2023 IEEE Power & Energy Society General Meeting (PESGM) | 978-1-6654-6441-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/PESGMS52003.2023.10252933

A Modified Maximum Entropy Inverse
Reinforcement Learning Approach for Microgrid
Energy Scheduling

Yanbin Lin*, Avijit Das', and Zhen Ni*
*Florida Atlantic University, Boca Raton, FL, USA, 33431
{liny2020, zhenni}@fau.edu
TPacific Northwest National Laboratory, Richland, WA, USA, 99352
avijit.das@pnnl.gov

Abstract—Increasing popularity of integrating distributed en-
ergy resources (DERs) into the power system brings a challenge to
optimize the dispatch policy for microgrid energy scheduling. The
reinforcement learning methods suffer from a long-time problem
with the empirical assumption of the reward function for the
microgrid system. Although the traditional inverse reinforcement
learning (IRL) approaches can solve this problem to some extent,
they encounter a limitation of extensive computations for state
visitation frequency in the large and continuous state space.
To alleviate this limitation, we propose a modified maximum
entropy IRL (MMIRL) method to extract the reward function
from the expert demonstrations for solving the microgrid en-
ergy scheduling problem. The computation of state visitation
frequency is avoided by calculating the difference between the
expert feature expectation and learner feature expectation. The
microgrid optimization is suitable for using state-action (s,a)
feature than state s feature only to recover the reward, and this
setting drives the need for a computationally efficient method. To
this end, the proposed MMIRL algorithm is designed to recover
the reward function and learn the dispatch policy compared to
the conventional approaches for microgrid energy scheduling.
Case studies are performed in an energy arbitrage problem and
a microgrid system with DERs, respectively. Results substantiate
that the proposed MMIRL approach can learn the dispatch
policy with more than 99% accuracy and outperforms other
comparative methods in both cases.

Index Terms—Distributed energy resources, reinforcement
learning, maximum entropy inverse reinforcement learning, mi-
crogrid energy scheduling, and operation optimization.

I. INTRODUCTION

The high variability of renewable energy sources (RESs)
and different power supply units make the islanded microgrids
challenging to optimize to maintain a minimum operational
daily cost. It is often desired to control and coordinate the
microgrid energy control center in an efficient and economical
way [1]. Therefore, there is an increasingly attention to find a
proper optimization approach in microgrid energy scheduling.

In recent years, both model-based optimization methods and
reinforcement learning (RL) methods have been investigated
by researchers to solve microgrid energy scheduling problems.
There are extensive model-based online scheduling approaches
having been proposed in the literature [2]-[4]. Although these
model-based methods have been successfully applied in the
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aforementioned studies, they mainly depended on assumptive
physical models of the microgrid system with accurate fore-
casts of uncertainties. This increases the operational difficulties
of model-based microgrid energy scheduling methods in real-
ity. The RL-based methods are learning-based methods aimed
at maximizing the agent’s total reward, including traditional
RL methods and data-drive deep RL methods. Several adaptive
energy storage charging and discharging strategy optimization
models using traditional RL algorithms [5] [6] were proposed
with the help of a modified deep learning approach to predict
the photovoltaic power and the load demand [7]. However,
these traditional RL methods were limited to the application of
large and continuous state space due to the curse of dimension-
ality [8]. Hence, deep reinforcement learning (DRL) methods
have been introduced to the microgrid energy scheduling to
solve the problem of high dimensional state space in recent
years [9]-[11]. Nevertheless, deep RL-based methods have
the limitation that needs a lot of training data and samples.
Besides, these current RL methods still suffer from a long-
standing problem with the empirical assumption of the reward
function for the microgrid system, while the actual reward
function is usually unknown [12].

Fortunately, the inverse reinforcement learning (IRL)
method has an advantage of extracting an agent’s reward
function from the expert demonstrations [13]. The individ-
ual preferences of a microgrid energy scheduling agent are
hidden in its actual behaviors and can be extracted by the
expert demonstrations. There is a study that optimized the
economic operation of a microgrid with a variety of distributed
energy resources (DERs) via the imitation learning method
[8]. Although the imitation learning method can mimick
the expert behavior in given tasks by learning a mapping
between observations and actions, a direct reward function
is not learned. In [12] and [14], the authors introduced a
deep inverse reinforcement learning method to identify the
individual reward functions of the bidding market and cou-
pled multiple market through the historical bidding behaviors.
However, to our knowledge, there have not been any research
focused on restoring the reward function of the microgrid
energy scheduling problem using the IRL method and avoiding
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computation of the state visitation frequency at the same time.

