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A B S T R A C T   

Hydrologists have been actively exploring the utility of machine learning (ML) models for predicting streamflow. 
While ML methods have proven to be as accurate as conventional modeling techniques for streamflows well 
represented in the training set, they continue to lack satisfactory skills for extreme events. In this study, a novel 
‘data reformation’ technique is proposed based on the Relative Strength Index (RSI) – a measure of speed and 
direction of changes in the time series. RSI homogenizes all observations to a constrained 0–100 range, and all 
‘out-of-sample’ data in the testing set fall within the space of the training set. Long Short-Term Memory network 
with an attention mechanism is used to train three ML models using 55,055 events from the CAMELS dataset 
(670 basins, 1980–2014). Predictions are made for 12,424 events, of which 3,810 are significantly higher than 
streamflows in the training set. The ML model based on RSI-reformed data exhibits superior performance, as 
compared to other advanced ML models without data reformation. Peaks up to 15 times larger than those in the 
training events are accurately predicted, leading to an outperforming model skill for 433 out of 670 catchments. 
These findings indicate that incorporating a new data reformation technique into the data pre-processing step in 
ML modeling can enhance the utility of ML models for extreme events. This research encourages further 
exploration to identify better data reformation methods to enable confident ML predictions.   

1. Introduction 

Machine learning (ML) has gained considerable traction in the 
geophysical science community [Reichstein et al., 2019]. While still in 
their nascent state, many studies over the last decade have demonstrated 
that ML models can surpass existing state-of-the-art modeling tech
niques in complex problems, and hydrologists have started actively 
exploring ML in the domain of streamflow simulation [Ahn et al., 2022; 
Feng et al., 2021; Han et al., 2023; Kratzert et al., 2018]. ML algorithms 
do not rely on predetermined equations or assumptions (such as tradi
tional process-based models), but rather learn from the data themselves, 
thereby enabling them to adapt to evolving conditions and uncover 
hidden insights [Xu and Liang, 2021]. This adaptability and capacity to 
handle intricate interactions make ML a compelling candidate for 
improving streamflow predictions [Alizadeh et al., 2021; Kratzert et al., 
2018]. 

Specifically, multiple studies have implemented streamflow simula
tion and highlighted that the applicability outcomes of ML exceed those 
of simple lumped hydrological models [Arsenault et al., 2023; Frame 

et al., 2021; Liu et al., 2023a]. The application of ML is possible for 
predictions and simulations across various timeframes, ranging from 
hours, days, and months [Cheng et al., 2020; Dehghani et al., 2023; Hunt 
et al., 2022; Xiang and Demir, 2020]. ML applicability can be broad and 
this approach has been employed in numerous case studies including 
global datasets [Tang et al., 2023; Wilbrand et al., 2023]. “Prediction of 
ungauged basins” (PUB) has been one acute area of research interest in 
hydrology [Feng et al., 2021; Kratzert et al., 2019b; Le et al., 2022]. A 
number of studies have also focused on advancing ML methods such as 
data processing and model optimization, as well as designing new model 
types such as hybrid models [Ahmed et al., 2021; Konapala et al., 2020; 
Liu et al., 2023b; Nourani et al., 2014; Yu et al., 2023] or physically 
informed ML [Bhasme et al., 2022; Frame et al., 2021; Lu et al., 2021; 
Zhong et al., 2023]. 

Nevertheless, ML applications are not without inherent drawbacks. 
These techniques exhibit challenges related to data non-linearity and 
non-stationarity, model interpretability, uncertainty quantification, 
model selection, the need for high-quality training data, and “out-of- 
sample prediction” [Quilty et al., 2023; Xu and Liang, 2021]. The latter 
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challenge, which refers to the estimation of magnitude ranges to which 
ML training has not been exposed to, has been identified as one of the 
greatest challenges for ML models over the past decades [Frame et al., 
2021; Kratzert et al., 2019a; Todini, 2007; Tran and Kim, 2022]. This has 
led to a debate between physical process-oriented modelers and 
data-driven modelers, with the former arguing that ML models lack an 
appreciation of physical characteristics and dynamics in their study 
domains, resulting in a lack of confidence in data-driven model outputs 
due to their heavy reliance on training sets [Todini, 2007]. Similarly, it 
has been argued that data-driven models may not be as effective in 
conditions that differ from the training data [Kirchner, 2006; Vaze et al., 
2015]. Indeed, a conventional application of machine learning meth
odologies might be unable to accurately predict or extrapolate estimates 
outside of the training data space, despite their generally strong pre
dictive capabilities for data within it [Kratzert et al., 2019a; Tran et al., 
2020; Tran and Kim, 2022]. 

Research into the utilization of ML has sought to tackle the challenge 
of the “testing set” outside of space of the “training set” by broadening 
the data range of the training set to encompass a wider range of potential 
scenarios. However, this is often not feasible due to the difficulty of 
obtaining a sufficient number of observed extreme events for training – 
simply because they have not been observed. Climate change has the 
potential to create extreme events that have not been experienced before 
[Bao et al., 2017; Bloschl et al., 2020; Doi and Kim, 2020; 2021; Prein 
et al., 2016], and internal climate variability can also lead to extreme 
events that are different from those that have been recorded, even if 
climate remains stationarity [Bao et al., 2017; Beniston et al., 2007; Doi 
and Kim, 2020; Gao et al., 2020; Kim et al., 2018; Milly et al., 2008]. This 
limited capacity to extrapolate data is a major impediment for ML to be 
applied in real-world settings with increasingly frequent extreme events 
[Donat et al., 2016; Dottori et al., 2018; Ivanov et al., 2021; Prein et al., 
2016], and thus an alternative solution is needed to ensure predictability 
of events beyond the available training data space. 

A search of the Web of Science (accessed in January 2023) for two 
keywords “streamflow” and “machine learning” yielded a total of 466 
research studies. This number attests to the burgeoning use of ML in 
streamflow modeling research. Surprisingly, no results were found when 
adding the keywords “extrapolation” or “out-of-sample prediction”. A 
broader search was conducted for machine learning studies in all fields 
on time series applications related to “out-of-distribution” (OOD). Most 
of the identified studies mainly used OOD in data splitting (between 
training and testing datasets) for evaluating model performance 
[Ahmad et al., 2021; Boyer et al., 2021; Geiger et al., 2020; Moller et al., 
2021; Olenskyj et al., 2022; Yeung et al., 2021], rather than focusing on 
proposing approaches to address this issue. The most relevant research 
that can be found is on the potential of ML in simulating “extreme 
events” [e.g., Frame et al., 2021]. They are defined as high-return-period 
(low-probability) streamflow events. It should be noted that “extreme 
events” may or may not indicate that the events are outside the scope of 
the training data. Recent research by Frame et al., [2021] has proposed a 
technique to improve the effectiveness of ML in predicting such extreme 
events. The authors hypothesized that incorporating physical (i.e., mass 
balance) constraints into the ML architecture would be advantageous. 
However, their evaluation results showed that pure ML was more 
effective than the physically-informed ML approach and that “adding 
mass balance constraints to the data-driven model reduced model skill 
during extreme events”. Liu et al., [2023b] and Quilty et al., [2023] 
proposed the use of sophisticated neural networks to measure the con
fidence intervals of predictions. By considering the uncertain range, this 
approach can enhance the predictability for OOD events, but not sub
stantially different from the training dataset. An alternative way to 
improve the efficacy of ML in predicting extreme events could be to 
combine it with a process-based model [Konapala et al., 2020; Tran 
et al., 2023b]. Our recent study has put forward three potential strate
gies for augmenting the skill of data-driven models for “out-of-sample 
prediction” by: (i) enriching information on physical phenomena in 

