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Abstract: Estimation of a conditional mean (linking a set of features to
an outcome of interest) is a fundamental statistical task. While there is an
appeal to flexible nonparametric procedures, effective estimation in many
classical nonparametric function spaces, e.g., multivariate Sobolev spaces,
can be prohibitively difficult – both statistically and computationally –
especially when the number of features is large. In this paper, we present
some sieve estimators for regression in multivariate product spaces. We
take Sobolev-type smoothness spaces as an example, though our general
framework can be applied to many reproducing kernel Hilbert spaces. These
spaces are more amenable to multivariate regression, and allow us to, in-
part, avoid the curse of dimensionality. Our estimator can be easily applied
to multivariate nonparametric problems and has appealing statistical and
computational properties. Moreover, it can effectively leverage additional
structure such as feature sparsity.
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1. Introduction

Understanding the relationship between an outcome of interest and a set of
predictive features is an important topic across domains of scientific research.
To this end, one often needs to estimate an underlying predictive function, e.g.,
the conditional mean function, that best relates the features and the outcome
using available noisy observations. During the past two decades, there has been
extensive research focusing on nonparametric learning methods that only require
the outcome to vary smoothly with the features.

One challenge of applying nonparametric methods in multivariate problems
is the “curse of dimensionality” [34]. Briefly, as the number of features grows
linearly, we need an exponentially growing number of samples to achieve a spec-
ified threshold of predictive performance. In real-world applications, although
the total number of candidate features may be large, it is very likely that only
a small proportion are conditionally associated with the outcome. This smaller
number, D, of active features should be the primary driver of the difficulty of the
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problem, in a minimax sense. Sparse estimation [21, 48] is a vast field address-
ing such data science problems and developing effective estimation procedures,
which is especially interesting when the total number of features, d, is much
larger than D.

In this paper, we consider nonparametric procedures that can simultaneously
select important features and estimate the conditional mean function (using only
those selected features). For this procedure, the estimation error scales favorably
with total dimension (proportional to log(d)). Moreover, engaging with a tensor
product space additionally means that our active dimension, D, only shows
up multiplicatively in a logD(n) term (as compared to modifying the rate of
convergence in n in classical multivariate Sobolev/Holder spaces). Finally, our
proposed framework is also seen to be empirically effective in our data example
comparisons in Section 8.

The proposed method considers (penalized) sieve estimation in multivariate
tensor product spaces. Sieve estimation, also known as projection estimation [49]
or estimation using orthogonal series [59], is a classical estimation strategy that
has been shown to be very effective in univariate regression problems. Although
sieve-type estimation has a long history and, in many cases, deep theoretical
exploration, the literature does not offer effective guidance on how to apply this
method for moderate dimensional problems in practice. Instead, classical sieve
estimation is not generally considered fruitful in more than a few (maybe 1-2)
dimensions, as statistical convergence gets horrible without extremely high order
smoothness assumptions (e.g., in the classical smoothness class we discuss fur-
ther in Section 3.1). A key, and novel, aspect of this work is our focus on tensor
product spaces: We show that this allows sieve estimation to be a tractable op-
tion even if only the existence of first order mixed partial derivatives is assumed.
For example, if we aim to estimate nuisance parameters for causal effects, e.g.
when using AIPW (augmented inverse propensity weighted estimation) [15, 25],
tensor product spaces are more relevant than classical models. In particular,
if we only assume existence of first order partials, the classical framework [43]
can accommodate dimension up to 2, whereas the work in this manuscript can
accommodate arbitrary fixed dimension.

In addition to the above statistical difficulty, there is also computational dif-
ficulty: The most popular multivariate extension of sieve estimators, which is
presented in (8), implicates the use of nαd basis functions with α ∈ (0, 1/2)
(depending on the smoothness of the problem). In contrast, our proposal uses,
essentially, on the order of C(D)dDnα(log n)D basis functions (Here C(D) is a
constant that depends on D but not sample size). This is much more computa-
tionally attractive. This work can be seen as an attempt to extend the method of
sieves toward multivariate models that scale more efficiently, both statistically
and computationally, with dimension.

When engaging with multivariate sieve estimators it is critically important
to identify an ordering of multivariate basis elements from “most” to “least”
important. In addition, one must identify how many basis functions to include
to get an estimator with suitably low misspecification bias (this depends on
the smoothness of the space). In univariate problems, there is usually a nat-
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ural ordering, based on, e.g., frequency or polynomial degree. Extending this
to multivariate settings is not as simple: We studied the spectrum of certain
“covariance operators” to identify the appropriate strategy for ordering multi-
variate basis functions in tensor product models. This is critical for both method
implementation and theoretical understanding: For multivariate problems, the
“ordering question” has received little discussion in the literature.

The main contributions of this paper can be summarized as follows:

• We propose a rigorous extension of sieve estimators to multivariate prob-
lems. To the best of our knowledge, this is the first methodological treat-
ment other than the (naive) direct extension repeatedly appearing in the
literature. The direct extension is not computationally feasible even with
moderate feature dimension. In contrast, the proposal in this manuscript
is much more computationally tractable, and we provide theoretical pre-
dictive performance guarantees that scale favorably with the feature di-
mension.

• After identifying the proper ordering of multivariate basis functions, we
give a direct and explicit implementation of the sieve estimator. In addi-
tion, we give a transparent result for computational expense even in the
“large d, small n” genuine multivariate case. We demonstrate the effective-
ness of (penalized) sieve estimation here with both theoretical guarantees
and extensive simulation studies.

• We engage a relatively basic result in number theory (“the average or-
der of divisor functions”) to reduce a multivariate “Sobolev ellipsoid” to
a (formally) univariate ellipsoid. This technique can also be applied to
quantify the asymptotic eigenvalues of multivariate reproducing kernels.
We believe it may be of independent interest and can be widely applied
in reducing multivariate nonparametric problems to (formally) univariate
ones.

Notation. In this paper, we will use bold letters to emphasize a Euclidean
vector x ∈ Rd when its dimension d is strictly greater than 1. The notation
xk ∈ R is the k-th entry of x ∈ Rd (rather the k-th power of it). We use N

to represent the non-negative integer set {0, 1, 2, . . .}, and use N+ for strictly
positive integers {1, 2, 3, . . .}. The (N+)d is the set of positive d-tuple grids: for
example (N+)2 = {(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), . . .}.

2. Univariate nonparametric problems with sieve estimation

One can frame the goal of regression as estimating the function f that min-
imizes the population mean-squared error (MSE): E[(Y − f(X))2], where Y
is our outcome of interest, and X are our predictive features. We denote the
distribution of X as ρX . The minimizer is the well-known condition mean func-
tion f0(X) = E[Y |X]. In nonparametric regression, we assume f0 belongs to
some regular function space. An informative univariate model space that we will
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engage with is the 1st-order Sobolev space W1([0, 1]):

f0 ∈ W1
(
[0, 1]

)
=

{
f ∈ L2

(
[0, 1]

)
| f ′ exists and f ′ ∈ L2

(
[0, 1]

)}
. (1)

Here f ′ can be understood as the weak derivative of f . In this framing, the set
of piece-wise linear functions is a subset of W1([0, 1]). Without loss of generality,
we will assume feature X belongs to the d-dimensional unit cube [0, 1]d. Sieve
estimation for f0 in the W1 space is built upon the following basic fact: It is
possible to express f0 as an infinite linear combination of some basis functions
{φj}. Among many possibilities, we choose the following function system as a
concrete example:

φ1(x) = 1, φj(x) =
√

2 cos
(
(j − 1)πx

)
. (2)

The aforementioned “infinite linear combination” can be expressed as: f0 =∑∞
j=1 β0

j φj . Moreover, it is also known that the (generalized) Fourier coefficients
β0

j decay at a rate faster than j−1.5 for f0 ∈ W1([0, 1]). Therefore, it is plausible
to truncate the infinite series at a certain finite level Jn: Using only the first
more important Jn basis vectors, one can construct an estimator of f0 with
relatively small bias. Formally, a sieve estimator fn takes the form that f̂n =∑Jn

j=1 β̂jφj where the coefficients are determined using the available training
data {(Xi, Yi), i = 1, . . . , n}. The coefficients can be determined by solving
least-square problems [49] or using stochastic approximation methods [64], both
strategies would lead to rate-optimal generalization error (in a minimax-rate
sense).

Remark 2.1. The cosine functions φj presented above are not periodic over our
domain themselves, and thus do not impose a periodic assumption on f0. This
is in contrast to periodic sine/cosine systems that are more commonly engaged
with, and would imply a periodic assumption on f0 [56]. One can add poly-
nomials to the periodic systems to fit non-period functions [10]. For simplicity
of exposition and to provide our readers a basis that is easy to implement, we
choose to proceed with paper primarily using this cosine basis. For readers more
familiar with the topic, the above rate statement on β0

j (“faster than j−1.5”) can
be more precisely stated as Sobolev ellipsoid conditions. For more discussion,
see Appendix B.

3. Multivariate nonparametric models

3.1. Additive models and classical smoothness classes

In most real-world problems, we have more than one feature under considera-
tion. In addition it is not always apriori clear which model space to use. The
nonparametric additive model [13] has been seen as one of the most direct mod-
els for multivariate nonparametric learning problems. There, we assume features
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do not interact, or more formally that the regression function takes the following
additive form:

f0(x) =
d∑

k=1

f0
k

(
xk

)
, f0

k ∈ W1
(
[0, 1]

)
.

There are also some more flexible models widely discussed in the literature, such
as Sobolev-type smooth function spaces. Formally, let a = (a1, . . . , ad) ∈ (N)d,
we define the (weak) partial derivative function Daf of f as:

Daf = ∂‖a‖1

∂xa1
1 · · · ∂xad

d

f, where ‖a‖1 =
d∑

k=1

ak.

In this notation, people may assume that f0 satisfies the following smoothness
conditions:

f0 ∈ Ws

(
[0, 1]d

)
=

{
f ∈ L2

(
[0, 1]d

)
| Daf ∈ L2

(
[0, 1]d

)
for all ‖a‖1 ≤ s

}
. (3)

These types of smooth classes do not explicitly assume any specific form such
as additivity, but as a cost, suffer substantially more from the curse of dimen-
sionality. Specifically, the minimax rate (in MSE) of estimation in Ws([0, 1]d)
is of order n−2s/(2s+d) [43]. Although less likely to be miss-specified, this type
of model is sometimes thought to be too large to explain the success of many
machine learning methods, or be directly applied.

In the literature it is typical to put a more strict regularity requirement to
cancel out the influence of dimension, that is, only considering smoother mod-
els in higher dimensions. Formally, this can be easily done by increasing the
parameter s to ask for regular higher-order derivatives. For many statistical
procedures that need to estimate conditional mean as a nuisance, e.g. semipara-
metric inference [25] and independence structure inference [61], we typically have
to require the smoothness parameter s to be at least d/2. The resulting model
space Wd/2([0, 1]d) is sufficiently tame to allow estimators of f0 that can satisfy
certain (minimax rate) benchmark conditions. However, for d as small as 4, such
a requirement already prevents f0 from being a piece-wise linear function.

3.2. Tensor product models

Additive models (mentioned earlier) are an attractive approach for extending
univariate smooth functions to multivariate regression. If the true regression
function is nearly additive, then with a relatively small number of samples, one
can fit a strong additive estimate. However, in some applications there may
be important interactions between features to consider. One natural extension
to the additive model is to include product-terms of basis functions between
individual features. For example, we may consider:

f0(x) =
d∑

k=1
f0

k

(
xk

)
+ a

(
x1)b(x2) + c

(
x1)d(x3) + e

(
x1)f(x2)g(x3) + · · · , (4)
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where all the univariate functions above belong to a smooth function class such
as W1([0, 1]). This type of model has been studied in the literature as a Tensor
Product Space models [29]. In a more compact notation:

f0 ∈
{

f =
N∑

m=1

d∏
k=1

fmk

(
xk

)
with finite N , and fmk ∈ W1

(
[0, 1]

)}
. (5)

Although we defined the tensor product space (5) by addition and multi-
plication of univariate regular functions (algebraic manipulations), there is an
almost1 equivalent characterization of it in the language of partial derivatives:

f0 ∈ S1
(
[0, 1]d

)
:=

{
f ∈ L2

(
[0, 1]d

)
| Daf ∈ L2

(
[0, 1]d

)
for all ‖a‖∞ ≤ 1

}
.

(6)

Function spaces similar to (6) are called Sobolev spaces with dominating mixed
derivatives. They are also characterized as the tensor product spaces of univari-
ate Sobolev spaces W1([0, 1]). Compared with the (isotropic) Sobolev spaces
defined in (3), tensor product spaces may appear to be formally similar, but
have different (and favorable) properties related to statistical estimation. For
function space W1([0, 1]d), we required regular partial derivatives for any in-
dex a satisfying ‖a‖1 ≤ 1. But for tensor product space S1([0, 1]d), we require
partial derivatives for those indices satisfying ‖a‖∞ ≤ 1. The latter require-
ment is strictly stronger and as the dimension d increases, the difference be-
tween these two requirements becomes more meaningful. At the same time, the
S1([0, 1]d) space requires less regularity than the d-th order isotropic Sobolev
space Wd([0, 1]d). In particular, assuming f0 ∈ Wd([0, 1]d) means that ∂d

∂dxk f0

exists and is square-integrable for any k = 1, 2, . . . , d, however functions in
S1([0, 1]) space do not need to have second partial derivatives ∂2

∂2xk f for any k

(so piece-wise linear functions can be elements of S1([0, 1]d)). More formally, we
have the following inclusion relationship:

Wd

(
[0, 1]d

)
� S1

(
[0, 1]d

)
� W1

(
[0, 1]d

)
. (7)

The space S1 can be generalized to function spaces with stronger smoothness
restrictions by replacing the restriction ‖a‖∞ ≤ 1 by ‖a‖∞ ≤ s for some s > 1.
However, we choose not to pursue this generalization in this paper, as it would
make the exposition and notation unnecessarily more complicated. We refer the
interested reader to Section 9 for more discussion.

4. Literature review

In this section, we will provide a quick overview of the literature on tensor
product models in statistical learning and nonparametric sieve estimators.

1Space S1([0, 1]d) contains finite linear combination of functions as in (5) as well as their
limits with respect to a certain norm (N = ∞). This is in line with a reproducing kernel
Hilbert space contains both the finite and infinite linear combination of the kernel functions.
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In [29], the author presents regression estimators in tensor product models by
the method of smoothing spline/kernel ridge regression. The estimators achieve
the nonparametric minimax rate but typically have a high computational ex-
pense when directly implemented. Compared with the proposal in this work, it
has a limited ability to perform variable selection and is shown to be adaptive
to the active dimension D. Other work in this line of research includes Wahba
et al. [57], Lin et al. [28] and Gao et al. [14].

In addition to using product reproducing kernels, other types of product bases
are also used to construct multivariate regression estimators. For example, there
are multivariate adaptive regression spline [12] and the highly adaptive lasso [2].
This class of methods select a collection of adaptive basis functions that center
on the training data points. The set of basis functions, unlike the sieve estimator
basis, are usually not orthogonal to each other under any natural measures. More
comprehensive discussion can be found in the monograph [17].

A lot of work has been done over the last decade to adapt the tensor prod-
uct model to ultra-high dimensional settings. This line of research typically
assumes that the features must have a main effect on the outcome in order to
have second-order interaction effects (formalized as some heredity assumptions).
These methods target application cases when the feature dimension is very large
and computational resources are restricted (For example, assuming d2 derived
features would not fit into the memory). See Haris et al. [20], Tan [44], and
the references therein for a more detailed description of these computationally
efficient methods.

In contrast to the kernel or spline-based methods, in this paper, we will
discuss how to apply sieve estimators in tensor product models. In [49], the
author presents the classical least-square sieve estimator (termed as a projection
estimator) with theoretical discussion (many parts in our exposition will be of
that flavor). In [4], the author provides an extensive review of commonly used/
theoretically interesting sieve basis. Efromovich [9] provides an extensive review
of the method of sieves in density estimation. See also Section 7.5 of Efromovich
[8] for a discussion of sieve estimation for multivariate analytic functions. In [22],
the authors discuss estimation with orthogonal series under additive models.
However, there is no existing work that formally engages with tractable sieve
estimation procedures under tensor product models to the best knowledge of the
authors. In contrast, it has been repeatedly discussed in the literature to directly
generalize univariate sieve estimators to multivariate settings with estimators
of the form (e.g. here we take the dimension d = 3)

f̂n

(
x1, x2, x3) =

Jn∑
i=1

Jn∑
j=1

Jn∑
k=1

θijkφi

(
x1)φj

(
x2)φk

(
x3). (8)

This kind of direct extension does not lead to rate-optimal estimators in com-
monly discussed function classes and is not computationally scalable to even
moderate dimension d in practice (the number of basis functions increases ex-
ponentially with respect to d).
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The study of properties of (Sobolev) spaces with mixed derivatives [55, 36,
26, 31, 45] and related numerical problems [3] is an active field of mathematics.
Applicable numerical methods in these fields are usually called “sparse grids”
[39] or hyperbolic cross [38, 7, 46]. The work in this manuscript connects to
those ideas but also engages statistical and computational questions.

5. Least-square sieve estimators

In this section, we will discuss ordinary least-square sieve estimators that is
applicable to moderate-dimensional problems. Discussion of this kind of prelim-
inary estimators may be of interest itself and will pave our road to the more
practical proposal presented in Section 7.

Sieve estimation leverages the fact that smooth functions can be written as
an infinite linear combination of some basis functions whose coefficients decay
quickly. To construct estimates, we can use a truncated series to balance the
approximation and estimation errors. Since functions in S1([0, 1]d) can be ap-
proximately written as the addition and multiplication of a set of univariate
functions in W1([0, 1]), we may expect a function f ∈ S1([0, 1]d) to have the
expansion

f0(x) =
∑

j∈(N+)d

β0
j ψj(x), for some β0

j ∈ R,

where j = (j1, j2, . . . , jd) ∈ (N+)d, and ψj is a product of the univariate cosine
basis ψj(x) =

∏d
k=1 φjk (xk) described in (2).