In this paper, we work on the optimization of the microgrid
energy scheduling problem using the inverse reinforcement
learning method. Specifically, we propose a computationally
efficient inverse reinforcement learning approach to extract
the reward function from the expert demonstrations, called
modified maximum entropy IRL (MMIRL) method. The con-
tributions of this paper are provided as follows. First, a
novel IRL-based framework with computational efficiency is
proposed to identify the reward function related to the state-
action pair for the microgrid energy scheduling for the first
time. Moreover, the proposed MMIRL method avoids the
calculation of state visitation frequency by calculating the
difference between the expert feature expectation and learner
feature expectation, which saves computational cost and makes
the algorithm more efficient.

The remainder of this paper is organized as follows. Section
I states the main idea of the maximum entropy IRL method
and the important improvements of our proposed MMIRL
algorithms. Explanations about the microgrid system model
is given in Section III. Specific simulations, problem formula-
tion, and results are shown in Section IV. Finally, conclusions
are provided in Section V.

II. MAXIMUM ENTROPY INVERSE REINFORCEMENT
LEARNING APPROACHES WITH COMPUTATIONAL
EFFICIENCY

A. The Maximum Entropy IRL Method with Reward Related
to the State

A Markov decision process (MDP) can be expressed by a
tuple: {S, A, P, R,~v}, where S is a set of states s, A is a set
of possible actions a, P is the transition probability, and R is
the reward function [15].

In the maximum entropy IRL method [16], the path feature
counts, f¢, for a MDP path, ¢, is defined as the sum of the state
features along the path. The feature for the state, s;, is defined
as fs,. The relationship between the path feature counts and
the state features can be formulated as

fe=> f,

s,€€

&)

The goal for an inverse reinforcement learning agent is to
extract the reward function from the expert demonstrations that
linearly maps the features of each state, f;,, to a state reward
value,

R(£[0) = 0T = Y 07K,
5;€€

2

where 6 is the reward weight applied to the path feature counts.
The expert feature expectation is formulated by the average
path feature of all trajectories in the expert demonstrations,

o 1
fr=5 2 fe=x 2 2 fu

§eD §€D s €8

3)

where N is the trajectory number of expert demonstrations,
and D is the set of expert demonstrations.
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The objective function for the maximum entropy IRL
method is to maximize the entropy of the distribution over the
demonstration from the observed data. The optimal weight 6*
is

0* = =
arg max L(0) = arg max Z logP(£10) 4)
£eD
where L(0) is the log-likelihood function, and P(&|6) is the
probability of the trajectory &.

The gradient of L(6) is expressed in terms of expected state
visitation frequencies as

VL) =fg — Y Dt

s, €0

(&)

where D, is the expected state visitation frequency of state
s; in [16] that is hard to be calculated in large-state space, and
O is the set of learner trajectories.

In traditional maximum entropy IRL method, the feature of
the trajectory is only related to the state, while there is a trend
to apply the (s, a) pair to build features because sometimes the
reward function is related to the (s, a) pair [17] [18]. Although
these methods used the (s, a) pair to recover the reward, they
still have some limitations of relying on the state visitation
frequency or the regeneration of all the samples.

B. Proposed Modified Maximum Entropy IRL Method

For the majority of cases, the reward function is always
associated with both state and action information, especially in
the microgrid energy scheduling problems [19]. The maximum
entropy IRL method requires the calculation of transition ma-
trix and state visitation frequency, which brings computational
challenges in the large and continuous state space. Based on
the reality, we modify it using reward relate to the (s,a) pair
called MMIRL method. This idea is inspired by calculating
the margin of observed from learned feature expectations in
[20]. It’s more efficient than traditional maximum entropy IRL
methods due to its feasibility in the large-state space.

The equation (1) of the path feature counts, f¢, is modified

as
ff = Z fSMli,j (6)
(si,ai,5)€E
The reward function is correspondingly changed as
REO)=0"fc= Y 0T, 9

(siai,5)€E
The expert feature expectation of (3) is reformulated as

E.E' = % Z Z fsi,ai,j

§€D (si,a4,5)€E

®)

Our method calculates the gradient with the approximation
of expert feature expectation 5 and learner feature expectation
f,curn., instead of calculating the state visitation frequency. The
equation (5) is modified as

VL) =t — ficarn 9)
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where similar to (8), the learner feature expectation f'zeam can

be defined as
~ 1
flearn = M Z Z fs,-,a,-,j
£€O (si,ai )€€

(10)

where M is the trajectory number of learner trajectories.

This design saves the computational cost in both the discrete
and continuous state-space problems by avoiding the compu-
tation of state visitation frequency. Moreover, considering the
large or continuous state space, our MMIRL method can also
be involved with deep RL methods to learn the optimal policy
according to the recovered reward function, which avoids the
computation and storage of large table in tabular methods.