data-driven models through the utilization of high-fidelity samples 
generated by process-based models; (ii) broadening the training data 
space by considering additional input and parameter uncertainties; (iii) 
or constructing a hybrid model that combines a standard predictive 
model with a model that has extrapolation capabilities [Tran and Kim, 
2022]. Nevertheless, these strategies have been proposed for the gen
eration of surrogate models that replicate a computationally expensive 
model using “synthetic data”, but not for pure ML applications that solely 
utilize observational data. It implies that, as of now, no successful 
method has been established to address the issue of “out-of-sample 
prediction”. 

In this study, we propose a strategy that has the capacity to overcome 
this long-standing challenge. We hypothesize that a novel data pre- 
processing step called “data reformation” can re-scale data to be within 
a restricted range, resulting in ML training that is effective for “out-of- 
sample prediction” problem. Specifically, both training and testing data 
after they have undergone a reformation process are contained within 
the same “homogenized” data space. The implication of this process is 
that out-of-sample data are located in the same data space as the training 
samples, and can be referred to as “in-of-reformed” samples. The 
reformed data should be used to train an ML model instead of the 
original data. If both the training and testing datasets are constrained to 
the same range, the trained ML model should be able to compute well for 
out-of-original samples in the testing set. In this study, we specifically 
focus on the high-return-period (low-probability) streamflow (flood) 
events and compare the proposed ML model (using data reformation) 
with two baseline models that use different data processing techniques: 
(i) a standard ML model with data normalization only and (ii) a ML 
model with standard data transformation. In method (ii), data trans
formation such as a wavelet transform is a popular data processing 
method used in ML research, as it can be used to solve problems related 
to the diagnosis, classification, and forecasts of extreme weather events 
[Nourani et al., 2014; Sang, 2013; Tran et al., 2021]. It involves 
decomposition of time series into multiple lower-resolution subseries, 
and extracting useful information from the original data [Nourani et al., 
2014]. In this study, we do not compare the performance of ML with 
benchmarking models since this has been done in many previous studies 
[Feng et al., 2021; Frame et al., 2021; Kratzert et al., 2018, 2019a]. 

2. Methods 

2.1. ML model: LSTM with attention mechanism 

Long Short-Term Memory (LSTM) network is a type of recurrent 
neural network (RNN) that can learn long-term dependencies between 
input and output features by resolving gradients that are expanding or 
vanishing [Hochreiter and Schmidhuber, 1997; Kratzert et al., 2018]. 
LSTM adapts vanilla RNNs with three gates (forget gate ft, input gate it, 
and output gate ot) and preserves more useful information of input. In 
this study, we use an attention-based LSTM, a state-of-the-art LSTM 
variant for predicting streamflow [Ding et al., 2019; Hunt et al., 2022; 
Vaswani et al., 2017]. The attention mechanism assigns scores to each 
input feature, allowing the consideration of interdependency of input 
sequences at various time steps [Wang et al., 2016]. This enables LSTM 
not only to handle the long-term dependencies of driving sequences over 
historical time steps, but also to improve the ability of LSTM to capture 
high nonlinearity [Alizadeh et al., 2021; Ding et al., 2020; Li et al., 
2019]. Specifically, given the k-th input time series xk = {xk,1, xk,2, …, 
xk,T} with T that is the size of the time series, we can construct an input 
attention mechanism by referring to the previous hidden state ht − 1 and 
the cell state ct − 1 as: 

ek,t = vT tanh(Weht−1 + Wect−1 + Uexk) (1)  

αk,t =
ek,t

∑Nin
j=1exp

(
ej,t

) (2) 
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where v, We,Ue are learnable parameters; factor αk,t is the attention 
weight measuring the importance of k-th input at time t; and tanh is an 
activation function of LSTM layer. Note that all learnable parameters 
will be called θ hereafter (θ = {W, U, b, v}). With αk,t, we can adaptively 
extract the input data series with: 

x̃t =
[
α1,tx1,t, α2,tx2,t, …, αNin ,txNin ,t

]
, (3)  

where Nin denotes the number of inputs xt = [x1,t , x2,t , …, xNin ,t ]. The 
hidden state at time t can be updated as: 

ht = f(ht−1, x̃t), (4)  

where f is an LSTM unit that can be estimated with ̃xt, as detailed in S.1 
in the Supplementary Material 1 (SM1). For more details about the 
attention mechanism, readers are referred to Wang et al., [2016]. 

2.2. Data reformation: relative strength index 

After testing numerous data pre-processing techniques accepted 
from various disciplines such as engineering, economics, and social 
sciences, we have identified a suitable method that meets the needs of 
reformulating a time series data into a new data form that is constrained 
to a limited range. Specifically, the method relies on the Relative 
Strength Index (RSI) developed by Wilder [1978]. RSI is a momentum 
oscillator index that is widely used in the field of economics to measure 
the speed and change of price shifts. By reforming time-series data on 
prices into the RSI series, their values are restricted to be within a range 
between 0 and 100. Even if new extreme prices occur in the future, the 
new RSI values will remain within the range since the index only reflects 
the relative changes in the price, rather than their actual levels. This 
concept can also be applied for processing streamflow data. 

Specifically, the RSI calculation for streamflow can be carried out in 
the following manner. To simplify its application, RSI is broken down 
into its basic components: average rise (AR), average fall (AF), and a 

duration of period (NRSI) that contains the averaging intervals for AR 
and AF [Wilder, 1978]. The RSI is calculated as: 

RSI = 100 −
100

1 + AR/AF
(5) 

In this work, daily streamflow data are used, so one day is the 
considered data resolution. Consider that NAR and NAF are the number of 
total days corresponding to the rising and falling streamflow (as 
compared to the streamflow of the previous day), starting from the first 
record of daily flow (see Fig. 1 for illustration), such that NAR + NAF =

NRSI − 1. Variables AR and AF can be computed as: 

AR =
1

NAR

∑NAR

i=1
ΔQ↑

i, (6)  

AF =
1

NAF

∑NAF

j=1
ΔQ↓

j, (7)  

where ΔQ↑
i and ΔQ↓

j represent the magnitudes of the increase or 
decrease in streamflow as compared to the previous day during the i-th 
rising and j-th falling days of streamflow series, respectively. 