In contrast to the univariate case, there is no single obvious natural ordering
of the basis functions ψj since they are indexed by some d-tuples j. Recall
that in the univariate case, the basis functions are naturally ordered by their
trigonometric frequency. To apply sieve estimation in tensor product spaces (or
for any multivariate nonparametric models), we need to establish an order on
{ψj} and determine which basis functions should be used first. In other words, we
need to unravel the set {ψj, j ∈ (N+)d} to a sequence of functions {ψj , j ∈ N+}.
They contain the same set of functions but the latter is an ordered sequence.

Let (ψj) be the sequence of functions unravelled from {ψj} (we postpone
the details of the rearrangement rule to Section 6). In the new notation, any
f0 ∈ S1([0, 1]d) has the expansion f0(x) =

∑∞
j=1 β0

j ψj(x), β0
j ∈ R. To perform

sieve estimation in S1([0, 1]d), we also truncate the series at a proper level Jn.
The least-square sieve estimator fOLS

n is fOLS
n (x) =

∑Jn

j=1 βOLS
jn ψj(x), whose

coefficients are the minimizers of the following empirical least-squares problem:

(
βOLS

1n , . . . , βOLS
Jnn

)
= argmin

(β1,...,βJn )∈RJn

n∑
i=1

{
Yi −

Jn∑
j=1

βjψj(Xi)
}2

. (9)

Using analysis tools from empirical process theory, it is possible to derive
some theoretical guarantees regarding the performance of fOLS

n .
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Theorem 5.1. Suppose {(Xi, Yi) ∈ [0, 1]d × R, i = 1, 2, . . . , n} is an indepen-
dent and identically distributed (i.i.d.) training sample and the true regression
function f0 ∈ S1([0, 1]d), formally∑

‖a‖∞≤1

∥∥Daf0∥∥2
L2([0,1]d) ≤ Q2.

Let εi = Yi − f0(Xi) be sub-Gaussian, mean-zero random variables. We further
assume that the distribution of X, ρX , is continuous with an upper-bounded
density function.

Then, for the least-square sieve estimator fOLS
n , constructed with product of

cosine basis functions (2), we have:

∥∥fOLS
n − f0∥∥2

2,ρX
= OP

((
logd−1(n)

n

)2/3

log(n)
)

, (10)

when Jn = Θ(n1/3 log2(d−1)/3(n)). The ordering of the multivariate product basis
is described in detail in Section 6.

We present the proof of Theorem 5.1 in Appendix D. The overall proof struc-
ture for the least-square estimator is similar to that of Theorem 1 in [65]. How-
ever, to determine the proper truncation level Jn and approximation error, we
need the new technical results presented in Lemma C.7. The above theoreti-
cal guarantee is almost minimax-optimal [29], up to a logarithm term. Specifi-
cally, when d is a given fixed number, the minimax-rate of estimation in S1 is
(n−1 logd−1(n))2/3.

The generalization MSE of this least-squares sieve estimator only differs from
n−2/3—the rate for univariate Sobolev space W1([0, 1])—by a polylog term (with
the dimension d in the exponent). This is much improved as compared with esti-
mation in spaces such as Ws([0, 1]d). For that classical space, the minimax rate
is of order n−2s/(2s+d). The dimension d shows up in the exponent of n rather
than log n. That horrible dependence on the dimension is one manifestation
of the curse of dimensionality. It is much alleviated but still exists, in tensor
product spaces. Many semiparametric procedures require convergence of inter-
mediate components at a rate of at least n−1/2 [25]. Classical Sobolev models
must assume s ≥ d/2 to give such a guarantee. This requirement may be too
strong for many applications: specifically, it already rules out all the piece-wise
linear truths when d ≥ 4.

Remark 5.2 (Metric entropy comparison). From a learning theory perspective,
regression problems are of different degrees of difficulty is due to the difference in
the metric entropy of the hypothesis spaces. Let N(δ, F) denote the δ-covering
numbers of function space F . Then for the unit balls in W1, S1, Wd spaces, we
have

log N
(
ε, W1

(
[0, 1]d

))
� ε−d,

log N
(
ε, S1

(
[0, 1]d

))
� ε−1 logd−1(1/ε),

log N
(
ε, Wd

(
[0, 1]d

))
� ε−1.

(11)
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(To clarify, the δ-covering is defined with respect to ‖ ·‖2,ρX
-norm and the “unit

balls” aforementioned are defined using their corresponding Sobolev-norms.)
This shows that the S1 space is a slightly richer function class than Wd. Note
that Wd is also the largest classical Sobolev space that is a strict subset of
S1. The metric entropy results for W spaces are known in the literature (e.g.
Proposition 6, page 15, [5], Example 5.12 of [58]). We derive the metric entropy
of the S1 space in Proposition C.8.

Remark 5.3 (Minimal number of basis functions). The least-square estimator
fOLS

n constructed with Jn = n1/3 log2(d−1)/3(n) basis functions uses the min-
imal basis number among all the “linear” estimators that essentially achieve
the minimax rate. That is, there are no other sets of pre-specified-functions
{ζj} and estimators of form fnot

n =
∑Jnot

n
j=1 βjζj that can achieve the minimax-

rate with Jnot
n � Jn. One way to see this is by examining the metric entropy

log N(·) of S1 space. The magnitude of metric entropy log N(ε, S1) characterizes
the minimal number of digits required to specify every function in (a ball in)
S1 up to ε-accurately. Let ε be the root-MSE minimax-rate, n−1/3 log(d−1)/3 n:
plugging it into the entropy magnitude (11), we know that there are at least
n1/3 log2(d−1)/3 n digits required to specify every function in S1 to this accu-
racy. The least-square estimator fOLS

n records the coefficients of Jn-many basis
functions. Assuming we use a constant number of bits for each coefficient (32
or 64), the total number of bits of this estimator is the same order as the mini-
mal requirement (but fOLS

n achieves a slightly worse convergence rate than the
minimax limit). If there indeed were some fnot

n that used significantly fewer
pre-specified basis functions, it would lead to a contradiction with the metric
entropy limit.

6. Important technical details: unravelling

In this section, we are going to talk about how to rearrange a set of functions
{ψj} indexed by d-tuples to a sequence of functions (ψj). For ease of discussion,
we will term this kind of rearrangement process as unravelling. Now we present
our proposed unravelling rule for tensor product models.

In Fig. 1, we present how to rearrange 2-tuples (N+)2 into a sequence (this
corresponds to the statistical question when d = 2). We first assign a number cj
to each grid element j ∈ (N+)2 that equals to the elemental product cj = j1 · j2.
We then rearrange the 2-tuples on the left based on the product value cj in
increasing order. In the right panel of Fig. 1, we can see the tuples assigned
with smaller cj values get a more prioritized position in the sequence indexed
by j ∈ N+. For example, (1, 1) is mapped to the first element on the right
because it has the smallest product. In contrast, (2, 2) gets the 7-th position
because there are 6 tuples having product less or equal to it. For tuples with
the same cj values (such as (1, 2) and (2, 1)), their relative order can be defined
arbitrarily. We put (2, 1) in front of (1, 2) because it has a larger value in the
first dimension. In many parts of the analysis, we are interested in how fast the
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Fig 1. Illustration of unravelling. The unravelling rule function is cCP R
j =

∏d
k=1 jk.

unravelled sequence (cj) diverges with respect to j (the series presented in the
right panel of Fig. 1).

The unravelling rule described above can also be to applied to rearrange other
objects originally indexed by 2-tuples (for example, the basis functions {ψj}).
Using the unravelling rule presented in Fig. 1, the first several basis functions
in the unravelled basis sequence are,

ψ1(x) = ψ(1,1)(x) = φ1
(
x1)φ1

(
x2) = 1

ψ2(x) = ψ(2,1)(x) = φ2
(
x1)φ1

(
x2) =

√
2 cos

(
πx1)

ψ3(x) = ψ(1,2)(x) = φ1
(
x1)φ2

(
x2) =

√
2 cos

(
πx2)

ψ7(x) = ψ(2,2)(x) = φ2
(
x1)φ2

(
x2) = 2 cos

(
πx1) cos

(
πx2).

These are exactly the basis functions we used in constructing least-square
sieve estimators in (9). We now give a formal definition of the unravelling rules:

Definition 6.1. Given a function c : (N+)d → R+ defined on the d-tuple grid-
points, we define U(m) = Uc(m) : (N+)d → N+ to be the unique surjective
mapping satisfying the following conditions:

1. U(m) ≤ U(n) if and only if cm ≤ cn;
2. (tie-breaker) For m, n ∈ (N+)d with the same c values: cm = cn, we set

U(m) < U(n) if and only if the following conditions holds: There exists a
value k ∈ {1, 2, . . . , d} such that, ml = nl for all l ≤ k, but mk > nk.

We call such a mapping, U , the c-unravelling rule.

The unravelling mapping is in nature a way to sort d-tuples into a sequence.
Condition 1 in Definition 6.1 is essential: tuples with smaller cj values get a
more prioritized position in the unravelled sequence. Condition 2 is an arbitrary
tie-breaking rule and can be modified.

Definition 6.2. Let c : (N+)d → R+ be a function and U(m) = Uc(m) :
(N+)d → N+ be its corresponding unravelling mapping. When {βj} denotes a
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set of numbers indexed by d-tuples, the c-unravelling sequence of {βj} means
a sequence of numbers (βj), such that βj = βU−1(j) (note that U−1(j) is an
element in (N+)d). Similarly, when {ψj} denote a set of functions indexed by
d-tuples, the c-unravelling sequence of {ψj} means a sequence of functions (ψj)
such that ψj = ψU−1(j).

For each function c defined on (N+)d, there is a uniquely defined unravelling
rule U = Uc, which gives one way to rearrange a set of basis functions into a
sequence. For tensor product models such as S1([0, 1]d), we propose using what
we will henceforth refer to as the Canonical Product unravelling Rule:

cCP R
j = cCP R(j) =

d∏
k=1

jk,

which leads to computationally more feasible and statistically near-optimal es-
timators. Using this notation, the (cj) sequence in Fig. 1 can be mathematically
described as the cCP R-unravelling sequence of cCP R

j .
The results of Theorem 5.1 imply the CPR ordering strategy is not arbitrary.

Instead, it properly balanced the estimation error and the approximation error
under the tensor product model. Other ways to increase the basis function sets
that are essentially different from our proposal, for example the one in (8), would
not lead to (near-)optimal estimators.

When analyzing the magnitude of (cj) in Fig. 1, we will use a key expres-
sion for the asymptotic average order of some “divisor functions” (Lemma F.3).
Briefly speaking, it states that, on average, there are logd−1(T )/(d−1)! ways to
factor a natural number less than T into a product of d positive integers. This
can be translated into the magnitude of (cj) and explains the presence of terms
like logd−1(n) in Theorem 5.1. Number theory fact can also give us an estimate
of the eigenvalues of relevant general product reproducing kernels. We formally
state this fact as follows:

Corollary 6.3. Let K(x, z) be a Mercer kernel defined over X ×X ⊂ R×R. Let
ρX be a measure defined over X . Assume K has the following Mercer expansion

K(x, z) =
∞∑

j=1
j−2sφj(x)φj(z),

for some s > 1/2 and {φj} is a uniformly bounded orthonormal basis of L2(ρX).
Then we know its product kernel Kprod : Rd × Rd → R

Kprod(x, z) =
d∏

k=1
K
(
xk, zk

)
has the following Mercer expansion

Kprod(x, z) =
∞∑

j=1
λjψj(x)ψj(z),
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where the non-increasing sequence λj � (j−1 logd−1(j))2s (as j → ∞). And the
functions (ψj) is the cCP R-unravelling sequence of {ψj(x)} = {

∏d
k=1 φjk (xk)}.

The above characterization of the order of λj allows us to easily transport
most of the results of this paper to general multivariate RKHS problems (by un-
ravelling multivariate RKHS problems into well characterized univariate prob-
lems). It also implies that for any RKHS with known feature mappings φj ,
we can perform sieve-type estimation instead of kernel ridge regression to po-
tentially gain some feature sparsity (Section 7) or better computational effi-
ciency (Section 8.2). For the proof of Corollary 6.3 and more discussion, see
Appendix B.

7. Penalized sieve estimators in sparse models

In this section, we will discuss how to apply l1-penalized sieve estimators for
nonparametric sparse models. The difference between this section and the pre-
vious is analogous to the difference between sparse additive models [32] and
additive models (discussed in Section 3), though the technical tools employed
differ.

Although there may be a substantial number of features collected, it is com-
mon that only a small active subset of those features are needed to build the
optimal predictive model. We will show that, similar to many other sparse meth-
ods, our proposed method is relatively robust to the ambient dimension d. It
is the active dimension of the problem that has a significant impact. We now
formalize our nonparametric sparse model:

Condition 7.1. There exists a D-variate function f∗ : [0, 1]D → R, and a set
of indices {k1, . . . , kD} ⊂ {1, 2, . . . , d} such that for any u ∈ [0, 1]d: we have
f0(u) = f∗(uk1 , uk2 , . . . , ukD ). Moreover, we assume

f∗ ∈ S1
(
[0, 1]D

)
.

The first half of Condition 7.1 formally states that there are D features that
have dominating association with the outcome; The later half is a smoothness
assumption, which can potentially be replaced by other nonparametric model
assumptions. Here, we take the S1 space as an example for presenting our ideas,
for general discussion and theory, see Condition C.10 in Appendix C.4.

There are relaxations of Condition 7.1 that may be considered more interest-
ing in practice. For example, we can consider truth that can be decomposed as
a finite sum of M feature-sparse functions:

f0(u) =
M∑

m=1
f∗

m

(
ukm,1 , ukm,2 , . . . , ukm,D

)
, (12)

and each component satisfies the smoothness condition f∗
m ∈ S1([0, 1]D). The

index sets {km,1, . . . , km,D} for different m are allowed to be different or overlap-
ping. This relaxed condition will not neither significantly affect the implementa-
tion of our (upcoming) proposed methods nor their convergence rate guarantees.
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In this manuscript we focus on the essential case stated in Condition 7.1 for sim-
pler presentation.

In Sections 5 and 6, we discussed the need to order the multivariate basis func-
tions; we additionally showed that using the unravelling rule cCP R

j =
∏d

k=1 jk

would lead to nearly rate-optimal least-square estimators (up to polylog). In
the sparse model setting, the unravelling rule is very similar except that we al-
low ourselves to remove some higher-order interaction terms for computational
ease. In particular, we begin with a conservative guess D′ for the active dimen-
sion D. We then remove any interactions of order > D′. So long as D ≤ D′ this
will not affect the theoretical performance of our estimator. Formally, our new
unravelling rule is:

Condition 7.2. Let {φj} be the univariate cosine basis: φ1(x) = 1, φj(x) =√
2 cos((j − 1)πx). Consider their natural d-dimensional product extension

ψj(x) =
∏d

k=1 φjk (xk), denote (ψj) as the c-unravelling sequence of {ψj}. The
unravelling rule c(·) is defined as

cj =
{

cCP R(j), if at most D′ entries of j are greater than 1
∞, otherwise

(13)

Suppose d = 3 and we choose the working dimension D′ = 2. Then ψ(1,1,1) will
get the first place when unravelling {ψj} to the (ψj) sequence. Similarly, ψ(2,1,1)
gets the second position and ψ(1,2,1) gets the third. However, basis functions
that vary in more than D′ = 2 dimensions will not be used for our estimate.
For example, ψ(2,2,2)(x) = 23/2 ∏3

k=1 cos(πxk) is excluded since it varies in all
three dimensions. We formalize this using an infinite value for the index in our
rule (13).

For problems with higher feature dimension d and limited samples, the em-
pirical least-squares problem (9) is likely to be under-determined (one have more
basis functions than samples), and thus regularization is required for numerical
stability. In addition, basis functions from non-active features should have 0 co-
efficient which further motivates introducing a regularization term. Toward this
end, we add a simple l1 sparsity-inducing penalty to the original loss. Formally,
we need to solve the following optimization problem:

(
βP LS

1 , . . . , βP LS
Jn

)
= argmin

(β1,...,βJn )∈RJn

1
n

n∑
i=1

{
Yi −

Jn∑
j=1

βj · ψj(Xi)
}2

+ λn

Jn∑
j=1

|βj |,

(14)
and our estimate is given by fP LS

n (x) =
∑Jn

j=1 βP LS
j ψj(x). In Appendix A.2 we

include more details on the implementation of the above method. Specifically, in
Algorithm 1 we show how to effectively use computational resource to generate
the index set for the basis functions in (14), which would have been quite a
burden if not well taken care of. We have the following theoretical guarantee for
this estimator’s generalization error:

Theorem 7.3. Suppose {(Xi, Yi) ∈ [0, 1]d × R, i = 1, 2, . . . , n} is an i.i.d.
training sample and the true regression function f0 satisfies Condition 7.1. Let
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εi = Yi − f0(Xi) be sub-Gaussian, mean-zero random variables. We further
assume that the distribution of X, ρX , is continuous with a bounded density
function (from above and away from zero), and the working dimension D′ in
Condition 7.2 is no smaller than the active dimension D in Condition 7.1.

Then, for the l1-penalized sieve estimator fP LS
n , constructed with basis func-

tions described in Condition 7.2, we have:

∥∥fP LS
n − f0∥∥2

2,ρX
= Op

(
log(d) log(n)

(
logD−1(n)

n

)2/3)
, (15)

when Jn = C(D)dD′
n1/3(log n)D′−1 and λn = (log(Jn)/n)1/2. Here C(D) is a

constant that only depends on D.

This convergence rate for fP LS
n looks similar to the rate obtained for the

unpenalized estimator fOLS
n with two substantial differences: 1) The logd−1(n)

has been replaced by logD−1(n) which now only involves the active dimension;
and 2) The ambient dimension d is only included through a log(d) term (as is
common in sparse regression).

The l1-penalized optimization problem in (14) can be solved directly using
standard lasso solvers such as glmnet [40]. The overall task of fitting the non-
parametric estimator fP LS

n can be done with R package Sieve. Asymptotically,
the time complexity for constructing the above l1-penalized sieve estimator is of
order O(nJn) = O(dD′

n4/3 logD′−1 n). In contrast, standard applications of re-
producing kernel ridge regression require Θ(n3) computation and give no adap-
tivity guarantees under feature sparsity. Computationally, the proposed sieve
estimator is more suitable for large data sets as its dependency on sample size
is almost linear. Other theoretically guaranteed methods, such as highly adap-
tive lasso [2], require solving optimization problems that scale as 2dn, which is
substantially more resource intensive than the proposed method.

