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ARTICLE INFO ABSTRACT

Keywords: Hydrologists have been actively exploring the utility of machine learning (ML) models for predicting streamflow.
Machine learning While ML methods have proven to be as accurate as conventional modeling techniques for streamflows well
Extrapolation

represented in the training set, they continue to lack satisfactory skills for extreme events. In this study, a novel
‘data reformation’ technique is proposed based on the Relative Strength Index (RSI) — a measure of speed and
direction of changes in the time series. RSI homogenizes all observations to a constrained 0-100 range, and all
‘out-of-sample’ data in the testing set fall within the space of the training set. Long Short-Term Memory network
with an attention mechanism is used to train three ML models using 55,055 events from the CAMELS dataset
(670 basins, 1980-2014). Predictions are made for 12,424 events, of which 3,810 are significantly higher than
streamflows in the training set. The ML model based on RSI-reformed data exhibits superior performance, as
compared to other advanced ML models without data reformation. Peaks up to 15 times larger than those in the
training events are accurately predicted, leading to an outperforming model skill for 433 out of 670 catchments.
These findings indicate that incorporating a new data reformation technique into the data pre-processing step in
ML modeling can enhance the utility of ML models for extreme events. This research encourages further

Data reformation
Relative strength index
Streamflow predictions
Extreme events
Out-of-samples

exploration to identify better data reformation methods to enable confident ML predictions.

1. Introduction

Machine learning (ML) has gained considerable traction in the
geophysical science community [Reichstein et al., 2019]. While still in
their nascent state, many studies over the last decade have demonstrated
that ML models can surpass existing state-of-the-art modeling tech-
niques in complex problems, and hydrologists have started actively
exploring ML in the domain of streamflow simulation [Ahn et al., 2022;
Feng et al., 2021; Han et al., 2023; Kratzert et al., 2018]. ML algorithms
do not rely on predetermined equations or assumptions (such as tradi-
tional process-based models), but rather learn from the data themselves,
thereby enabling them to adapt to evolving conditions and uncover
hidden insights [Xu and Liang, 2021]. This adaptability and capacity to
handle intricate interactions make ML a compelling candidate for
improving streamflow predictions [Alizadeh et al., 2021; Kratzert et al.,
2018].

Specifically, multiple studies have implemented streamflow simula-
tion and highlighted that the applicability outcomes of ML exceed those
of simple lumped hydrological models [Arsenault et al., 2023; Frame
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et al., 2021; Liu et al., 2023a]. The application of ML is possible for
predictions and simulations across various timeframes, ranging from
hours, days, and months [Cheng et al., 2020; Dehghani et al., 2023; Hunt
et al., 2022; Xiang and Demir, 2020]. ML applicability can be broad and
this approach has been employed in numerous case studies including
global datasets [Tang et al., 2023; Wilbrand et al., 2023]. “Prediction of
ungauged basins” (PUB) has been one acute area of research interest in
hydrology [Feng et al., 2021; Kratzert et al., 2019b; Le et al., 2022]. A
number of studies have also focused on advancing ML methods such as
data processing and model optimization, as well as designing new model
types such as hybrid models [Ahmed et al., 2021; Konapala et al., 2020;
Liu et al., 2023b; Nourani et al., 2014; Yu et al., 2023] or physically
informed ML [Bhasme et al., 2022; Frame et al., 2021; Lu et al., 2021;
Zhong et al., 2023].

Nevertheless, ML applications are not without inherent drawbacks.
These techniques exhibit challenges related to data non-linearity and
non-stationarity, model interpretability, uncertainty quantification,
model selection, the need for high-quality training data, and “out-of-
sample prediction” [Quilty et al., 2023; Xu and Liang, 2021]. The latter
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challenge, which refers to the estimation of magnitude ranges to which
ML training has not been exposed to, has been identified as one of the
greatest challenges for ML models over the past decades [Frame et al.,
2021; Kratzert et al., 2019a; Todini, 2007; Tran and Kim, 2022]. This has
led to a debate between physical process-oriented modelers and
data-driven modelers, with the former arguing that ML models lack an
appreciation of physical characteristics and dynamics in their study
domains, resulting in a lack of confidence in data-driven model outputs
due to their heavy reliance on training sets [Todini, 2007]. Similarly, it
has been argued that data-driven models may not be as effective in
conditions that differ from the training data [Kirchner, 2006; Vaze et al.,
2015]. Indeed, a conventional application of machine learning meth-
odologies might be unable to accurately predict or extrapolate estimates
outside of the training data space, despite their generally strong pre-
dictive capabilities for data within it [Kratzert et al., 2019a; Tran et al.,
2020; Tran and Kim, 2022].

Research into the utilization of ML has sought to tackle the challenge
of the “testing set” outside of space of the “training set” by broadening
the data range of the training set to encompass a wider range of potential
scenarios. However, this is often not feasible due to the difficulty of
obtaining a sufficient number of observed extreme events for training —
simply because they have not been observed. Climate change has the
potential to create extreme events that have not been experienced before
[Bao et al., 2017; Bloschl et al., 2020; Doi and Kim, 2020; 2021; Prein
et al., 2016], and internal climate variability can also lead to extreme
events that are different from those that have been recorded, even if
climate remains stationarity [Bao et al., 2017; Beniston et al., 2007; Doi
and Kim, 2020; Gao et al., 2020; Kim et al., 2018; Milly et al., 2008]. This
limited capacity to extrapolate data is a major impediment for ML to be
applied in real-world settings with increasingly frequent extreme events
[Donat et al., 2016; Dottori et al., 2018; Ivanov et al., 2021; Prein et al.,
2016], and thus an alternative solution is needed to ensure predictability
of events beyond the available training data space.