In the microgrid energy scheduling problem, the actual
reward intuitively depends to both the current state and the
current action [21]. Therefore, our goal is to find out the
reward function R(s,a) through the expert demonstrations,
then use the recovered reward function to learn the optimal
microgrid energy scheduling policy.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this paper, we consider a grid-connected microgrid con-
sisting of four units from the perspective of energy generation
and load demand shown in Fig. 1. The four units are the battery
energy storage system (BESS), the distributed generations,
including diesel generator (DG) and renewable generations
(RG), the main grid, and the residential load. The optimization
problem is to make hourly dispatch decisions over a time
period of T' (24 hours).

The state of our microgrid system at the end of hour ¢ is
defined as:

Y

where s, is the state of charge (SOC) of the BESS, s; 4 is
the binary variable that indicates the ON/OFF status of DG,
St,4 1s the output of RG, s;,, is the retail energy price, and
5¢, is the residential load demand.

St = (St,byst,dyst,g7st,pa St,l)

A — Available non-controllable power
supply

B — Buying power from the grid

C — Selling power to the grid

____________

I’ \‘
Foma]]_o[f<

]

1
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Generations Control Center
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- - D — Charging energy to the battery

1
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Fig. 1. A microgrid system consists of a battery unit, a distributed generations
unit, a power grid unit, and a residential load demand unit. This is a modified
figure from [22].

The transition function of SOC is given as

Asyp
. 12
E, (12)

St4+1,b = St,b —
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where Ej, is the rated energy capacity, and As, ;, is the energy
changing amount of BESS at hour ¢,

ny, PepAL, if pry <0

Ptb

ny

where At is the time step size, 1, and 77@F stand for the
charging and discharging efficiencies respectively, and p; ; is
the charging or discharging power of BESS, which is positive
when discharging.

Besides, the SOC of the battery is constrained by

Asip = (13)

At, otherwise

Sp— < St < Spy (14)

where s,_ and s, stand for the lower and upper bounds of
SOC, respectively.

The p,; should satisfy the limitations of the maximum
discharging power PbJr and the maximum charging power P, ",

Py <pip < B 15)

The action of our microgrid system at the end of hour ¢ is
defined as:

ag = (pt,bapt,d;pt,p) (16)

where p; 4 is the power output of DG, and p, , is the power
purchased from (positive) or sold to (negative) the main grid.
The power balance of the microgrid can be expressed as

P+ Prd+ Prp+ St,g = S (17)

The DG status updated by the transitions in [23] is applied
for determining the next-state of DG status. We uses the Q-
learning method and the dynamic programming (DP) method
to generate the expert demonstrations with the microgrid cost
setting in [21]. For the simulations, we consider two case
studies. One is an energy arbitrage problem with a microgrid
system only involved with the units of the battery and the main
grid, the other is the microgrid system involved with all four
units.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we conduct two case studies to evaluate
the performance of our proposed MMIRL method. We first
compare our approach with two expert policies, including the
Q-learning method and the DP method. Then we also compare
with the maximum entropy IRL method [16] and the imitation
learning method [8] to justify the performance improvements.

A. Case 1: an energy arbitrage problem

The problem is how to schedule battery charging and
discharging so that we can maximize the revenue on the
basis of the fluctuations of the power price. The state s;
of case 1 can be simplified as (s, 5:,,), and the action
is the BESS charging/discharging power p, ;. Therefore, the
objective function of case 1 is maximizing the total reward
over the time period of T,

) (18)
Pt,b -1

T T
max Z R(st,a¢) = max Z[st,ppt’b]
“=1
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We use the DP method as our expert policy to implement
our MMIRL method. To compare the difference of using
the reward related to s and (s,a), we also implement the
maximum entropy IRL method using (s, a) features. Besides,
we discretize the battery SOC s;; into 11 states from 0.1 to
0.9. The initial SOC is defined as 0.1 and the energy storage
parameters are set as

o Ey, =4 MWh, T = 24 hours
oy =n, =87%

® Spyr = 0.9,817, =0.1

« P =P =1MW

We conduct our MMIRL algorithm to recover the reward
function of R(s,a) and generate the learner’s optimal policy
by two RL methods using the recovered reward, including the
Q-learning method and the deep Q-network method. It is worth
mentioning that our MMIRL algorithm recovers the reward
function related to the (s,a) pair. The simulation results are
shown in Table I. For case 1, the higher reward is better since
the goal is to maximize the reward.

TABLE I
SIMULATION RESULTS FOR CASE 1
Methods Total Reward ($) | Reward Accuracy
Expert: DP 46.66 -
Max Entropy IRL (s) 44.84 96.1%
Imitation Learning 44.94 96.3%
Max Entropy IRL (s, a) 46.66 100%
MMIRL (s,a) 46.66 100%

As we can see from the value of recovered policy’s total
reward, all these methods can achieve more than 96% accuracy
compared with the DP expert policy. From the results of
maximum entropy IRL method using s feature and (s,a)
feature, we can conclude that recovering reward related to the
(s,a) pair can have better performance with 100% accuracy
in this energy arbitrage problem. Moreover, our proposed
MMIRL algorithm can precisely recover the reward and the
optimal learner policy the same as the expert with 100%
accuracy. This performance is 4.1% better than the maximum
entropy IRL method using s feature and 3.8% better than the
imitation learning method in the reward accuracy metric.

