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Abstract—Increasing popularity of integrating distributed en-
ergy resources (DERs) into the power system brings a challenge to
optimize the dispatch policy for microgrid energy scheduling. The
reinforcement learning methods suffer from a long-time problem
with the empirical assumption of the reward function for the
microgrid system. Although the traditional inverse reinforcement
learning (IRL) approaches can solve this problem to some extent,
they encounter a limitation of extensive computations for state
visitation frequency in the large and continuous state space.
To alleviate this limitation, we propose a modified maximum
entropy IRL (MMIRL) method to extract the reward function
from the expert demonstrations for solving the microgrid en-
ergy scheduling problem. The computation of state visitation
frequency is avoided by calculating the difference between the
expert feature expectation and learner feature expectation. The
microgrid optimization is suitable for using state-action (s, a)
feature than state s feature only to recover the reward, and this
setting drives the need for a computationally efficient method. To
this end, the proposed MMIRL algorithm is designed to recover
the reward function and learn the dispatch policy compared to
the conventional approaches for microgrid energy scheduling.
Case studies are performed in an energy arbitrage problem and
a microgrid system with DERs, respectively. Results substantiate
that the proposed MMIRL approach can learn the dispatch
policy with more than 99% accuracy and outperforms other
comparative methods in both cases.

Index Terms—Distributed energy resources, reinforcement
learning, maximum entropy inverse reinforcement learning, mi-
crogrid energy scheduling, and operation optimization.

I. INTRODUCTION

The high variability of renewable energy sources (RESs)

and different power supply units make the islanded microgrids

challenging to optimize to maintain a minimum operational

daily cost. It is often desired to control and coordinate the

microgrid energy control center in an efficient and economical

way [1]. Therefore, there is an increasingly attention to find a

proper optimization approach in microgrid energy scheduling.

In recent years, both model-based optimization methods and

reinforcement learning (RL) methods have been investigated

by researchers to solve microgrid energy scheduling problems.

There are extensive model-based online scheduling approaches

having been proposed in the literature [2]–[4]. Although these

model-based methods have been successfully applied in the

aforementioned studies, they mainly depended on assumptive

physical models of the microgrid system with accurate fore-

casts of uncertainties. This increases the operational difficulties

of model-based microgrid energy scheduling methods in real-

ity. The RL-based methods are learning-based methods aimed

at maximizing the agent’s total reward, including traditional

RL methods and data-drive deep RL methods. Several adaptive

energy storage charging and discharging strategy optimization

models using traditional RL algorithms [5] [6] were proposed

with the help of a modified deep learning approach to predict

the photovoltaic power and the load demand [7]. However,

these traditional RL methods were limited to the application of

large and continuous state space due to the curse of dimension-

ality [8]. Hence, deep reinforcement learning (DRL) methods

have been introduced to the microgrid energy scheduling to

solve the problem of high dimensional state space in recent

years [9]–[11]. Nevertheless, deep RL-based methods have

the limitation that needs a lot of training data and samples.

Besides, these current RL methods still suffer from a long-

standing problem with the empirical assumption of the reward

function for the microgrid system, while the actual reward

function is usually unknown [12].

Fortunately, the inverse reinforcement learning (IRL)

method has an advantage of extracting an agent’s reward

function from the expert demonstrations [13]. The individ-

ual preferences of a microgrid energy scheduling agent are

hidden in its actual behaviors and can be extracted by the

expert demonstrations. There is a study that optimized the

economic operation of a microgrid with a variety of distributed

energy resources (DERs) via the imitation learning method

[8]. Although the imitation learning method can mimick

the expert behavior in given tasks by learning a mapping

between observations and actions, a direct reward function

is not learned. In [12] and [14], the authors introduced a

deep inverse reinforcement learning method to identify the

individual reward functions of the bidding market and cou-

pled multiple market through the historical bidding behaviors.