A search of the Web of Science (accessed in January 2023) for two
keywords “streamflow” and “machine learning” yielded a total of 466
research studies. This number attests to the burgeoning use of ML in
streamflow modeling research. Surprisingly, no results were found when
adding the keywords “extrapolation” or “out-of-sample prediction”. A
broader search was conducted for machine learning studies in all fields
on time series applications related to “out-of-distribution” (OOD). Most
of the identified studies mainly used OOD in data splitting (between
training and testing datasets) for evaluating model performance
[Ahmad et al., 2021; Boyer et al., 2021; Geiger et al., 2020; Moller et al.,
2021; Olenskyj et al., 2022; Yeung et al., 2021], rather than focusing on
proposing approaches to address this issue. The most relevant research
that can be found is on the potential of ML in simulating “extreme
events” [e.g., Frame et al., 2021]. They are defined as high-return-period
(low-probability) streamflow events. It should be noted that “extreme
events” may or may not indicate that the events are outside the scope of
the training data. Recent research by Frame et al., [2021] has proposed a
technique to improve the effectiveness of ML in predicting such extreme
events. The authors hypothesized that incorporating physical (i.e., mass
balance) constraints into the ML architecture would be advantageous.
However, their evaluation results showed that pure ML was more
effective than the physically-informed ML approach and that “adding
mass balance constraints to the data-driven model reduced model skill
during extreme events”. Liu et al., [2023b] and Quilty et al., [2023]
proposed the use of sophisticated neural networks to measure the con-
fidence intervals of predictions. By considering the uncertain range, this
approach can enhance the predictability for OOD events, but not sub-
stantially different from the training dataset. An alternative way to
improve the efficacy of ML in predicting extreme events could be to
combine it with a process-based model [Konapala et al., 2020; Tran
et al., 2023b]. Our recent study has put forward three potential strate-
gies for augmenting the skill of data-driven models for “out-of-sample
prediction” by: (i) enriching information on physical phenomena in
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data-driven models through the utilization of high-fidelity samples
generated by process-based models; (ii) broadening the training data
space by considering additional input and parameter uncertainties; (iii)
or constructing a hybrid model that combines a standard predictive
model with a model that has extrapolation capabilities [Tran and Kim,
2022]. Nevertheless, these strategies have been proposed for the gen-
eration of surrogate models that replicate a computationally expensive
model using “synthetic data”, but not for pure ML applications that solely
utilize observational data. It implies that, as of now, no successful
method has been established to address the issue of “out-of-sample
prediction”.

In this study, we propose a strategy that has the capacity to overcome
this long-standing challenge. We hypothesize that a novel data pre-
processing step called “data reformation” can re-scale data to be within
a restricted range, resulting in ML training that is effective for “out-of-
sample prediction” problem. Specifically, both training and testing data
after they have undergone a reformation process are contained within
the same “homogenized” data space. The implication of this process is
that out-of-sample data are located in the same data space as the training
samples, and can be referred to as “in-of-reformed” samples. The
reformed data should be used to train an ML model instead of the
original data. If both the training and testing datasets are constrained to
the same range, the trained ML model should be able to compute well for
out-of-original samples in the testing set. In this study, we specifically
focus on the high-return-period (low-probability) streamflow (flood)
events and compare the proposed ML model (using data reformation)
with two baseline models that use different data processing techniques:
(i) a standard ML model with data normalization only and (ii) a ML
model with standard data transformation. In method (ii), data trans-
formation such as a wavelet transform is a popular data processing
method used in ML research, as it can be used to solve problems related
to the diagnosis, classification, and forecasts of extreme weather events
[Nourani et al., 2014; Sang, 2013; Tran et al., 2021]. It involves
decomposition of time series into multiple lower-resolution subseries,
and extracting useful information from the original data [Nourani et al.,
2014]. In this study, we do not compare the performance of ML with
benchmarking models since this has been done in many previous studies
[Feng et al., 2021; Frame et al., 2021; Kratzert et al., 2018, 2019a].

2. Methods
2.1. ML model: LSTM with attention mechanism

Long Short-Term Memory (LSTM) network is a type of recurrent
neural network (RNN) that can learn long-term dependencies between
input and output features by resolving gradients that are expanding or
vanishing [Hochreiter and Schmidhuber, 1997; Kratzert et al., 2018].
LSTM adapts vanilla RNNs with three gates (forget gate f;, input gate iy,
and output gate o,) and preserves more useful information of input. In
this study, we use an attention-based LSTM, a state-of-the-art LSTM
variant for predicting streamflow [Ding et al., 2019; Hunt et al., 2022;
Vaswani et al., 2017]. The attention mechanism assigns scores to each
input feature, allowing the consideration of interdependency of input
sequences at various time steps [Wang et al., 2016]. This enables LSTM
not only to handle the long-term dependencies of driving sequences over
historical time steps, but also to improve the ability of LSTM to capture
high nonlinearity [Alizadeh et al., 2021; Ding et al., 2020; Li et al.,
2019]. Specifically, given the k-th input time series xx = {xk,1, X2, ...,
xi, v} with T that is the size of the time series, we can construct an input
attention mechanism by referring to the previous hidden state h, _ ; and
the cell state ¢; _ 1 as:

er, = vitanh(W, b,y + W,e,y +Ux;) 1)

(27
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where v, W,,U, are learnable parameters; factor oy, is the attention
weight measuring the importance of k-th input at time t; and tanh is an
activation function of LSTM layer. Note that all learnable parameters
will be called @ hereafter (0 = {W, U, b, v}). With oy ;, we can adaptively
extract the input data series with:

3‘:1 = [al.txl‘ly A2 X2¢5 05 AN, ,sz,,,,r} ) (3)
where Nj, denotes the number of inputs x; = [x1, X2, ..., Xn,,¢]. The
hidden state at time t can be updated as:

hz = f(hz—l:fr)y (4)

where f is an LSTM unit that can be estimated with x;, as detailed in S.1
in the Supplementary Material 1 (SM1). For more details about the
attention mechanism, readers are referred to Wang et al., [2016].

2.2. Data reformation: relative strength index

After testing numerous data pre-processing techniques accepted
from various disciplines such as engineering, economics, and social
sciences, we have identified a suitable method that meets the needs of
reformulating a time series data into a new data form that is constrained
to a limited range. Specifically, the method relies on the Relative
Strength Index (RSI) developed by Wilder [1978]. RSI is a momentum
oscillator index that is widely used in the field of economics to measure
the speed and change of price shifts. By reforming time-series data on
prices into the RSI series, their values are restricted to be within a range
between 0 and 100. Even if new extreme prices occur in the future, the
new RSI values will remain within the range since the index only reflects
the relative changes in the price, rather than their actual levels. This
concept can also be applied for processing streamflow data.

Specifically, the RSI calculation for streamflow can be carried out in
the following manner. To simplify its application, RSI is broken down
into its basic components: average rise (AR), average fall (AF), and a

Q [m?/s]
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duration of period (Nggj) that contains the averaging intervals for AR
and AF [Wilder, 1978]. The RSI is calculated as:

100

RSI =100 - ———
ST =100 1 +AR/AF

)

In this work, daily streamflow data are used, so one day is the
considered data resolution. Consider that Nag and N4 are the number of
total days corresponding to the rising and falling streamflow (as
compared to the streamflow of the previous day), starting from the first
record of daily flow (see Fig. 1 for illustration), such that Nag + Nar =
Nggr — 1. Variables AR and AF can be computed as:

1 Nar .
AR=— AQ! 6)

Nar ; 2

1 Nar. I

AF = — AQ!
N > a0 @

J=1

where AQ! and AQjl represent the magnitudes of the increase or
decrease in streamflow as compared to the previous day during the i-th
rising and j-th falling days of streamflow series, respectively.