The order of Jn presented in Theorem 7.3 serves as a theoretical guidance of
the number of basis required to achieve the presented accuracy. The proposed
procedure is computationally more tractable in the sense that: the ambient di-
mension d does not show up in the exponent, the exponent of the polynomial
term of n does not have D′ in the exponent. In practice, generic model selec-
tion procedures such as cross-validation can be applied to tune the data adap-
tive hyper-parameters Jn and λn. Since fP LS

n is a nonparametric estimator,
cross-validation can consistently select the best hyper-parameter combination
specified by the user [62].

8. Numerical examples

So far in this manuscript, we have introduced and discussed the (dense and
sparse) tensor product models and the theoretical performance guarantees of
sieve estimators. In this section, we will demonstrate the finite-sample perfor-
mance of the proposed methods and their applicability in practice via simu-
lated and real data sets. The methods discussed in this manuscript, penalized
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Table 1

Functional form and highest interaction order for simulated data.
Example 1 f0 Example 2 f0∑D−1

k=1 Leg(2(xk − 0.5), 3)+ ∑
j∈(N+)d:cCP R

j
≤8

∏D
k=1 cos((jk − 1)πxk)

Leg(2(xk − 0.5), 2) · Leg(2(xk+1 − 0.5), 2)
Highest interaction: second order Highest interaction: third order

and least-square sieve estimators, are implemented in the R package Sieve.
Currently, the package is available on the Comprehensive R Archive Network
(CRAN).

8.1. Performance comparison with simulated data

We first present some numerical results based on simulated data sets. In this sec-
tion we will consider two types of true regression functions. In Table 1 we present
the detailed functional forms of the true regression functions. The Leg(x, j) func-
tion in the table is the j-th Legendre polynomial: Leg(x, 2) = x, Leg(x, 3) =
(3x2 − 1)/2. We give an additional example in Appendix A.1 where the true
conditional means only contain interaction terms without main effects. In this
setting the proposed methods perform much better than tree-based methods.

In the simulation study, we considered active dimension D ∈ {2, 4} and
ambient dimension d ∈ {4, 8, 16}. We used signal-noise-ratio (SNR) = 3 and 30
with normally distributed noise random variables. Here SNR is defined as the
ratio between the squared 2-norm of f0 and the variance of the noise variables.
This means the oracle (best possible) testing R2 should be 0.75 (SNR = 3) and
0.97 (SNR = 30). We choose sample size n ∈ {400, 800}. The feature vectors X
we consider are uniformly distributed over the [0, 1]d cube. We performed 100
simulations for each setting. We use oracle hyperparameters for each method
(number of basis functions, regularization parameter, number of trees, etc.),
which is determined based on an independent n = 2000 testing data set.

The regression estimators we considered in the simulation study are: sieve
estimators proposed in this work (least-square and penalized), random forest
(RF, R package randomForest), gradient boosting (GBM, R package gbm),
Gaussian kernel ridge regression (also known as radial kernel support vector
machine), highly adaptive lasso (HAL, R package hal9001, only applied for the
lower dimension case d = 4 due to the exponential memory requirement) and
sparse additive models. We also include some oracle estimators that know which
D dimensions are truly associated with the outcome Y in order to demonstrate
the dimension adaptivity of the other methods. The univariate basis φj we used
for sieve estimators are: φ1(x) = 1, φj(x) = sin((j + 1/2)πx) (sine basis, for the
f0

cos settings) and φj(x) = cos((j−1)πx) (cosine basis, for all the other truth f0).
The oracle kernel ridge regression method, denoted as oKRR in Fig. 2 and Fig. 3,
uses the reproducing kernel of S1([0, 1]D), see Appendix B. In Fig. 2, we present
the results under high SNR settings and we evaluate the performance of each
method using (absolute) testing MSE. In Fig. 3, the larger noise settings, model



3676 T. Zhang and N. Simon

Fig 2. Simulation study results. Low noise settings, SNR = 30.

performance is evaluated via testing R2. Sometimes R2 is more interpretable in
practice than absolute MSE, but we chose to present absolute MSE in Fig. 2
simply because it can differentiate methods better (all methods have high R2

values in some settings).

8.2. CPU time benchmark with larger scale data

In Section 8.1, we chose several moderate sample size n and feature dimension
d simulation settings. We restrict ourselves to scenarios where we can compare
the predictive performance of a large library of estimators — many of the com-
parison estimators are computationally inefficient, so we had to limit n and d.
In this section, we present some extra experiments with larger sample sizes to
benchmark the computational expense of our proposed method. We use d = 10
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Fig 3. Simulation study results. High noise settings, SNR = 3.

and sample size n ∈ [250, 5000]. The truth f0 takes a nonparametric additive
form. Formally, we generate data from the following scheme:

Xi ∼ Unif[0, 1]d

εi ∼ Normal(0, 1)

f0(x) =
∑

j is odd
0.5 − |xj − 0.5| +

∑
j is even

exp
(
−xj

)
Yi = f0(Xi) + εi.

The CPU time and MSE (= ‖fP LS
n − f0‖2

2,ρX
) are shown in Fig. 4. We con-

sider l1-penalized estimators with varied numbers of basis functions (we label
them as “less”, “moderate” and “more”), though D′ is fixed to be 3 for all
examples and a cosine basis is always used. We use canonical unravelling rule
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Fig 4. CPU timing benchmark with larger sample sizes. Sieve(moderate), l1-penalized sieve
estimator, number of basis function Jn is equal to sample size n; Sieve(less), Jn = n/10;
Sieve(more), Jn = 10n; KRR, kernel ridge regression. Left panel, running time of each
method, including both perform model fitting and hyperparameter tuning. We use an indepen-
dent validation data set, which has the same sample size as the training data, to select the
hyperparameters. Right, MSE ‖f̂n − f0‖2

2,ρX
of the selected estimators. The most parsimo-

nious sieve estimator achieves the best performance among the four.

cCP R to reorder the multivariate basis functions. Instead of using exactly the
theoretical number of basis functions listed in Theorem 7.3, which is in na-
ture an asymptotic upper bound, we chose number of basis function to lie in
a “convenient range” that users may consider in practice. We also include the
running time and performance of kernel ridge regression for comparison. We
are also performing penalty parameter tuning with some validation data: for
sieve estimator, 100 candidate λ-values are considered where as for KRR only
10 are considered (due to computational expense). As we can see, the most par-
simonious estimator sieve(less) is the fastest and the one with smallest MSE.
This is consistent with the theory of univariate sieve-methods where a small
number of basis functions appropriately balances estimation and approximation
error. We did not use estimators with fewer basis functions since they cannot
be distinguished in the CPU plot from sieve(less). The sieve estimators may ad-
ditionally have leveraged some adaptivity to the additive structure of the true
regression function, which could explain their improved MSE as compared to
KRR estimators.

Both the KRR estimators and sieve-estimators, were written by us: They are
coded in C++ and called from our R package sieve. While we attempted to write
efficient code, we naturally imagine that others might be able to write more
performant code (for both KRR and our proposed method), thus the above
results should mainly be used to give a general idea of timing comparison.
The experiments in this section are run on a AMD Opteron 6300 Processor,
2.8 GHz.
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Table 2

Basic information for public data sets used in performance comparison.
Name Sample size (n) Feature type References
gdp 616 6 Liu and Stengos [30]
fev 654 4 Rosner [35]

fev50 654 54 –
bio 779 9 Grisoni et al. [16]
aba 4177 8 Waugh [60]
supc 21263 81 Hamidieh [18]

Fig 5. Relative MSE and R2 on real data sets. The MSE values are normalized to that of
penalized sieve estimator with cosine functions. Methods requiring significantly more compu-
tational resource are not reported.

8.3. Performance comparison with real data

We also compare the predictive performance of these methods on 5 publicly
available data sets. Some basic information for the data sets is reported in
Table 2. In Fig. 5, we present the relative testing MSE and (absolute) R2 of
each method. We saved 30% of the samples as the test set and the hyperpa-
rameters of each method are determined using a 5-fold cross-validation on the
training set (more details presented in Table 3 of the supplement). The fev50
data set combines the true outcome and features from fev, with 50 artificially
constructed non-informative features (independent, Unif[0, 1]). We use this data
set as a moderately high-dimensional, sparse feature example. One of the data
sets, supc, has been used as an example to demonstrate the effectiveness of
tree-based methods [18], so we also include it for a more comprehensive com-
parison. We only applied highly adaptive lasso to 3 data sets and Gaussian
kernel ridge regression to 5 data sets due to their high computational resource
requirement: These would not efficiently run on a machine with 1 Intel Core m3
processor, 1.2 GHz, with 8 GB of RAM. The linear model with all interaction
terms is not applicable to fev50 because the empirical problem is not well-posed
without further modification (number of coefficients is larger than the sample
size).
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We compared sieve estimators based on different univariate bases φj , includ-
ing polynomial, cosine basis and sine basis (the basis defined earlier in this
section), as well as a combination of polynomial and trigonometric functions
[10]. The performance of penalized sieve methods using different basis functions
is quite similar. The random forest estimator is more sensitive to the extra di-
mensions of fev50 than penalized sieve and GBM. For more information on the
data sets, see Table 2 in the supplementary material.

9. Discussion

In this paper, we discussed sieve-type (basis-expansion) methods for multivari-
ate nonparametric regression problems. Under certain tensor-product space as-
sumptions, least-squares and penalized estimators were shown to have favorable
theoretical guarantees. Specifically, they have a moderate dependence on the
dimension of features and are adaptive when a small subset of the features are
of primary importance for determining the outcome. We now give a bit more
discussion and contextualization of our work as well as noting possible future
directions.

Rate-optimality of our guarantees The minimax rate of estimation under
the setting in Theorem 5.1 is known to be n−2/3(log n)2(d−1)/3 (proved in Lin
[29]). Both the proposed least square estimators and the l1-penalized estimators
can achieve this rate up to a log n term (Recall that in this setting we are
treating the total dimension d as “fixed”, not increasing with n).

For the “high-dimensional” estimation setting in Theorem 7.3, we conjecture
[63] the minimax rate to be

D log(d/D)
n

+
(

logD−1(n)
n

)2/3

.

This rate is formally analogous to the more well-known sparse additive mod-
els’ minimax rate. Specifically, the log d term should not multiply the nonpara-
metric rate and instead go into another additive term. In contrast, our theoret-
ical guarantee is

log d log n

(
logD−1(n)

n

)2/3

,

where the log d term multiplies the nonparametric term.
When the ambient dimension d increases with n polynomially fast d = dn =

nγ , the conjectured minimax rate is of order

log n

n
+

(
logD−1(n)

n

)2/3

︸ ︷︷ ︸
main term

.
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And our theoretical guarantee for the penalized estimator is

γ log2 n

(
logD−1(n)

n

)2/3

, (16)

which is log2 n slower than the conjectured minimax rate. The multiplicative
log d in (15) term, resulting in a multiplicative log n in (16), may be due to
artifacts in our proof technique, but may also be an intrinsic limitation of a our
simple ‖ · ‖1-penalty.

More general models and diverging active dimension The theoretical
guarantee of Theorem 7.3 tells us d = dn is allowed to increase at a polynomial
rate nγ and we would still obtain tractable estimators (having a log dn = γ log n
term). However, the active dimension D has to increase very slowly if people are
interested in such a regime. For example, if we plug D = Dn = a log n, a > 0 into
the minimax rate of S1([0, 1]d) space: n−2/3(log n)2(D−1)/3, it would become

n−2/3(log n)2(a log n−1)/3 → ∞, as n → ∞.

(Here we used the fact that for any γ > 0

log na log n =
(
log n exp(γ/a) exp(−γ/a)

)a log n = nγ
(
log n exp(−γ/a)

)a log n
,

which means log na log n diverges faster than any polynomial in n as n → ∞.
Specifically, it diverges faster than n2/3.)

The above calculation implies such a statistical problem is too hard even for
D ∼ log n. It seems like D = log log n would give more interesting models to
perform estimation within. This is a curious demonstration that working under
S1 can only partially avoid the curse of dimentionality (as we claimed in the
manuscript).

Alternatively, one could assume the true regression function is a linear combi-
nation of Mn component functions {f0

i , i = 1, . . . , Mn}, where each f0
i depends

on only D features x (but those features could be different across f0
i ) and we

assume each f0
i lies in a proper S1([0, 1]D) space. In this case, we expect the

l1-penalized estimator to converge at a rate no slower than

M2
n log d log n

(
logD−1(n)

n

)2/3
,

which may allow Mn to be on the order of log n.

Tensor product spaces with higher order smoothness The main focus
of this paper is the impact of the overall feature dimension d on non-parametric
estimation quality. Our methods and discussion can also be extended to more
general tensor product spaces. Formally, one may investigate the setting where
f0 belongs to space Ss([0, 1]d):

Ss

(
[0, 1]d

)
=

{
f ∈ L2

(
[0, 1]d

)
| Daf ∈ L2

(
[0, 1]d

)
for all ‖a‖∞ ≤ s

}
,
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for some integer s ≥ 1. One difficulty here is that the most appropriate sieve
basis functions (orthogonal with respect to both the L2 and Sobolev inner prod-
ucts, but not necessarily periodic) no longer take a simple closed-form, unlike
in the S1 case. However, our theoretical analysis can be directly applied here
(e.g. Theorem C.5): We consider a true regression function that lies in some
multivariate Sobolev ellipsoid with general smoothness parameter s.

Appendix A: More numerical examples and method
implementation discussion

A.1. Supplementary numerical results

In the main text, we present selected results from our simulation study. In
this section we will provide more details together with another data generation
setting that only has interaction terms.

In the simulation study, we have been using the oracle hyperparameters for
each method under comparison, that is, those parameters that lead to minimal
testing error. In Table 3 we present the hyper-parameters that are tuned for
each method.

In Figs. 6 and 7, we present the simulation results under the same setting
as in the main text. The performance is evaluated using multiple metrics as in
Figs. 2 and 3.

We also present the simulation results from another data generating mech-
anism that does not have an additive component (results are in Fig. 8 and 9).
The data generating mechanism is defined as:

f0
interaction =

D−1∑
k=1

Leg
(
2
(
xk − 0.5

)
, 2

)
· Leg

(
2
(
xk+1 − 0.5

)
, 3

)
(17)

where the Leg(x, j) function is the j-th Legendre polynomial

Leg(x, 2) = x, Leg(x, 3) =
(
3x2 − 1

)
/2 (18)

This conditional mean has no main effects, meaning that

E
[
f0

interaction(x) | xk
]

= 0

Table 3

Hyperparameters for each method.
Method Hyper-parameter

l1-penalized sieve estimator (P-sieve) number of basis functions, penalty parameter
gradient boosting machine (GBM) number of iteration, tree depth

Gaussian kernel ridge regression bandwidth, penalty parameter
least-square sieve estimator (LS-sieve) number of basis functions

random forest (RF) number of sampled features, tree depth
highly adaptive lasso (HAL) penalty parameter

sparse additive model (SpAdd) number of basis functions, penalty parameter
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Fig 6. Simulation study results. SNR = 30.

for any 1 ≤ k ≤ d. We can verify this by direct calculation (recall that x ∼
Uniform([0, 1]d)). Although f0

interaction is a simple polynomial with nice
smoothness properties, the lack of main effects (or additive components) messes
up the performance of many methods. The almost zero testing R2 of additive
models demonstrates that in this setting they are no better than taking an un-
conditional mean of the outcome. Tree-based methods (gradient boosting and
random forest) have more difficulties in this setting, especially when compared
with their outstanding performance when the main effect components do exist.
Tree-based methods cannot readily decide at which point to divide the feature
space. For any binary cut only engaged with one feature, the mean of the out-
come on one side of the division would be very similar to that of the other side
under this specific setting.
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Fig 7. Simulation study results. SNR = 3.

A.2. Generating the design matrices

In this section we present more details on efficiently constructing the design
matrix for multivariate sieve estimators. In the main text, we mention that
the numerical implementation of sieve estimators is reduced to solving a least-
square problem or a l1-penalized optimization problem. In both cases we need
to construct a design matrix Ψ̂ whose elements are Ψ̂ij = ψj(xi).

Given a set of multivariate product basis functions ψj(x) =
∏d

k=1 φjk (xk)
indexed by j ∈ (N+)d, the unravelling rule cj =

∏d
k=1 jk tells us how to sequen-

tially use them to construct estimators. However, we only have a nonconstructive
description of the elements in the unravelled sequence (ψj). To construct the
design matrix Ψ̂, we need to know the explicit form of each ψj . In practice,
we need to first create an index matrix from which the algorithm identifies
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Fig 8. Additional settings, true regression function does not have main effect components.
SNR = 3.

the analytical form of (ψj). For example, in the case d = D′ = 3, we should
construct an index matrix M of three columns (corresponding to the three di-
mensions). The first row has elements: M11 = M12 = M13 = 1, corresponding
to the constant function ψ(1,1,1). And the following six rows are all 1 except for
M21 = M32 = M43 = 2, and M51 = M62 = M73 = 3. They correspond to the
second through seventh basis functions ψ(2,1,1), ψ(1,2,1), ψ(1,1,2), ψ(3,1,1), etc. By
reading through this matrix, the algorithm can directly figure out the analytical
form of the basis functions.

There are multiple ways to construct such an index matrix. When D′ = d
(dense setting), one straightforward strategy is: 1) the user specifies the max-
imum index product C; 2) identify all the indices j ∈ (N+)d whose maximum
entry is smaller or equal to C; 3) sort the indices increasingly according to
the index product cCP R

j ; 4) keep only the earlier indices whose product is less
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Fig 9. Additional settings, true regression function does not have main effect components.
SNR = 30.

than or equal to C. This algorithm is simple but is computationally wasteful. In
step 2), Cd indices must be stored (this is memory intensive, even for moderate
C and d). According to our theoretical results, we only need a subset of size
C logd(C). This issue is further exacerbated in the sparse case when D′ � d.
Therefore, we seek an alternative, computationally more efficient strategy, which
includes some integer factorization, for generating the index matrix.