However, to our knowledge, there have not been any research

focused on restoring the reward function of the microgrid

energy scheduling problem using the IRL method and avoiding
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computation of the state visitation frequency at the same time.

In this paper, we work on the optimization of the microgrid

energy scheduling problem using the inverse reinforcement

learning method. Specifically, we propose a computationally

efficient inverse reinforcement learning approach to extract

the reward function from the expert demonstrations, called

modified maximum entropy IRL (MMIRL) method. The con-

tributions of this paper are provided as follows. First, a

novel IRL-based framework with computational efficiency is

proposed to identify the reward function related to the state-

action pair for the microgrid energy scheduling for the first

time. Moreover, the proposed MMIRL method avoids the

calculation of state visitation frequency by calculating the

difference between the expert feature expectation and learner

feature expectation, which saves computational cost and makes

the algorithm more efficient.

The remainder of this paper is organized as follows. Section

II states the main idea of the maximum entropy IRL method

and the important improvements of our proposed MMIRL

algorithms. Explanations about the microgrid system model

is given in Section III. Specific simulations, problem formula-

tion, and results are shown in Section IV. Finally, conclusions

are provided in Section V.

II. MAXIMUM ENTROPY INVERSE REINFORCEMENT

LEARNING APPROACHES WITH COMPUTATIONAL

EFFICIENCY

A. The Maximum Entropy IRL Method with Reward Related
to the State

A Markov decision process (MDP) can be expressed by a

tuple: {S,A, P,R, γ}, where S is a set of states s, A is a set

of possible actions a, P is the transition probability, and R is

the reward function [15].

In the maximum entropy IRL method [16], the path feature

counts, fξ, for a MDP path, ξ, is defined as the sum of the state

features along the path. The feature for the state, si, is defined

as fsi . The relationship between the path feature counts and

the state features can be formulated as

fξ =
∑
si∈ξ

fsi (1)

The goal for an inverse reinforcement learning agent is to

extract the reward function from the expert demonstrations that

linearly maps the features of each state, fsi , to a state reward

value,

R(ξ|θ) = θT fξ =
∑
si∈ξ

θT fsi (2)

where θ is the reward weight applied to the path feature counts.

The expert feature expectation is formulated by the average

path feature of all trajectories in the expert demonstrations,

f̃E =
1

N

∑
ξ∈D

fξ =
1

N

∑
ξ∈D

∑
si∈ξ

fsi (3)

where N is the trajectory number of expert demonstrations,

and D is the set of expert demonstrations.

The objective function for the maximum entropy IRL

method is to maximize the entropy of the distribution over the

demonstration from the observed data. The optimal weight θ∗

is

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
ξ∈D

logP (ξ|θ) (4)

where L(θ) is the log-likelihood function, and P (ξ|θ) is the

probability of the trajectory ξ.

The gradient of L(θ) is expressed in terms of expected state

visitation frequencies as

∇L(θ) = f̃E −
∑
si∈O

Dsi fsi (5)

where Dsi is the expected state visitation frequency of state

si in [16] that is hard to be calculated in large-state space, and

O is the set of learner trajectories.

In traditional maximum entropy IRL method, the feature of

the trajectory is only related to the state, while there is a trend

to apply the (s, a) pair to build features because sometimes the

reward function is related to the (s, a) pair [17] [18]. Although

these methods used the (s, a) pair to recover the reward, they

still have some limitations of relying on the state visitation

frequency or the regeneration of all the samples.

B. Proposed Modified Maximum Entropy IRL Method

For the majority of cases, the reward function is always

associated with both state and action information, especially in

the microgrid energy scheduling problems [19]. The maximum

entropy IRL method requires the calculation of transition ma-

trix and state visitation frequency, which brings computational

challenges in the large and continuous state space. Based on

the reality, we modify it using reward relate to the (s, a) pair

called MMIRL method. This idea is inspired by calculating

the margin of observed from learned feature expectations in

[20]. It’s more efficient than traditional maximum entropy IRL

methods due to its feasibility in the large-state space.