All components (i.e., Ngs;, Nar, Nar, AQI.T and AQ}) used in the
computation of RSI are graphically visualized in Fig. 1. In application of
Eq. (5), the duration Ngg is in essence a window through which the
original streamflow series are analyzed, allowing to obtain a single RSI
value for each window location. Eq. (5) is applied on successive Nggy
periods shifted at the resolution of the original streamflow data (i.e., one
day). As a result, upon data reformation in this manner, the total
duration of the RSI series is N — (Nrs; — 1) days (Nqis the total duration
of streamflow data), as Ngg; first records of Q are not converted to RSI
since they represent the size of the window. Thus, Nggr should not exceed
No.

The utilization of RSI in practice is akin to any data processing

| J = Nar

(i=Ngg—1, i=Npg | j=Ngr—1

! i 2 i - SA Nasr Nes3 Nesi 2 Nest Nesi
b Colmputati?n windolw of RSI Ifor strealmflow atI time oleRS,+1 | | |
I I—
EEEn v : : EEE:
T T T 1 i T T T T T T | E—
1 2 3 4 5 NR5/—4 NRS/_?’ NRSI-Z NRS/-I NRSI NRS/+1 NRSI+2 NQ—2 NQ—l NQ
Duration [days]

Fig. 1. A visualization illustrating essential components of computation of the RSI series described in Section 2.2. Subplots (a) and (b) describe the computation

window of RSI for streamflows at times Nrg; and Ngg; + 1, respectively. Changes

in streamflow are detected as positive AQ'or negative AQ' (zero change is counted as

either) and AR and AF can be computed as in Egs. (6) — (7). The shaded areas in blue and red show the rising and falling periods (days) of streamflow, respectively.
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technique (data normalization or transformation) [Ali et al., 2014; Liu
et al., 2014; Zitnik et al., 2019]. Specifically, the measured streamflows
are essential for the transformation/reformation process (i.e., RSI in this
work). The reformed RSI time series then can be used for training of a
ML model. When trained, the ML model will yield simulated RSI series as
output in the testing/prediction phase without the need for actual
streamflow. The predicted RSI values are subsequently converted into
streamflows that have their original unit by using the inverse of Egs.
(5-7). Specifically, given the predicted RSI at times t and t + 1 and
streamflow (Q) data from t — Ngg; + 1 to t, the predicted Q at t + 1 can be
obtained by performing the inverse of Eqs. (5)-(7). Specifically, if RSI; | 1
> RS, the average fall (AF) can be computed as in Eq. (7), while the
average rise (AR) can be computed inverse of Eq. (5) as follows:

AR — ( 100

= 1)AF
100 — RSL., > ®

Q: + 1 is then computed by inverting Eq. (6) using the estimated AR:

Nar—1
Qi1 =AR X Nag — Y AQ! 40, ©
i=1

The calculation of Q; ; ; when RSI; , ; <RSI, is executed in a similar
fashion as outlined above. Specifically, first, AR is computed as in Eq.
(6), AF is then derived by inverting Eq. (5) using the estimated AR. Q; ; 1
is finally calculated by inverting Eq. (7) with the estimated AF. The
computation of predicted Q for subsequent time steps is also performed
in a similar manner, using Q obtained in prior steps.

The data reformation technique is distinct from other data pre-
processing methods typically used in ML applications, such as data
transformation. Conventional data transformation techniques, such as
the Wavelet analysis and the Fourier analysis, are often applied to
analyze non-stationary time series or transient phenomena in data. As
highlighted earlier, when new out-of-sample data representing extreme
events are included, the range of the transformed data is affected.
Conversely, RSI data reformation converts the data into the same con-
strained space, even when new data with extreme values are added.

2.3. Discrete wavelet transform

The discrete wavelet transform (DWT) is a well-known statistical
method that is used to decompose data series (i.e., climate forcings) into
multiple sub-series with lower frequency by controlling the scaling and
shifting factors of basic wavelets, also known as the ‘mother’ wavelets
[Kumar and Foufoula-Georgiou, 1994; Percival and Walden, 2000]. DWT
can be used to analyze non-stationary transitions such as breakdown
points, discontinuities, and local minima and maxima [Adamowski and
Sun, 2010]. Whilst there are numerous basic wavelets that can be cho-
sen, this study applies the Daubechies wavelets [Quilty and Adamowski,
2018; Quilty et al., 2019] frequently used in ML applications.

One of the issues encountered with DWT in applications related to
flow predictions is that it is not inherently shift-invariant, i.e., the values
of the details and approximations do not change with the values of the
original data series. This means DWT cannot be applied to problems
related to singularity detection, forecasting, and nonparametric regres-
sion [Maheswaran and Khosa, 2012]. To overcome these problems, an a
trous algorithm that uses redundant information attained from obser-
vational data has been suggested and used in this work [Shensa, 1992].
The decomposition formulas of an a trous algorithm are defined as
[Quilty and Adamowski, 2018]:

D= N A, 10

L1
A = ZglAjzilzrlt mod N,? an
1=0

where D/ . and A . represent the jth-level wavelet (detail) and scaling
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(approximation) coefficients of the original time series at time t; g is a
scaling filter with g = gPWT/\/2, where g?"" is a scaling filter for DWT; L
is the length of the scaling filter; [ denotes index for L; and mod refers to
the modulo operator. At j = 0, A’ is equal to the original time series of
x;. The latter can be obtained from the wavelet coefficients using addi-
tive reconstruction:

J
% =D A, 12)
=1

An original signal is decomposed into D} and A} through the wavelet
and scaling filters, and A} is further decomposed into D? and A? through
the same process. This expansion is repeated until j reaches the
maximum level J. The number of decomposed sub-series is J + 1. For
example, if J= 3, the sub-series would be [D} ,D?,D? A?] for each original
time series. The total number of sub-series for Nj, input variables is
therefore (J + 1) x Nj,. The approximation A’ becomes increasingly
rough as j increases.

In this study, a level 3 of the decomposition was chosen to transform
the data series. This choice is somewhat arbitrary, but it is consistent
with what has been used in prior research [Budu, 2014; Nayak et al.,
2013; Ni et al., 2020; Nourani et al., 2009; Venkata Ramana et al., 2013].
The input data series (i.e., climate forcings in this work) enters the
wavelet transform model as input, and it is decomposed in the first level
of decomposition into an approximate and a detailed one. In the next
levels, the approximate signal is subsequently decomposed into a new
approximate and a detailed one. After using the DWT to decompose a
forcing data series, four sub-series are obtained, comprised of three
detail parts and one approximation series. This combination of these
four sub-series, alongside the original data, acts as the input for the ML.