B. Case 2: a microgrid system with DERs

The state and action of this case are defined as (11) and (16).
This microgrid energy scheduling problem is to minimize the
total operational cost during the time 7',

T T
rr;;nz C(st,ar) =min Y _[Cra(pra) + Crp(peyp)]  (19)

t=1 t=1

where Cy 4(pi,q) is the operational cost of DG expressed as

Cr.a(pe,a) = st.a(aapi g + bape.a + ca) (20)
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where p; 4 is the power output of DG, a4, by, and cq are the
coefficients of the quadratic function. The power purchasing
cost or selling revenue Cy ,,(p; ;) is expressed as

DtpStpN AL, if pr, >0

pt"pst,pAt

Cip(prp) = (21)

otherwise

where 77 is used to capture the network losses.

The cost function value equals to the opposite value of the
reward function. And the parameters of the dispatchable DG
and the BESS for this microgrid are adopted from [21]. The
rated power of wind for RG is defined as 100 kW, and the
power output profiles are generated using the System Advisory
Model [24] for the city of Phoenix, Arizona. Similarly, the
residential load profiles and power prices are from Phoenix
with a peak of 150 kW in a time period of 24 hours. The
detailed setup description can be found in [21]. We also

discretize the battery SOC into 20 status from 0.1 to 0.9, and
the initial SOC status is set as 0.1 with n = 0.915.
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Fig. 2. The comparison results of the DP expert policy and the propose
MMIRL algorithm for one of the 5 experiments.

We use 5000 iterations for the Q-learning approach and the
DP approach as two expert policies. Similarly, we implement
our proposed MMIRL algorithm applied with the Q-learning
expert demonstrations and the DP expert demonstrations re-
spectively, and compared with two expert policies and two
comparison methods. Because the state in case 2 involved with
more parameters and the reward is related to (s, a) pair, these
factors lead to the dimension explosion for case 2. In order
to speed up the computation, we apply deep Q network to
learn the learner’s optimal policy with the recovered reward
function generated from our MMIRL algorithm. To be fair, 5
experiments are conducted for the proposed MMIRL algorithm
for 20000 epochs, and the average results are recorded.

Fig. 2 illustrates the MMIRL algorithm’s SOC status and
cost in comparison with the DP expert method in one of the
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TABLE II
SIMULATION RESULTS OF THE MICROGRID FOR CASE 2
Methods Expert Demos | Total Cost ($) | Cost Accuracy
Q-learning - 17.95 -
Max Entropy IRL (s) Q-learning 24.61 73.0%
Imitation Learning Q-learning 19.94 90.0%
MMIRL (s, a) Q-learning 18.15 98.9%
Dynamic Programming - 16.55 -
Max Entropy IRL (s) DP 29.23 56.6%
Imitation Learning DP 18.06 91.6%
MMIRL (s, a) DpP 16.63 99.5%

5 experiments. It’s clear that the SOC status of DP expert
and the MMIRL method is almost the same, except the first
five hours. Moreover, when it comes to Table II, our MMIRL
algorithm outperforms other comparative methods using both
two kinds of expert demonstrations. The MMIRL method
using the Q-learning expert demonstrations achieves a $18.15
total cost and 98.9% accuracy. Specially, when the proposed
MMIRL algorithm using the DP expert demonstrations, it
achieves a lowest $16.63 total cost and 99.5% accuracy. This
performance is 8.6% better than the imitation learning method,
and 75.8% better than the maximum entropy IRL method using
the same DP demonstrations.

V. CONCLUSIONS

In this paper, a computationally efficient IRL approach
called the MMIRL method is proposed to extract the reward
function of the microgrid energy scheduling problem from
the expert demonstrations. The Q-learning method and DP
method were used for generating the expert demonstrations,
and the maximum entropy IRL method and the imitation
learning method were introduced for comparisons. Two case
studies of an energy arbitrage problem and a microgrid system
with DERs were conducted to validate the effectiveness of
the proposed MMIRL approach. There is a reality that the
reward function of microgrid optimization is related to the
(8, a) pair. Therefore, the main contribution of our work is the
realization of recovering the reward function of the (s, a) pair
for microgrid energy scheduling for the first time. Besides, our
approach can learn the dispatch policy through the recovered
reward function without the need for the computation of state
visitation frequency, which is more efficient than conven-
tional IRL methods. Our experiments show that the proposed
MMIRL algorithm can achieve more than 99% accuracy in the
aspects of total reward or total cost compared with the expert
policies, and outperform other existing methods in both cases.
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