The equation (1) of the path feature counts, fξ, is modified

as

fξ =
∑

(si,ai,j)∈ξ

fsi,ai,j (6)

The reward function is correspondingly changed as

R(ξ|θ) = θT fξ =
∑

(si,ai,j)∈ξ

θT fsi,ai,j
(7)

The expert feature expectation of (3) is reformulated as

f̃E =
1

N

∑
ξ∈D

∑
(si,ai,j)∈ξ

fsi,ai,j
(8)

Our method calculates the gradient with the approximation

of expert feature expectation f̃E and learner feature expectation

f̃learn, instead of calculating the state visitation frequency. The

equation (5) is modified as

∇L(θ) = f̃E − f̃learn (9)
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where similar to (8), the learner feature expectation f̃learn can

be defined as

f̃learn =
1

M

∑

ξ̂∈O

∑

(si,ai,j)∈ξ̂

fsi,ai,j (10)

where M is the trajectory number of learner trajectories.

This design saves the computational cost in both the discrete

and continuous state-space problems by avoiding the compu-

tation of state visitation frequency. Moreover, considering the

large or continuous state space, our MMIRL method can also

be involved with deep RL methods to learn the optimal policy

according to the recovered reward function, which avoids the

computation and storage of large table in tabular methods.

In the microgrid energy scheduling problem, the actual

reward intuitively depends to both the current state and the

current action [21]. Therefore, our goal is to find out the

reward function R(s, a) through the expert demonstrations,

then use the recovered reward function to learn the optimal

microgrid energy scheduling policy.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this paper, we consider a grid-connected microgrid con-

sisting of four units from the perspective of energy generation

and load demand shown in Fig. 1. The four units are the battery

energy storage system (BESS), the distributed generations,

including diesel generator (DG) and renewable generations

(RG), the main grid, and the residential load. The optimization

problem is to make hourly dispatch decisions over a time

period of T (24 hours).

The state of our microgrid system at the end of hour t is

defined as:

st = (st,b, st,d, st,g, st,p, st,l) (11)

where st,b is the state of charge (SOC) of the BESS, st,d is

the binary variable that indicates the ON/OFF status of DG,

st,g is the output of RG, st,p is the retail energy price, and

st,l is the residential load demand.

Microgrid Energy
Control Center

Power Grid

B C

Distributed
Generations

A

Battery

Renewables

Diesels D E

Residential
Load Demand

F

A — Available non-controllable  power 
supply
B — Buying power from the grid
C — Selling power to the grid

D — Charging energy to the battery
E — Energy discharge from the battery
F — Residential load

Fig. 1. A microgrid system consists of a battery unit, a distributed generations
unit, a power grid unit, and a residential load demand unit. This is a modified
figure from [22].

The transition function of SOC is given as

st+1,b = st,b − Δst,b
Eb

(12)

where Eb is the rated energy capacity, and Δst,b is the energy

changing amount of BESS at hour t,

Δst,b =

⎧⎨
⎩
η−b pt,bΔt, if pt,b ≤ 0
pt,b

η+b
Δt, otherwise

(13)

where Δt is the time step size, η−b and η+b stand for the

charging and discharging efficiencies respectively, and pt,b is

the charging or discharging power of BESS, which is positive

when discharging.

Besides, the SOC of the battery is constrained by

sb− ≤ st,b ≤ sb+ (14)

where sb− and sb+ stand for the lower and upper bounds of

SOC, respectively.

The pt,b should satisfy the limitations of the maximum

discharging power P+
b and the maximum charging power P−

b ,

−P−
b ≤ pt,b ≤ P+

b (15)

The action of our microgrid system at the end of hour t is

defined as:

at = (pt,b, pt,d, pt,p) (16)

where pt,d is the power output of DG, and pt,p is the power

purchased from (positive) or sold to (negative) the main grid.