In Algorithm 1, we provide the details of the procedure. By factoring each
positive integer as a product of D′ numbers sequentially, we can fill out the
matrix M . In the case when d = D′ = 3, there is one row with row product
equal to 1, two rows having row product equals to 2, and six rows having a
product equal to 4. When D′ is much smaller than d, as for the sparse sieve
estimators, there should be many fewer rows corresponding to the same row
product. The algorithm is presented below, followed by an example to explain
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some of the steps.

Set the maximum row product as ProdMax, feature dimension d, working dimension D’.
Define Cd

m = d!/{m!(d − m)!}, the combination number of “choosing m out of d”.
M ← An all 1 matrix of size 1 × d.
FOR Prod = 2 TO Prod = ProdMax

Find all τD’(Prod) ways to factorize Prod as a product of D’ numbers. *
Omit all values of “1” in the products and combine identical factorizations.
GreaterThanOne ← A list. Each element corresponds to one of the factorizations.
FOR i = 1 TO i = list length of GreaterThanOne

Gi ← The i-th element in GreaterThanOne.
m ← The length of the array Gi.
Position ← A matrix of size Cd

m × m.
Each row corresponds to a unique way of choosing m elements from {1, . . . , d}.

NewIndexMatrix ← A matrix of size Cd
m × d. All elements are 1.

FOR j = 1 TO j = row number of Position
NewIndexMatrix[j, Position[j,]] ← Gi **

ENDFOR
M ← Stack M above NewIndexMatrix to form a longer matrix.

ENDFOR
ENDFOR
RETURN M.

Algorithm 1: Algorithm for generating the index matrix. For the definition
of the τD′ function mentioned in step *, see Definition C.1. In ** step we
use the notation from the R programming language to express our matrix
update.

We present some examples to better explain the compactly written algorithm
above. Let’s assume d = 3, D’ = 2. Suppose we are currently at Prod = 6 in the
first layer of FOR loops. The τ2(6) = 4 ways to factorize 6 are:

6 = 6 × 1 = 1 × 6 = 2 × 3 = 3 × 2. (19)

After the “Omit all values of 1 in the products and combine identical factoriza-
tions” step, we have three ways to factor 6 (the first two above are combined).
Therefore, the GreaterThanOne list is

GreaterThanOne = list
(
[6], [2, 3], [3, 2]

)
. (20)

The arrays in GreaterThanOne are of different lengths. Suppose we are at i = 2
in the second layer of the FOR loop. Then Gi = [2, 3], m = 2. The Position
matrix we constructed is

Position =

⎡⎣1 2
1 3
2 3

⎤⎦ . (21)

This matrix specifies at which positions we are going to insert Gi. In the inner
most FOR loop, we are going to update the all 1 matrix NewIndexMatrix using
the information of Position and Gi: Position. In particular, Gi: Position
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specifies where to update, and Gi specifies what the elements are updated to.
When i = 2, j = 1, we update the 1st and 2nd columns in the 1st row of
NewIndexMatrix to be [2, 3], that is

NewIndexMatrix :

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦ Update−→

⎡⎣2 3 1
1 1 1
1 1 1

⎤⎦ (22)

When i = 2, j = 2, we update the 1st and 3rd columns in the 2nd row of
NewIndexMatrix to be [2, 3]:

NewIndexMatrix :

⎡⎣2 3 1
1 1 1
1 1 1

⎤⎦ Update−→

⎡⎣2 3 1
2 1 3
1 1 1

⎤⎦ (23)

After looping through all the j, i and Prod, we have our desired index matrix M.
Its first several rows are:

row 1 to 10:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 1 1
1 2 1
1 1 2
3 1 1
1 3 1
1 1 3
4 1 1
1 4 1
1 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
row 11 to 20:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1
2 1 2
1 2 2
5 1 2
1 5 1
1 1 5
6 1 1
1 6 1
1 1 6
2 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
row 21 to 30:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 3
1 2 3
3 2 1
3 1 2
1 3 2
7 1 1
1 7 1
1 1 7
8 1 1
1 8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

So we can read ψ1 = ψ(1,1,1), ψ11 = ψ(2,2,1) and ψ21 = ψ(2,1,3), etc.

Appendix B: Product kernels and tensor product spaces

B.1. Univariate RKHS and Sobolev ellipsoids

In Appendix B, we will review the concept of Mercer kernels and reproducing
kernel Hilbert spaces (RKHS). We will first engage with univariate RKHSs and
their Sobolev ellipsoid representation in Appendix B.1. By considering the ten-
sor product kernel, we can extend our discussion to multivariate tensor product
models (Appendix B.2). Later in this section, we will arrive at some multivari-
ate Sobolev ellipsoid models. These models can be seen as abstractions of the
example function spaces (such as S1([0, 1]d)) discussed in the main text.

There is a vast literature on univariate nonparametric regression problem.
We list a few of them here: Sobolev space and smoothing spline estimators
[56]; reproducing kernel Hilbert space and kernel ridge regression estimators
[41]; Sobolev ellipsoid and sieve-type projection estimators [49]. These function
spaces are closely related to each other: Sobolev spaces can sometimes be treat
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as a special case of RKHS and there is usually an equivalence between a ball in
an RKHS and a Sobolev ellipsoid. We will try to give a brief review of this part
of nonparametric learning through some examples.

First we are going to present the concept of Mercer-kernels and their related
reproducing kernel Hilbert spaces (on the real line).

Definition B.1. A symmetric bivariate function k : R × R → R is positive
semi-definite (PSD) if for any n ≥ 1 and (xi)n

i=1 ⊂ R, the n ×n matrix K whose
elements are Kij = k(xi, xj) is always a PSD matrix.

A continuous, bounded, PSD kernel function k is called a Mercer kernel.

The following theorem [5] states the existence and uniqueness of a reproduc-
ing Hilbert space with respect to a Mercer kernel. The domain R in the following
theorem can replaced by a subset such as [0, 1] or [0, +∞).

Theorem B.2. For a Mercer Kernel k : R × R → R, there exists an unique
Hilbert Space (Hk, 〈·, ·〉k) of functions on R satisfying the following conditions.
Let kx : z �→ k(x, z):

1. For all x ∈ R, kx ∈ Hk.
2. The linear span of {kx | x ∈ R} is dense (w.r.t ‖ · ‖k) in Hk.
3. For all f ∈ Hk, x ∈ R, f(x) = 〈f, kx〉k (reproducing property).

We call this Hilbert space the Reproducing kernel Hilbert space (RKHS) asso-
ciated with kernel k.

Example. The space W1([0, 1]) is a RKHS with kernel

k(s, t) = cosh(min(s, t)) cosh(1 − max(s, t))
sinh(1) (25)

For the proof, see Appendix A of Fasshauer and McCourt [11] or Akgül et al.
[1]. The RKHS inner product for this kernel is defined as

〈f, g〉W1([0,1]) =
∫ 1

0
f(τ)g(τ)dτ +

∫ 1

0
f ′(τ)g′(τ)dτ (26)

The reproducing property reads as: for any x ∈ [0, 1] and any f ∈ W1([0, 1])

f(x) = 〈f, kx〉W1([0,1])

=
∫ 1

0
f(τ)k(x, τ)dτ +

∫ 1

0
f ′(τ) ∂

∂τ
k(x, τ)dτ.

(27)

Under mild conditions [42], a Mercer kernel has the following Mercer expan-
sion.

k(s, t) =
∑
j∈J

λjφj(s)φj(t), (28)

where J is an at most countably infinite index set. The eigenvalues λj are real
numbers. The eigenfunctions (basis functions) {φj} can also be a complete basis
of some L2 space or the RKHS.
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Although the majority of estimation procedures under RKHS models leverage
the reproducing property, the method considered in this paper uses the feature
maps directly (which is of a sieve nature). There have been studies showing
that considering the problem from this perspective can give substantial compu-
tational advantage over standard kernel methods [65, 64]. In this manuscript we
will also show how sieve estimators can be more easily adapted to employ vari-
able selection and can additionally be adaptive to dimension. Now, we present
the important connection between a RKHS and a Sobolev ellipsoid established
in the literature (e.g., p. 37, Theorem 4 in Cucker and Smale [5]).
Theorem B.3. Under mild conditions, the Hilbert space Hk of the kernel k
(defined in Theorem B.2) is identical – same function class with the same inner
product – to the following Hilbert space Hk.

Hk =
{

f | f =
∞∑

j=1
ajφj with

∞∑
j=1

a2
jλ−1

j < ∞
}

(29)

The RKHS inner product can be explicitly written as:

〈f, g〉k =
∞∑

j=1
λ−1

j ajbj (30)

for f =
∑

j ajφj , and g =
∑

j bjφj. The functions φj and real numbers λj are
the eigen-system in the Mercer expansion (28) (assuming J = N+).
Example. The reproducing kernel for W1([0, 1]) has the following Mercer ex-
pansion:

k(s, t) =
∞∑

j=1
λjφj(s)φj(t), (31)

with
λ1 = 1, φ1(x) = 1,

λj = 1
1 + ((n − 1)π)2 , φj(x) =

√
2 cos

(
(n − 1)πx

)
for j ≥ 2.

(32)

Therefore, we also have the following characterization of a ball in W1([0, 1]):

{
f ∈ W1

(
[0, 1]

)
| ‖f‖2

W1
≤ Q2} =

{
f =

∞∑
j=1

ajφj with
∞∑

j=1
a2

jλ−1
j ≤ Q2

}
(33)

To summarize, a ball in a RKHS is a Sobolev ellipsoid.

B.2. Multivariate RKHS and Sobolev ellipsoids

Given a univariate RKHS, one of the most naturally related multivariate RKHS
is the one corresponding to the product kernel. This also happens to corre-
spond to one of the most commonly used multivariate kernels in practice: The
multivariate Gaussian kernel which is a product of univariate Gaussian kernels.
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Definition B.4. Given a univariate Mercer kernel k : R×R → R, we define its
(natural, d-dimensional) product kernel kd : Rd × Rd → R to be:

kd(s, t) =
d∏

j=1
k
(
sj , tj

)
. (34)

We can also define the RKHS of kd using the fact that kd is also a Mercer kernel
(Proposition 12.31 of Wainwright [58]). Typical elements in this multivariate
RKHS take the following form:

f(x) =
m∑

l=1

d∏
k=1

fkl

(
xk

)
, with fkl ∈ Hk. (35)

There are multiple ways to engage with an element in Hkd and its inner
product. One way, as presented above, is using the property that Hkd is a
tensor product Hilbert space of d univariate Hilbert spaces. This would lead to
the following characterization of its inner product.

Proposition B.5. The RKHS for kd, Hkd , is equipped with the inner product:

〈h, g〉kd =
n∑

i=1

m∑
l=1

d∏
j=1

〈hij , glj〉k (36)

for h(x) =
∑n

i=1
∏d

j=1 hij(xj), g(x) =
∑m

l=1
∏d

j=1 glj(xj). The component func-
tions hij, glj all belong to the univariate RKHS Hk.

.
Alternatively, we can also consider the basis expansion form of the functions

in Hkd (similar to Theorem B.3). The tensor product kernel kd has the following
Mercer expansion (which can be formally verified using its Mercer expansion):

kd(s, t) =
∑

j∈(N+)d

d∏
k=1

λjk ψj(s)ψj(t), with λjk ∈ R. (37)

We have the following equivalent characterization:

Proposition B.6. The inner product presented in Proposition B.5 is equivalent
to the following one expressed in basis expansion form:

〈h, g〉kd =
∑

j∈(N+)d

(
d∏

k=1

λjk

)−1

hjgj (38)

for h, g in the multivariate RKHS Hkd with the basis expansion

h =
∑

j∈(N+)d

hjψj, g =
∑

j∈(N+)d

gjψj.

The multivariate basis ψj(x) =
∏d

k=1 φjk (xjk ) is the product of the eigenfunc-
tions (as defined in (28)) of the univariate kernel k.
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Lemma B.7. A ball in S1([0, 1]d) is equivalent to a multivariate Sobolev-type
ellipsoid. Formally,{

h ∈ L2
(
[0, 1]d

)
|

∑
‖a‖∞≤1

∥∥Dah
∥∥2

L2([0,1]d) ≤ Q2
}

=
{

h =
∑

j∈(N+)d

βjψj |
∑

j∈(N+)d

(
d∏

k=1

jk

)2

β2
j ≤ Q2

} (39)

where the multivariate basis ψj =
∏d

k=1 φjk is the product of the cosine functions
(φj defined in (32)).

Proof. The natural d-dimensional tensor product extension of W1([0, 1]) space
is the RKHS of the kernel:

kd(s, t) =
d∏

m=1
k
(
sm, tm

)
=

{
sinh(1)

}−d
d∏

m=1
cosh

(
min

(
sm, tm

))
cosh

(
1 − max

(
sm, tm

)) (40)

The inner product, according to Proposition B.5, can be explicitly written as:

〈h, g〉kd =
n∑

k=1

m∑
l=1

d∏
j=1

〈hkj , glj〉W1([0,1])

=
n∑

k=1

m∑
l=1

d∏
j=1

(∫ 1

0
hkj(τ)glj(τ)dτ +

∫ 1

0
h′

kj(τ)g′
lj(τ)dτ

) (41)

for h(x) =
∑n

k=1
∏d

j=1 hkj(xj), g(x) =
∑m

l=1
∏d

j=1 glj(xj). The component
functions hkj , glj all belong to W1([0, 1]). Then the RKHS-norm (induced by
the inner product) for a function h ∈ Hkd is:

‖h‖kd =
n∑

k=1

n∑
l=1

d∏
j=1

(∫ 1

0
hkj(τ)hlj(τ)dτ +

∫ 1

0
h′

kj(τ)h′
lj(τ)dτ

)
(i)=

∑
‖a‖∞≤1

‖Dah‖2
L2([0,1]d).

(42)

The above step (i) can be checked directly using Fubini’s theorem. We present
the explicit calculation for the case when h(x) =

∏d
j=1 hj(xj) and d = 2:

‖h‖k2

=
∫ 1

0
h2

1(τ1)dτ1 ·
∫ 1

0
h2

2(τ2)dτ2 +
∫ 1

0

(
h1(τ1)

)2
dτ1 ·

∫ 1

0

(
h′

2(τ2)
)2

dτ2
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+
∫ 1

0

(
h′

1(τ1)
)2

dτ1 ·
∫ 1

0
h2

2(τ2)dτ2 +
∫ 1

0

(
h′

1(τ1)
)2

dτ1 ·
∫ 1

0

(
h′

2(τ2)
)2

dτ2

=
∫

[0,1]2
h2(τ1, τ2)dτ1dτ2 +

∫
[0,1]2

(
∂

∂τ2
h(τ1, τ2)

)2

dτ1dτ2

+
∫

[0,1]2

(
∂

∂τ1
h(τ1, τ2)

)2

dτ1dτ2 +
∫

[0,1]2

(
∂2

∂τ1∂τ2
h(τ1, τ2)

)2

dτ1dτ2 (43)

Briefly, the W1([0, 1]) space is an example of a univariate RKHS; the S1([0, 1])
space, when equipped with a proper inner product, is the tensor product ex-
tension of W1([0, 1]). Moreover, Proposition B.6 implies an equivalent way to
express the RKHS inner product and its induced norm. Specifically, we know
that ∑

‖a‖∞≤1

‖Dah‖2
L2([0,1]d) = ‖h‖kd =

∑
j∈(N+)d

(
d∏

k=1

jk

)2

β2
j (44)

for h =
∑

j∈(N+)d βjψj (Proposition B.6 gives the second equality, λjk = (jk)−1).
Recall that the multivariate basis ψj =

∏d
k=1 φjk is the product of the cosine

functions (defined in (32)).

B.3. Proof of Corollary 6.3

In the main text, we discussed the asymptotic order of the eigenvalues of tensor
product kernels. Now we give a direct and concise proof of those results.

Proof. Since the Mercer expansion
∞∑

j=1
j−2sφj(x)φj(z) (45)

converges to K absolutely and uniformly, we can switch the order of product
and taking limit when engaging with the product kernel. Formally

Kprod(x, z) =
d∏

k=1

K
(
xk, zk

)
=

d∏
k=1

( ∞∑
j=1

j−2sφj

(
xk

)
φj

(
zk

))

=
∞∑

j1=1
· · ·

∞∑
jd=1

(
d∏

k=1

jk

)−2s( d∏
k=1

φjk

(
xk

))(
d∏

k=1

φjk

(
zk

))

=
∑

j∈N+

(
d∏

k=1
jk

)−2s

ψj(x)ψj(z) =:
∑

j∈N+

λjψj(x)ψj(z) (46)
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To obtain the Mercer expansion of Kprod with non-increasing λj , we need to
reorder the sum over d-tuples into a sum over N+. Observing the definition of λj,
we know the unravelling rule should be the product of grid index j: cj =

∏d
k=1 jk.

We use this rule c to unravel both λj and ψj into sequences λj , ψj .

Kprod(x, z) =
∞∑

j=1
λjψj(x)ψj(z). (47)

The magnitude of λj is given in Corollary C.4, which is a result of applying
the average order of divisor functions.

Appendix C: Unravelling and approximation results

In the rest of the paper, we will switch from concrete example spaces to more
abstract Sobolev ellipsoid-type spaces. The (univariate) Sobolev ellipsoid has
been a benchmark model in the literature of sieve estimators: We just showed
how it relates to multivariate spaces. In the multivariate case, we will be engag-
ing with a true function f0 that belongs to the multivariate Sobolev “ellipsoid”:

f0 ∈
{

f =
∑

j∈(N+)d

βjψj |
∑

j∈(N+)d

(
d∏

k=1
jk

)2s

β2
j ≤ Q2

}
. (48)

for some product basis ψj. In particular, we assume the regression function
can be expanded as an infinite linear combination of a set of basis functions ψj
indexed by d-tuples. At the same time, we require βj to converge to zero at a fast
enough rate as the product of index j goes to infinity. The function space in (48)
is the same as a ball in some multivariate RKHS (as illustrated in Lemma B.7).
We also introduced another parameter s that determines the decay rate of βj,
which is often interpreted as a smoothness parameter ([56], Chapter 2).