All components (i.e., NRSI, NAR, NAF, ΔQ↑
i and ΔQ↓

j ) used in the 
computation of RSI are graphically visualized in Fig. 1. In application of 
Eq. (5), the duration NRSI is in essence a window through which the 
original streamflow series are analyzed, allowing to obtain a single RSI 
value for each window location. Eq. (5) is applied on successive NRSI 
periods shifted at the resolution of the original streamflow data (i.e., one 
day). As a result, upon data reformation in this manner, the total 
duration of the RSI series is NQ − (NRSI − 1) days (NQis the total duration 
of streamflow data), as NRSI first records of Q are not converted to RSI 
since they represent the size of the window. Thus, NRSI should not exceed 
NQ. 

The utilization of RSI in practice is akin to any data processing 

Fig. 1. A visualization illustrating essential components of computation of the RSI series described in Section 2.2. Subplots (a) and (b) describe the computation 
window of RSI for streamflows at times NRSI and NRSI + 1, respectively. Changes in streamflow are detected as positive ΔQ↑or negative ΔQ↓ (zero change is counted as 
either) and AR and AF can be computed as in Eqs. (6) – (7). The shaded areas in blue and red show the rising and falling periods (days) of streamflow, respectively. 
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technique (data normalization or transformation) [Ali et al., 2014; Liu 
et al., 2014; Zitnik et al., 2019]. Specifically, the measured streamflows 
are essential for the transformation/reformation process (i.e., RSI in this 
work). The reformed RSI time series then can be used for training of a 
ML model. When trained, the ML model will yield simulated RSI series as 
output in the testing/prediction phase without the need for actual 
streamflow. The predicted RSI values are subsequently converted into 
streamflows that have their original unit by using the inverse of Eqs. 
(5-7). Specifically, given the predicted RSI at times t and t + 1 and 
streamflow (Q) data from t − NRSI + 1 to t, the predicted Q at t + 1 can be 
obtained by performing the inverse of Eqs. (5)-(7). Specifically, if RSIt + 1 
> RSIt, the average fall (AF) can be computed as in Eq. (7), while the 
average rise (AR) can be computed inverse of Eq. (5) as follows: 

AR =

(
100

100 − RSIt+1
− 1

)

AF (8)  

Qt + 1 is then computed by inverting Eq. (6) using the estimated AR: 

Qt+1 = AR × NAR −
∑NAR−1

i=1
ΔQ↑

i + Qt (9) 

The calculation of Qt + 1 when RSIt + 1 ≤ RSIt is executed in a similar 
fashion as outlined above. Specifically, first, AR is computed as in Eq. 
(6), AF is then derived by inverting Eq. (5) using the estimated AR. Qt + 1 
is finally calculated by inverting Eq. (7) with the estimated AF. The 
computation of predicted Q for subsequent time steps is also performed 
in a similar manner, using Q obtained in prior steps. 

The data reformation technique is distinct from other data pre- 
processing methods typically used in ML applications, such as data 
transformation. Conventional data transformation techniques, such as 
the Wavelet analysis and the Fourier analysis, are often applied to 
analyze non-stationary time series or transient phenomena in data. As 
highlighted earlier, when new out-of-sample data representing extreme 
events are included, the range of the transformed data is affected. 
Conversely, RSI data reformation converts the data into the same con
strained space, even when new data with extreme values are added. 

2.3. Discrete wavelet transform 

The discrete wavelet transform (DWT) is a well-known statistical 
method that is used to decompose data series (i.e., climate forcings) into 
multiple sub-series with lower frequency by controlling the scaling and 
shifting factors of basic wavelets, also known as the ‘mother’ wavelets 
[Kumar and Foufoula-Georgiou, 1994; Percival and Walden, 2000]. DWT 
can be used to analyze non-stationary transitions such as breakdown 
points, discontinuities, and local minima and maxima [Adamowski and 
Sun, 2010]. Whilst there are numerous basic wavelets that can be cho
sen, this study applies the Daubechies wavelets [Quilty and Adamowski, 
2018; Quilty et al., 2019] frequently used in ML applications. 

One of the issues encountered with DWT in applications related to 
flow predictions is that it is not inherently shift-invariant, i.e., the values 
of the details and approximations do not change with the values of the 
original data series. This means DWT cannot be applied to problems 
related to singularity detection, forecasting, and nonparametric regres
sion [Maheswaran and Khosa, 2012]. To overcome these problems, an à 
trous algorithm that uses redundant information attained from obser
vational data has been suggested and used in this work [Shensa, 1992]. 
The decomposition formulas of an à trous algorithm are defined as 
[Quilty and Adamowski, 2018]: 

Dj
t = Aj−1

t − Aj
t, (10)  

Aj
t =

∑L−1

l=0
glAj−1

t−2j−1 l mod Nt
, (11)  

where Dj
t and Aj

t represent the jth-level wavelet (detail) and scaling 

(approximation) coefficients of the original time series at time t; gl is a 
scaling filter with gl = gDWT

l /
̅̅̅
2

√
, where gDWT

l is a scaling filter for DWT; L 
is the length of the scaling filter; l denotes index for L; and mod refers to 
the modulo operator. At j = 0, A0

t is equal to the original time series of 
xt. The latter can be obtained from the wavelet coefficients using addi
tive reconstruction: 

xt =
∑J

j=1
Dj

t + AJ
t. (12) 

An original signal is decomposed into D1
t and A1

t through the wavelet 
and scaling filters, and A1

t is further decomposed into D2
t and A2

t through 
the same process. This expansion is repeated until j reaches the 
maximum level J. The number of decomposed sub-series is J + 1. For 
example, if J= 3, the sub-series would be [D1

t ,D2
t ,D3

t ,A3
t ] for each original 

time series. The total number of sub-series for Nin input variables is 
therefore (J + 1) × Nin. The approximation Aj becomes increasingly 
rough as j increases. 

In this study, a level 3 of the decomposition was chosen to transform 
the data series. This choice is somewhat arbitrary, but it is consistent 
with what has been used in prior research [Budu, 2014; Nayak et al., 
2013; Ni et al., 2020; Nourani et al., 2009; Venkata Ramana et al., 2013]. 
The input data series (i.e., climate forcings in this work) enters the 
wavelet transform model as input, and it is decomposed in the first level 
of decomposition into an approximate and a detailed one. In the next 
levels, the approximate signal is subsequently decomposed into a new 
approximate and a detailed one. After using the DWT to decompose a 
forcing data series, four sub-series are obtained, comprised of three 
detail parts and one approximation series. This combination of these 
four sub-series, alongside the original data, acts as the input for the ML. 

2.4. Baseline models 

In this study, two baseline models are designed for comparisons with 
the model that uses the RSI technique (referred to as MRSI). The first 
baseline model (referred to as MNaive) is a traditional model that relies 
solely on the original streamflow data (with a normalization technique 
employed). This approach is well-established in the literature and has 
been used in many studies involving the prediction of streamflow 
[Dehghani et al., 2023; Han et al., 2023; Hunt et al., 2022; Kratzert et al., 
2018]. 