2.4. Baseline models

In this study, two baseline models are designed for comparisons with
the model that uses the RSI technique (referred to as Mggy). The first
baseline model (referred to as Mnaive) is a traditional model that relies
solely on the original streamflow data (with a normalization technique
employed). This approach is well-established in the literature and has
been used in many studies involving the prediction of streamflow
[Dehghani et al., 2023; Han et al., 2023; Hunt et al., 2022; Kratzert et al.,
2018].

The second baseline ML model is developed using data trans-
formation based on the discrete wavelet transforms (referred to as Mwr).
The rationale for constructing Myt stems from prior research indicating
that a ML model using this data transformation technique can more
accurately detect and represent infrequent events, thereby enhancing
accuracy of their simulation [Adamowski and Sun, 2010; Ni et al., 2019;
Quilty et al., 2019; Tran et al., 2021].

3. Data

This research uses CAMELS (Catchment Attributes and Meteorology
for Large-Sample Studies) dataset produced by the National Center for
Atmospheric Research [Newman et al., 2015]. The dataset that has been
extensively used in machine learning studies of streamflow simulation.
The availability of this standardized dataset facilitates replication of
published studies and comparisons with their results, which can maxi-
mize the effectiveness of new model development. The dataset is
comprised of daily meteorological and discharge data from 671 catch-
ments in the contiguous United States (CONUS) (Fig. 2a), with areas
ranging from 4 to 25,000 km?. These catchments typically exhibit nat-
ural flow patterns and have long-term streamflow gauge records span-
ning 1980 to 2014 [Newman et al., 2015]. In this study, 670 catchments
were selected to conduct numerical experiments (basin 8202,700 was
excluded due to its exceptionally short and discontinuous streamflow
series). The Daymet dataset was used as the climate forcings [Newman
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Fig. 2. Subplot (a) illustrates spatial locations of 670 selected catchments from the CAMELS database located in 18 Water Resources Council regions (indicated with
basin shape colors) in the conterminous United States. Subplots (b) and (c) respectively present streamflow series (1981-2014) and the reformed RSI data for the first
catchment 1013,500 (inside the red dash-line box in subplot (a)) in the database. The blue line indicates the selected streamflow (flood) events with peak flow higher
than the threshold (green line), which is calculated as the 97.5% of daily flow using the entire hydrograph series (i.e., 2.5% of the flow duration curve). The areas
shaded in gray represent time intervals containing flood events that are selected for model testing. The remaining flood events (i.e., no shading) are used for model

training and validation.

et al., 2015; Thornton et al., 1840]. Meteorological data include the
length of day-light (Dayl), daily total precipitation (Prcp),
surface-incident solar radiation (Srad), snow water equivalent (Swe),
2-meter daily maximum and minimum air temperatures (Tmax and
Tmin), and water vapor pressure (Vp) (hereafter referred to as “input
variables”). This study focuses on constructing models for each indi-
vidual basin, rather than aiming to develop a general model for PUB.
Consequently, several static catchment attributes related to soils,
climate, vegetation, topography, and geology were not used to construct
“a universal ML model”, as in previous PUB studies [Feng et al., 2021;
Kratzert et al., 2019a, 2019b; Rahmani et al., 2021].

4. Experimental setup
4.1. Data processing

This study emphasizes the efficiency and robustness of data refor-
mation in enhancing the capacity of ML to predict extreme flood events
that are vastly dissimilar from the training events. To achieve this, we
specifically designed a testing dataset to include events that are much
larger than those used to train the ML algorithm. To illustrate the pro-
cess, streamflow series for basin 1013,500 in the CAMELS dataset is used
as exemplary (Fig. 2b-c). The data processing steps are carried out as
follows.

(1) Determination of settings for data reformation. In order to reform
the original streamflow data to RSI series, the first step is to
ascertain the necessary period (window) durations Ngs.. We
assessed the effects of Ngg; on the mutual relationship between
the RSI series and the candidate inputs (i.e., Dayl, Prcp, Srad,
Swe, Tmax, Tmin, and Vp), as evidenced by the Pearson corre-
lation coefficient (Fig. A.1). Our tests indicate that with small
Ngsymagnitudes, correlations between RSI series and most of the
input variables are relatively low. Correlation values have the
tendency to grow with larger Ngg; and reach a steady level with
Nggy larger than 200 days. A higher correlation between the input
series and target variables is preferable in building a ML model
[Hagen et al., 2021; Ren et al., 2020; Tran et al., 2021]. In this
study, we opted for a sufficiently large Nggy value (i.e., 365 days)
and used it for all 670 catchments. It is important to be aware of
the effect of Ngs; when selecting it, as an overly large Nrg; may
result in a reduced amount of data following the reformation

process. Given the choice of Nggj, the streamflow series for station
1013,500 (Fig. 2b) is reformed into an RSI series depicted in
Fig. 2c.

(2) Selection of extreme flood events. By incorporating a peak-over-

@3

—

threshold approach in this study, we filter event peak flows using
a selected streamflow quantile as a threshold [Bacova-Mitkova
and Onderka, 2010; Lang et al., 1999; Solari and Losada, 2012].
Common choices of the threshold percentiles based on the flow
duration curves used in prior studies are 75, 90, 95, 97.5, and 99
[Renard et al., 2006; Solari and Losada, 2012]. In this study, the
97.5 percentile threshold was chosen. This selection is somewhat
arbitrary, but it allows for a sufficient number of flood events
available for training and testing, also ensuring that the selected
events are extreme. A fixed event duration of 30 days was applied
for each included streamflow event, with the peak flow occurring
on day 21 (the event duration does not have an effect on the
model performance). The selected events for station 1013,500 are
depicted in Fig. 2b (blue line), totaling in 25 flood events. The
purpose of using an event-focused approach is to train a model
that generates accurate predictions for peak flows. It is important
to emphasize that ML is particularly apt at detecting patterns in
data-rich areas (such as moderate and low flow conditions).
However, ML models may fail in predicting extreme events due to
the scarcity of peak data in the training dataset since their mag-
nitudes are ‘anomalous’. Therefore, we purposefully filter the
data to enhance the fraction of data with high flows, while
decreasing the level of representation of small and moderate
flows. This might help improving the performance of the baseline
models, particularly for predictions of flood peaks.

Data partition into “training” and “testing” sets. Using the years
with flood events selected in (2), an ordered set based on the
annual maximum streamflow is developed. All events observed in
the top 20% of the years with highest flows are selected as the
“testing” set; the events observed in the remaining 80% of the
years are considered as the “training/validation” set. One should
keep in mind that the count of flood events per year may differ,
and some peak flows in a given year of the testing set may have
magnitudes that are smaller than those in the training/validation
set. Nonetheless, the exemplary data set in Fig. 2b shows that
streamflow maxima in the testing set have magnitudes that
exceed those of the peak flows in the training/validation set. The
corresponding RSI series are processed and partitioned in a
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similar fashion, as seen in Fig. 2c. The non-chronological ordering
of flood events between training and testing sets may raise con-
cerns about the potential data leakage issues that arise when
input-output pairs in the testing set are present in the training
data. However, this problem did not occur in this case study, as
the target outputs in the testing set are not included in the
training/validation target sequences.