C.1. Magnitude of unravelled series

In this section we will first quantify the asymptotic behavior of unravelled series
cj , which is depicted in the right panel of Fig. 1. We will use these results to
reduce Sobolev ellipsoids indexed by D-tuples (48) to those indexed by nat-
ural numbers. This will directly lead to some useful approximation results in
multivariate tensor product spaces.

In general, we cannot give a closed form for the unravelled sequence Cj as
function of j (in Algorithm 1 we gave an algorithm to generate finitely many
elements). However, it is still possible to derive some results on the magnitude
of cj as a function of j. To this end, we first introduce the concept of a divisor
function.

Definition C.1. We use τD(·) : N+ → N+ to denote the D-th divisor function,
which counts the number of unique ways to factor n as a product of D positive
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integers (where order matters). Formally,

τD(n) =
∑

(j1,...,jD)∈(N+)D∏D
k=1 jk=n

1 (49)

The divisor function τD distinguishes the order of factorization: For example
τ2(4) = 3 because there are 3 ways to write 4 as a product of 2 numbers:
4 = 1 × 4 = 4 × 1 = 2 × 2. In the exposition of this section, we also need to
engage with the following partial sum of divisor functions.

Definition C.2. We define the sequence TD(x) to be the sum of the D-divisor
function evaluated at the first �x� positive natural numbers, that is

TD(x) =
∑
n≤x

τD(n). (50)

Clearly, TD(x) is the number of D-tuples j = (j1, . . . , jD) ∈ (N+)D with∏D
k=1 jk ≤ x. The number x is not necessarily an integer: the summation index

n ≤ x should be interpreted as {1, 2, . . . , �x�}.
The first several elements in cj (depicted in Fig. 1) are 1, 2, 2, 3, 3, 4, 4, 4, . . . .

As our readers may notice, each natural number n shows up exactly τ2(n) times:
if we know (on average) how many ways there are to factor a positive integer,
we can sketch the general magnitude of the unravelled sequence as well. The
following lemma formalizes such an idea.

Lemma C.3. Define cj =
∏D

k=1 jk as a function on the D-tuple j=(j1, . . . , jD) ∈
(N+)D. Let cj be the c-unravelling sequence of cj (see Definition 6.2). Then, for
D fixed, we know its asymptotic magnitude is:

cj = Θ
(
j log−(D−1) j

)
(51)

Proof. All the elements of cj are positive integers since they are products of
positive integers. And every positive integer shows up in cj at least once. We
also observe that there are repeated elements in cj : For any positive integer m,
it shows up exactly τD(m) times in the sequence cj .

To determine the increase rate of cj , it is enough to determine the largest bj

such that

TD(bj) =
bj∑

m=1
τD(m) ≤ j. (52)

The unravelling sequence cj increases at the same rate as bj . To quantify the
summation on the LHS, we need to use the following result from number theory:

x∑
m=1

τD(m) = logD−1 x

(D − 1)! x + O
(
x logD−2 x

)
, (53)

where the big O notation indicates x → ∞ (but D is fixed). If we divide both
sides by x, then we know: on average, there are (log x)D−1 ways to factorize
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a natural number into a product of D natural numbers. This result has been
established in the literature of number theory, we give more discussion and
references in Appendix F. For the special case when D = 2, there are sharper
results available, e.g. Theorem 3.2 in Tenenbaum [47].

Let bj = �(D − 1)!j log−(D−1) j�. Plug bj into (53):

bj∑
m=1

τD(m) = bj logD−1 bj + O
(
bj logD−2 bj

)
= Θ

(
j(log j)−(D−1) logD−1{j(log j)−(D−1)}) = Θ(j)

(54)

It is direct to check that if bj = qjj log−(D−1) j for any positive qj → ∞,
bj logD−1 bj would diverge at a rate faster than j. So we know the largest bj we
can take is of order j log−(D−1) j, which concludes our proof.

Corollary C.4. Let cj =
∏D

k=1(jk)s be a function defined on the D-tuple j =
(j1, . . . , jD) ∈ (N+)D for some s > 0. Let cj be the c-unravelling sequence of cj.
Then we know

cj = Θ
((

j log−(D−1) j
)s) (55)

(the notation (jk)s means the s-th power of the j-th entry of vector j).

The next theorem is the main result in this section, which uses Lemma C.3
or Corollary C.4.

Theorem C.5. Let W (s, Q, {ψj}) be the multivariate product Sobolev space:

W
(
s, Q, {ψj}

)
=

{
f =

∑
j∈(N+)D

βjψj, for some βj ∈ R |
∑

j∈(N+)D

c2s
j β2

j ≤ Q2
}

,

(56)
where cj =

∏D
k=1 jk for j = (j1, . . . , jD) ∈ (N+)D. Denote (ψj) as the c-

unravelling sequence of {ψj}.
Then there exists two constants Ci(s, D), i ∈ {1, 2} such that{

f =
∞∑

j=1
βjψj, for some βj ∈ R |

∞∑
j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ C1(s, D)Q2

}
⊂ W

(
s, Q, {ψj}

)
⊂
{

f =
∞∑

j=1
βjψj, for some βj ∈ R |

∞∑
j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ C2(s, D)Q2

}
(57)

In plain(er) language, Theorem C.5 states that: The multivariate function
space W (s, Q, {ψj}) can be sandwiched between two formally simpler func-
tion spaces. These “bread” function spaces in (57) are still multivariate func-
tion spaces, but the basis functions (ψj) are listed in a sequence. In contrast,
W (s, Q, {ψj}) has basis functions indexed by D-tuples.
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Proof. The multivariate ellipsoid W (s, Q, {ψj}) is exactly the same space as:{
f =

∞∑
j=1

βjψj |
∞∑

j=1
c2s

j β2
j ≤ Q2

}
, (58)

where cj , βj , ψj are the c-unravelling sequences of cj, βj, ψj, respectively. In this
step we performed nothing but a change of notation.

According to Corollary C.4, cj is asymptotically of the same order as
(j log−(D−1) j)2s as j → ∞. Define bj = ( j

logD−1 j∨1 )2s, then we know that
there exist constants C1, C2 (that only depends on s, and D) such that C1bj ≤
cj ≤ C2bj for all j ∈ N+. Plugging this in to (58) concludes our proof.

As a direct result, we have the following corollary for the space S1 in the
main text.

Corollary C.6. Let S1(Q) be the a ball in S1([0, 1]d):{
f ∈ L2

(
[0, 1]d

)
|

∑
‖a‖∞≤1

∥∥Daf
∥∥2

L2([0,1]d) ≤ Q2
}

(59)

Then we know it is sandwiched between two Sobolev-ellipsoids of single indices:{
f =

∞∑
j=1

βjψj , for some βj ∈ R |
∞∑

j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ C1(s, D)Q2

}
⊂ S1(Q)

⊂
{

f =
∞∑

j=1
βjψj , for some βj ∈ R |

∞∑
j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ C2(s, D)Q2

}
,

(60)
where (ψj) is the cCP R-unravelling sequence of {ψj}. The multivariate basis
ψj =

∏d
k=1 φjk is the product of the cosine functions (φj defined in (32)).

Proof. Combine Lemma B.7 and Theorem C.5.

C.2. Approximation in dense tensor product models

In this section, we will use the results in Theorem C.5 to derive some approx-
imation results that are crucial to understand the performance of our sieve
estimators. Before we go into more detail, we provide some intuitive discussion
of why Theorem C.5 can simplify our analysis. Let’s denote the three function
spaces in (57) as W1, W2 and W3 (W1 ⊂ W2 ⊂ W3). To study the problem of
approximation/estimation of functions in W2, it is equivalent – up to a constant
– to study the corresponding problems in W1 or W3. The regression problem
under the assumption f0 ∈ W2 is easier than assuming f0 ∈ W3 but harder
than f0 ∈ W1. Therefore the generalization error of any estimators for truth
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f0 ∈ W2 should be of the same order as f0 ∈ W1 or W3. Similar statements
also hold for minimax rates analysis.

Ellipsoids related to a (univariate) series cj can be treated much more directly
than those related to the D-tuple cj. For readers who are familiar with classical
projection estimators (e.g. Tsybakov [49]), the following approximation results
may appear familiar.

In the remainder of our discussion, we will use X ⊂ R to denote a subset of
real line and use ν to denote a (finite) Borel measure on X . We do not need to
specify either X or ν accurately: Often we just need X d to be large enough to
cover the support of feature distribution ρX , and in many important cases ν =
uniform measure is enough for our purposes.

Lemma C.7. Suppose that function f∗ has an expansion f∗ =
∑∞

j=1 β∗
j ψj

with respect to a set of ν-orthonormal system, i.e. 〈ψj , ψi〉L2(ν) = δij. Assume
‖ψj‖∞ ≤ M for all j. If the expansion coefficients satisfy the following ellipsoid-
type condition:

f∗ =
∞∑

j=1
β∗

j ψj ∈
{

f =
∞∑

j=1
βjψj ∈ L2(ν) |

∞∑
j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ Q2

}
,

(61)
with some s > 1/2. Then there exist a sequence of functions

f∗
n =

Jn∑
j=1

β∗
njψj with Jn =

⌊(
logD−1 n

)2s/(2s+1)
n1/(2s+1)⌋, n = 2, 3, . . . (62)

satisfy the following:

• There is a constant C(M, s, D, Q), such that for any n:

‖f∗
n‖∞ ≤ C(M, s, D, Q) (63)

• For any measure ρX that is absolute continuous to ν with a bounded den-
sity:

‖f∗
n − f∗‖2

2,ρX
=

∫ {
f∗

n(z) − f∗(z)
}2

dρX(z)

≤ C(s, D, ρX , Q)
(

logD−1 n

n

) 2s
2s+1

(64)

Proof. • We first prove the uniform bound in the ‖ · ‖∞-norm. According to
our discussion Appendix B.2, a Sobolev-ellipsoid like (61) can be seen as
a ball in an RKHS. That is, the functions f∗, f∗

n all belong to an RKHS
with reproducing kernel

k(s, t) =
∞∑

j=1
λjψj(s)ψj(t), (65)
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where λj = ( logD−1 j∨1
j )2s. Denote the RKHS inner product as 〈·, ·〉k:

‖f∗
n‖∞ = sup

x
f∗

n(x) = sup
x

〈
f∗

n, k(x, ·)
〉

k

≤ ‖f∗
n‖k sup

x
‖k(x, ·)‖k

(1)
≤ QC(M, s, D).

(66)

In step (1), we need the explicit representation of the RKHS norm (The-
orem B.3). The RKHS norm of kernel k (centered at x) is

‖k(x, ·)‖k =
∞∑

j=1

(
λjψj(x)

)2
/λj ≤ M2

∞∑
j=1

λj = C(M, s, D)

• Next we prove the bound in ρX -2-norm. Let U denote a bound on the
density of ρX (with respect to ν). We define f∗

n to be the projection of f∗

(under L2(ρX) inner product) onto the linear space spanned by {ψj , j =
1, 2, . . . , Jn}:

f∗
n = arg min

g∈span(ψ1,...,ψJn )
‖g − f∗‖2

2,ρX
(67)

Then we have

‖f∗
n − f∗‖2

2,ρX
≤

∥∥∥∥∥
Jn∑

j=1
β∗

j ψj − f∗

∥∥∥∥∥
2

2,ρX

≤ U

∥∥∥∥∥
Jn∑

j=1
β∗

j ψj − f∗

∥∥∥∥∥
2

2,ν

= U

∞∑
Jn+1

(
β∗

j

)2

≤ UλJn

∞∑
Jn+1

(
β∗

j

)2
/λj ≤ UλJnQ2

(68)

We just need to determine the magnitude of λJn :

λJn ≤ cJ−2s
n

(
logD−1 Jn

)2s

= c
{(

logD−1 n
) 2s

2s+1 n1/(2s+1)}−2s[logD−1{(logD−1 n
) 2s

2s+1 n1/(2s+1)}]2s

≤ C(s, D)n− 2s
2s+1

(
logD−1 n

)− 4s2
2s+1 +2s = C(s, D)

(
logD−1 n

n

) 2s
2s+1

, (69)

which concludes our proof.

C.3. Covering number of S1 spaces

After establishing the approximation results, we can derive the covering number
of a ball in S1([0, 1]d) space. Although the covering number results are not
directly used to prove our estimators’ performance, we find them can be helpful
to more intuitively understand the size of S1 in contrast to the isotropic Sobolev
spaces (see main text (11)).
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Proposition C.8. A unit ball in S1 = S1([0, 1]d) space

S1(unit ball) =
{

f ∈ L2
(
[0, 1]d

)
|
∫ (

Daf(x)
)2

dx ≤ 1 for all ‖a‖∞ ≤ 1
}
(70)

has a covering number of order

log N
(
δ, S1(unit ball)

)
� δ−1 logd−1(1/δ). (71)

Proof. We first apply Corollary C.6 to reduce the problem to solving the covering
number of

Fsingle =
{

f =
∞∑

j=1
θjψj |

∞∑
j=1

(
j

logd−1 j ∨ 1

)2

θ2
j ≤ C(d)

}
, (72)

where (ψj) is the unravelled sequence of product cosine basis.
Note that Fsingle is a subspace of L2([0, 1]d) (equipped with Lebesgue mea-

sure). The basis functions ψjs are orthonormal, therefore each ε-covering of the
function space has a one-to-one correspondence to a covering of the following
subspace of �2(N+):

E =
{

(θj)∞
j=1 |

∞∑
j=1

θ2
j

μj
≤ 1

}
, (73)

with μj = (logd−1 j ∨ 1/j)2.
We are going to show that

log N(δ, E) � δ−1 logd−1(1/δ) for all suitably small δ > 0 (74)

The rest of our argument is standard (e.g., Example 5.12 of [58]).
Let J be the smallest integer such that μJ ≤ δ2, and consider the truncated

ellipsoid
Ẽ = {θ ∈ E | θj = 0 for all j ≥ J + 1} (75)

We claim that any δ-cover of this truncated ellipsoid, say {θ1, . . . , θN }, forms
a

√
2δ-cover of the full ellipsoid. Indeed, for any θ ∈ E , we have

∞∑
j=J+1

θ2
j ≤ μJ

∞∑
j=J+1

θ2
j

μj
≤ δ2 (76)

and hence

min
k∈[N ]

∥∥θ − θk
∥∥2

2 = min
k∈[N ]

J∑
j=1

(
θj − θk

j

)2 +
∞∑

j=J+1
θ2

j ≤ 2δ2 (77)

Consequently, it suffices to upper bound the cardinality N of this covering
of Ẽ . Since δ2 ≤ μJ for all j ∈ {1, . . . , J}, if we view Ẽ as a subset of RJ , then it
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contains the (2-norm) δ-ball BJ
2 (δ), and hence vol(Ẽ +BJ

2 (δ/2)) ≤ vol(2Ẽ) (vol()
stands for volume). Consequently, by Lemma 5.7 of [58], we have

N ≤
(

2
δ

)J vol(Ẽ + BJ
2 (δ/2))

vol(BJ
2 (1))

≤
(

4
δ

)J vol(Ẽ)
vol(BJ

2 (1))
(78)

By standard formulae for the volume of ellipsoids, we have vol(Ẽ)
vol(BJ

2 (1)) =∏J
j=1

√
μj . Putting together the pieces, we find that

log N ≤ J log(4/δ) + 1
2

J∑
j=1

log μj

= J log(4/δ) −
J∑

j=1
log j + (d − 1) log log j

(i)
≤ J log(4/δ) + J − J log J + (d − 1)J log log J

= (log 4 + 1)J + J
{

log(1/δ) − log J + (d − 1) log log J
}

(79)

where step (i) used the inequality
∑J

j=1 log j ≥ J log J − J . By definition:

μJ ≤ δ2

⇒ J−1 logd−1 J ≤ δ

⇒ log J − (d − 1) log log J ≥ log(1/δ)
(80)

So we can bound (79) by

log N ≤ (log 4 + 1)J (81)

It is direct to verify that J cannot be larger than Cδ−1 logd−1(1/δ) – constant
C cannot be replace by any decreasing function C(δ) – so we conclude that

log N � δ−1 logd−1(1/δ) (82)

For the lower bound, we note that the ellipsoid E contains the truncated ellipsoid
Ẽ , which (when viewed as a subset of RJ) contains the ball BJ

2 (δ). Thus, we have

log N

(
δ

2 , E
)

≥ log N

(
δ

2 ,Bd
2(δ)

)
≥ J log 2 (83)

where the final inequality uses the lower bound (5.9) from Example 5.8 in [58].
Given the inequality J ≥ Cδ−1 logd−1(1/δ), we have established the lower bound
in our original claim (74).
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C.4. Approximation in sparse tensor product models

In Section C.2 we investigated the approximation error under dense tensor prod-
uct models (d = D). In this section we will switch to the sparse/ higher dimen-
sional setting where d > D.

Now we present some more general conditions on the product basis and sparse
nonparametric models. They can be seen as generalization of Condition 7.1 and
Condition 7.2 in the main text.

Notation: recall that X ⊂ R is a subset of real line and ν is a Borel measure
on X .

Condition C.9. Let φj be an orthonormal system of univariate functions, that
is, 〈φi, φj〉L2(ν) = δij . Assume φ1 = 1, ‖φj‖∞ ≤ M for all j = 1, 2, . . . . Consider
their natural d-dimensional product extension ψj(x) =

∏d
k=1 φjk (xk), denote

(ψj) to be the c-unravelling sequence of {ψj}. The unravelling rule cj is defined
as

cj =
{∏d

k=1 jk, if at most D′ entries of j are greater than 1
∞, otherwise

(84)

Condition C.10. There exists a D-variate function f∗ : X D → R such that:

1. (feature sparsity) There is set of indices {k1, . . . , kD} ⊂ {1, 2, . . . , d} such
that for any u ∈ X d,

f0(u) = f∗(uk1 , uk2 , . . . , ukD
)
. (85)

2. (smoothness assumptions) The function f∗ satisfies the following ellipsoid
condition:

f∗ ∈
{

f =
∞∑

j=1
βj♦j |

∞∑
j=1

(
j

logD−1 j ∨ 1

)2s

β2
j ≤ Q2

}
. (86)

The function sequence (♦j) is the �-unravelling of ♦j =
∏D

l=1 φjl(ukl),
j ∈ (N+)D. And the unravelling rule is defined by �j =

∏D
l=1 jl.