The second baseline ML model is developed using data trans
formation based on the discrete wavelet transforms (referred to as MWT). 
The rationale for constructing MWT stems from prior research indicating 
that a ML model using this data transformation technique can more 
accurately detect and represent infrequent events, thereby enhancing 
accuracy of their simulation [Adamowski and Sun, 2010; Ni et al., 2019; 
Quilty et al., 2019; Tran et al., 2021]. 

3. Data 

This research uses CAMELS (Catchment Attributes and Meteorology 
for Large-Sample Studies) dataset produced by the National Center for 
Atmospheric Research [Newman et al., 2015]. The dataset that has been 
extensively used in machine learning studies of streamflow simulation. 
The availability of this standardized dataset facilitates replication of 
published studies and comparisons with their results, which can maxi
mize the effectiveness of new model development. The dataset is 
comprised of daily meteorological and discharge data from 671 catch
ments in the contiguous United States (CONUS) (Fig. 2a), with areas 
ranging from 4 to 25,000 km2. These catchments typically exhibit nat
ural flow patterns and have long-term streamflow gauge records span
ning 1980 to 2014 [Newman et al., 2015]. In this study, 670 catchments 
were selected to conduct numerical experiments (basin 8202,700 was 
excluded due to its exceptionally short and discontinuous streamflow 
series). The Daymet dataset was used as the climate forcings [Newman 
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et al., 2015; Thornton et al., 1840]. Meteorological data include the 
length of day-light (Dayl), daily total precipitation (Prcp), 
surface-incident solar radiation (Srad), snow water equivalent (Swe), 
2-meter daily maximum and minimum air temperatures (Tmax and 
Tmin), and water vapor pressure (Vp) (hereafter referred to as “input 
variables”). This study focuses on constructing models for each indi
vidual basin, rather than aiming to develop a general model for PUB. 
Consequently, several static catchment attributes related to soils, 
climate, vegetation, topography, and geology were not used to construct 
“a universal ML model”, as in previous PUB studies [Feng et al., 2021; 
Kratzert et al., 2019a, 2019b; Rahmani et al., 2021]. 

4. Experimental setup 

4.1. Data processing 

This study emphasizes the efficiency and robustness of data refor
mation in enhancing the capacity of ML to predict extreme flood events 
that are vastly dissimilar from the training events. To achieve this, we 
specifically designed a testing dataset to include events that are much 
larger than those used to train the ML algorithm. To illustrate the pro
cess, streamflow series for basin 1013,500 in the CAMELS dataset is used 
as exemplary (Fig. 2b-c). The data processing steps are carried out as 
follows.  

(1) Determination of settings for data reformation. In order to reform 
the original streamflow data to RSI series, the first step is to 
ascertain the necessary period (window) durations NRSI. We 
assessed the effects of NRSI on the mutual relationship between 
the RSI series and the candidate inputs (i.e., Dayl, Prcp, Srad, 
Swe, Tmax, Tmin, and Vp), as evidenced by the Pearson corre
lation coefficient (Fig. A.1). Our tests indicate that with small 
NRSImagnitudes, correlations between RSI series and most of the 
input variables are relatively low. Correlation values have the 
tendency to grow with larger NRSI and reach a steady level with 
NRSI larger than 200 days. A higher correlation between the input 
series and target variables is preferable in building a ML model 
[Hagen et al., 2021; Ren et al., 2020; Tran et al., 2021]. In this 
study, we opted for a sufficiently large NRSI value (i.e., 365 days) 
and used it for all 670 catchments. It is important to be aware of 
the effect of NRSI when selecting it, as an overly large NRSI may 
result in a reduced amount of data following the reformation 

process. Given the choice of NRSI, the streamflow series for station 
1013,500 (Fig. 2b) is reformed into an RSI series depicted in 
Fig. 2c.  

(2) Selection of extreme flood events. By incorporating a peak-over- 
threshold approach in this study, we filter event peak flows using 
a selected streamflow quantile as a threshold [Bačová-Mitková 
and Onderka, 2010; Lang et al., 1999; Solari and Losada, 2012]. 
Common choices of the threshold percentiles based on the flow 
duration curves used in prior studies are 75, 90, 95, 97.5, and 99 
[Renard et al., 2006; Solari and Losada, 2012]. In this study, the 
97.5 percentile threshold was chosen. This selection is somewhat 
arbitrary, but it allows for a sufficient number of flood events 
available for training and testing, also ensuring that the selected 
events are extreme. A fixed event duration of 30 days was applied 
for each included streamflow event, with the peak flow occurring 
on day 21 (the event duration does not have an effect on the 
model performance). The selected events for station 1013,500 are 
depicted in Fig. 2b (blue line), totaling in 25 flood events. The 
purpose of using an event-focused approach is to train a model 
that generates accurate predictions for peak flows. It is important 
to emphasize that ML is particularly apt at detecting patterns in 
data-rich areas (such as moderate and low flow conditions). 
However, ML models may fail in predicting extreme events due to 
the scarcity of peak data in the training dataset since their mag
nitudes are ‘anomalous’. Therefore, we purposefully filter the 
data to enhance the fraction of data with high flows, while 
decreasing the level of representation of small and moderate 
flows. This might help improving the performance of the baseline 
models, particularly for predictions of flood peaks.  

(3) Data partition into “training” and “testing” sets. Using the years 
with flood events selected in (2), an ordered set based on the 
annual maximum streamflow is developed. All events observed in 
the top 20% of the years with highest flows are selected as the 
“testing” set; the events observed in the remaining 80% of the 
years are considered as the “training/validation” set. One should 
keep in mind that the count of flood events per year may differ, 
and some peak flows in a given year of the testing set may have 
magnitudes that are smaller than those in the training/validation 
set. Nonetheless, the exemplary data set in Fig. 2b shows that 
streamflow maxima in the testing set have magnitudes that 
exceed those of the peak flows in the training/validation set. The 
corresponding RSI series are processed and partitioned in a 

Fig. 2. Subplot (a) illustrates spatial locations of 670 selected catchments from the CAMELS database located in 18 Water Resources Council regions (indicated with 
basin shape colors) in the conterminous United States. Subplots (b) and (c) respectively present streamflow series (1981–2014) and the reformed RSI data for the first 
catchment 1013,500 (inside the red dash-line box in subplot (a)) in the database. The blue line indicates the selected streamflow (flood) events with peak flow higher 
than the threshold (green line), which is calculated as the 97.5% of daily flow using the entire hydrograph series (i.e., 2.5% of the flow duration curve). The areas 
shaded in gray represent time intervals containing flood events that are selected for model testing. The remaining flood events (i.e., no shading) are used for model 
training and validation. 
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similar fashion, as seen in Fig. 2c. The non-chronological ordering 
of flood events between training and testing sets may raise con
cerns about the potential data leakage issues that arise when 
input-output pairs in the testing set are present in the training 
data. However, this problem did not occur in this case study, as 
the target outputs in the testing set are not included in the 
training/validation target sequences.  