(4) Data normalization. Prior to the use of the data for the training
and testing of ML models, all selected input variables and target
outputs are standardized using min-max normalization, which is
a standard process for training ML [Singh and Singh, 2020].

DWT is explicitly employed to decompose each forcing data for the
MwT model into four distinct subsets of series that are detailed in Sec-
tion 2.3. In total, 35 data sub-series comprised of seven climate variables
(i.e., Dayl, Prcp, Srad, Swe, Tmax, Tmin, and Vp) and the streamflow
series is used as the inputs for the M. In contrast, the Myaive and Mgg;
models employ 8 data series each, comprised of the same 7 climate
variables and Q (for Myaive) and the RSI (for Mggp). The target outputs of
Mnaive, Mwr, and Mgg; are Q, Q, and RSI series, respectively.

4.2. Model training

In this study, we design three models to predict streamflow for 30-
day events with a lead time of 1 day. The configuration of candidate
inputs and target outputs for the three models is presented as Eqs. (13)-
(15).

Xig—L1 oo Xipgl
Sim _ M 13)
Qr+l — ¥INaive
X74-L7 oo X7p41
Obs Obs
1—Lgsi-36s " Ql
X111 s X1l
o = Myt a4
X351-135 - X35041
Obs Obs
t—Lgsi-36s """ QY
Xi—r11 -0 Xigtl
Sim
RSIzH = Mgsi (15)
X70-17 oo X7541
RSI RSIO™

1=Lgs;

where L denotes the lookback window of each candidate input. To
ensure fairness in comparing the models, the lookback windows of
observed streamflow (QObS) for Myaive and Myt models were deter-
mined to be 365+Lgg;. That is, the number of historical values Q°® used
to predict QSMatt+1is equal to the number of QObs used to estimate
RSI®™ from t — Lgg to t.

Prior to training the ML model, a fundamental challenge in ML
application studies is ascertaining the most suitable input variables (x)
and their lookback windows (L). Research has demonstrated that a va-
riety of techniques can effectively tackle this issue [Ahmad and Hossain,
2019; Alizadeh et al., 2021; May et al., 2008; Thanh et al., 2022; Tran
et al., 2021; Xu et al., 2022] and in this study, we implemented a most
up-to-date method. Specifically, to determine important input variables
and their lookback windows that have the greatest impact on the target
outputs, we employed mutual information criterion in conjunction with
the Hampel test [May et al., 2008] as a stopping criterion to select
important input variables for ML training (see Text S.2 in SM for further
details on variable selection). The prior range of the lookback window
are from 1 to 365. The input time series for each event is processed
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separately and then stacked in order to form the training and testing
dataset. Since ML model was constructed for each individual catchment,
the input variables were also selected separately for each catchment.
Note that the selected 30-day streamflow events from Section 4.1 are
used as the target output, while the input data can be linger than 30 days
and can extend beyond that time series.

In the next step, it is essential to tune the ML hyper-parameters, such
as the number of hidden layers, the number of hidden units, the dropout
rate, and the batch size [Kratzert et al., 2019b; Yang and Shami, 2020].
To accomplish this, we rely on the Bayesian optimization with a
Gaussian process, a widely-utilized and highly-efficient approach (see
Text S.3 in SM). The initial ranges for the values of the above four
hyper-parameters were assigned to [1-4], [10-512], [0-0.9], and
[8-512], respectively. The hidden states were initialized as zeros, which
are default states in Tensorflow [Abadi et al., 2016]. The mean square
error was utilized as the loss function, and the ADAM optimizer (with
the learning rate of 0.0001) was employed to facilitate the training of the
model [Kingma and Ba, 2014]. The learning rate was chosen somewhat
arbitrarily; however, it aligns well with a number of previous studies
that have used and recommended this value due to its proven effec-
tiveness [Cho and Kim, 2022; Frame et al., 2021; Hunt et al., 2022; Le
et al., 2019].

To maximize efficiency, an early stopping technique [Zhang et al.,
2021] was implemented to expedite the training of the model. Specif-
ically, this early stopping approach permits for an indefinite number of
training epochs and terminates training when the model’s performance
ceases to advance on the validation dataset [Liu and Mehta, 2019]. The
maximum number of epochs was predetermined to be 500 for all case
study basins. Additionally, K-fold cross-validation (validation is not
fixed to a particular subset in the training/validation set, [Stone, 1974])
with the K-fold number of 10 (as had been preferred in many prior
studies) was used to ascertain whether the model has been sufficiently
optimized [Wong and Yeh, 2019]. Specifically, the training/validation
set is partitioned into K = 10 distinct, equitable subsets, or “folds”. A ML
model is then trained on K-1 folds of the data and subsequently validated
on the leftover fold. This approach is cycled K times with K models, with
each fold being used in turn as validation dataset.

4.3. Evaluation metrics

The testing set is used to evaluate ML model performance. Since this
study is particularly concerned with the capability to predict peak flows,
so the Exact Peak Error (EPE) metric [Cunderlik and Simonovic, 2004]
was used to measure the accuracy of the model’s predictions in com-
parison to the observed streamflow data:

Sim __ ~Obs
peak peak
Obs
peak

EPE = x 100%, 16)

where QIS,L‘;‘R and Q;);’;k denote the simulated and observed streamflow

peak for a given event, respectively. The unit of EPE is a percentage with
a theoretical range of (-0, +o0). A negative value of EPE implies that the
simulated peak is lower than the observed one, and vice versa.

Additionally, the traditional Nash-Sutcliffe efficiency (NSE) coeffi-
cient is utilized as a metric to assess the overall predictive skill of trained
ML models.

T - Q)

NSE =1 T Obs Obs 2’
Zr:l (Qr - Qmean)

a7

where QP and Q'™ are the actual observation and predicted stream-
flow outputs at time t; QO is the mean of the observation over the
entire event; T is the total number of time steps of the event. The value of
NSE ranging from -co to 1 and NSE = 1 indicates a perfect model with an

estimation error equal to zero.
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5. Results
5.1. Event selection and RSI reformation results

The reformation of the streamflow data and selection of the events
were carried out for 670 catchments, resulting in the total of 55,055
streamflow events. Of these, 42,631 were used for the purpose of
training and validating ML models (blue lines in Fig. 3e), while the
remaining 12,424 events were reserved for testing the model (gray
lines). In the testing set, 3810 events (or out-of-sample events) had peak
flow magnitudes that exceeded the largest event in the training set,
while the remaining 8614 events had peak flow magnitudes that are
lower to the highest peak flows in the training set. The out-of-sample
events are represented in Fig. 3e with normalized streamflow
(NormQ) values greater than 1.0. The normalized series is obtained by
dividing original streamflow by the maximum value in the training/
validation dataset for each basin, resulting in the highest NormQ value
of the training/validation set equal to 1. It is evident that peak flows of
these events are significantly larger than peaks in the training set data,
up to 5-14 times. The use of NormQ is to ensure the uniformity in data
size and to highlight the differences between the data used for training
the model and the data used for testing the model for all basins.