The first part in Condition C.10 is a feature sparsity assumption. Although f0

formally is a function of d-dimensional vector x (d can be large), this assumption
states that it can be completely described using a small subset of the dimensions
of x (specifically, we assume it depends on D out of the d dimensions).

The second part in Condition C.10 is in nature a smoothness assumption,
but expressed in a basis expansion/Sobolev ellipsoid fashion. The basis func-
tions ♦j and unravelling rules �j only engage with the informative features
(uk1 , uk2 , . . . , ukD ). According to Lemma C.7, if we use the first Joracle

n =
�(logD−1 n)2s/(2s+1)n1/(2s+1)� functions of ♦j , we can construct a sequence of
approximation functions foracle

n =
∑Jn

j=1 βoracle
nj ♦j of f∗ that satisfy

‖foracle
n − f∗‖2

2,ρX
= O

(
logD−1 n

n

) 2s
2s+1

. (87)
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However, in practice, we unfortunately do not have a priori accessible infor-
mation of which D dimensions of x are important. We thus cannot just use
the oracle basis ♦j that only depend on the D relevant dimensions. The basis
functions we use in (14) take the form of ψj =

∏d
k=1 φjk (xk), involving d uni-

variate functions as described in Condition C.9. We are interested in how many
functions we need to include in the sequence of ψj , such that we can achieve the
same approximation error as foracle

n . The following Lemma tells us this number
is exponential in the active dimension D (which we treat as a fixed number)
but only polynomial in the ambient dimension d (which may formally increase
with the sample size n). The polynomial dependence in d is important both
theoretically and in practice.

Lemma C.11. Assume f0 satisfies Condition C.10. Denote (ψj) as the se-
quence of product basis functions in Condition C.9. If the working dimension
D′ in Condition C.9 is greater than or equal to the active dimension D in Con-
dition C.10, then:

• The true regression function f0 can be expanded with respect to ψj as well,
that is,

f0 =
∞∑

j=1
β0

j ψj , for β0
j ∈ R. (88)

• There exists a sequence of functions fβ0
n

=
∑Jn

j=1 β0
njψj with

Jn ≤ C(s, D)dD′
n1/(2s+1) logD′−1 n

such that
‖fβ0

n
‖∞ ≤ C(M, s, D, Q) (89)

and

‖fβ0
n

− f0‖2
2,ρX

≤ C(s, D, ρX , Q)
(

logD−1 n

n

) 2s
2s+1

. (90)

Proof. We introduce the mapping 1d→D : Rd → RD that only keeps the relevant
dimensions of a feature x:

1d→D(x) =
(
xk1 , . . . , xkD

)
, (91)

where k1, . . . , kD are the informative dimension indices defined in Condition
C.10. By assumption, the true regression function can be written as:

f0(x) = f∗(1d→D(x)
)

=
∞∑

j=1
β∗

j ♦j

(
1d→D(x)

)
=

∞∑
j=1

β∗
j ♦j ◦ 1d→D(x) (92)

Each of the basis functions above, ♦j◦1d→D, varies at most in D dimensions. The
function set {ψj} in Condition C.9 includes all the function product functions
varying in at most D′ dimensions. Since ♦j ◦1d→D are also product functions, we
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conclude {♦j ◦ 1d→D, j ∈ N} ⊂ {ψj , j ∈ N}. Therefore f0 also has an expansion
with respect to ψj as in (88).

Approximating f∗ satisfying Condition C.10 (equivalently, f0), using the or-
acle basis ♦j in the ellipsoid assumption (86), is already studied in Lemma C.7.
We know that we need the first Joracle

n = (logD−1 n)2s/(2s+1)n1/(2s+1) basis ele-
ments from {♦j} in order to achieve the desired approximation error. We claim
that

{♦1, . . . , ♦Joracle
n

} ⊂
{

♦j, j ∈
(
N+)D | cj =

D∏
k=1

jk ≤ C(s, D)Rn

}
, (93)

where Rn = n1/(2s+1)(log n)−(D−1)/(2s+1). To see this, we need to apply the
number theory results we used to establish the equivalence between ellipsoids.
According to Lemma C.3 we know that

TD

(
C(s, D)Rn

)
= C(s, D)n1/(2s+1) log

(D−1)2s
2s+1 n + lower order terms ≥ Joracle

n .
(94)

(recall that TD is defined in Definition C.2). However, in practice we do not
know the oracle features, so we can only work with ψj or ψj (not ♦j or ♦j). To
approximate f0 well, we need to choose Jn large enough so that all the functions
below are included:{

ψj, j ∈
(
N+)d | cj =

d∏
k=1

jk ≤ C(s, D)Rn and at most D of jk > 1
}

. (95)

This ensures all the functions in the RHS of (93) are included (strictly speaking,
their d-dimensional extensions are included). By our assumption that D′ > D,
we only need to select Jn large enough so that the following basis functions are
all included:{

ψj, j ∈
(
N+)d | cj =

d∏
k=1

jk ≤ C(s, D)Rn and at most D′ of jk > 1
}

=

C(s,D)Rn�⋃

m=1

{
ψj | cj =

d∏
k=1

jk = m and at most D′ of jk > 1
} (96)

How many elements are there in (96)? We give the following bound:

# of elements in (96) ≤
C(s,D)Rn∑

m=1︸ ︷︷ ︸
(I)

Cd
D′︸︷︷︸

(II)

· τD′(m)︸ ︷︷ ︸
(III)

= Cd
D′

C(s,D)Rn∑
m=1

τD′(m)

≤ Cd
D′TD′

(
C(s, D)Rn

) (1)
≤ C

(
s, D, D′)dD′

n1/(2s+1) logD′−1 n.

(97)
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In (1) we used Lemma F.3 to bound TD′(C(s, D)Rn) and the well-known bound
on the binomial coefficients Cd

D′ ≤ C(D′)dD′ . To help our readers understand
the above calculation, we have the following comments on each term:

• (I): consider all the j whose product is m;
• (II): choose D′ dimensions;
• (III): factorize m into a product of D′numbers;

Unravelling the functions set in (96) will give us at most the first

C
(
s, D, D′)dD′

n1/(2s+1) logD′−1 n

elements in (ψj). To achieve the desired approximation error bound, we do not
need to use any additional basis elements.

Appendix D: Theoretical guarantees of least-square sieve estimators

The proof of Theorem 5.1 is standard after establishing the approximation re-
sults like Lemma C.7. Recall that we used εi = Yi − f0(Xi) to denote the noise
variable, f0 the true regression function, and fOLS

n the ordinary least-square
estimator over a sieve space. In this section, we will also use Wi to denote
independent Rademacher random variables: pr(Wi = 1) = pr(Wi = −1) = 0.5.

D.1. Proof of Theorem 5.1

Proof. We first apply Corollary C.6 to reduce the problem to an estimation
problem when f0 belonging to the function space:

Fsingle =
{

f =
∞∑

j=1
θjψj |

∞∑
j=1

(
j

logd−1 j ∨ 1

)2

θ2
j ≤ C(d, Q)

}
, (98)

where (ψj) is the unravelled sequence of product cosine basis.
Assuming f0 ∈ S1 implies f0 ∈ Fsingle with a large enough (but not depend-

ing on n) C(d, Q).
The rest of proof consists of four steps:

1. We first derive bounds on a (local) Rademacher process using Dudley’s
integral (Theorem D.1), noting that a sieve linear space is a VC-subgraph.

2. From the bounds on Rademacher process, we can derive bounds on some
relevant sub-Gaussian multiplier process (Theorem D.2).

3. After obtaining bounds on the multiplier process, we can use them to
derive bounds on the distance between fOLS

n and some deterministic oracle
functions f∗

n (the peeling argument, Theorem D.4).
4. A final triangular inequality relates the estimation error and the approxi-

mation error.
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Applying Theorem D.1, D.2 and D.4 sequentially with

Jn =
⌊(

logd−1 n
)2/3

n1/3⌋
and

δn = n−1/3 log(d−1)/3+1/2 n,

we know that
‖fOLS

n − f∗
n‖2,ρX

= Op(δn). (99)

Here we used the deterministic oracle functions f∗
n defined in Lemma C.7 (setting

f∗ = f0, s = 1).
The distance between fOLS

n and f0 can be decomposed as:

‖fOLS
n − f0‖2,ρX

≤ ‖fOLS
n − f∗

n‖2,ρX
+ ‖f∗

n − f0‖2,ρX
(100)

According to Lemma C.7, we know that the approximation error ‖f∗
n−f0‖2,ρX

is bounded by n−1/3(log n)(d−1)/3. So we conclude that∥∥fOLS
n − f0∥∥

2,ρX
= OP (δn) = OP

(
n−1/3 log(d−1)/3+1/2 n

)
(101)

D.2. Technical results for Theorem 5.1

Theorem D.1. Let Fn(δ) denote the local, linear space centered at oracle f∗
n:

Fn(δ) =
{

f ∈ L2(ρX) | f(·) =
Jn∑

j=1
βjψj(·), ‖f‖∞ ≤ M,

∥∥f − f∗
n

∥∥
2,ρX

≤ δ

}
,

(102)
with Jn = Cn1/3 log2(d−1)/3(n). Then we have the following bound on the
Rademacher process indexed by functions in Fn(δ) − f∗

n = {g − f∗
n | g ∈ Fn(δ)}:

E

[
sup

f∈Fn(δ)−f∗
n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)

∣∣∣∣∣
]

≤ φn(δ). (103)

The function φn is defined as

φn(δ) = CJ1/2
n δ

√
log

(
1
δ

)(
1 +

J
1/2
n δ

√
log(1/δ)√

nδ2M

)
(104)

The same bound also holds for the process related to f(Xi)(f0 − f∗
n)(Xi):

E

[
sup

f∈Fn(δ)−f∗
n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)
(
f0 − f∗

n

)
(Xi)

∣∣∣∣∣
]

≤ φn(δ) (105)
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Proof. We first note that Fn(δ) is a subset of a Jn-dimensional linear space Fn

Fn =
{

f ∈ L2(ρX) | f(·) =
Jn∑

j=1
βjψj(·), ‖f‖∞ ≤ M

}
, (106)

which is a VC-subgraph of dimension no more than Jn + 2. (Regarding a finite-
dimensional linear space being a VC-subgraph, see [53], Lemma 2.6.15 or [58],
Proposition 4.20).

It is also known that for a VC-subgraph function class, we can bound its
covering number with a function of its VC-dimension ([53], Theorem 2.6.7). In
our case, we have

sup
Q

N
(
ε‖F ‖2,Q, Fn, L2(Q)

)
≤ CJn(16e)Jn

(
1
ε

)2(Jn−1)

, (107)

where N is the covering number of a function space and the supremum is over
all discrete measures. Eq. (107) implies:

sup
Q

log
(
N
(
ε‖F‖2,Q, Fn, L2(Q)

))
≤ log C + 2Jn log(4

√
e/ε) + log Jn

(i)
≤ 2Jn log(C/ε).

(108)

In step (i), one may need the elementary fact that J
(2Jn)−1

n ≤ √
e.

This means that the (local) Dudley integral has the following bound:

J
(
δ, Fn(δ) − f∗

n, L2
)

:= sup
Q

∫ δ

0

√
1 + log N

(
ε‖F‖2,Q, Fn(δ) − f∗

n, L2(Q)
)
dε

≤ sup
Q

∫ δ

0

√
1 + log N

(
ε‖F‖2,Q, Fn, L2(Q)

)
dε

�
∫ δ

0

√
Jn log

(
C

ε

)
dε

�
√

Jn

(∫ ∞

√
− log δ

exp
(
−τ2)dτ + δ

√
log(1/δ)

)

� J1/2
n δ

√
log

(
1
δ

)

(109)

Next, we relate the Rademacher process with the function space’s covering
number integral (Theorem 2.1, [52]):

E

[
sup

f∈Fn(δ)−f∗
n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)

∣∣∣∣∣
]
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� J
(
δ, Fn(δ) − f∗

n, L2
)(

1 + J(δ, Fn(δ) − f∗
n, L2)√

nδ2‖F‖2,ρX

)
‖F‖2,ρX

� J1/2
n δ

√
log

(
1
δ

)(
1 +

J
1/2
n δ

√
log(1

δ )
√

nδ2M

)
=: φn(δ) (110)

The above argument can be repeated for the other multiplier process (104). We
can treat f(Xi)(f0 − f∗

n)(Xi) as a single function g(Xi), and the supremum is
taken over g ∈ (Fn(δ) − f∗

n)(f0 − f∗
n). This function space is just multiplying

each function in Fn(δ) − f∗
n by a non-random, uniformly bounded function.,

which is still a VC-subgraph class.

Theorem D.2. Under the same notation as in Theorem D.1.

E

[
sup

f∈Fn(δ)−f∗
n

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
]
� (Jn log n)1/2δn (111)

Here δn is any positive non-increasing sequence of form δn = n−a logb n, with
some a ∈ (0, 1/2), b > 0, such that (Jn/n)1/2 � δn(log(1/δn))−1/2. Recall that
εi = Yi − f0(Xi).
Proof. We note that under our choice of δk, the term(

1 +
J

1/2
n δk

√
log( 1

δk
)

√
nδ2

kM

)
≤ (1 + C/M) (112)

can be bounded by a constant not depending on n for all 1 ≤ k ≤ n. Therefore,
applying Theorem D.1 we have:

E

[
sup

f∈Fn(δk)−f∗
n

∣∣∣∣∣
k∑

i=1
Wif(Xi)

∣∣∣∣∣
]

� J1/2
n

√
kδk

√
log

(
1
δk

)
� J1/2

n k1/2−a logb+1/2 k

(113)

for any 1 ≤ k ≤ n. Then we can apply Theorem 1 of [19] to bound the sub-
Gaussian process of interest using a function of the bounds of its corresponding
Rademacher process. For our readers’ ease of reference, we include the cited
theorem here.

Theorem D.3. Suppose Xi, εi are all IID random variables and Xi are inde-
pendent of εi. Let {Gk}n

k=1 be a sequence of function classes such that Gk ⊃ Gn

for any 1 ≤ k ≤ n. Assume further that there exists a nondecreasing concave
function φn : R≥0 → R≥0 with φn(0) = 0 such that

E sup
f∈Gk

∣∣∣∣∣
k∑

i=1
Wif(Xi)

∣∣∣∣∣ ≤ φn(k)
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holds for all 1 ≤ k ≤ n. Then

E sup
f∈Gn

∣∣∣∣∣
n∑

i=1
εif(Xi)

∣∣∣∣∣ ≤ 4
∫ ∞

0
φn

(
n∑

i=1
P
(
|εi| > t

))
dt.

Apply Theorem D.3, we have

E

[
sup

f∈Fn(δn)−f∗
n

∣∣∣∣∣
n∑

i=1
εif(Xi)

∣∣∣∣∣
]

�
∫ ∞

0
J1/2

n n1/2−apr1/2−a(|ε1| > t) logb+1/2 ndt

�
∫ ∞

0
pr1/2−a(|ε1| > t)dt · (nJn log n)1/2δn

(114)

The quantity ‖ε1‖2/(1−2a),1 =
∫ ∞

0 pr(1−2a)/2(|ε1| > t)dt term is known as the
L2/(1−2a),1-moment of ε. In general, any random variable having finite ‖ε‖p+Δ
(for any Δ > 0) also has a finite ‖ε‖p,1-moment. For sub-Gaussian noise ε1,
all moments exist. More background regarding Lp,1-moment, see Chapter 10 of
[27].

Theorem D.4. Let F be a class of function and f∗
n a non-random function in

L2(ρX). Suppose that for any f ∈ F , ‖f − f∗
n‖∞ ≤ B∗. If F is convex and

E sup
f∈F :‖f−f∗

n‖2,ρX
≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

εi

(
f − f∗

n

)
(Xi)

∣∣∣∣∣ ≤ φn(δn)

E sup
f∈F :‖f−f∗

n‖2,ρX
≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f − f∗

n

)
(Xi)

∣∣∣∣∣ ≤ φn(δn)

E sup
f∈F :‖f−f∗

n‖2,ρX
≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f − f∗

n

)
(Xi)

(
f0 − f∗

n

)
(Xi)

∣∣∣∣∣ ≤ φn(δn)

(115)

for some φn such that δ �→ φn(δ)/δ is non-increasing. Then∥∥fOLS
n − f∗

n

∥∥
2,ρX

= Op(δn) (116)

for any δn such that φn(δn) ≤ √
nδ2

n.

Proof. Recall that fOLS
n is defined as the empirical loss minimizer:

fOLS
n = arg min

f∈F
Pn

(
Y − f(X)

)2 (117)

In what follows, we denote by B(f∗
n, δn) the collection of functions in F contained

by L2(P ) ball of radius less than or equal to δ, centered at f∗
n. The event we

eventually want to control is given by:{
‖fOLS

n − f∗
n‖2,ρX

≥ 2M δn

}
(118)
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and we aim to show that the probability of the above event → 0 as M → ∞.
To relate this event with the empirical process assumptions in the lemma, we

apply the peeling mechanism:{
‖fOLS

n − f∗
n‖2,ρX

≥ 2M δn

}
⊆

{
inf

f∈B(f∗
n,2M δn)c

Pn

(
Y − f(X)

)2 ≤ Pn

(
Y − f∗

n(X)
)2
}

=
{

inf
f∈B(f∗

n,2M δn)c
Pn

(
Y − f(X)

)2 − Pn

(
Y − f∗

n(X)
)2 ≤ 0

}
=

∞⋃
j=M

{
inf

2jδn≤‖f−f∗
n‖2,ρX

≤2j+1δn

Pn

(
Y − f(X)

)2 − Pn

(
Y − f∗

n(X)
)2 ≤ 0

}
.