(4) Data normalization. Prior to the use of the data for the training 
and testing of ML models, all selected input variables and target 
outputs are standardized using min-max normalization, which is 
a standard process for training ML [Singh and Singh, 2020]. 

DWT is explicitly employed to decompose each forcing data for the 
MWT model into four distinct subsets of series that are detailed in Sec
tion 2.3. In total, 35 data sub-series comprised of seven climate variables 
(i.e., Dayl, Prcp, Srad, Swe, Tmax, Tmin, and Vp) and the streamflow 
series is used as the inputs for the MWT. In contrast, the MNaive and MRSI 
models employ 8 data series each, comprised of the same 7 climate 
variables and Q (for MNaive) and the RSI (for MRSI). The target outputs of 
MNaive, MWT, and MRSI are Q, Q, and RSI series, respectively. 

4.2. Model training 

In this study, we design three models to predict streamflow for 30- 
day events with a lead time of 1 day. The configuration of candidate 
inputs and target outputs for the three models is presented as Eqs. (13)- 
(15). 

QSim
t+1 = MNaive

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1,t−L1 … x1,t+1

… … …
x7,t−L7 … x7,t+1

QObs
t−LRSI−365

… QObs
t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(13)  

QSim
t+1 = MWT

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1,t−L1 … x1,t+1

… … …
x35,t−L35 … x35,t+1

QObs
t−LRSI−365

… QObs
t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(14)  

RSISim
t+1 = MRSI

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1,t−L1 … x1,t+1

… … …
x7,t−L7 … x7,t+1

RSIObs
t−LRSI

… RSIObs
t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(15)  

where L denotes the lookback window of each candidate input. To 
ensure fairness in comparing the models, the lookback windows of 
observed streamflow (QObs) for MNaive and MWT models were deter
mined to be 365+LRSI. That is, the number of historical values QObs used 
to predict QSim at t + 1 is equal to the number of QObs used to estimate 
RSIObs from t − LRSI to t. 

Prior to training the ML model, a fundamental challenge in ML 
application studies is ascertaining the most suitable input variables (x) 
and their lookback windows (L). Research has demonstrated that a va
riety of techniques can effectively tackle this issue [Ahmad and Hossain, 
2019; Alizadeh et al., 2021; May et al., 2008; Thanh et al., 2022; Tran 
et al., 2021; Xu et al., 2022] and in this study, we implemented a most 
up-to-date method. Specifically, to determine important input variables 
and their lookback windows that have the greatest impact on the target 
outputs, we employed mutual information criterion in conjunction with 
the Hampel test [May et al., 2008] as a stopping criterion to select 
important input variables for ML training (see Text S.2 in SM for further 
details on variable selection). The prior range of the lookback window 
are from 1 to 365. The input time series for each event is processed 

separately and then stacked in order to form the training and testing 
dataset. Since ML model was constructed for each individual catchment, 
the input variables were also selected separately for each catchment. 
Note that the selected 30-day streamflow events from Section 4.1 are 
used as the target output, while the input data can be linger than 30 days 
and can extend beyond that time series. 

In the next step, it is essential to tune the ML hyper-parameters, such 
as the number of hidden layers, the number of hidden units, the dropout 
rate, and the batch size [Kratzert et al., 2019b; Yang and Shami, 2020]. 
To accomplish this, we rely on the Bayesian optimization with a 
Gaussian process, a widely-utilized and highly-efficient approach (see 
Text S.3 in SM). The initial ranges for the values of the above four 
hyper-parameters were assigned to [1–4], [10–512], [0–0.9], and 
[8–512], respectively. The hidden states were initialized as zeros, which 
are default states in Tensorflow [Abadi et al., 2016]. The mean square 
error was utilized as the loss function, and the ADAM optimizer (with 
the learning rate of 0.0001) was employed to facilitate the training of the 
model [Kingma and Ba, 2014]. The learning rate was chosen somewhat 
arbitrarily; however, it aligns well with a number of previous studies 
that have used and recommended this value due to its proven effec
tiveness [Cho and Kim, 2022; Frame et al., 2021; Hunt et al., 2022; Le 
et al., 2019]. 

To maximize efficiency, an early stopping technique [Zhang et al., 
2021] was implemented to expedite the training of the model. Specif
ically, this early stopping approach permits for an indefinite number of 
training epochs and terminates training when the model’s performance 
ceases to advance on the validation dataset [Liu and Mehta, 2019]. The 
maximum number of epochs was predetermined to be 500 for all case 
study basins. Additionally, K-fold cross-validation (validation is not 
fixed to a particular subset in the training/validation set, [Stone, 1974]) 
with the K-fold number of 10 (as had been preferred in many prior 
studies) was used to ascertain whether the model has been sufficiently 
optimized [Wong and Yeh, 2019]. Specifically, the training/validation 
set is partitioned into K = 10 distinct, equitable subsets, or “folds”. A ML 
model is then trained on K-1 folds of the data and subsequently validated 
on the leftover fold. This approach is cycled K times with K models, with 
each fold being used in turn as validation dataset. 

4.3. Evaluation metrics 

The testing set is used to evaluate ML model performance. Since this 
study is particularly concerned with the capability to predict peak flows, 
so the Exact Peak Error (EPE) metric [Cunderlik and Simonovic, 2004] 
was used to measure the accuracy of the model’s predictions in com
parison to the observed streamflow data: 

EPE =
QSim

peak − QObs
peak

QObs
peak

× 100%, (16)  

where QSim
peak and QObs

peak denote the simulated and observed streamflow 
peak for a given event, respectively. The unit of EPE is a percentage with 
a theoretical range of (-∞, +∞). A negative value of EPE implies that the 
simulated peak is lower than the observed one, and vice versa. 

Additionally, the traditional Nash–Sutcliffe efficiency (NSE) coeffi
cient is utilized as a metric to assess the overall predictive skill of trained 
ML models. 

NSE = 1 −

∑T
t=1

(
QObs

t − QSim
t

)2

∑T
t=1

(
QObs

t − QObs
mean

)2, (17)  

where QObs
t and QSim

t are the actual observation and predicted stream
flow outputs at time t; QObs

mean is the mean of the observation over the 
entire event; T is the total number of time steps of the event. The value of 
NSE ranging from -∞ to 1 and NSE = 1 indicates a perfect model with an 
estimation error equal to zero. 

V.N. Tran et al.                                                                                                                                                                                                                                 



Advances in Water Resources 182 (2023) 104569

7

5. Results 

5.1. Event selection and RSI reformation results 

The reformation of the streamflow data and selection of the events 
were carried out for 670 catchments, resulting in the total of 55,055 
streamflow events. Of these, 42,631 were used for the purpose of 
training and validating ML models (blue lines in Fig. 3e), while the 
remaining 12,424 events were reserved for testing the model (gray 
lines). In the testing set, 3810 events (or out-of-sample events) had peak 
flow magnitudes that exceeded the largest event in the training set, 
while the remaining 8614 events had peak flow magnitudes that are 
lower to the highest peak flows in the training set. The out-of-sample 
events are represented in Fig. 3e with normalized streamflow 
(NormQ) values greater than 1.0. The normalized series is obtained by 
dividing original streamflow by the maximum value in the training/ 
validation dataset for each basin, resulting in the highest NormQ value 
of the training/validation set equal to 1. It is evident that peak flows of 
these events are significantly larger than peaks in the training set data, 
up to 5–14 times. The use of NormQ is to ensure the uniformity in data 
size and to highlight the differences between the data used for training 
the model and the data used for testing the model for all basins. 