The RSI series (Fig. 3b) exhibit an appreciably lower range of vari-
ability than the original streamflow series (Fig. 3a). For example,
Figs. 3c-d display examples for five events of an exemplary basin.
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Despite the apparent differences between the five events in the original
series (e.g., the event shown in magenta has a peak 1.8-2 times higher
than peak streamflow of the other events), when transformed into the
RSI form, the time series of these events become nearly indistinguish-
able. This is precisely what is expected when converting out-of-sample
into in-of-reformed samples.

Upon examination of the RSI series for 55,055 events (Fig. 3f), out-
of-sample events cannot be clearly discerned in the testing set — this is
an expected outcome of the application of the reformation data pre-
processing. It can be seen that the RSI values only fluctuate within a
limited range, and the data space of both the training/validation and
testing sets are substantially similar (as demonstrated in the inset of
Fig. 3f). The results illustrate the efficacy of the data reformation tech-
nique in bringing what would be out-of-samples in the physical
streamflow range — into the in-of-reformed range for RSI values.

5.2. Model performance results

A comparison of the performance of three models in simulating
streamflow for events in the test set is illustrated in Figs. 4, 5, and 6. The
primary outcome is that the Mgg; model using the reformed data
remarkably outperforms the baseline models in predicting out-of-sample
events. Fig. 4 presents the results of three models’ predictions for 4 first
catchments in the CAMELS dataset as examples (i.e., 1013,500,
1022,500, 1030,500, and 1031,500). Results for other catchments can
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Fig. 3. (a) Concatenated hydrographs that are flood events selected as a subset of those shown in Fig. 2b (basin 1013,500), with 20% of the streamflow data (events
highlighted by areas shaded in gray) used to test the ML models, and the remaining 80% used for training/validation. Colors of the time series illustrate different
exemplary events in (c). The inset depicts the probability distribution function (PDF) of streamflow from the complete training and validation datasets (the blue
shaded area) and the testing dataset (gray). (b) The reformed streamflow series in (a) in the form of Relative Strength Index (RSI). The inset plot shows PDF of the RSI
data used for training (blue) and testing (grey). Subplots (c) and (d) show the original streamflow and reformed RSI series, respectively, for five events (colored lines
in (a) and (b)) over the period of 30 days with peak flow occurring on day 21. (e) The normalized streamflow (NormQ) and (f) the RSI series for 55,055 streamflow
events from 1980 to 2014 across 670 basins. The PDF based on the inverse Gaussian distribution of the two (training/validation vs. testing) sets are shown in (e) and
(f) with both x-axis and y-axis in log;( scale, with the limits for x-axis in (a), (b), (e), and (f) being [0-20,000], [0-100], [0-15] and [0-1001, respectively.
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Fig. 4. (a, ¢, d, e) Comparisons of hydrographs simulated using the three ML models in the testing set and observations for four catchments (i.e., 1013,500, 1022,500,
1030,500, and 1031,500). (b, d, f, h) Scatter plots of simulated streamflow using the three models (y-axis) versus observations (x-axis). The black-dashed line in both
subplots delineates the maximum streamflow in the training/validation set. The average EPE (exact peak error) values for the three models were computed for out-of-
sample events that fall in the upper/left area of the plot demarcated by the black-dashed line.

be found in the dataset shared as Tran et al., [2023a]. Fig. 4 demon-
strates that only the Mgg; model can provide accurate streamflow
simulation for the events outside of the range of the training/validation
set, except for results for the catchment of 1022,500. Both the Myaive and
the Myt models were only able to generate satisfactory results for
streamflow magnitudes up to near the highest limit of streamflows in the
training set (the first event). The average EPE results reveal that with
data outside the training/validation set, only the Mgg; model can yield
highly accurate results (with EPE value of 4.5, 0, and 7.2%, respectively

for catchment of 1013,500, 1030,500, and 1031,500). The Myajve and
Myt models predict peak flows below the observed peaks, with EPE
values below zero and the average EPE values ranging from about —10%
(catchment 1030,500) to 35.7% (catchment 1031,500). It is not unex-
pected that for the events that have streamflows close to the range used
in the training/validation set, all three models exhibit very good per-
formance with the predicted peak flows that are very similar to the
observations.

A comparison of results of peak flows for the three models across
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670 basins). It should be noted that all 3810 peak streamflows shown in this figure exceed peak flows in the training/validation set (i.e., they have NormQp..x greater
than 1.0). Both x- and y-axis are plotted using the log-scale. The colors reflect the density of data points (shown by the color bar). Three probability distribution

function (PDF) plots (b, d, and f) depict the distribution of streamflow difference (QObs QSim ) computed for the three models, Myaive (left), Myt (center),

peak — peak

Mgsi(right). The vertical blue lines denote the interquartile range (25% - 75%) of the PDFs.

3810 out-of-sample events in 670 catchments is shown in Figs. 5 and 6.
The graphical inspection of results in Fig. 5 demonstrates that the Mgg;
model yields the most satisfactory performance with an average NSE of
0.8 computed for the predicted versus observed peak flows. The Myaive
and Myt models result in NSE values of 0.696 and 0.575, respectively.
By analyzing the scatter plots in relation to 1:1 line, it is evident that the
Mgs; model generates results that are more closely related to the ob-
servations (i.e., the dark red color in Fig. Se indicates a high density of
data points more evenly distributed along the 1:1 line). In contrast,
Figs. 5a-c suggest that the two remaining models are less successful in
accurately predicting the peak flows: the simulated magnitudes are
generally lower than the measured values, and the absolute majority of
the predicted flow peak values is below the actual observations. The
difference between the observed and predicted peak flows of the three

models (Q95, — QSim,) for 3810 flood events is illustrated in Figs. 5b-d-f.
The results are consistent with the insights provided by the heatscatter
plots: the Mgy model produces mostly reliable results with the median
streamflow difference close to zero, evenly spaced distance between the
25th and 75th percentiles on both sides of zero (Fig. 5f). In contrast, the
peak differences for the Myaive and Myt are generally higher than zero,
thus indicating that the predicted flood peaks are usually lower than
observations. The PDFs for these two models place the 25-75th per-
centiles entirely in the positive region (Figs. 5b-d). Conversely, for the
8614 events that fall in the same range as the training events, the
simulation results for all three models are comparable, all exhibiting
satisfactory performance in predicting peak flows with a mean NSE
value exceeding 0.9 (Fig. A.2).