The power balance of the microgrid can be expressed as

pt,b + pt,d + pt,p + st,g = st,l (17)

The DG status updated by the transitions in [23] is applied

for determining the next-state of DG status. We uses the Q-

learning method and the dynamic programming (DP) method

to generate the expert demonstrations with the microgrid cost

setting in [21]. For the simulations, we consider two case

studies. One is an energy arbitrage problem with a microgrid

system only involved with the units of the battery and the main

grid, the other is the microgrid system involved with all four

units.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we conduct two case studies to evaluate

the performance of our proposed MMIRL method. We first

compare our approach with two expert policies, including the

Q-learning method and the DP method. Then we also compare

with the maximum entropy IRL method [16] and the imitation

learning method [8] to justify the performance improvements.

A. Case 1: an energy arbitrage problem

The problem is how to schedule battery charging and

discharging so that we can maximize the revenue on the

basis of the fluctuations of the power price. The state st
of case 1 can be simplified as (st,b, st,p), and the action at
is the BESS charging/discharging power pt,b. Therefore, the

objective function of case 1 is maximizing the total reward

over the time period of T ,

max
pt,b

T∑
t=1

R(st, at) = max
pt,b

T∑
t=1

[st,ppt,b] (18)
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We use the DP method as our expert policy to implement

our MMIRL method. To compare the difference of using

the reward related to s and (s, a), we also implement the

maximum entropy IRL method using (s, a) features. Besides,

we discretize the battery SOC st,b into 11 states from 0.1 to

0.9. The initial SOC is defined as 0.1 and the energy storage

parameters are set as

• Eb = 4 MWh, T = 24 hours

• η+b = η−b = 87%
• sb+ = 0.9, sb− = 0.1
• P+

b = P−
b = 1 MW

We conduct our MMIRL algorithm to recover the reward

function of R(s, a) and generate the learner’s optimal policy

by two RL methods using the recovered reward, including the

Q-learning method and the deep Q-network method. It is worth

mentioning that our MMIRL algorithm recovers the reward

function related to the (s, a) pair. The simulation results are

shown in Table I. For case 1, the higher reward is better since

the goal is to maximize the reward.

TABLE I
SIMULATION RESULTS FOR CASE 1

Methods Total Reward ($) Reward Accuracy

Expert: DP 46.66 -

Max Entropy IRL (s) 44.84 96.1%

Imitation Learning 44.94 96.3%

Max Entropy IRL (s, a) 46.66 100%
MMIRL (s, a) 46.66 100%

As we can see from the value of recovered policy’s total

reward, all these methods can achieve more than 96% accuracy

compared with the DP expert policy. From the results of

maximum entropy IRL method using s feature and (s, a)
feature, we can conclude that recovering reward related to the

(s, a) pair can have better performance with 100% accuracy

in this energy arbitrage problem. Moreover, our proposed

MMIRL algorithm can precisely recover the reward and the

optimal learner policy the same as the expert with 100%

accuracy. This performance is 4.1% better than the maximum

entropy IRL method using s feature and 3.8% better than the

imitation learning method in the reward accuracy metric.

B. Case 2: a microgrid system with DERs

The state and action of this case are defined as (11) and (16).

This microgrid energy scheduling problem is to minimize the

total operational cost during the time T ,

min
at

T∑
t=1

C(st, at) = min
at

T∑
t=1

[Ct,d(pt,d) + Ct,p(pt,p)] (19)

where Ct,d(pt,d) is the operational cost of DG expressed as

Ct,d(pt,d) = st,d(adp
2
t,d + bdpt,d + cd) (20)

where pt,d is the power output of DG, ad, bd, and cd are the

coefficients of the quadratic function. The power purchasing

cost or selling revenue Ct,p(pt,p) is expressed as

Ct,p(pt,p) =

⎧⎨
⎩
pt,pst,pηΔt, if pt,p ≥ 0

pt,pst,pΔt

η
, otherwise

(21)

where η is used to capture the network losses.