The RSI series (Fig. 3b) exhibit an appreciably lower range of vari
ability than the original streamflow series (Fig. 3a). For example, 
Figs. 3c-d display examples for five events of an exemplary basin. 

Despite the apparent differences between the five events in the original 
series (e.g., the event shown in magenta has a peak 1.8–2 times higher 
than peak streamflow of the other events), when transformed into the 
RSI form, the time series of these events become nearly indistinguish
able. This is precisely what is expected when converting out-of-sample 
into in-of-reformed samples. 

Upon examination of the RSI series for 55,055 events (Fig. 3f), out- 
of-sample events cannot be clearly discerned in the testing set – this is 
an expected outcome of the application of the reformation data pre- 
processing. It can be seen that the RSI values only fluctuate within a 
limited range, and the data space of both the training/validation and 
testing sets are substantially similar (as demonstrated in the inset of 
Fig. 3f). The results illustrate the efficacy of the data reformation tech
nique in bringing what would be out-of-samples in the physical 
streamflow range – into the in-of-reformed range for RSI values. 

5.2. Model performance results 

A comparison of the performance of three models in simulating 
streamflow for events in the test set is illustrated in Figs. 4, 5, and 6. The 
primary outcome is that the MRSI model using the reformed data 
remarkably outperforms the baseline models in predicting out-of-sample 
events. Fig. 4 presents the results of three models’ predictions for 4 first 
catchments in the CAMELS dataset as examples (i.e., 1013,500, 
1022,500, 1030,500, and 1031,500). Results for other catchments can 

Fig. 3. (a) Concatenated hydrographs that are flood events selected as a subset of those shown in Fig. 2b (basin 1013,500), with 20% of the streamflow data (events 
highlighted by areas shaded in gray) used to test the ML models, and the remaining 80% used for training/validation. Colors of the time series illustrate different 
exemplary events in (c). The inset depicts the probability distribution function (PDF) of streamflow from the complete training and validation datasets (the blue 
shaded area) and the testing dataset (gray). (b) The reformed streamflow series in (a) in the form of Relative Strength Index (RSI). The inset plot shows PDF of the RSI 
data used for training (blue) and testing (grey). Subplots (c) and (d) show the original streamflow and reformed RSI series, respectively, for five events (colored lines 
in (a) and (b)) over the period of 30 days with peak flow occurring on day 21. (e) The normalized streamflow (NormQ) and (f) the RSI series for 55,055 streamflow 
events from 1980 to 2014 across 670 basins. The PDF based on the inverse Gaussian distribution of the two (training/validation vs. testing) sets are shown in (e) and 
(f) with both x-axis and y-axis in log10 scale, with the limits for x-axis in (a), (b), (e), and (f) being [0–20,000], [0–100], [0–15] and [0–100], respectively. 
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be found in the dataset shared as Tran et al., [2023a]. Fig. 4 demon
strates that only the MRSI model can provide accurate streamflow 
simulation for the events outside of the range of the training/validation 
set, except for results for the catchment of 1022,500. Both the MNaive and 
the MWT models were only able to generate satisfactory results for 
streamflow magnitudes up to near the highest limit of streamflows in the 
training set (the first event). The average EPE results reveal that with 
data outside the training/validation set, only the MRSI model can yield 
highly accurate results (with EPE value of 4.5, 0, and 7.2%, respectively 

for catchment of 1013,500, 1030,500, and 1031,500). The MNaive and 
MWT models predict peak flows below the observed peaks, with EPE 
values below zero and the average EPE values ranging from about −10% 
(catchment 1030,500) to 35.7% (catchment 1031,500). It is not unex
pected that for the events that have streamflows close to the range used 
in the training/validation set, all three models exhibit very good per
formance with the predicted peak flows that are very similar to the 
observations. 

A comparison of results of peak flows for the three models across 

Fig. 4. (a, c, d, e) Comparisons of hydrographs simulated using the three ML models in the testing set and observations for four catchments (i.e., 1013,500, 1022,500, 
1030,500, and 1031,500). (b, d, f, h) Scatter plots of simulated streamflow using the three models (y-axis) versus observations (x-axis). The black-dashed line in both 
subplots delineates the maximum streamflow in the training/validation set. The average EPE (exact peak error) values for the three models were computed for out-of- 
sample events that fall in the upper/left area of the plot demarcated by the black-dashed line. 
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3810 out-of-sample events in 670 catchments is shown in Figs. 5 and 6. 
The graphical inspection of results in Fig. 5 demonstrates that the MRSI 
model yields the most satisfactory performance with an average NSE of 
0.8 computed for the predicted versus observed peak flows. The MNaive 
and MWT models result in NSE values of 0.696 and 0.575, respectively. 
By analyzing the scatter plots in relation to 1:1 line, it is evident that the 
MRSI model generates results that are more closely related to the ob
servations (i.e., the dark red color in Fig. 5e indicates a high density of 
data points more evenly distributed along the 1:1 line). In contrast, 
Figs. 5a-c suggest that the two remaining models are less successful in 
accurately predicting the peak flows: the simulated magnitudes are 
generally lower than the measured values, and the absolute majority of 
the predicted flow peak values is below the actual observations. The 
difference between the observed and predicted peak flows of the three 
models (QObs

peak − QSim
peak) for 3810 flood events is illustrated in Figs. 5b-d-f. 

The results are consistent with the insights provided by the heatscatter 
plots: the MRSI model produces mostly reliable results with the median 
streamflow difference close to zero, evenly spaced distance between the 
25th and 75th percentiles on both sides of zero (Fig. 5f). In contrast, the 
peak differences for the MNaive and MWT are generally higher than zero, 
thus indicating that the predicted flood peaks are usually lower than 
observations. The PDFs for these two models place the 25–75th per
centiles entirely in the positive region (Figs. 5b-d). Conversely, for the 
8614 events that fall in the same range as the training events, the 
simulation results for all three models are comparable, all exhibiting 
satisfactory performance in predicting peak flows with a mean NSE 
value exceeding 0.9 (Fig. A.2). 

Fig. 6a illustrates the spatial distribution of models with the highest 
performance. Here, the model performance is determined based on the 
mean of absolute EPE for all events for each catchment. Of the three ML 
models, the model with the smallest mean absolute EPE (i.e., closest to 
the theoretically ideal value of 0) is considered as the best one. By 
counting the number of watersheds in which a given ML model resulted 
in the best EPE, it can be seen that MRSI surpasses MNaive and MWT, and is 
the most efficacious model for 433 catchments (accounting for 64.6% of 
basins). This can be compared to 190 (28.4%) and 47 (7%) watersheds 
in which the other two models, MNaive and MWT, respectively, result in 
the smallest EPE. It follows that the data reformation-based RSI method 
has a high degree of universality and is appropriate for application to 
various types of watersheds with varying hydrological, meteorological, 
or flow characteristics. 