Fig. 6a illustrates the spatial distribution of models with the highest
performance. Here, the model performance is determined based on the
mean of absolute EPE for all events for each catchment. Of the three ML
models, the model with the smallest mean absolute EPE (i.e., closest to
the theoretically ideal value of 0) is considered as the best one. By
counting the number of watersheds in which a given ML model resulted
in the best EPE, it can be seen that Mgg; surpasses Myaive and My, and is
the most efficacious model for 433 catchments (accounting for 64.6% of
basins). This can be compared to 190 (28.4%) and 47 (7%) watersheds
in which the other two models, Myaive and My, respectively, result in
the smallest EPE. It follows that the data reformation-based RSI method
has a high degree of universality and is appropriate for application to
various types of watersheds with varying hydrological, meteorological,
or flow characteristics.

The EPE results for 3810 events are further demonstrated using the
boxplots in Fig. 6b, with the mean EPE values obtained for the three
models —41.25, —47.7, and —14.7%, respectively. Generally, these re-
sults are in line with the visual assessment in Fig. 5, showing that the
Mpgg; model can generate peaks that are closer to observations, as
compared with the other two models. Particularly, for events that are
more dissimilar from the training events (with NormQ ranging 3 to 15),
the efficacy of Mgg; is further highlighted by the simulated peak mag-
nitudes that are much closer to observations. Specifically, for 33.8% of
all out-of-samples events in the testing set, the Mgg; simulations were
found to be in excellent agreement with observations (EPE is within
[—20%, +20%]) (see Fig. 7), even when events were more than five
times higher than the upper limit of the range for training/validation
events. In contrast, the majority of the EPE results (more than 99%)
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Fig. 6. The spatial map (a) illustrates distribution of the best model for 670 catchments in predicting peak flow based on the mean absolute Exact Peak Error (EPE).
The three models Myaive, Mwr, and Mgg; have the best performance for 190, 47, and 433 catchments, respectively. The circle size presents the average NormQpeak
(m) for all out-of-sample events (with NormQ > 1) for each catchment in the testing set. Boxplots in (b) are used to illustrate the EPE distribution for 3810
events across 670 catchments. The median (central mark), the 25th and 75th percentiles (edges of the box), and the maximum and minimum values excluding
outliers (whiskers) are illustrated. Subplots in (c) display the heatscatter between EPE and NormQ,,i (normalized peak flow) for the same events as in (a) and (b).
The color of the dots reflects the concentration of data points (shown by the color bar). All events represented by this figure have peak magnitudes higher than the
maximum peak flows in the training/validation set. The black dashed lines illustrate the average EPE value calculated according to the NormQ,.x values with 0.5

and 3-sized bins between the intervals of [1-5] and (5-15], respectively.

calculated from Mpy,ive and Myt have a value of less than 0, with
respectively more than 82% and 90% of out-of-samples events below
EPE = —20% (Figs. 6b and 7). For these two models, most of the
simulation results with EPE close to 0 were obtained for events that were
similar or not substantially different from the training events, i.e., their
normalized peak flow (NormQ,ea1) was close to 1 (Fig. 6¢). Expectedly,
the inadequacy of the Mpyaive and Myt models is more evidently
demonstrated for more extreme events, i.e., those that have peak

magnitudes further away from peak flows in the training set. The mean
EPE for three models were computed for events whose NormQpex, values
were situated within the same range depicted as the black-dashed lines
in Fig. 6¢. Specifically, these mean EPE values clearly exhibit the cor-
relation between EPE and the size of the event, with events that are
further away and dissimilar from the training events, the mean of EPE
values for the two models (Mnaive and Mwr) are lower and closer to
—100%. On the other hand, the relationship between EPE derived from
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Fig. 7. The partitioning (as a percentage) of the estimated EPE values for the three models (see the legend) estimated for 3810 out-of-sample events across 670

catchments, with a 20% bin size employed.
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Mggr and the magnitude of events varies considerably compared to the
other two models. The mean EPE obtained from Mgg; decreases from
—10% to —55%, corresponding to NormQjpeax values in the range of 1 to
5. For NormQpeax values exceeding 5, the behavior of the prediction skill
becomes less apparent, but can reach a mean EPE value close to —20%,
when the NormQ reaches 15 (black-dashed line in the last subplot in
Fig. 6¢).

6. Discussion

Although the Mgg; model has the capacity to predict beyond the
magnitudes of events used in the training/validation set, the simulation
results still remain far from ideal. Specifically, Mggj predictions may still
contain considerable errors with an absolute EPE greater than 50% for
20.7% of the out-of-sample events (789 out of 3810). While the Mgg;
model surpasses the skill of the other two models, it is necessary to
explore why it is not superior for all 670 watersheds (e.g., predicted
results for catchment of 1022,500 in Fig. 4 and four catchments in
Fig. S1 in SM).

The fundamental difference between the ML models lies in the use of
RSI instead of Q as the target output. Our analysis reveals that while
incorporating RSI for particular watersheds is beneficial for the “scaling”
issue (i.e., to bringing training and testing datasets to the same range), it
doesn’t resolve many of the other inherent issues, such as strong non-
linearity and non-stationarity of the watershed behaviors, or “hidden/
unknown” uncertainties [Gharib and Davies, 2021; Prodhan et al., 2022;
Xu and Liang, 2021]. Any of such features in the used dataset can lead to
a poorer model performance, especially for events that have flow peaks
near the training data distribution (highlighted in Fig. 6¢, where the EPE
values show an immense variation for small NormQ values). The pro-
posed approach is viable for tackling one of the major challenges in
machine learning applications, which is making out-of-sample pre-
dictions. It is particularly designed for extreme flood prediction.
Therefore, caution is still required when selecting suitable data pro-
cessing approaches, depending on the specific use cases (e.g., flood or
drought prediction) and varying time frames, in order to achieve the
most efficient model.