The cost function value equals to the opposite value of the

reward function. And the parameters of the dispatchable DG

and the BESS for this microgrid are adopted from [21]. The

rated power of wind for RG is defined as 100 kW , and the

power output profiles are generated using the System Advisory

Model [24] for the city of Phoenix, Arizona. Similarly, the

residential load profiles and power prices are from Phoenix

with a peak of 150 kW in a time period of 24 hours. The

detailed setup description can be found in [21]. We also

discretize the battery SOC into 20 status from 0.1 to 0.9, and

the initial SOC status is set as 0.1 with η = 0.915.

Fig. 2. The comparison results of the DP expert policy and the propose
MMIRL algorithm for one of the 5 experiments.

We use 5000 iterations for the Q-learning approach and the

DP approach as two expert policies. Similarly, we implement

our proposed MMIRL algorithm applied with the Q-learning

expert demonstrations and the DP expert demonstrations re-

spectively, and compared with two expert policies and two

comparison methods. Because the state in case 2 involved with

more parameters and the reward is related to (s, a) pair, these

factors lead to the dimension explosion for case 2. In order

to speed up the computation, we apply deep Q network to

learn the learner’s optimal policy with the recovered reward

function generated from our MMIRL algorithm. To be fair, 5

experiments are conducted for the proposed MMIRL algorithm

for 20000 epochs, and the average results are recorded.

Fig. 2 illustrates the MMIRL algorithm’s SOC status and

cost in comparison with the DP expert method in one of the
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TABLE II
SIMULATION RESULTS OF THE MICROGRID FOR CASE 2

Methods Expert Demos Total Cost ($) Cost Accuracy

Q-learning - 17.95 -

Max Entropy IRL (s) Q-learning 24.61 73.0%

Imitation Learning Q-learning 19.94 90.0%

MMIRL (s, a) Q-learning 18.15 98.9%
Dynamic Programming - 16.55 -

Max Entropy IRL (s) DP 29.23 56.6%

Imitation Learning DP 18.06 91.6%

MMIRL (s, a) DP 16.63 99.5%

5 experiments. It’s clear that the SOC status of DP expert

and the MMIRL method is almost the same, except the first

five hours. Moreover, when it comes to Table II, our MMIRL

algorithm outperforms other comparative methods using both

two kinds of expert demonstrations. The MMIRL method

using the Q-learning expert demonstrations achieves a $18.15
total cost and 98.9% accuracy. Specially, when the proposed

MMIRL algorithm using the DP expert demonstrations, it

achieves a lowest $16.63 total cost and 99.5% accuracy. This

performance is 8.6% better than the imitation learning method,

and 75.8% better than the maximum entropy IRL method using

the same DP demonstrations.

V. CONCLUSIONS

In this paper, a computationally efficient IRL approach

called the MMIRL method is proposed to extract the reward

function of the microgrid energy scheduling problem from

the expert demonstrations. The Q-learning method and DP

method were used for generating the expert demonstrations,

and the maximum entropy IRL method and the imitation

learning method were introduced for comparisons. Two case

studies of an energy arbitrage problem and a microgrid system

with DERs were conducted to validate the effectiveness of

the proposed MMIRL approach. There is a reality that the

reward function of microgrid optimization is related to the

(s, a) pair. Therefore, the main contribution of our work is the

realization of recovering the reward function of the (s, a) pair

for microgrid energy scheduling for the first time. Besides, our

approach can learn the dispatch policy through the recovered

reward function without the need for the computation of state

visitation frequency, which is more efficient than conven-

tional IRL methods. Our experiments show that the proposed

MMIRL algorithm can achieve more than 99% accuracy in the

aspects of total reward or total cost compared with the expert

policies, and outperform other existing methods in both cases.
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