(119)
Therefore

pr
(
‖fOLS

n − f∗
n‖2,ρX

≥ 2M δn

)
≤

∞∑
j=M

pr
(

inf
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

Pn

(
Y − f(X)

)2 − Pn

(
Y − f∗

n(X)
)2 ≤ 0

)
=

∞∑
j=M

pr
(

inf
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

Kn

(
f, f∗

n, f0)
≤ −P

(
f∗

n − f
)2 − 2P

(
f0 − f∗

n

)(
f∗

n − f
))
(120)

Here we used the notation

Kn

(
f, f∗

n, f0) =Pn

(
Y − f(X)

)2 − Pn

(
Y − f∗

n(X)
)2

− P
(
f∗

n − f
)2 − 2P

(
f0 − f∗

n

)(
f∗

n − f
) (121)

We can further bound (120) as following:

pr
(
‖fOLS

n − f∗
n‖ ≥ 2M δn

)
(1)
≤

∞∑
j=M

pr
(

inf
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

Kn

(
f, f∗

n, f0) ≤ −P
(
f∗

n − f
)2
)

≤
∞∑

j=M

pr
(

inf
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

Kn

(
f, f∗

n, f0) ≤ −22jδ2
n

)
≤

∞∑
j=M

pr
(

sup
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

|
√

nKn

(
f, f∗

n, f0)| ≥
√

n22jδ2
n

)
≤

∞∑
j=M

E
[

sup
2jδn≤‖f−f∗

n‖2,ρX
≤2j+1δn

|
√

nKn

(
f, f∗

n, f0)|]/
(√

n22jδ2
n

)
≤

∞∑
j=M

E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|
√

nKn

(
f, f∗

n, f0)|]/
(√

n22jδ2
n

)

(122)
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In step (1) we used the property that F is convex. In such a case, P (f0 −
f∗

n)(f∗
n − f) > 0. In fact, for any 0 < δ < 1:

P
(
f0 − f∗

n

)2 (2)
≤ P

(
f0 − (1 − δ)f∗

n − δfOLS
n

)2 = P
(
f0 − f∗

n + δ
(
f∗

n − fOLS
n

))2

= P
(
f0 − f∗

n

)2 + 2δP
(
f0 − f∗

n

)(
f∗

n − fOLS
n

)
+ δ2P

(
f∗

n − fOLS
n

)2

⇒ 2P
(
f0 − f∗

n

)(
f∗

n − fOLS
n

)
≥ −δP

(
f∗

n − fOLS
n

)2

and thus we conclude P (f0 − f∗
n)(f∗

n − fOLS
n − L) ≥ 0 by taking δ → 0. In step

(2) we used the definition of f∗
n as a L2(P )-projection of f0 onto F . Also note

that since F is convex, (1 − δ)f∗
n + δfOLS

n is also an element of F .
Now we rearrange the expression in (122) to relate it with the empirical

processes in our assumption.

Pn

(
Y − f(X)

)2 − Pn

(
Y − f∗

n(X)
)2

= Pn

(
Y − f0(X)

)2 + Pn

(
f0(X) − f(X)

)2

+ 2Pn

(
Y − f0(X)

)(
f0(X) − f(X)

)
− Pn

(
Y − f0(X)

)2

− Pn

(
f0(X) − f∗

n(X)
)2 − 2Pn

(
Y − f0(X)

)(
f0(X) − f∗

n(X)
)

= Pn

(
f0(X) − f(X)

)2 − Pn

(
f0(X) − f∗

n(X)
)2

+ 2Pn

(
Y − f0(X)

)(
f∗

0 (X) − f(X)
)

= Pn

(
f0(X) − f∗

n(X)
)2 + Pn

(
f∗

n(X) − f(X)
)2

+ 2Pn

(
f0(X) − f∗

n(X)
)(

f∗
0 (X) − f(X)

)
− Pn

(
f0(X) − f∗

n(X)
)2

+ 2Pnε
(
f∗

n(X) − f(X)
)

= Pn

(
f∗

n(X) − f(X)
)2 + 2Pn

(
f0(X) − f∗

n(X)
)(

f∗
0 (X) − f(X)

)
+ 2Pnε

(
f∗

n(X) − f(X)
)

(123)

Subtract P (f∗
n − f)2 + 2P (f0 − f∗

n)(f∗
n − f) on both sides, we have:

Kn

(
f, f∗

n, f0) = Pn

(
f∗

n(X) − f(X)
)2 + 2Pn

(
f0(X) − f∗

n(X)
)(

f∗
0 (X) − f(X)

)
+ 2Pnε

(
f∗

n(X) − f(X)
)

− P
(
f∗

n − f
)2 − 2P

(
f0 − f∗

n

)(
f∗

n − f
)

⇒
√

nKn

(
f, f∗

n, f0)
= Gn

(
f∗

n(X) − f(X)
)2 + 2Gn

(
f0(X) − f∗

n(X)
)(

f∗
n(X) − f(X)

)
+ 2Gnε

(
f∗

n(X) − f(X)
)
, (124)

where Gn stands for the empirical process: Gng(X, ε) =
√

n(Pn − P )g(X, ε).
Now we can continue (122):

pr
(
‖fOLS

n − f∗
n‖ ≥ 2M δn

)
≤ 2

∞∑
j=M

(√
n22jδ2

n

)−1
(

E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|Gn

(
f∗

n − f
)2|

]
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+ E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|Gn

(
f0 − f∗

n

)(
f∗

n − f
)
|
]

+ E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|Gnε
(
f∗

n − f
)
|
])

(125)

Using a typical symmetrization argument (Section 3.3 of [37] for a detailed
presentation), we have

E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|Gn

(
f∗

n − f
)2|

]
≤ 2E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f∗

n(Xi) − f(Xi)
)2
∣∣∣∣∣
]

(126)
and

E
[

sup
‖f−f∗

n‖2,ρX
≤2j+1δn

|Gn

(
f0 − f∗

n

)(
f∗

n − f
)
|
]

≤ 2E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f0(Xi) − f∗

n(Xi)
)(

f∗
n(Xi) − f(Xi)

)∣∣∣∣∣
]

(127)
By our assumption that F−f∗

n ∈ L∞(B∗), we know ‖f∗
n(Xi)−f(Xi)‖∞ ≤ B∗.

Therefore, (f∗
n(Xi) − f(Xi))2 is a 2B∗-Lipschitz function of f∗

n(Xi) − f(Xi).
Apply Talagrand’s contraction principal (Proof of Lemma 8.17 in [37] and the
citation therein), we have

E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f∗

n(Xi) − f(Xi)
)2
∣∣∣∣∣
]

≤ 2B∗E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f∗

n(Xi) − f(Xi)
)∣∣∣∣∣
]

(128)
So the quantities in (125) can be further bounded by:

pr
(
‖fOLS

n − f∗
n‖ ≥ 2M δn

)
≤ 8B∗

∞∑
j=M

(√
n22jδ2

n

)−1
(

E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f(Xi) − f∗

n(Xi)
)∣∣∣∣∣
]

+ E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

Wi

(
f0(Xi) − f∗

n(Xi)
)(

f∗
n(Xi) − f(Xi)

)∣∣∣∣∣
]

+ E

[
sup

‖f−f∗
n‖2,ρX

≤2j+1δn

∣∣∣∣∣ 1√
n

n∑
i=1

εi

(
f∗

n(Xi) − f(Xi)
)∣∣∣∣∣
])

≤ 24B∗
∞∑

j=M

φn(2j+1δn)√
n22jδ2

n

(3)
≤ 24B∗

∞∑
j=M

2j+1φn(δn)√
n22jδ2

n

≤ 48B∗
∞∑

j=M

2−j . (129)



Sieve estimators in tensor product spaces 3713

In step (3) we used the condition that φn(δ)/δ is a non-increasing function of δ.
As M → ∞,

pr
(
‖fOLS

n − f∗
n‖2,ρX

≥ 2M δn

)
≤ 48B∗

∞∑
j=M

2−j → 0, (130)

for any deterministic sequences δn such that φn(δn) ≤ √
nδ2

n.

Appendix E: Theoretical guarantees of penalized sieve estimators

To present the statistical guarantees of l1-penalized sieve estimators, we are
going to employ the following steps:

1. We will give nonparametric oracle inequalities to control the “training-
design error” of the estimators and the deviation of the estimated regres-
sion coefficients (Corollary E.5).

2. We will use the information of the regression coefficients to derive a metric
entropy bound on the function space the estimator lies in (Lemma E.8).

3. We will control the difference between the training and testing errors of
the estimate using results from empirical process theory (Theorem E.10).

E.1. Nonparametric oracle inequalities

We first define the concept of the compatibility constant, which is an important
component in the oracle inequalities and widely used in the analysis of penalized
methods. In the rest of the section, for a β = (β1, . . . , βJ)� ∈ RJ , we define its
related function fβ as

fβ =
J∑

j=1
βjψj , (131)

where (ψj) is the sequence of functions in Condition C.9.

Definition E.1. For a given matrix Σ of size J × J , constant L, and an index
set S ⊂ {1, 2, . . . , J}, we define the (Σ, L, S)-compatibility constant φΣ(L, S) to
be

φ2
Σ(L, S) = min

β

{
|S|β�Σβ

‖βS‖2
1

: ‖β−S‖1 ≤ L‖βS‖1

}
, (132)

where −S is the complementary set of S in {1, 2, . . . , J}. The notation βS ∈ RJ

is a shorthand for the “restriction” of a vector β ∈ RJ on the index set S:
(βS)j = βj if j ∈ S, otherwise (βS)j = 0.

The following oracle inequality is a generalization of Theorem 2.2 in Van de
Geer [51]. In our case, the true regression function does not have to be linear.

Theorem E.2. Let (Xi, Yi), i = 1, 2, . . . , n denote the n IID samples. We use
f0 to denote the true conditional mean function and define εi = Yi − f0(Xi).
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Let Jn ≥ 1 be the number of basis function used in estimation. Let (ψj) be the
unravelled sequence described in Condition C.9. Let λε be a number satisfying:

sup
1≤j≤Jn

∣∣∣∣∣ 1
n

n∑
i=1

ψj(Xi)εi

∣∣∣∣∣ ≤ λε (133)

Let 0 ≤ δ < 1 and define for λ > λε > 0:

λ = λ − λε, λ̄ = λ + λε + δλ, and L = λ̄

(1 − δ)λ. (134)

We use β̂n = (βP LS
1 , . . . , βP LS

Jn
)� to denote the minimizer of the penalized prob-

lem (14).
Then for any β ∈ RJn and any set S ⊂ {1, 2, . . . , Jn}:

2δλ‖β̂n − β‖1 +
∥∥fβ̂n

− f0∥∥2
n

≤
∥∥fβ − f0∥∥2

n
+ λ̄2|S|

φ2
Σ̂(L, S) + 4λ‖β−S‖1 (135)

where φ2
Σ̂(L, S) is the (Σ̂, L, S)-compatibility constant and the Σ̂ is the empirical

covariance matrix: Σ̂ij = 1
n

∑n
k=1 ψi(Xk)ψj(Xk).

Proof. We define 2♦ = ‖fβ̂n
− f0‖2

n − ‖fβ − f0‖2
n + ‖fβ̂n

− fβ‖2
n. The empirical

norm ‖ · ‖n can also be written in matrix form:

‖fβ̂n
− f0‖2

n = 1
n

n∑
i=1

(
fβ̂n

(Xi) − f0(Xi)
)2

= 1
n

n∑
i=1

(
Jn∑

j=1
βP LS

j ψj(Xi) − f0(Xi)
)2

=
〈
Ψ̂β̂n − f0(X), Ψ̂β̂n − f0(X)

〉
/n.

(136)

The design matrix, Ψ̂, has entries Ψ̂i,j = ψj(Xi). And f0(X) = (f0(X1), . . . ,
f0(Xn))� ∈ Rn is the evaluation vector of f0 at n features vectors {Xi}n

i=1. We
will use the above equivalence later.

Similar to the proof in the literature [51], we consider two cases for ♦:

• If ♦ ≤ −δλ‖β̂n − β‖1 + 2λ‖β−S‖1. Then we have

2δλ‖β̂n − β‖1 + ‖fβ̂n
− f0‖2

n

= 2δλ‖β̂n − β‖1 + 2♦ + ‖fβ − f0‖2
n − ‖fβ̂n

− fβ‖2
n

≤ ‖fβ − f0‖2
n − ‖fβ̂n

− fβ‖2
n + 4λ‖β−S‖1

≤ ‖fβ − f0‖2
n + 4λ‖β−S‖1

(137)

• In the case when ♦ > −δλ‖β̂n − β‖1 + 2λ‖β−S‖1, we start with the
following two point inequality (Lemma 6.1 in Van de Geer [51]):〈

Ψ̂(β − β̂n), Y − Ψ̂β̂n

〉
/n ≤ λ‖β‖1 − λ‖β̂n‖1 (138)
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Using the results in the beginning of this proof, we know ♦ can be ex-
panded as:

♦ = 〈Ψ̂β̂n, Ψ̂β̂n〉/n −
〈
Ψ̂β̂n, f0(X)

〉
/n +

〈
Ψ̂β, f0(X)

〉
/n − 〈Ψ̂β̂n, Ψ̂β〉/n

(139)
Then Eq. (138) implies that:

♦ ≤ 〈Ψ̂β̂n, ε〉/n − 〈Ψ̂β, ε〉/n + λ‖β‖1 − λ‖β̂n‖1, (140)

The ε vector stores the noise variables: εi = Yi − f0(Xi). The rest of
the proof follows identically to that of Theorem 2.2 in Van de Geer [51,
page 21], replacing the (β̂ − β)�Σ̂(β̂ − β0) term there by ♦.

The following lemmas tell us that the random compatibility constant φΣ̂(L, S)
is bounded away from zero with high probability.

Lemma E.3. Let Σ be the population Jn × Jn covariance matrix Σij =
E[ψi(X)ψj(X)], where (ψj) is the unravelled function sequence defined in Con-
dition C.9. Assume the feature density function pX(x) = dρX/dνd ≥ u > 0
is bounded away from 0. Here νd is the d-dimension product measure of ν in
Condition C.9.

Then we know Σ has a compatibility constant that does not depend on L, S:
φ2

Σ ≥ u.

Proof. For any β ∈ RJn :

β�Σβ =
∑

1≤i,j≤Jn

βiβjE
[
ψi(X)ψj(X)

]
= E

[(
Jn∑

j=1
ψj(X)βj

)2]

≥ u

∫ (
Jn∑

j=1
ψj(x)βj

)2

dx (1)= u‖β‖2
2.

(141)

In step (1) we used the orthonomality of ψj stated in Condition C.9. At the
same time, we have ‖βS‖2

1 ≤ ‖β‖2
2|S|. Checking the definition of compatibility

(Definition E.1), we conclude for any L, S, the matrix Σ has a uniform compat-
ibility constant φΣ greater than

√
u (meaning that this lower bound does not

depend on either L or S).

Lemma E.4. Under the same conditions as in Lemma E.3, we know the em-
pirical matrix Σ̂ has a compatibility constant φ2

Σ̂(L, S) ≥ u/2, with probability
at least 1 − J2

n exp(−na2/2M4D′), a = u(L + 1)−2|S|−1/2.

Proof. We first consider the difference between two quadratic forms related to
the two covariance matrices:

|β�Σ̂β − β�Σβ| =
∣∣∣∣ ∑
1≤i,j≤Jn

βiβj(Σ̂ij − Σij)
∣∣∣∣ ≤ ‖β‖2

1‖Σ̂ − Σ‖∞ (142)
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By the definition of compatibility constant φΣ, for any β such that ‖β−S‖1 ≤
L‖βS‖1, we have

‖β‖1 ≤ (L + 1)‖βS‖1 ≤ (L + 1)
√

|S|β�Σβ/φΣ (143)

Plugging this into (142), we have:

| β�Σ̂β − β�Σβ | ≤ (L + 1)2‖Σ̂ − Σ‖∞|S|β�Σβ/φ2
Σ

⇐⇒
∣∣∣∣β�Σ̂β

β�Σβ
− 1

∣∣∣∣ ≤ (L + 1)2‖Σ̂ − Σ‖∞|S|/φ2
Σ

(144)

By a typical application of Hoeffding’s inequality (every entry in Σ̂ is a bounded
random variable), we know with probability at least 1 − J2

n exp(−na2/2M4D′),
where a = u(L + 1)−2|S|−1/2, that

‖Σ̂ − Σ‖∞ ≤
(
2(L + 1)2|S|/u

)−1 (145)

This means, with the same probability we have∣∣∣∣β�Σ̂β

β�Σβ
− 1

∣∣∣∣ ≤ 1
2 (146)

Therefore, for all any β such that ‖β−S‖1 ≤ L‖βS‖1, we have that:

|S|β�Σ̂β

‖βS‖2
1

≥ |S|β�Σβ

2‖βS‖2
1

, (147)

with high probability. By the definition of the compatibility constant, we can
read out

φ2
Σ̂(L, S) ≥ φ2

Σ/2 (148)

which concludes our proof.

Corollary E.5. Let λε = [2 log(2Jn)/{C(Csub, M, D′)n}]1/2 and assume εi to
be uniform sub-Gaussian noise. Then, under the same conditions as in Theo-
rem E.2, for any β ∈ RJn whose support is S ⊂ {1, 2, . . . , Jn}, we have

λε‖β̂n − β‖1 +
∥∥fβ̂n

− f0∥∥2
n

≤ 3
2
∥∥fβ − f0∥∥2

2 + 49λ2
ε |S|

2u
(149)

with probability larger than 1−1/(2Jn)−J2
n exp(−na2/2M4D′)−exp(−cn‖fβ −

f0‖2
2/M2

0 ), where a = u(L+1)−2|S|−1/2. The definition of fβ is stated in (131).