The EPE results for 3810 events are further demonstrated using the 
boxplots in Fig. 6b, with the mean EPE values obtained for the three 
models −41.25, −47.7, and −14.7%, respectively. Generally, these re
sults are in line with the visual assessment in Fig. 5, showing that the 
MRSI model can generate peaks that are closer to observations, as 
compared with the other two models. Particularly, for events that are 
more dissimilar from the training events (with NormQ ranging 3 to 15), 
the efficacy of MRSI is further highlighted by the simulated peak mag
nitudes that are much closer to observations. Specifically, for 33.8% of 
all out-of-samples events in the testing set, the MRSI simulations were 
found to be in excellent agreement with observations (EPE is within 
[−20%, +20%]) (see Fig. 7), even when events were more than five 
times higher than the upper limit of the range for training/validation 
events. In contrast, the majority of the EPE results (more than 99%) 

Fig. 5. Heatscatter plots (subplots a, c, and e) for 3810 simulated flow peaks (QSim
peak) using the three ML models vs. observed flow peaks (QObs

peak) in the testing set (all 
670 basins). It should be noted that all 3810 peak streamflows shown in this figure exceed peak flows in the training/validation set (i.e., they have NormQpeak greater 
than 1.0). Both x- and y-axis are plotted using the log-scale. The colors reflect the density of data points (shown by the color bar). Three probability distribution 
function (PDF) plots (b, d, and f) depict the distribution of streamflow difference (QObs

peak − QSim
peak) computed for the three models, MNaive (left), MWT (center), 

MRSI(right). The vertical blue lines denote the interquartile range (25% - 75%) of the PDFs. 
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calculated from MNaive and MWT have a value of less than 0, with 
respectively more than 82% and 90% of out-of-samples events below 
EPE = −20% (Figs. 6b and 7). For these two models, most of the 
simulation results with EPE close to 0 were obtained for events that were 
similar or not substantially different from the training events, i.e., their 
normalized peak flow (NormQpeak) was close to 1 (Fig. 6c). Expectedly, 
the inadequacy of the MNaive and MWT models is more evidently 
demonstrated for more extreme events, i.e., those that have peak 

magnitudes further away from peak flows in the training set. The mean 
EPE for three models were computed for events whose NormQpeak values 
were situated within the same range depicted as the black-dashed lines 
in Fig. 6c. Specifically, these mean EPE values clearly exhibit the cor
relation between EPE and the size of the event, with events that are 
further away and dissimilar from the training events, the mean of EPE 
values for the two models (MNaive and MWT) are lower and closer to 
−100%. On the other hand, the relationship between EPE derived from 

Fig. 6. The spatial map (a) illustrates distribution of the best model for 670 catchments in predicting peak flow based on the mean absolute Exact Peak Error (EPE). 
The three models MNaive, MWT, and MRSI have the best performance for 190, 47, and 433 catchments, respectively. The circle size presents the average NormQpeak 

(NormQpeak) for all out-of-sample events (with NormQ > 1) for each catchment in the testing set. Boxplots in (b) are used to illustrate the EPE distribution for 3810 
events across 670 catchments. The median (central mark), the 25th and 75th percentiles (edges of the box), and the maximum and minimum values excluding 
outliers (whiskers) are illustrated. Subplots in (c) display the heatscatter between EPE and NormQpeak (normalized peak flow) for the same events as in (a) and (b). 
The color of the dots reflects the concentration of data points (shown by the color bar). All events represented by this figure have peak magnitudes higher than the 
maximum peak flows in the training/validation set. The black dashed lines illustrate the average EPE value calculated according to the NormQpeak values with 0.5 
and 3-sized bins between the intervals of [1–5] and (5–15], respectively. 

Fig. 7. The partitioning (as a percentage) of the estimated EPE values for the three models (see the legend) estimated for 3810 out-of-sample events across 670 
catchments, with a 20% bin size employed. 
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MRSI and the magnitude of events varies considerably compared to the 
other two models. The mean EPE obtained from MRSI decreases from 
−10% to −55%, corresponding to NormQpeak values in the range of 1 to 
5. For NormQpeak values exceeding 5, the behavior of the prediction skill 
becomes less apparent, but can reach a mean EPE value close to −20%, 
when the NormQ reaches 15 (black-dashed line in the last subplot in 
Fig. 6c). 

6. Discussion 

Although the MRSI model has the capacity to predict beyond the 
magnitudes of events used in the training/validation set, the simulation 
results still remain far from ideal. Specifically, MRSI predictions may still 
contain considerable errors with an absolute EPE greater than 50% for 
20.7% of the out-of-sample events (789 out of 3810). While the MRSI 
model surpasses the skill of the other two models, it is necessary to 
explore why it is not superior for all 670 watersheds (e.g., predicted 
results for catchment of 1022,500 in Fig. 4 and four catchments in 
Fig. S1 in SM). 

The fundamental difference between the ML models lies in the use of 
RSI instead of Q as the target output. Our analysis reveals that while 
incorporating RSI for particular watersheds is beneficial for the “scaling” 
issue (i.e., to bringing training and testing datasets to the same range), it 
doesn’t resolve many of the other inherent issues, such as strong non- 
linearity and non-stationarity of the watershed behaviors, or “hidden/ 
unknown” uncertainties [Gharib and Davies, 2021; Prodhan et al., 2022; 
Xu and Liang, 2021]. Any of such features in the used dataset can lead to 
a poorer model performance, especially for events that have flow peaks 
near the training data distribution (highlighted in Fig. 6c, where the EPE 
values show an immense variation for small NormQ values). The pro
posed approach is viable for tackling one of the major challenges in 
machine learning applications, which is making out-of-sample pre
dictions. It is particularly designed for extreme flood prediction. 
Therefore, caution is still required when selecting suitable data pro
cessing approaches, depending on the specific use cases (e.g., flood or 
drought prediction) and varying time frames, in order to achieve the 
most efficient model. 