Further, it is logical to conclude that confidence intervals of ML
models’ predictions need to be assessed in their typical applications.
Most of the current ML applications for streamflow prediction attempt to
construct a “deterministic” model that fits optimally (without over-
fitting) the major fraction of training data, yet they do not attempt to
provide uncertainty estimates [Alizadeh et al., 2021; Kratzert et al.,
2018]. It is evident that the level of uncertainty in ML predictions can be
significantly underestimated due to the lack of utilization of relevant
information, such as data stochasticity [Kim et al., 2016a; b] or input
and output noise [Kendall and Gal, 2017]. Uncertainty is inherent to all
aspects of hydrological modeling, and it is generally accepted that pre-
dictions should account for it [Beven and Freer, 2001; Dwelle et al.,
2019]. In many applications, such as streamflow predictions, it is as
important to obtain the confidence of a prediction as the prediction itself
[Beven and Binley, 1992]. Significant efforts have been undertaken to
explore the uncertainties associated with physical-based models [Beven
and Binley, 2014; Dwelle et al., 2019; Kim et al., 2015; Moradkhani and
Sorooshian, 2008; Tran et al., 2020], while comparatively few efforts so
far have been devoted to ML models, despite their recent surge in
popularity [Abdar et al., 2021; Fang et al., 2020; Klotz et al., 2022; Liu
et al., 2023b; Lu et al., 2021; McDermott and Wikle, 2019]. This presents
an opportunity for future research to concentrate on evaluating the
uncertainty of ML models, and inventing solutions to reduce it, while
bolstering confidence in ML applications.

This study yields an unexpected outcome, that the Myt model
demonstrates a less successful performance than the Myyive in predicting
out-of-sample events. This is despite the usual assumption that extreme
events can be more effectively discerned and therefore predicted
through wavelet transformation and decomposition. This result
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demonstrates the efficacy of employing an attention mechanism in
conjunction with an LSTM, allowing the LSTM to manage intricate re-
lationships between inputs and outputs. It also allows to hone in on
significant input variables that have a direct influence on the target
output (streamflow), while disregarding any other input variables of
lesser relevance. With the enhanced capability to recognize information
for extreme events, the trained LSTM can yield accurate results, elimi-
nating the need for additional methods, such as wavelet transform. This
finding is also consistent with the conclusion of Hunt et al. [2022] and
Han et al., [2023]. Conversely, the utilization of WL model type can
have an adverse effect on the results, as the quantity of inputs fed into
the training model will drastically grow after decomposition, resulting
in a corresponding increase in the number of learnable parameters that
need to be trained in LSTM. This implies that the model will be harder to
train and may be more challenging to optimize, resulting in a potential
decrease in model performance due to the issues of high dimensionality
and convergence issues in model training [Tran et al., 2021]. Such re-
sults imply that with the introduction of advanced machine learning
models that have the capacity to self-process information, the trans-
formation of data using, for example, wavelet or Fourier transforms,
may not be really necessary. Furthermore, this underlines the critical
needs for ML progression in the coming years, such as, for example, the
need to enable the creation of assisting mechanisms for ML to self- re-
form the data and bolster its extrapolation capabilities.

This study was designed to evaluate the efficacy of the proposed
method, using information that is assumed to be available beforehand
such as the forcing data and observed streamflow. In real-world settings,
additional complexities arise regarding the inability to measure or
collect observed flow data in a timely manner during extreme events (e.
g., hurricane) due to, for example, infrastructure failures. To predict
future flows, the proposed method requires only estimated inputs and
observed streamflow for the prior time intervals (see Eq. (15)), enabling
the methodology viability whenever such data are available. Flows
predicted at preceding time intervals can be used to extend predictions
for future time intervals, when observations are temporarily unavailable
or require additional vetting. Real-world implementation of the pro-
posed reformation technique warrants further investigation of its per-
formance issues under various data availability scenarios, which is
beyond the scope of this study.

Relatively straightforward data requirements may hint the feasibility
of using this method for PUB studies that lack streamflow observations.
Over the last decades, numerous studies have proposed various ap-
proaches and models in conjunction with regionalization or data
assimilation techniques with the objective to reconstruct the past
streamflow at high accuracy in the PUB context [Kratzert et al., 2019a;
Luce, 2014; Sivapalan et al., 2003]. Consequently, we are of the opinion
that the utilization of the RSI for PUB studies is feasible. Furthermore, a
universal (or attribute-aware) model, trained with more diverse datasets
drawn from different research areas, has the potential to simulate
extreme peak flows even more accurately than the traditional Myaive
[Frame et al., 2021]. The application of such a model type combined
with the RSI reformation would be a potential follow-on study in pre-
dicting the flow of extreme events for regions with insufficient data.
Additionally, the potential application of the suggested approach can be
extended to research utilizing ML for multidimensional (e.g., gridded
fields) data predictions [Kotsiantis et al., 2007; Talukdar et al., 2020],
even though this study concentrates on using ML for a univariate time
series predictions. In geophysical sciences, not only state and flux vari-
ables (e.g., atmospheric temperature and humidity, soil moisture, can-
opy biomass, etc.) fluctuate with time but they also vary in space and
that extending the method to reformation of multidimensional (2 or 3
dimensions) data has a theoretical potential. Computation of the relative
change of quantities of interest between different locations in a
multi-dimensional series can be accomplished analogously to what has
been demonstrated for a univariate series.
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7. Conclusion

The results of this study demonstrate practical usefulness of machine
learning models for predicting extreme events that are much different
from those that are used for training ML models. The central premise of
the proposed method is that all data should be brought into a more
homogenized data space, so that all out-of-samples can be converted
into in-of-reformed samples. By reforming the data used for training/
validation and testing to be in a homogenized data space, the difficulty
of extrapolating out-of-samples goes away, and instead interpolation of
in-of-reformed samples occurs. A noteworthy methodological point is
that instead of using actual streamflow data, a different data kind is
employed to train the model — namely, the relative change of streamflow
derived using Relative Strength Index (RSI). The prediction of this
relative change is then reversed to actual streamflow values. Overall, the
results demonstrate that the prediction skill of the trained ML-RSI is
remarkable, even for events that exceed magnitudes of the training/
validation events by a factor of 3-15. Further research is necessary to
construct better data reformation methodologies for training ML models
to enhance their accuracy and ability to produce uncertainty quantifi-
cation, when predicting extreme events that have not been encountered
in the past.
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Fig. A.1. Demonstration of the influence of period duration, Nggj, on the Pearson correlation between the RSI and individual input variables for catchment 1013,500.
The value of Ngg; ranges from 1 to 365 days. The input variables include the length of day-light (Dayl [seconds]), daily total precipitation (Prcp [mm]), surface-
incident solar radiation (Srad [W/m?]), 2-meter daily maximum air temperature (Tmax [ °C]), 2-meter daily minimum air temperature (Tmin [ °C]), and water
vapor pressure (Vp [Pa]). The snow water equivalent (Swe) values in this watershed are all equal to 0; therefore, the relationship between Ngg; and Swe is not

depicted in this figure.
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Fig. A.2. Heatscatter plots of 8614 simulated flow peaks by the three ML models versus observations for the testing set over 670 basins. The flood peaks shown in the
subplots are smaller than the largest peak in the training/validation set, i.e., with NormQ,cax smaller than 1.0. Both x- and y-axis are plotted using the log-scale. The

colors represent the density of data points (shown by the color bar).
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