Proof. First we show that for the chosen λε, the following holds with high prob-
ability:

sup
1≤j≤Jn

∣∣∣∣∣ 1
n

n∑
i=1

ψj(Xi)εi

∣∣∣∣∣ ≤ λε. (150)
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Since (εi) are sub-Gaussian random variables (with a parameter not depending
on Xi), we know there exists a constant Csub such that

‖εi‖Lp =
{

E
(
|εi|p

)}1/p ≤ Csub
√

p for all p ≥ 1 (151)

For reference, see e.g. Proposition 2.5.2 in Vershynin [54]. Since the basis func-
tions ψj are also uniformly bounded (by MD′), we have

‖ψj(Xi)εi‖Lp ≤ CsubMD′√
p for all p ≥ 1. (152)

This means ψj(Xi)εi is also sub-Gaussian. Applying a union bound and Ho-
effding’s inequality for sub-Gaussian variables (e.g. Theorem 2.6.3 in Vershynin
[54]), we get:

pr
{

sup
1≤j≤Jn

∣∣∣∣∣ 1
n

n∑
i=1

ψj(Xi)εi

∣∣∣∣∣ ≥ t

}
≤

Jn∑
j=1

pr
{∣∣∣∣∣ 1

n

n∑
i=1

ψj(Xi)εi

∣∣∣∣∣ ≥ t

}
≤ 2Jn exp

{
−C

(
Csub, M, D′)nt2} (153)

Taking t = λε = [2 log(2Jn)/{C(Csub, M, D′)n}]1/2, we see that

pr
{

sup
1≤j≤Jn

∣∣∣∣∣ 1
n

n∑
i=1

ψj(Xi)εi

∣∣∣∣∣ ≤ λε

}
≥ 1 − 1/(2Jn) (154)

This is what we claimed in the beginning of the proof.
Next, we bound the difference between ‖fβ − f0‖2

n and ‖fβ − f0‖2
2 for any

fixed fβ satisfying ‖fβ‖∞ < 2‖f0‖∞. First, the difference (fβ(Xi) − f0(Xi))2 is
a bounded variable, therefore it is sub-Gaussian with parameter 9M2

0 , where M0
bounds ‖f0‖∞. The centered version, {fβ(Xi) − f0(Xi)}2 − ‖fβ − f0‖2

2 is also
sub-Gaussian with parameter CM2

0 (see e.g. Lemma 2.6.8 in Vershynin [54]).
Again applying Hoeffding’s inequality we see that

pr
[∣∣∣∣∣ 1

n

n∑
i=1

{
fβ(Xi) − f0(Xi)

}2 − ‖fβ − f0‖2
2

∣∣∣∣∣ ≥ t

]
≤ exp

(
−cnt2/M2

0
)

⇒ pr
(∣∣∣∣‖fβ − f0‖2

n

‖fβ − f0‖2
2

− 1
∣∣∣∣ ≥ 1

2

)
≤ exp

(
−cn‖fβ − f0‖2

2/M2
0
) (155)

We know, with probability larger than 1 − exp(−cn‖fβ − f0‖2
2/M2

0 )

‖fβ − f0‖2
n

‖fβ − f0‖2
2

≤ 3
2 (156)

Combining (154), (156), Lemma E.4 and Theorem E.2, we can conclude our
proof.
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E.2. Theoretical guarantees under sparse tensor product models

In this section, we will combine the oracle inequalities developed in the last
section with approximation results to derive performance guarantees of the l1-
penalized sieve estimator.

Recall the following notation: d is the overall ambient dimension of our fea-
tures Xi, D is the number of explanatory features related to the outcome Y
(the active dimension), s is the smoothness parameter of f0 (Condition C.10),
and Jn is the number of basis functions in the lasso problem (14). The constant
Csub is the sub-Gaussian parameter for the noise variables, u is the lower bound
of the feature density function and M0 is a bound on the ‖ · ‖∞-norm of f0.

Corollary E.6. Let fβ̂n
be the penalized sieve estimate of f0, and fβ0

n
be the

approximation of f0 as in Lemma C.11. Choose the penalization hyperparameter
as λε = [2 log(2Jn)/{C(Csub, M, D′)n}]1/2. Under the same conditions as in
Theorem 7.3, we have the following two bounds

∥∥fβ̂n
− f0∥∥2

n
≤ C

(
Csub, M, D′, ρX , f0) log(Jn)

(
logD−1(n)

n

) 2s
2s+1

‖β̂n − β0
n‖1 ≤ C

(
Csub, M, D′, ρX , f0)(log Jn/n)1/2n1/(2s+1)(log n)2s(D−1)/(2s+1)

(157)
with probability at least

1 − 1/(2Jn) − J2
n exp

(
−na2/2M4D′)

− exp
(
−C

(
s, D, ρX , f0)(log n)(D−1)2s/(2s+1)n1/(2s+1)),

where a = u(L + 1)−2|S|−1/2.

Proof. To get the bounds above, we only need to combine the oracle inequality
in Corollary E.5 with the approximation results in Lemma C.11.

In Lemma C.11, we discussed that so long as Jn is large enough, we can
find a function fβ0

n
that approximates f0 well enough. Plugging the results of

Lemma C.11 into the oracle inequality (149), we have:

λε‖β̂n − β‖1 +
∥∥fβ̂n

− f0∥∥2
n

≤ C
(
s, D, ρX , f0)( logD−1 n

n

) 2s
2s+1

+ 49λ2
ε |Sn|
2u

,
(158)

here |Sn| is the cardinality of non-zero elements in β0
n. Although formally fβ0

n
is

a linear combination of Jn = C(s, D)dD′
n1/(2s+1) logD′−1 n basis functions, the

size of its support is much smaller (thanks to the feature sparsity conditions). In
fact, fβ0

n
only needs to engage with the informative dimensions of the features. In

Lemma C.7, we showed that |Sn| can be bounded by (logD−1 n)2s/(2s+1)n1/(2s+1).
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Plugging this in the above inequality gives:

λε‖β̂n − β‖1 +
∥∥fβ̂n

− f0∥∥2
n

≤ C
(
s, D, ρX , f0)( logD−1 n

n

) 2s
2s+1

+ C
(
Csub, M, D′, ρX

)
log(Jn)

(
logD−1 n

n

) 2s
2s+1

.

(159)
This gives us the results regarding the ‖·‖n-norm distance and l1-distance stated
in Corollary E.6 (the second term will dominate for large n).

At this point, we already established bounds on the training-design error
(expressed as the ‖ · ‖n-norm). However, for most prediction problems we are
interested in the testing error (quantified in the ‖ · ‖2,ρX

-norm). For arbitrarily
flexible estimators, a low training-design error does not imply a strong general-
ization ability. However, according to Corollary E.6, the coefficient β̂n lives in
a small ‖ · ‖1-ball centered around the oracle β0

n with high probability. From
this we can also develop some bounds on metric entropy of the space in which
fβ̂n

takes value. These will in turn link the expected distance to the empirical
distance.

In the following discussion we will use the concept of metric entropy of a
function space. For more comprehensive discussion, see Chapter 2 of van de
Geer [50].

Definition E.7. Let Q be a measure on X and let G be a function space
G ⊂ L2(X ; Q). Consider for each δ > 0, a collection of functions g1, . . . , gN ,
such that for each g ∈ G, there is a j = j(g) ∈ {1, . . . , N}, such that(∫

X

(
g(x) − gj(x)

)2
dQ(x)

)1/2

≤ δ. (160)

Let N(δ, G, Q) be the smallest value of N for which such a covering by balls with
radius δ and centers g1, . . . , gN exists. Then N(δ, G, Q) is called the covering
number (under measure Q) and H(δ, G, Q) = log N(δ, G, Q) is called the metric
entropy of G (under measure Q).

One of the function spaces Gn we are going to consider is

Gn = Gn

(
ψj , β0

n, rn

)
=

{
f =

Jn∑
j=1

βjψj | β = (β1, . . . , βJn)� ∈ B1
(
β0

n, rn

)}
,

(161)
with rn = rn(s, D) = (log Jn/n)1/2n1/(2s+1) log2s(D−1)/(2s+1)(n). This radius is
of the same order as the RHS in (157). The set B1(β, r) ⊂ RJn is the ‖ · ‖1-ball
of radius r centered at β, formally

B1(β, r) =
{

γ ∈ RJn | ‖γ − β‖1 ≤ r
}

(162)

For a specified sequence of rn and Jn, Gn is a deterministic sequence of function
spaces.
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In the rest of this section, we will derive some bounds on the metric entropy
of Gn and apply some maximal inequalities to relate the testing-design errors to
the training-design errors. We will show that the metric entropy of the function
space Gn (equipped with ‖ · ‖n-norm) is of the same order as the metric entropy
of B1(βn, rn) (equipped with Euclidean ‖ · ‖2-norm). Since the latter is known
in the literature (e.g, Lemma 3 in Raskutti et al. [33]), we have the following
results:

Lemma E.8. Let rn = rn(s, D) = (log Jn/n)1/2n1/(2s+1)(log n)2s(D−1)/(2s+1).
Then for the Gn defined in (161), we have

H(δ, Gn, Pn) ≤ C(M)r2
nδ−2 log Jn (163)

Proof. We first rewrite the empirical norm in matrix notation, for any β =
(β1, . . . , βJn)� ∈ RJn :

‖fβ‖n =
{

1
n

n∑
i=1

f2
β(Xi)

}1/2

= 1√
n

{
n∑

i=1

(
Jn∑

j=1
βjψj(Xi)

)2}1/2

=
∥∥∥∥ 1√

n
Ψ̂β

∥∥∥∥
2
,

(164)
where Ψ̂ is the design matrix: Ψ̂ij = ψj(Xi).

Therefore, if there is a δ-cover of the set {n−1/2Ψ̂β, β ∈ B1(β0
n, rn)} ⊂ Rn

under the Euclidean ‖ · ‖2-norm, we can directly construct one for Gn under
‖ · ‖n-norm. There are available bounds on the covering number of the n−1/2Ψ̂β
when β belongs to a l1-ball. Specifically, we can apply Lemma 4 of Raskutti
et al. [33]:

H
(
δ,
{

n−1/2Ψ̂β, β ∈ B1
(
β0

n, rn

)}
, ‖ · ‖

)
≤ C(M)r2

nδ−2 log Jn. (165)

This concludes our proof.

To relate the training and testing errors, we need to consider a function space
closely related to Gn:

G̃2
n =

(
Gn − f0)2 (166)

We summarize several properties of it in the following lemma.

Lemma E.9. Let rn = (log Jn/n)1/2n1/(2s+1)(log n)2s(D−1)/(2s+1) and δn < rn.
Then for the function space G̃2

n we know:

sup
g∈G̃2

n

‖g‖∞ ≤ C
(
M, D′, s, D, Q

)
,

pr
{

sup
g∈G̃2

n

‖g‖n ≤ C
(
M, D′, s, D, Q

)
rn

}
n→∞−→ 1 and∫ rn

δn

H1/2(u, G̃2
n, Pn

)
du ≤ C

(
M, D′, s, D, Q

)
rn(log Jn)1/2 log(1/δn).

(167)
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Proof. • We first derive the bound on the ‖ · ‖∞-norm. By definition, every
element g in G̃2

n can be expressed as g = (f − f0)2 for some f ∈ Gn. To
bound ‖g‖∞, it is enough to bound ‖f − f0‖∞.

‖f − f0‖∞ ≤ ‖f − fβ0
n
‖∞ + ‖fβ0

n
− f0‖∞

≤ C
(
M, D′)rn + ‖fβ0

n
‖∞ + ‖f0‖∞ ≤ C

(
M, D′, s, D, Q

)
.

(168)
• We now bound the empirical norm ‖ · ‖n. For any f ∈ Gn, we can define

a function g = f − f0. And we know:

‖g‖n ≤ ‖f − fβ0
n
‖n + ‖fβ0

n
− f0‖n

≤ C
(
M, D′)rn + C(s, D, ρX , Q)

(
logD−1 n/n

)s/2s+1 w.h.p.
(169)

The first term is using the explicit form of f and fβ0
n
. The second bound

is based on the approximation results in Lemma C.11 and the probability
bound in (156). Since rn = (log Jn/n)1/2n1/(2s+1)(log n)2s(D−1)/(2s+1), the
order of the first term in (169) is larger than the second one’s. For g2 ∈ G̃2

n,

‖g2‖2
n = 1

n

n∑
i=1

{
f(Xi) − f0(Xi)

}4

≤ C
(
M, D′, s, D, Q

)
‖g‖2

n ≤ C
(
M, D′, s, D, Q

)
r2

n.

(170)

So we conclude that for any g2 ∈ G̃2
n, ‖g2‖n ≤ C(M, D′, s, D, Q)rn with

probability going to 1.
• Now we derive the bound on the integrated metric entropy. For any h1, h2 ∈

G̃2
n, there exist f1, f2 ∈ Gn such that hi = (fi − f0)2, i ∈ {1, 2}. So we

know that

‖h1 − h2‖2
n = ‖

(
f1 − f0)2 −

(
f2 − f0)2‖2

n

= 1
n

n∑
i=1

[{
f1(Xi) + f2(Xi) − 2f0(Xi)

}{
f1(Xi) − f2(Xi)

}]2

≤ C
(
M, D′, s, D, Q

) 1
n

n∑
i=1

{
f1(Xi) − f2(Xi)

}2

= C
(
M, D′, s, D, Q

)
‖f1 − f2‖2

n (171)

Now we know that if we have a δ-covering of Gn with center points {fk},
then the functions {(fk − f0)2} form a C(M, D′, s, D, Q)δ-covering of G̃2

n.
Since we already have an entropy bound on Gn stated in Lemma E.8, we
have one for G̃2

n of the same order as well. The integrated entropy can be
bounded as follows:∫ rn

δn

H1/2(τ, G̃2
n, Pn

)
dτ ≤ C

(
M, D′, s, D, Q

) ∫ rn

δn

(log Jn)1/2rnτ−1dτ

≤ C
(
M, D′, s, D, Q

)
(log Jn)1/2rn log(1/δn),

(172)
when rn ≤ 1.
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Theorem E.10. Let

δn = C(s, D) log(Jn)n− 2s
2s+1 log

2s(D−1)
2s+1 +1(n),

rn = C(s, D)(log Jn/n)1/2n1/(2s+1)(log n)2s(D−1)/(2s+1).
(173)

And let β̂n denote the minimizer of the penalized problem (14). Then, under the
same conditions as in Theorem 7.3, we have

lim sup
n→∞

pr
(∣∣‖fβ̂n

− f0‖2
n − ‖fβ̂n

− f0‖2
2
∣∣ ≥ δn

)
= 0 (174)

Proof. We first need to apply the symmetrization trick (e.g. Corollary 3.4 in
van de Geer [50])

pr
(∣∣‖fβ̂n

− f0‖2
n − ‖fβ̂n

− f0‖2
2
∣∣ ≥ δn

)
= pr

{∣∣(Pn − P )
(
fβ̂n

− f0)2∣∣ ≥ δn

}
≤ pr

{
sup

g∈G̃2
n

∣∣(Pn − P )g
∣∣ ≥ δn

}
+ pr(fβ̂n

/∈ Gn)

≤ 4pr
{

sup
g∈G̃2

n

∣∣∣∣∣ 1
n

n∑
i=1

Wig(Xi)

∣∣∣∣∣ ≥ δn/4
}

+ pr(fβ̂n
/∈ Gn)

(175)

The Wi variables above are independent and identically distributed Rademacher
variables (pr(Wi = 1) = pr(Wi = −1) = 0.5). They are bounded (therefore sub-
Gaussian) random variables. The probability pr(fβ̂n

/∈ Gn) has been investigated
in Corollary E.6. To bound the first term in (175), we need to apply some
maximal inequalities (e.g., Corollary 8.3 or Lemma 3.2 in van de Geer [50]).
These results require that rn > δn and

√
nδn ≥ C

(∫ rn

δn/8
H1/2(τ, G̃2

n, Pn

)
dτ ∨ rn

)
. (176)

We already checked these properties in Lemma E.9. So we conclude that with
probability going to 1, the difference between the training and testing error is
no larger than δn.

Proof of Theorem 7.3. To show the testing error stated in Theorem 7.3, we just
need to combine the results in Theorem E.10 and Corollary E.6.

Appendix F: The average order of divisor functions

In this section we will present a derivation of the average order of D-divisor
functions that was used in the proof of Lemma C.3. This result is known to
mathematicians working on number theory, and is usually considered as a direct
generalization of the D = 2 case. However, most standard references only include
the special (but important) case when D = 2. For the purpose of completeness,
we replicate a proof based on an unpublished online note by Graham Jameson,
from Lancaster University. For other references of similar results, see Huybrechs
et al. [23] (Proposition 6) and Dobrovol’skii and Roshchenya [6].
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Lemma F.1. We have the following recurrence relation for TD (over D):

TD(x) =
∑
n≤x

TD−1

(
x

n

)
(177)

Proof. Fix n ≤ x. The number of D-tuples (j1, j2, . . . , jD−1, n) with n
∏D−1

k=1 jk ≤
x is the number of (D−1)-tuples with

∏D−1
k=1 jk ≤ x/n, that is, TD−1(x/n). Hence

TD(x) =
∑

n≤x TD−1(x/n).

Lemma F.2. Define
AD(x) =

∑
n≤x

x

n
logD(x/n) (178)

then we have
1

D + 1x logD+1 x ≤ AD(x) ≤ 1
D + 1x logD+1 x + x logD x (179)

Proof. Let f(t) = (x/t) logD(x/t) for 1 ≤ t ≤ x (also f(t) = 0 for t > x). Then
f(t) is decreasing and non-negative, and∫ x

1
f(t)dt =

[
x

D + 1 logD+1(u)
]x

1
= x logD+1(x)

D + 1 (180)

The statement follows, by using the following basic integral estimate (Proposi-
tion 1.4.2 of Jameson [24]): Let f(t) be a decreasing, non-negative function for
t ≥ 1. Write S(x) =

∑
n≤x f(n) and I(x) =

∫ x

1 f(t)dt. Then for all x ≥ 1,

I(x) ≤ S(x) ≤ I(x) + f(1) (181)

Lemma F.3. For any fixed D ≥ 2,

TD(x) = 1
(D − 1)!x logD−1 x + O

(
x logD−2 x

)
. (182)

The O(·) in (182) is for x → ∞.

Proof. Induction on D. The case D = 2 is known to be true (Theorem 3.2
Tenenbaum [47]). Assume (182) for D, with the error term denoted by qD(x).
Then by (177),

TD+1(x) =
∑
n≤x

TD

(
x

n

)
= I(x) + Q(x) (183)

where
I(x) = 1

(D − 1)!
∑
n≤x

x

n
logD−1 x

n
= 1

(D − 1)!AD−1(x)

Q(x) =
∑
n≤x

qD

(
x

n

)
∼

∑
n≤x

x

n
logD−2 x

n
= AD−2(x)

(184)
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By (179),
I(x) = 1

D!x logD x + O
(
x logD−1 x

)
(185)

and Q(x) = O(x logD−1 x). Hence (182) holds for D + 1.
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