Further, it is logical to conclude that confidence intervals of ML 
models’ predictions need to be assessed in their typical applications. 
Most of the current ML applications for streamflow prediction attempt to 
construct a “deterministic” model that fits optimally (without over
fitting) the major fraction of training data, yet they do not attempt to 
provide uncertainty estimates [Alizadeh et al., 2021; Kratzert et al., 
2018]. It is evident that the level of uncertainty in ML predictions can be 
significantly underestimated due to the lack of utilization of relevant 
information, such as data stochasticity [Kim et al., 2016a; b] or input 
and output noise [Kendall and Gal, 2017]. Uncertainty is inherent to all 
aspects of hydrological modeling, and it is generally accepted that pre
dictions should account for it [Beven and Freer, 2001; Dwelle et al., 
2019]. In many applications, such as streamflow predictions, it is as 
important to obtain the confidence of a prediction as the prediction itself 
[Beven and Binley, 1992]. Significant efforts have been undertaken to 
explore the uncertainties associated with physical-based models [Beven 
and Binley, 2014; Dwelle et al., 2019; Kim et al., 2015; Moradkhani and 
Sorooshian, 2008; Tran et al., 2020], while comparatively few efforts so 
far have been devoted to ML models, despite their recent surge in 
popularity [Abdar et al., 2021; Fang et al., 2020; Klotz et al., 2022; Liu 
et al., 2023b; Lu et al., 2021; McDermott and Wikle, 2019]. This presents 
an opportunity for future research to concentrate on evaluating the 
uncertainty of ML models, and inventing solutions to reduce it, while 
bolstering confidence in ML applications. 

This study yields an unexpected outcome, that the MWT model 
demonstrates a less successful performance than the MNaive in predicting 
out-of-sample events. This is despite the usual assumption that extreme 
events can be more effectively discerned and therefore predicted 
through wavelet transformation and decomposition. This result 

demonstrates the efficacy of employing an attention mechanism in 
conjunction with an LSTM, allowing the LSTM to manage intricate re
lationships between inputs and outputs. It also allows to hone in on 
significant input variables that have a direct influence on the target 
output (streamflow), while disregarding any other input variables of 
lesser relevance. With the enhanced capability to recognize information 
for extreme events, the trained LSTM can yield accurate results, elimi
nating the need for additional methods, such as wavelet transform. This 
finding is also consistent with the conclusion of Hunt et al. [2022] and 
Han et al., [2023]. Conversely, the utilization of WL model type can 
have an adverse effect on the results, as the quantity of inputs fed into 
the training model will drastically grow after decomposition, resulting 
in a corresponding increase in the number of learnable parameters that 
need to be trained in LSTM. This implies that the model will be harder to 
train and may be more challenging to optimize, resulting in a potential 
decrease in model performance due to the issues of high dimensionality 
and convergence issues in model training [Tran et al., 2021]. Such re
sults imply that with the introduction of advanced machine learning 
models that have the capacity to self-process information, the trans
formation of data using, for example, wavelet or Fourier transforms, 
may not be really necessary. Furthermore, this underlines the critical 
needs for ML progression in the coming years, such as, for example, the 
need to enable the creation of assisting mechanisms for ML to self- re
form the data and bolster its extrapolation capabilities. 

This study was designed to evaluate the efficacy of the proposed 
method, using information that is assumed to be available beforehand 
such as the forcing data and observed streamflow. In real-world settings, 
additional complexities arise regarding the inability to measure or 
collect observed flow data in a timely manner during extreme events (e. 
g., hurricane) due to, for example, infrastructure failures. To predict 
future flows, the proposed method requires only estimated inputs and 
observed streamflow for the prior time intervals (see Eq. (15)), enabling 
the methodology viability whenever such data are available. Flows 
predicted at preceding time intervals can be used to extend predictions 
for future time intervals, when observations are temporarily unavailable 
or require additional vetting. Real-world implementation of the pro
posed reformation technique warrants further investigation of its per
formance issues under various data availability scenarios, which is 
beyond the scope of this study. 

Relatively straightforward data requirements may hint the feasibility 
of using this method for PUB studies that lack streamflow observations. 
Over the last decades, numerous studies have proposed various ap
proaches and models in conjunction with regionalization or data 
assimilation techniques with the objective to reconstruct the past 
streamflow at high accuracy in the PUB context [Kratzert et al., 2019a; 
Luce, 2014; Sivapalan et al., 2003]. Consequently, we are of the opinion 
that the utilization of the RSI for PUB studies is feasible. Furthermore, a 
universal (or attribute-aware) model, trained with more diverse datasets 
drawn from different research areas, has the potential to simulate 
extreme peak flows even more accurately than the traditional MNaive 
[Frame et al., 2021]. The application of such a model type combined 
with the RSI reformation would be a potential follow-on study in pre
dicting the flow of extreme events for regions with insufficient data. 
Additionally, the potential application of the suggested approach can be 
extended to research utilizing ML for multidimensional (e.g., gridded 
fields) data predictions [Kotsiantis et al., 2007; Talukdar et al., 2020], 
even though this study concentrates on using ML for a univariate time 
series predictions. In geophysical sciences, not only state and flux vari
ables (e.g., atmospheric temperature and humidity, soil moisture, can
opy biomass, etc.) fluctuate with time but they also vary in space and 
that extending the method to reformation of multidimensional (2 or 3 
dimensions) data has a theoretical potential. Computation of the relative 
change of quantities of interest between different locations in a 
multi-dimensional series can be accomplished analogously to what has 
been demonstrated for a univariate series. 
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7. Conclusion 

The results of this study demonstrate practical usefulness of machine 
learning models for predicting extreme events that are much different 
from those that are used for training ML models. The central premise of 
the proposed method is that all data should be brought into a more 
homogenized data space, so that all out-of-samples can be converted 
into in-of-reformed samples. By reforming the data used for training/ 
validation and testing to be in a homogenized data space, the difficulty 
of extrapolating out-of-samples goes away, and instead interpolation of 
in-of-reformed samples occurs. A noteworthy methodological point is 
that instead of using actual streamflow data, a different data kind is 
employed to train the model – namely, the relative change of streamflow 
derived using Relative Strength Index (RSI). The prediction of this 
relative change is then reversed to actual streamflow values. Overall, the 
results demonstrate that the prediction skill of the trained ML-RSI is 
remarkable, even for events that exceed magnitudes of the training/ 
validation events by a factor of 3–15. Further research is necessary to 
construct better data reformation methodologies for training ML models 
to enhance their accuracy and ability to produce uncertainty quantifi
cation, when predicting extreme events that have not been encountered 
in the past. 
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Appendix

Fig. A.1. Demonstration of the influence of period duration, NRSI, on the Pearson correlation between the RSI and individual input variables for catchment 1013,500. 
The value of NRSI ranges from 1 to 365 days. The input variables include the length of day-light (Dayl [seconds]), daily total precipitation (Prcp [mm]), surface- 
incident solar radiation (Srad [W/m2]), 2-meter daily maximum air temperature (Tmax [ ◦C]), 2-meter daily minimum air temperature (Tmin [ ◦C]), and water 
vapor pressure (Vp [Pa]). The snow water equivalent (Swe) values in this watershed are all equal to 0; therefore, the relationship between NRSI and Swe is not 
depicted in this figure.  
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Fig. A.2. Heatscatter plots of 8614 simulated flow peaks by the three ML models versus observations for the testing set over 670 basins. The flood peaks shown in the 
subplots are smaller than the largest peak in the training/validation set, i.e., with NormQpeak smaller than 1.0. Both x- and y-axis are plotted using the log-scale. The 
colors represent the density of data points (shown by the color bar). 
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