is possible to relax that limitation of the PBM utility. The demon-
strated ML-based error partition into 𝐴𝐴 𝜺̃𝜺 and ε′ is agnostic to specific sources of PBM uncertainty: they can be 
due to both epistemic (e.g., model structure or parameter biases) or aleatoric (e.g., random biases in rainfall) 
uncertainties. There is no obvious way to connect them, other than perhaps for hypothetical, idealized cases of 
perfect geometry and homogeneity assumptions. This limitation is not however viewed as essential. The ability 
to “sense” and partition out the reducible error 𝐴𝐴 𝜺̃𝜺 —despite any obvious relationship between model inputs and 
observed errors (Figure S4 in Supporting Information S1) and regardless of recognizing the error source—in 
author's opinion, is a breakthrough in improving predictive accuracy of streamflow simulations.

Further, the uncertainty communicated by the ML model in the form of 𝐴𝐴 𝜺̃𝜺 and ε′ distributions offers the potential 
to eliminate the need for traditional UQ techniques quantifying (most commonly) PBM's epistemic uncertainty. 
Specifically, while a PBM modeler may always choose to carry out parameter inference using surrogate models 
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(Dwelle et  al.,  2019; Xu et  al.,  2022) to ensure physical realism in model QoI simulations, predictions with 
best-fit parameters will always remain inexact because of the multi-variate nature of error sources. The typical 
Monte Carlo (or “pushed-forward”) simulations of posterior distributions of perceived uncertainty sources deals 
only with pre-contemplated uncertainties: they are in the PBM structure or its inputs (Sargsyan et al., 2019). 
The ML-based approach proposed here explores uncertainty structures that may be entirely hidden. These can 
include uncertainties not perceived as important and thus excluded (here, e.g., infiltration losses in an urbanized 
domain) or the “unknown unknowns” (Beven et al., 2011)—uncertainties that are unexpected and not predicted 
when they occur (e.g., failure of the uniform rainfall intensity assumption). Our results demonstrate that 𝐴𝐴 𝜺̃𝜺 distri-
bution correctly adjusts streamflows simulated with surrogates and the ε′ confidence intervals largely envelop the 
observed streamflows (Figures S2 and S3 in Supporting Information S1). This is a crucial outcome demonstrating 
that the proposed approach can serve as an efficient UQ technique. This is compared to traditional approaches 
relying on the computationally intensive “pushed-forward” simulations, which nonetheless can be used a poste-
riori to explore the specific sources of the reducible error 𝐴𝐴 𝜺̃𝜺 distribution.

The framework developed here has limitations. For a few events, the prediction accuracy was not improved 
(Figures 3c–3e). This demonstrates that not all reducible errors can be efficiently calculated. This is not an unex-
pected outcome, as only rainfall data were used to identify ε—this may be insufficient, particularly in complex 
urban areas. Experimentation with more diverse data sets can provide a more comprehensive understanding of 
the importance of various factors influencing the flow regime. Further, it should be noted that the success of ML 
model is contingent on data availability. In cases where there is a limited amount of training data, ML may not be 
advantageous, or even fail to improve simulations due to the issue of underfitting. This highlights the importance 
of obtaining comprehensive and informative data, so that ML performance can be enhanced thus ensuring viabil-
ity of the proposed integrated framework.

Overall, the proposed framework provides a comprehensive, adaptive, and highly efficient solution. Issues of 
computational efficiency and the lack of predictive accuracy are pervasive in many Earth sciences that rely on 
modeling. We anticipate that this solution can be applicable in other domains of geophysical research.

Data Availability Statement
The land use information was obtained from the National Land Cover Database 2016 (https://www.mrlc.gov/
national-land-cover-database-nlcd-2016). Building footprints were downloaded from an open source (https://
koordinates.com/layer/12890-houston-texas-building-footprints/). Streamflow at the USGS gauge 08074540 was 
obtained from https://waterdata.usgs.gov/monitoring-location/08074540/. Precipitation data was obtained from 
Automated Surface Observing Systems (ASOS) at two stations, Houston Dunn and Houston Intercontinental 
(https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems). The 
synthetic data sets for surrogate training are available through the Zenodo digital repository accessible at https://
doi.org/10.5281/zenodo.8092949. The source code for the surrogate model can be obtained from https://www.
uqlab.com/. The machine learning model was trained using the Keras-Tensorflow library (https://github.com/leri-
omaggio/deep-learning-keras-tensorflow). Code for the Bayesian optimization, wavelet transform, and mutual 
information were obtained from open sources, including https://github.com/thuijskens/bayesian-optimization, 
https://github.com/PyWavelets/pywt, https://github.com/scikit-learn/scikit-learn, respectively.
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